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Abstract

Classification under streaming data conditions requires that the machine learning

approach operate interactively with the stream content. Thus, given some initial ma-

chine learning classification capability, it is not possible to assume that the process

‘generating’ stream content will be stationary. It is therefore necessary to first de-

tect when the stream content changes. Only after detecting a change, can classifier

retraining be triggered. Current methods for change detection tend to assume an

entropy filter approach, where class labels are necessary. In practice, labelling the

stream would be extremely expensive. This work proposes an approach in which

the behaviour of GP individuals is used to detect change without the use of labels.

Only after detecting a change is label information requested. Benchmarking under

three computer network traffic analysis scenarios demonstrates that the proposed ap-

proach performs at least as well as the filter method, while retaining the advantage

of requiring no labels.
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Chapter 1

Introduction

The problem of growth in size of the data generated in the real world is not a new

challenge. These constantly increasing data volumes, known as “data streams”, need

to be stored, classified, and analyzed for further usage. One way to do this is through

conventional offline classification algorithms. These algorithms assume that indepen-

dent training and test sets exist, and that the content of the training set can be

revisited without penalty. However, there is no guarantee that the structure of a data

stream will always remain constant and never change. i.e., the process generating

stream content is said to vary over time (non-stationary). Thus, by sampling data

streams and forming a limited and separated amount of them as training set, we are

only able to classify data for a short period of time. As a result, we need classification

algorithms that are not static/linear and able to adapt accordingly to such changes,

and can therefore be used in more continuous and streaming contexts.

Real world datasets, such as financial markets, computer network traffic analysis,

power utility management and autonomous systems in general, are frequently of a

constantly changing nature. Thus, data has an explicitly temporal property, such

that the validity of any given classifier has a finite lifetime. Under such conditions,

it is no longer possible to partition data into training and test sets. Thus, the funda-

mental assumption of off-line training is no longer true. As a result of these changes,

algorithms should never stop learning and revising what they have learnt. In the most

general case, streaming data or online learning requires that classifiers are constructed

on a continuous basis (online mode). Online algorithms keep evolving as new data

gets introduced into the stream, and evaluation is done based on the most recently

learned patterns. MOA:Massive Online Analysis [10], provides a hands-on collection

of these online algorithms. In addition, Figure 1.1 shows an application example of

online algorithm for identifying spam emails [1].

Classification under the Genetic Programming (GP) domain has been studied

1



2

Figure 1.1: An example of online algorithm for spam email detection [1]

extensively in machine learning. Some solutions utilize separate classifiers for each

class and others tend to decompose the problem into smaller subsets and classify data

as an “ensemble behavior.” All these approaches have an essential feature in common:

they are canonical. In each case, a population of candidate classifiers evolve against

the content of the training set. Post training evaluation is performed relative to

the test set. In the advent of larger data sets, it becomes increasingly necessary to

decouple the cost of fitness evaluation from the cardinality of the training set. Thus,

different forms of re-sampling are typically employed. The underlying objective of

such schemes is to identify training exemplars that promote the most development of

the classifiers at any particular generation. In the case of an online GP classifier, the

first training set exemplars might provide the basis for identifying initial champion

GP classifier. The GP champion then provide labels for the exemplars appearing in

the stream.

This online method of constantly learning and revising is potentially time- and

resource-consuming, thus conflicting with the goal of efficiency and optimization.

Moreover, it is important to note that data streams are not necessarily changing

drastically. The variations occurring in the generated data streams depends on the

nature of the data being collected and used. A general example is the data collected

from computer networks. Adding a new machine might add new data in the stream,

for instance, with the widespread usage of wireless devices and their mobility may

cause data to abruptly change. One appropriate solution might be identifying these
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changes and then revisiting and updating previously learned values afterward. This

approach requires some sort of change detection mechanism, such as what has been

introduced in [33, 37, 40]. Moreover, in most cases, the pairwise sliding windows

technique is deployed on the stream after which a class-specific entropy comparison

is made between the two sliding windows (i.e., using a classifier independent filter).

Naturally, this implies that each exemplar requires a class label; in addition, such

approaches generally fail to identify recurrence. Thus, a change detection method

that is independent of labels and capable of handling recurrence is needed. Such a

method has been introduced in this research using a GP classification framework.

This research begins by introducing background information and literature review

in Chapter 2. Then it continues, in Chapters 3 and 4, by explaining the framework

and methodology used in this thesis. To be more specific, Chapter 4 starts by apply-

ing the standard entropy-based framework for change detection [37]. Pareto archiving

will then be introduced in the context of a recent study which concluded that, un-

der a labeled stream, GP classifiers can be built that approximate the strength of

classifiers constructed from fitness evaluated against the entire stream [6]. We will

first demonstrate that information from the Pareto archive can be used to provide an

alternative basis for defining sliding window content under the entropy formulation

for change detection; albeit under the labeled stream requirement. Finally, in order

to support change detection without a prior labeling of the stream, change detection

is conducted on the output space of a team of cooperatively coevolved champion

GP classifiers. This provides the benefit of being able to incrementally change the

collection of champion classifiers. Thus, rather than relying on a single champion

– whose behavior might be re-encountered under cyclic non-stationary processes –

classifiers act as a team of non-overlapping behaviors. The starting point for develop-

ing such a capability in streaming data will be a previously proposed framework for

Co-evolutionary Multi-objective GP (CMGP) [30, 31], explained in Chapter 3. The

proposed scheme for unlabeled change detection is shown to at least match that of

those requiring all exemplars to be labeled. As such, this represents a significant im-

provement, as the proposed approach does so by decoupling the labeling requirement

from the stream itself. An overview of the algorithm can be seen in Figure 1.2.

In Chapter 5, results are reported under three network traffic analysis data sets
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Figure 1.2: An overview of applying On-line Genetic programming classifier on data
streams with change detection

in which changes have been explicitly applied into the stream. There has been some

analysis of encrypted traffic using various machine learning methods without IP ad-

dresses, port number and payload information [2, 3, 8]. A similar dataset called UCIS

[3] has been used as the first data set. The NIMS is another dataset which was ar-

tificially produced by Arndt [3] and it has been used in combination with UCIS as

the second dataset. The third dataset is KDD’99 [15]. It is a collection of different

network attacks in an artificial set. Further information about these data sets are

provided in Section 5.1. At the end, the conclusion and future work is provided in

Chapter 6.



Chapter 2

Background & Literature Review

2.1 Problem Definition

In the following section, three concepts - data stream, concept change, and on-line

algorithms - are described. These terms are used throughout this research, and can

be applied to diverse application domains such as weather prediction, customer pref-

erences, spam categorization, user modeling, monitoring in biomedicine, monitoring

industrial processes, fault detection and diagnosis, safety of complex system, financial

markets, computer network traffic analysis, and power utility management.

2.1.1 Data Stream

A data stream is a collection of sequential instances where each instance includes a

set of features or attributes. Each data instance is associated with a class label i.e.,

data instances are self-contained. Figure 2.1 shows an example of such a data stream.

Prediction methods try to analyze the labeled instances and their features in order to

predict the next unlabeled instance in the stream. These instances have an unlimited

growth rate, such that it is almost impossible for classification algorithms to learn

based on the whole collection of previously visited data. Specifically, the context

where these data streams are generated and collected is not stable. Thus, underlying

process ‘generating’ the stream content might alter over time, so the learned model

needs to be revised occasionally.

In this thesis, the stream data will take the form of “flows” – where this rep-

resents a collection of attributes / statistics used to summarize packet data from a

computer network e.g., [3]. Each flow is differentiated from others by source IP, source

port, destination IP, destination port, and transport protocol. It also includes vari-

ous characteristics or features such as standard deviation of packet length and mean

inter-arrival time. Some recent papers – such as [2, 3, 8, 16] – demonstrate that flows

5
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Figure 2.1: An example of data stream. Each flow is shown by “S”, each feature in
flow by “f” and respective labels by “L”

without IP addresses, port numbers and payload information can be used for distin-

guishing between different types of network traffic using machine learning algorithms

constructed under an off-line batch training framework. Arndt [3], Alshammari [2],

Bacquet [8], and Erman [16] use 46, 22, 38 and 11 features, repectively, for every flow

in the data stream. They have reached these numbers of features based on trial and

error. One of the datasets used in this research (UCIS) is based on that collected by

Arndt [3, 4], where the number of flows and features (40) have already been charac-

terized. This dataset consists of Dalhousie University network traffic traces (called

UCIS ); it is described in greater detail in Section 5.1 (i.e., it was necessary to modify

the data set in order to introduce non-stationary properties.)

2.1.2 Concept Change

As discussed earlier, data streams consist of collections of data accumulated on a

continuous basis. The underlying context of this data collection process may change

over time. Moreover, the distribution of data may also vary over time. Considering the

increasing amounts of data that we are faced with, these differences are inevitable.

Thus, relying on a model that is built according to the first batch of data is not

practical since the model needs to be updated regularly in order to be responsive and

adaptive to such changes. With this in mind, it is important to identify changes and

their types accurately in order to apply a proper approach. Any kind of variation

in the underlying context of generating data streams could result in a dramatic or

slight change in the main concept, and these concept changes could be either new
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or repeated. This repeat pattern in changes includes seasonal and irregular cycles.

According to Tsymbal’s survey [36], the ultimate goal is to establish a system that

is able to adapt quickly, differentiates noise from real drift, and handles recurring

changes.

Different types of changes can be categorized into two main groups: gradual vs

abrupt changes and real vs virtual changes. In the following section we will describe

each one of these change types. At the end considering real and artificially produced

datasets, an overview of existing changes in famous datasets will be given.

• Gradual vs Abrupt Change:

Sudden changes in the underlying context can cause abrupt changes in target

concept, which is called concept shift [41]. For example, a customers preferences

might vary drastically after graduation from college. On the other hand, gradual

changes, or so called concept drift [41], are those that happen incrementally over

time. For instance, approaching the autumn season causes a gradual decrease

in weather temperature prediction models. Vorburger [37] introduced a change

detection method for such abrupt concept drifts which is explained in detail

later, in Section4.2.

• Real vs Virtual Change:

Changes in the distribution of data are referred to as virtual concept shift [40],

and changes in the underlying concept are referred to as real concept drift [39].

Salganicoff [33] states that virtual concept shift is the same as sampling shift,

and Yang [41] refers to it as sampling change. Virtual concept shift is most

commonly studied under the spam categorization domain. In fact, it emphasizes

that, even though the underlying concept might be the same, learning models

need to be revised due to high error rates.

• Concept Change in Real vs Artificial Datasets:

A widely used artificial dataset in change detection literature is the Stagger,

which was introduced by Schlimmer [34] and used in [19, 26, 39]. Another

popular dataset is the Moving Hyperplane, used in [22, 26, 38]. These types

of artificial datasets allow control over type, rate, concept drift, recurrence,
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appearance of noise, and existing irrelevant attributes. Their major downside

is lack of scalability [36]. Some other used artificial datasets includes: Flight

simulator [19], Webpage access [22], and Credit card fraud [38]. Real datasets,

such as Electricity [19], were also investigated in some studies (e.g. [17]). The

main disadvantage of a real dataset is the fact that abrupt changes happen

very rarely. To address this shortcoming, abrupt changes should be introduced

manually into the set.

For the purposes of this research, one real (UCIS [3]) and two artificial (KDD’99

[15] and NIMS [4]) datasets have been used. In both cases, concept shifts are in-

troduced manually to facilitate change detection performance evaluation. Further

details about these dataset are described in Section 5.1.

2.1.3 Change Detection Methods

Methods investigating the change detection problem generally take the form of a

window-based approach (e.g. [17, 25, 33, 37, 40]) . There have been other methods,

as well; for instance, Klinkenberg [24, 25] uses SVM for establishing a weight-based

approach. He assumes that the importance of learning exemplars changes over time

and lose significance in proportion to exemplar age. Thus, their effect upon the final

decision gets reduced over time. Nonetheless, after applying this theory to text data,

he concludes that using a window technique with adaptive size works better than a

weighting scheme [24].

The sliding window is a technique of instance selection where the emphasis is

on the most recent data rather than historical data. The term “Sliding” refers to

the fact that the window moves forward on the stream. Prediction models based on

the current window location attempt to predict the label of the upcoming flow in

the data stream. These window sizes could be variable, as Widmer and Klinkenberg

[25, 40] use adaptive window sizes. The possibility of using this technique was first

introduced by Helmbold [20]. Babcock [7] states that the size of the window could be

dependent on the time variable. As a result, all flows within specific time stamps are

considered as a window regardless of their size. These methods apply on the stream,

whereas Zhu [42] takes a behavioral ensemble approach in which different classifiers

receive a different weighting. Both window-based techniques and behavioral ensemble



9

approach motivate the approach adopted in this research and are described in Chapter

4.

2.1.4 Streaming Algorithms

In offline algorithms, it is generally assumed that the data set is stationary cf., the

“independent and identically distributed” assumption [19, 25, 39]. Thus, it is fair to

partition the data set into independent training and test partitions i.e., the training

partition is suitably representative of the underlying task. As soon as the task (i.e.

process creating the data) is non-stationary, this will not hold true. Indeed, if the

offline batch approach were adopted for non-stationary data the labels could even

be explicitly contradictory. Conversely, under online algorithms, data is expected

to arrive continuously. Thus, it is expected that the algorithm adapts to the new

incoming data on a continuous basis. In some cases, e.g. [2, 3], an offline algorithm

is supposed to update periodically, whereas in other studies , e.g.[1, 22, 38], a change

detection method is used to reduce the cost of unnecessary periodical updates. In

both cases, user feedback is needed in order to provide the necessary class label

information.

Atwater [6] shows how classification on data streams could benefit from genetic

programming (GP) concepts such as Pareto archiving. Specifically, Pareto archives

provide a useful scheme for deciding which data points should be retrained from the

sliding window for identifying particularly ‘good’ GP classifiers. The caveat being that

for computational reasons the archive needs to be of a finite size, thus requiring the

use of appropriate secondary selection heuristics when the archive limit is encountered

[5]. Similarly, in this research, a GP classification framework has has been pursued

in order to satisfy the goal of label free change detection. The Pareto GP framework

and approach to change detection are explained in Chapters 3 and 4 respectively.

2.2 Literature Review

This research is focused on the concept of change detection as applied to GP models

of classification. Thus rather than attempt to perform evolution on a continuous basis

– something that we wish to decouple from on account of the labelling cost – we are



10

first interested in detecting when a change occurs. If we can do this without reference

to labels, then we will only trigger retraining under specific circumstances.

As described in Section 2.1.2, change detection to date as assumed one of two

generic approaches, either an entropy based measure as applied to the input stream

followed by some form of threshold comparison (e.g., [23, 25, 37, 39]) or a behavioral

analysis of a team (or ensemble) of classifiers (e.g., [42]) is assumed with a variance

test (e.g., [18, 26, 28, 33, 38]).

Yang [41] assumes that changes have one of two forms: virtual concept drift caused

by variation in data distribution and real concept drift caused by variation in context.

In addition, changes could also be divided into two categories of concept drift(gradual

change) and concept shift(abrupt change). Concept shift is a known issue in terms of

dealing with data streams [36]. Moreover, recurring / cyclic reintroduction might also

appear in real world streaming data; such as sensor networks, recommender systems,

customer care or weather predictions. Algorithms that have memory of previously

employed models could therefore potentially react without requiring the complete

reconstruction of a previously identified solution.

Vorburger [37] assumes a common window-based approach but introduces a thresh-

olding metric based on Shannon’s entropy [35], that is able to detect both real and

virtual concept shifts. The major issue of window-based approaches problem is the

fact that it is purely reactive i.e., has no memory beyond the current window content.

Conversely, ensemble learning methods [18, 22, 38, 39, 41] deal with this problem by

keeping a history mechanism to cope with the recurring situations (e.g. [18] builds

an ensemble learners from the existing classifiers pool). In this work, we will consider

both scenarios (of detecting change on the stream and also incorporate an ensem-

ble metaphor), the former providing the performance baseline that the latter should

ideally maintain without the former’s labelling requirement.

Various monographs have discussed evolutionary computation as applied under

non-stationary or ‘dynamic’ environments1 e.g., [14, 32]. In this work, we are par-

ticularly interested in decoupling the need for supplying class labels at the rate of

the stream. From the perspective of applications in network traffic analysis, this is a

very important requirement because the cost of providing labels is high. Conversely,

1Hereafter non-stationary and dynamic will be employed interchangeably.
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under other applications often associated with non-stationary environments, such as

trading agents in the financial services, there is no concept of a labelling cost. In-

stead, fitness is generally associated with maximizing the return on an investment [14]

Thus, change detection may even be associated with the measurement of behavioral

properties, such as loss of wealth.

Many authors have provided taxonomies for the types of variation that result in an

environment being considered dynamic; for a survey see Chapter 3 in [14]. In the case

of this thesis, we consider the case of an environment described in terms of traffic flow

data. As such each exemplar from the stream summarizes a set of packets associated

with the communication between the same pair of IP addresses. Thus, each exemplar

potentially describes a behavior and requires independent classification. The goal of

the classifier is to categorize the type of application / service associated with each

network traffic flow. Tasks of this form are central to the management of computer

networks and historically have been performed using port information or deep packet

inspection. However, services are increasingly becoming hidden – care of the wide

spread use of encryption or dynamic port allocation – making deep packet inspection

or port based categorization ineffective. Previous works have demonstrated that

machine learning methods can successfully classify encrypted traffic from flow data,

but always assume the classical batch model of classification (e.g., [2]) and is therefore

not appropriate for non-stationary data. The stream associated with this work is

therefore representative of a task with abrupt random changes that in some cases

involve revisiting previously encountered behaviors. The initial period of training

necessary to construct the first set of champion classifiers is only conducted relative

to a sample of data that is specific to a subset of the potential set of services, with

other services potentially appearing later in the flow.

In this research change detection is done with respect to the class label space.

Since change detection is relative to the input space, it might be possible to address

this through the case of parameterized models as applied to the input (attribute)

space. Similarly, Holst [21] has introduced a statistical anomaly detection component

that aids opertors to identify deviations from normal as a sign of potential problems

as early as possible. Previous research with GP in non-stationary environments often

emphasize the characteristics of a specific application domain. Indeed, the only task
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domain considered in [14] is that of financial services trading. In this case, evolution

is undertaken on a continuous basis with the goal of tracking any change to the

underlying dynamic. As noted above, this is fine as long as there is no labeling cost.

However, we explicitly need such a decoupling in the network traffic classification

task pursued here, and it is this characteristic that sets the principle distinction in

the contribution of this work. More general recommendations made for applying

evolutionary computation to non-stationary environments include [14]:

• Memory: the ability to refer to previously evolved champion solutions;

• Diversity: maintaining population diversity;

• decomposition: where modularity potentially leads to faster reconfiguration;

and,

• Evolvability: the capacity to continuously develop new solutions.

Finally, several previous works illustrate the potential application of machine

learning algorithms to the encrypted classification task. Arndt [3] studies three differ-

ent machine learning algorithms to identify SSH traffic as a case scenario in network

traffic analysis: C4.5 (supervised learning similar to [2]), K-means (semi-supervised

learning similar to [16]) and Multi-Objective Genetic Algorithm (unsupervised-learning

similar to [8] where a Multi-objective GA is used to select K value for K-means and

clustering feature selection). In each case, however, a batch offline training framework

was assumed.



Chapter 3

Co-evolutionary Multi-Objective GP(CMGP) Framework

A generic goal of machine learning is to identify patterns amongst data. The idea

is to learn and form models of classification based on input data quickly and effi-

ciently. This research is focused on classification under the evolutionary computation

paradigm of machine learning. In classification algorithms, data(input) is given to

the algorithm as a set of instances where each instance could be composed of several

features.

In general, machine learning algorithms can be divided into two categories: su-

pervised and unsupervised. In supervised learning, each instance is accompanied by

a label or target output. In unsupervised learning, these target outputs are not pro-

vided. Thus, in the latter case, the focus is more on grouping the input data and

building models based on similarities. Classification falls under supervised learning

algorithms given the condition that the provided labels are discrete.

In the classification framework proposed by McIntyre [30], multiple individuals

are evolved to cooperatively represent each class in the classification task. Regard-

less of the specific domain where these classification algorithms are applied, there

are three important design issues that need to be addressed: representation, cost

function, and credit assignment [9]. The representation refers to the form used to de-

scribe a candidate solution; where this establishes the possible set of models that can

be described, or the representation space. The cost function provides performance

information which in the case of a classification task is relative to some sample of

data. Credit assignment determines how feedback from the cost function results in

modifications to the representation and essentially boils down to answering how the

exploration versus exploitation tradeoff is addressed.

Genetic Programming (GP) represents a form of evolutionary computation in

which the representation takes the form of computer programs, in this case described

in terms of a very simple “reduced instruction set” or register based transfer language.

13
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One and two argument operands1 are defined a priori to operate on a predefined set of

general purpose registers. Two addressing modes are typically supported: Register–

Register R[x] ← R[x] < op > R[y] or Register–Attribute R[x] ← R[x] < op > A[y];

where R[x] is a reference to general purpose register x, < op > is an opcode, and A[y]

is a reference to attribute y. Credit assignment is addressed through selection and

variation operators. Specifically, selection operators define who gets to ‘reproduce’

(parental selection) as well as who is replaced (survival bias) at any given training

epoch. Selection therefore potentially makes use of information from the cost function.

Variation operators define what material from a (pair of parents) is used to define

an child individual. As such, variation operators act on the representation space.

Typical examples include adding or deleting instructions (cf., mutation) or ‘inheriting’

different code fragments from a pair of parent individuals (cf., crossover). Credit

assignment again occurs through the code inherited from parents. However, both

selection and variation generally assume stochastic models of application. Specifically,

the representation space is not ordered. As such gradient information is precluded.

This makes it difficult to ‘hill climb’ to the ‘nearest’ local solution as the concept

of locality is defined relative to all possible combinations of the search operators,

relative to any two parents. Given that there are many candidate solutions (the

population) present at any given training epoch, then conducting an exhaustive search

for the single ‘best’ modification is generally not feasible. Instead, selection and

variation operators are applied probabilistically, with survival, say, being determined

deterministically i.e., a fixed number of the weakest individuals are always replaced

at each generation; as in a breeding metaphor. All of the above represents the case

of canonical GP [9]. In the following we elaborate on the specific approach taken to

support task decomposition, multi-class classification and cardinality decoupling as

embodied in the Coevolutionary Multi-objective GP framework(CMGP) [31]. Before

doing so, however, we discuss the specific case of canonical GP as applied to the

(batch offline) classification task.

1For example, single argument operands might take the form of trigonometric and logarithmic
operators whereas two argument operands might be arithmetic or logical operators. In addition,
tests on conditional statements might also be utilized, but are not considered here.
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3.1 Canonical GP, the batch classification task and a case for CMGP

Applying GP to a classification task implies that for each GP individual, the program

is executed for each training exemplar. This results in each exemplar being mapped

from the input space to a 1-d output space, or number line (GPout). The goal of a

GP individual is therefore to find a mapping that results in exemplars from one class

appearing on (a continuous region of) half of the number line, and exemplars from

the second class appearing on the other half of the number line.

Naturally, it is also useful to maximize the separation between exemplars associ-

ated with each region of GPout. To do so, a wrapper operator is employed. This

takes the form of a sigmoid operator that maps points from one half of GPout to

a suitable binary value, say 0; while the second region of GPout is always mapped

to the second binary value, say 1. At the mid point of GPout there is a transition

region in which the sigmoid operator smoothly switches between 0 and 1. Given that

the labels for each class will be 0 or 1, then mapping points to the transition region

always results in a non-zero error. Likewise, mapping an exemplar with a label of 1

(0) to the region of GPout that the sigmoid operator associates with outcomes of 0

(1) results in a maximum error. Figure 3.1 demonstrates a canonical GP classifier

that uses sigmoid operator.

Figure 3.1: Canonical GP classifier with sigmoid operator
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There are various well known limitations associated with this canonical framework

for GP classification [31], summarized as follows:

1. Binary classification limitation: There are only two regions that a sigmoid op-

erator may define under a minimum bias assumption. Attempting to divide

GPout into more regions (to reflect more classes) forces an increasing number

of assumptions. For example, under a three class scenario why should exem-

plars be a priori mapped to regions ordered as classes 0–1–2, as opposed to

say regions ordered as 2–1–0 or 1–0–2? Such biases already exist in the binary

scenario, however, it becomes increasingly difficult to avoid significant negative

impacts – the learning task is made artificially more difficult – as the number

of classes increase.

2. Monolithic classifiers: The canonical GP framework assumes that a single GP

individual is responsible for classifying all the data. This is equivalent to requir-

ing a single universal program neatly map all the data into class specific regions

of GPout. Although theoretically possible, it may be much easier to find say,

three programs, that map different subsets of the data set to their respective

(binary) regions of GPout. In effect this is an argument for modular program-

ming capabilities. The catch is that we cannot a priori define what subset of

exemplars should be associated with each of the three different GP individuals.

3. Lack of robustness: When sigmoid operators are used to define the GPout

number line up into two regions, and evolution successfully identifies such an

individual i.e., exemplars from each class are successfully mapped to each of the

binary regions of GPout, it transpires that the classifier can still fail in practice.

Specifically, if the training data misses ‘rare events’ associated with say, a fault

condition, there is no fail safe. The classifier will label the fault condition as

one of the two classes. In a sense, the program has no way of indicating when

it encounters something that it has never “seen before”, even if all cases of such

data were successfully mapped to a unique region of GPout.

4. Lack of scalability: Training of canonical GP models is performed against the

entire training data set. This in itself might run to the tens if not hundreds
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of thousands of exemplars. Even if we are looking at a binary classification

task (separate skype from non-skype data), a data set of 200,000 exemplars,

and GP with 500 individuals, evolved for 10,000 generations would require

1,000,000,000,000 program evaluations. Clearly this does not scale – especially

when you note that the stochastic nature of GP also requires that multiple (say

50) runs are performed. Conversely, if training could be decoupled from the size

of the training partition (cardinality) then the number of program evaluations

could potentially be dramatically decreased. In effect this amounts to solving a

dual learning task, identify and retain the training exemplars which distinguish

between the performance of an archived set of GP classifiers.

Points 1 through 3 represent a requirement for reducing the constraints on the

type of mapping that GP performs when mapping from input space to GPout. The

CMGP algorithm addresses this assuming the following process with respect to each

GP individual:

1. Map all training exemplars to GPout;

2. Cluster the 1-d distribution on GPout;

3. Select the most dense cluster, where this typically (although not necessarily)

represents some subset of the training exemplars;

4. Use the selected subset of data to parameterize a Gaussian operator i.e., mean

(μ) and variance (σ);

5. At this point class label data is introduced for the subset of points identified

in Step 3. The point at the center of the Gaussian parameterized in Step 4

defines the class label this GP individual will assume. Error can now be esti-

mated with respect to the subset of points. Only individuals that find subsets

of point with the same class label will have a low error. This also implies that

multiple performance properties need to be measured to avoid trivial / degen-

erate solutions. Thus, as well as error minimization, maximizing the subset of

exemplars labelled is also rewarded as well as minimizing the overlap between

the exemplars labelled by other GP individuals. The process of simultaneously
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optimizing multiple objectives is referred to as Evolutionary Multi-objective

Optimization (EMO) [13];

Addressing the scalability issue, as pointed out above, is approached by adopting a

competitive coevolutionary framework referred to as Pareto archiving [11]. Thus, for

each evolutionary cycle the training partition is stochastically sampled to construct a

point population. Certain sampling biases are assumed such as equal representation

of each class. The aforementioned process for evolving GP individuals with Gaussian

operators is assumed to identify the fittest individuals, thus support the application

of selection and variation operators. After this Pareto archiving is applied to identify

the GP individuals for which “distinctions” are formed. That is to say, we only

wish to retain exemplars that identify GP individuals as unique. Pareto archiving

achieves this through the use of Pareto dominance, which implies that only the non-

dominated GP individuals are retained relative to the sets of exemplars correctly

classified. Thus, given a common subset of exemplars correctly classified, say set A,

then an individual that classifies these plus an additional exemplar a would dominate

all other GP individuals. Moreover, only exemplar a would need to be retained to

correctly identify the GP individual as unique. Various potential pathologies can

potentially exist – in particular forgetting, where this corresponds to a ‘rock–paper–

scissors’ interaction; however, the significance of this in practice remains an open

question.

3.2 CMGP and batch offline classification

The basis for the CMGP framework was established in the discussion of the pre-

ceding section, thus CMGP consists of two high level components: task decomposi-

tion (Gaussian wrapper operator and EMO fitness evaluation) and Pareto archiving

(cardinality decoupling). The pseudocode proposed in Figure 3.2 [31] describes the

co-evolutionary Multi-objective GP (CMGP) framework in more detail.

In total there are three components that make the CMGP framework of particular

interest to the task of streaming data analysis in general:

I Pareto archiving: The cost of fitness evaluation is decoupled from the cardi-

nality of the training set. Thus, fitness evaluation is performed relative to the
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Figure 3.2: Pseudocode of CMGP framework [31]. BesidesArchiving, other significant
features are: 1) In step2(a) random balance sampling which gives equal presence of
classes in the point population. 2) Gaussian wrapper operator divides the gpOut
axis into a unique in class regio after applying a clustering method on the existing
individuals (steps 2.3.4.c and d). 3) Class label is assigned to the individual and the
fitness evaluated over multiple objectives for a subset of exemplars that were mapped
to the Gaussian (2.3.4.e). Additionally, non-overlapping GP behavior is identified
relative to the current Learner Archive(LA) content . 4) The best individuals from
the point and learner population are identified using Pareto archiving step 2.5. 5)
A Pareto rank histogram is used in step 2.6 to evaluate stop criteria that is able to
identify convergence class-by-class.

content of a Point Population (PP) and Point Archive(PA), where each class

has an independent Point Archive. The Point Population is sampled from the

training set (TS), typically while enforcing a bias to ensure equal representation

of each class. A Point Archive (PA) represents the points (exemplars) that dis-

tinguish between different GP in a Pareto sense [11]. Pruning in Point Archive

is done in order to keep it under specific memory boundary limits. Based on [29]

each of the in-class or out-class occupies only 50 percent of the predefined Point

Archive (PA) size which is set as the maximum. After reaching the maximum, the

Euclidean distance of each point’s feature space is calculated and the new points,

replace the nearest old ones. Thus, from a streaming application perspective we

assume that the newly replaced points make more useful distinctions than points

encountered earlier. This Point Archive (PA) size also determines the window
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Table 3.1: CMGP Archive and Population size parameter per class

Point Archive Point Population Learner Archive Learner Population
50 50 50 50

size used in our entropy calculations which could be variable for each run but

definitely will not go over pre-defined maximum point Archive size. Table 3.1

shows initial values for some of the parameters used in CMGP. Similar to Point

Archive and point population, there is also a (GP) learner population and learner

archives. The learner archives are GP individuals that are non-dominated rel-

ative to the content of the point population from a Pareto perspective. At any

generation, the content of the learner archives therefore represents the current

solution to the classification task.

II Gaussian membership operator: GP individuals utilize a Gaussian member-

ship operator as opposed to the generally assumed sigmoid style operator. As

shown in Figure 3.3, CMGP evolves the properties of the Gaussian, thus it is

not necessary for GP individuals to represent an entire class. Instead multiple

individuals are potentially evolved to represent different subsets of exemplars as-

sociated with the same class. Indeed, evolving solutions to multi-class problems

from the same population is straightforward [30, 31]. The parameterization of

the Gaussian is also evolved. Thus, following a forward pass through Training

Set (TS), each GP individual describes a distribution of points on gpOut – the

number line representing the output from a GP individual. Such a distribution

is potentially unique to each GP individual. Applying a clustering algorithm

to the distribution identifies the single most significant cluster. It is with re-

spect to this cluster that the Gaussian is parameterized and task decomposition

occurs as a natural artifact of the evolutionary cycle. Moreover, from a stream-

ing application perspective, decomposing the task potentially provides the basis

for incremental replacement of different individuals as the content of the stream

changes. Conversely if a monolithic / single champion GP individual had to rep-

resent the solution, any change in the underlying process generating the stream

would likely require an entirely new GP individual to be evolved from scratch.
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Figure 3.3: GP classifier with Gaussian operator

III Evolutionary Multi-objective Optimization (EMO): provides the basis for

evaluating fitness and directing the application of variation operators. Assuming

EMO during fitness evaluation means that properties characterizing the Gaussian

membership function can be more clearly expressed. Thus, relative to the subset

of points mapped to the Gaussian (of each GP individual) the following objective

criteria are used to express fitness: sum square error; capacity for correctly

labelling instances beyond the current capability of the learner archives (LA);

instruction count.

The sequential application of each of these components defines the overall archi-

tecture of CMGP. Figure 3.4 illustrates how the EMO and Pareto archiving properties

relate to each other using the basic data structures assumed by CMGP. As a neces-

sary precondition for EMO, the Gaussian parameterization has already taken place.

Thus, at each generation the operation takes the following basic form.

1. Initialize the content of point population relative to training set.

2. Establish the output of each GP individual from learner population and learner

archive using the exemplars defined by point population and Point Archive.

3. Evaluate fitness of the union of GP individuals from learner population and

learner archive in an EMO setting. Any elitist EMO is potentially applicable
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to this process, however PCGA [27] was specifically employed in this work.

4. Apply selection and variation operators to replace a fixed number of individuals

from learner population.

5. The Point Archive and corresponding learner archive are now updated under a

suitable Pareto archiving framework, in this case IPCA [11, 12]. This potentially

results in new content for the learner archive and Point Archive. Specifically,

the learner archive (LA) represent points (exemplars) that distinguish between

the performance of GP individuals. Thus, loss of such a point would likely

result in the loss in a learner (GP individual) that is non-dominated in the

Pareto sense. This completes a generation of the CMGP algorithm – please see

[30, 31] for further details.

Figure 3.4: Overview of relation between EMO and Pareto archiving (IPCA) in orig-
inal CMGP framework. Given a static training set (TS) a sampling is made to
construct the point population (PP). EMO is performed against the union of GP in-
dividuals sourced from learner population (LP) and learner archive (LA) with respect
to the subset of training exemplars defined by the union of point population (PP) and
Point Archive(PA). This updates the content of learner population (LP). A Pareto
archiving step (IPCA) is then performed to update Point Archive(PA) and learner
archive (LA). This completes a single CMGP generation.

From a streaming data perspective, we are interested in two independent issues:

1) Does the content of the Point Archive(PA) provide a better basis for detecting
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changes in the stream under the guise of an entropy ‘filter’ style approach? and;

2) Can changes in data from the stream be characterized without use of labels by

measuring the degree of variation relative to Learner Archive(LA) content? Chapter

4 addresses each case by defining how the stream interfaces to the point population

and then introduces two corresponding CMGP variants for satisfying each scenario.



Chapter 4

Change Detection in Streams

As introduced in Chapter 2, change detection can potentially be performed directly

on the stream itself (or a form of filter) or with respect to changes detected in the

behavior of the classifiers once they are initialized. In all cases, we assume that

some initial labeled sample of data is available from the stream and used to seed

the Training Set (Figure 3.4). A fixed number of generations is performed using the

regular CMGP algorithm from Chapter 3. Three variations will then be considered:

1. Baseline: No further adaptation or change detection. Thus, the initial la-

beled sample defining the training set is used to construct the champion team

of CMGP solutions after which there is no further modification. The stream

content represents the test set as per other methods but with no adaption based

on change.

2. Entropy filter: Change detection is performed independently from CMGP

using the classical entropy based filter as applied to a pair of sliding windows

on the stream. Such a process requires the stream to be labelled. If a change is

detected, then the point population content can be updated, and CMGP will

be retrained for a fixed number of cycles. Thus, CMGP labels the stream using

the current Learner Archive content, with updates to Learner Archive being

instigated by the entropy filter (Section 4.2).

3. Entropy-PA filter : The Point Archive data structure provides an alternative

source for reference data used during the entropy sliding window. In all other

respects the operation remains the same as the regular entropy filter. This

modification is also described in Section 4.3.

4. Behavioural CMGP : The GP champions defined by the Learner Archive

classify exemplars as they are encountered in the stream. We can therefore

24
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characterize the difference between the ‘confidence’ of Learner Archive champi-

ons that are actually supplying the labels in a pair of sliding windows. Such a

process is entirely independent of label information. Only when a significant dif-

ference appears in the confidence between pairs of windows are labels requested

and then only for the window triggering the event. This process is described in

Section 4.4.

4.1 Baseline

In order to have baseline results for comparison purposes, the CMGP framework was

changed to accept stream data. This means that the framework now has been changed

from an offline (batch mode) to an online algorithm, similar to [22, 38]. The training

is done only once on the training set with no further learning cycles, because it is not

sensitive to changes. This means that the content of the Learner archive at the end

of training is thereafter used to classify the test partition of the stream. Thus, if the

stream is non-stationary, the classification performance of the GP solution represents

an “empirical lower bound” on the performance we could expect if training were

permitted.

4.2 Entropy based change detection

A widely cited generic scheme for change detection on streaming data is based on

the pairwise estimation of entropy between two sliding windows [37]. Data-sets are

usually collected through monitoring data for a long period of time (data stream),

which increases the possibility of having a variety of changes in the structure of data

or even the introduction of new data over time. These changes might happen peri-

odically or non-periodically. As described in Chapter 2, some of these changes are

radical and happen in a switching way rather than gradual, and can be categorized

as concept shift change. It is important to identify such changes so as to be able

to trigger re-training cycles efficiently as needed through new incoming on-line data.

Hence, with these changes, the performance and detection rate of the algorithm will

not decrease. At the same time, as long as data is consistent and similar, there

is no need to go through training cycles -thus eliminating what is usually a time-
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and resource-consuming process for most classification algorithms. In addition, the

more training performed, the greater the labelling requirement. Thus, reducing time

and increasing performance are the primary reasons for using change detection mech-

anisms. Together, these features result in an adaptable, robust algorithm that is

flexible (given the condition that the change detection calculation is efficient, rapid

and dependable.)

Figure 4.1: Pairwise sliding window (SW) configuration for entropy based change
detection. Entx(t) is the entropy estimated against the content of SW x at SW
location t. Note in Equ. (4.2) i ≡ t

.

4.2.1 Entropy Filter

As a change detection method, Vorburger[37] introduces a new entropy measure

(Equation (4.1))based on Shannon’s entropy [35], which he declares as “reliable, noise-

resistant, fast, and computationally efficient” [37].

Hi =
1

S

S∑
s=1

C∑
c=1

B∑
b=1

−ωiscb(Poldlog2(Pold) + Pnewlog2(Pnew)) (4.1)

where, Hi represents entropy at time i. All data streams are composed of sequential

flows, with each flow including S feature sets. There are a total number of C classes in

the flows, and B is used as a discrete aggregation variable for the values of each feature

stream (s). Although B > 1 allows us to identify changes for uniform distributions

among each s feature set of data stream, we have assumed B=2 in order to simplify

calculations (similar to Vorburger’s assumption [37]). At time i, P is the probability

of occurrence of an instance belonging to class c, with feature domain s in bin b.

P =
νiscb
λi
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The weighting factor (ω) should be 1 in order to simplify calculations (see Vor-

burger [37]). In order to have final results in the range of [0 1], the entropy should be

normalized by using distribution of classes across all data regardless of their features

or bins as follows:

Hinorm =
C∑
c=1

−ωic(
νic
λi

log2(
νic
λi

)) (4.2)

In this entropy calculation, at each time i, sliding window technique has been

used; this technique involves having two equally sized and consecutive windows called

Ent1(t) and Ent2(t) pointing to the most recent data (Figure 4.1). At each time

of i, these two windows slide sequentially over the flows in a data stream. Absolute

similarity in their content, returns an entropy result of 1; whereas no similarity returns

a value of 0.

4.2.2 Automatic threshold setting

A tolerance threshold now needs to be introduced for defining how close the entropy

needs to be before the content between pairs of sliding windows is declared as having

changed. For automating this process, a statistical hypothesis test called student’s

T-Test was used:

t =
x̂s − ŷs√∑

(xi−x̂s)2+
∑

(yi−ŷs)2
Nx+Ny−2

(
1
Nx

+ 1
Ny

) (4.3)

This test is called to determine the statistical difference between the mean values

of two arrays, x and y respectively. ŷs and x̂s are the corresponding mean values,

and Nx and Ny are the cardinalities of the arrays. These arrays were each composed

of entropy results from the data stream input. The reference array was collected

after the last training cycle whereas the second array is constantly updated by the

new incoming results. In other words, the reference array is only updated after

identifying changes that triggers CMGP re-training and then stays the same until the

next change is detected. Meanwhile, the content of the second array reflects updated

content from the stream. According to entropy filter measures, 1 represents similarity

and 0 absolute difference. Hence, if the p-value of T-test was less than ε, a re-training

cycle would be initiated based on the determination that a change has happened in
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the data stream. The initial value of ε is set as “0.9999” by default, but it could

be changed depending on the dataset and the results driven by the baseline method

(described in Section 4.1).

4.3 Entropy based change detection using PA

Although the sliding-window technique has been used extensively [23, 25, 39], there

is a neglected factor in which data that was previously encountered and trained on,

potentially results in a retriggering event. Hence, a false alarm of change detection

is triggered. One solution to this problem could be keeping a history of learned

shift changes and related classifiers [18]. However, it seems that we can make use of

the CMGP Point Archive as the reference window. In the following we will therefore

consider two cases, one in which the original pairwise sliding window approach is used

to initiate retraining and one in which the Point Archive represents the ‘reference’

sliding window.

As mentioned previously, student T-test is employed to test for a significant change

in entropy. When a p-value less than ε is returned the content of the second sliding

window (SW2) is merged into the Training Set of CMGP. Figure 4.1 summarizes

the architecture. As per the original entropy filter, class labels are still necessary for

the stream data. The process used for the merge assumes an exemplar age heuristic.

Exemplars residing within the Training Set for longer are more likely to be replaced by

an exemplar from SW2. The process is summarized by Algorithm 1. In summary, the

current Training Set is mapped to a roulette wheel with area inversely proportional

to exemplar age (Step 3). Up to |SW2| individuals are stochastically selected (Step

4) and replaced by SW2 content (Step 5). A fixed number of training epochs are

then performed to update the Point and Learner archives (T ÷ 4) as per the original

CMGP algorithm. In the following, we denote such a scheme as Ent.

One additional implication of assuming change detection based on Entropy es-

timated from consecutive pairs of sliding windows is that content of the reference

window (SW1, Figure 4.1) is always varying. Conversely, the original CMGP algo-

rithm of Section 3 provides a definition for identifying a minimal subset of (previously

encountered) exemplars that Pareto archiving has retained as supporting the iden-

tification of the champion team of classifiers (or distinctions). In the following, we
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Algorithm 1 Merging content of sliding window with that of the Training Set (TS ).

X.age denotes the age count of exemplars from ‘X’; SW2 is the current sliding window

content; X.range is the age proportional distribution of individuals from ‘X’; ts is a

vector of the individuals from TS that will be replaced.
1. SW2.age = 1;

2. TS.age++;

3. TS.range ← roulette(TS.age);

4. ∀i ∈ SW2 : ts.(i) = select(rnd(·), TS.range);

5. TS ← replace(ts, SW2);

will denote Ent-PA as entropy based change detection performed with respect to the

Point Archive content with SW2 taking its content from the stream as before, Figure

4.2.

Figure 4.2: Entropy based change detection with Point Archive(PA) as the reference
window and sliding window (SW2)as the source. Ent1(t) denotes entropy with respect
to the current content of the PA. Ent2(t) denotes entropy with respect to the current
location of the SW in the stream.

Basically, the Point Archive of Figure 3.4 is a sample of exemplars that make dis-

tinctions in the classifiers retained by the corresponding Learner Archive. Hence, the

Point Archive potentially reflects the reference set of most important exemplars that

characterize the conditions under which the Learner Archive might change. CMGP’s

advantage over alternative memory like methods (e.g [18, 33, 39]) is the strength of

the relationship between (GP) Learner archive content and Point Archive content

instead of using weighting or classification error measures.
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4.4 CMGP based change detection

Figure 4.3 summarizes the architecture assumed for performing change detection with-

out prior labelling of the stream. Following the original CMGP framework of Section

3, the initial data content of TS is used to construct the initial team of GP champions

or the LA content (as in the case of the filter methods of Ent and Ent-PA). As per

the Ent-PA architecture, the team of GP champions (identified by the LA) provide

labels for each exemplar under the current sliding window location SW2 (Figure 4.3).

However, CMGP does not create a single label from the team of GP champions. In-

stead, a winner-takes-all approach is assumed. Thus, the result of executing each GP

champion for each exemplar is a degree of membership of the Gaussian associated

with its mapping onto gpOut. Only the LA champion with maximum membership

wins the right to suggest its label.

Figure 4.3: GP based behavioural characterization of a change without labels.
GP -NNi

2is the record of winning membership values over the content of PA (i = 1)
or sliding window (i = 2). The LA defines a common set of GP champions.

Naturally, any change in the ratio of class labels between Point Archive(PA) and

SW2 is not necessarily indicative of a change in the underlying process describing

the stream data. However, if a shift takes place in the process describing the data,

we might expect this to be reflected in the confidence in the Gaussian membership

associated with the winning LA champion. Thus, the Gaussian membership for PA

is recorded and compared to that of SW2. A student T-test is again applied to each

and only when a significant difference is registered do we update the content of the

point population (PP) using Algorithm 1 and perform a fixed number of training

epochs (T ÷ 4) to update LA and PA relative to the new TA content. Hereafter this

algorithm is denoted behavioural CMGP or Bv-GP.
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Experiments & Results

5.1 Datasets

For benchmarking purposes, three sets of datasets where used in this research: UCIS

and NIMS from Arndt [3], as well as KDD’99 [15]. It is imposrtant to note that in

all cases, separate datasets for initial training were used.

1. UCIS/NIMS

Several researches [2, 3, 8, 16] have attempted to analyze traffic using binary

identifications instead of payload, port or IP address. The motivation behind

these attempts is, in part, forensic analysis where hackers can easily manipulate

or conceal IP address and port numbers. In order to be able to segregate

network traffic without using main characteristics, a concept called “flow” has

been used. According to Arndt [3], “A flow is identified by a 5-tuple of the form

(Source IP, Source Port, Destination IP, Destination Port, Transport Protocol)

and consists of all the packets matching this 5-tuple during a given time frame”.

Flow attributes are then derived that describe basic statistical properties of

packets associated with the same flow. In the case of this work up to 40 flow

attributes are available care of the open source tool “NETMATE”.1

The training dataset used in this research is sampled from Dalhousie network

traffic traces (UCIS). A random sample of SSL and non-SSL flows were used.

The non-SSL flows consist of SKYPE, P2P, SSH and a variety of other pro-

tocols from port 80 (i.e HTTP) called OTHERS. The 40 features that are

represented in these data-sets could explain the significant increase in the cost

of computation of flows, since each of them needs extra data extraction (I/O

overhead), memory and CPU cycles. Table 1 includes names of the example

features used in this dataset.

1http://dan.arndt.ca/nims/calculating-flow-statistics-using-netmate/
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Data based features Time based features

total packets minimum inter-arrival time
total bytes mean inter-arrival time
minimum packet length maximum inter-arrival time
mean packet length standard deviation of inter-arrival times
maximum packet length minimum active time
standard deviation of packet lengths mean active time
average sub-flow packets maximum active time
average sub-flow bytes standard deviation of active times
push flag count minimum idle time
urg flag count maximum idle time
header length mean idle times

Table 5.1: NIMS dataset features examples

NIMS is an artificially produced dataset that is processed exactly like UCIS. Al-

though it contains similar network traffic data, underlying concept for producing

this dataset was a virtual lab designed by Arndt [3] for collecting web-browsing

data. Same statistical feature extraction through Netmate was also applied on

network traces. For further information on both UCIS and NIMS dataset, refer

to [3]. In this research, we have introduced and used NIMS data in combina-

tion with UCIS in order to test the robustness and effectiveness of the change

detection method.

2. KDD

KDD CUP 99 (or KDD’99 ) is a dataset used for the Third International Knowl-

edge Discovery and Data Mining Tools Competition [15].2 It was supposed to

be used for building an intrusion detector for computer networks that should

have had the capability of identifying “normal” traffic traces from “ab-normal”

or “attacks”. Although, it contains 4 different types of network attacks (DoS,

R2L, U2R, and Probing), only DoS and Probe attacks shown in Table 2 were

used to create a flow as an input for this study. DoS itself is the result of three

different processes: Neptune, Back, Smurf; whereas Probe can be the result of

one of four different processes: Nmap, IPsweep, Portsweep or Satan.

2http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
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DOS PROBE
Neptune Nmap
Back IPsweep
Smurf Portsweep

Satan

Table 5.2: KDD attack types

5.2 Empirical Evaluation

As explained in Section 5.1, we benchmark the baseline and three approaches of Sec-

tion 4 for classification on streaming data (Ent, Ent-PA and Bv-GP) under data sets

constructed from network flow data. The first dataset is UCIS where the basic goal

of the classification task will be to label flows as either SSL or non-SSL, where SSL is

an example of an encrypted protocol, in this case secure HTTP. What makes the task

of particular interest from the perspective of change detection in streams is that SSL

flows might consist of different services – such as online banking, Skype or p2p – and

such services can appear as SSL or non-SSL. Previous research has demonstrated that

machine learning trained under offline (batch) models of classification require training

sets with tens of thousands of exemplars to provide acceptable classification perfor-

mance [2]. In this work, the initial TS content is limited to 1,000 flows with 10,000

flows appearing in the stream. Moreover, the stream data appears in blocks of 2,000

flows. As shown in Figure 5.1, the underlying process describing the post training

stream consists of blocks with non-SSL content sequenced as follows: skype-1, p2p-1,

skype-2, skype-3, p2p-2; whereas SSL content is sampled uniformly throughout. The

initial 1,000 flows used to establish our initial classifiers include SSL (class 1) and

non-SSL content (skype and p2p). Hereafter this data set is denoted SPS.

Similar to the first dataset, the interest of the second data set is again on iden-

tifying SSL from non-SSL traffic. However, there are 3 classes in this dataset: SSL

(class 0), HTTP (class 1) and Skype-P2P (class 2). The initial training set (TS) is

also in the size of 1000 but it is composed solely from UCIS. In the test set, new

data from NIMS is introduced to see whether the change detector method will treat

them as previously seen data or as a new change. There are five blocks with the size

of 3,000 flows appearing in the stream where new data from NIMS is introduced in

block-2(HTTP) and block-3(SSL). The term SPS-NIMS will be used from now on
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Figure 5.1: SPS data stream

Figure 5.2: SPS-NIMS data stream

to refer to this dataset. Figure 5.2 shows the SPS-NIMS dataset as a block-based

stream.

A third flow dataset is constructed from the KDD’99 contest data set,3 again

describing network traffic as flows. This represents a task in which normal behaviour

needs to be distinguished from different forms of malicious behaviour. As mentioned

in Section 5.1, we are specifically interested in distinguishing Denial of Service (DoS)

and Probing behaviours from ‘normal’ behaviour. This again implies that the same

label (abnormal as opposed to normal) is associated with multiple processes, and we

are likely not to see all attack types during training. Moreover, normal behaviour itself

is very difficult to characterize on account of the cyclic nature of computer network

3http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
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utilization. The (post training) stream itself is again composed from five distinct

blocks and follows a sequence in which blocks representing the abnormal class label

appear in the following order: DoS-1, Probe-1, DoS-2, DoS-3, Probe-2. All DoS and

Probe blocks consist of 3,000 and 4,000 flows, respectively. Figure 5.3 shows the KDD

dataset as a block-based stream.

Figure 5.3: KDD data stream

Evaluation will take the form of detection rate as measured on each block of the

stream. Thus, for the baseline algorithm, CMGP is trained on the initial TS content in

batch mode and then the champion GP individuals from the LA (Figure 3.4) label the

stream content. Evaluation of the remaining ‘streaming enabled’ algorithms implies

that whenever a significant change is detected4 then the point population is updated

according to Algorithm 1 and a common number of generations are performed in

order to update the learner and point archives (LA and PA). In all cases, classification

performance is measured per block in terms of the average detection rate, or DR =

1
|C|

∑
i∈C DR(i) and DR(i) = tp

tp+fn
where tp and fn are the true positive and false

negative counts as measured relative to the same block of the stream. Moreover, we

are also interested in quantifying how much retraining is performed during the stream,

hence we also report the number of re-triggering events. All versions share a common

parameterization, as summarized by Table 5.3. The window step size (Δt) defines

how much movement appears between consecutive shifts of the sliding windows SWi.

Given that there are two classes in each data set, then the overall PP and PA size

4All three streaming algorithms use a student T-test.
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Table 5.3: Principle CMGP parameters

Max. PP size 50 per class
EPOCHS (T ) 100

PA size 50 per class
Sliding window size (SWi) as PP size

Sliding window step size (Δt) 1
Change detection p-value 0.9999

matches that of the sliding sliding window.

5.3 Results

Results will be summarized in terms of a dual violin–box plot for the 20 runs per-

formed per algorithm. Box plots define 1st, 2nd (median) and 3rd quartile statistics

(bold line) as well as limits of distribution within 1.5 times the 1st (3rd) quartile

respectively (line line). The distribution of the violin provides a visual account of

how normal or multimodal the results are. Claims regarding result significance will

be expressed in terms of student T-test.

Figures 5.4 and 5.5 summarize the average detection rate and the number of re-

trigger events for each block of the SPS stream (plus overall distribution in the case

of the re-trigger metric).5 From the perspective of detection rate, all variants provide

similar performance; thus, there is a strong overlap in quartiles. However, it does

appear that all three algorithms that incorporate online learning (Ent, Ent-PA and

Bv-GP) provide tighter distributions than the baseline offline case (although there is

no statistically significant difference between block-wise detection rates (Table 5.4)).

Hence, Bv-GP – the label free case – is able to match the detection rate of the labelled

scenarios.

In the case of the number of re-triggering events, there is significant variation in

the overall rates of re-triggering between Bv-GP and the two filter methods (Fig-

ure 5.5(a)). Moreover, from the perspective of the block specific re-triggering rates

(remainder of Figure 5.5) it is also apparent that the two filter methods emphasize

5Lack of variation in re-trigger counts results in the absence of a violin for that particular column
in violin plots and cannot necessarily be concluded as an indicatore for the value of zero.
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(a) Baseline (b) Ent filter

(c) Ent-PA filter (d) Bv-GP

Figure 5.4: Average detection rate over SPS stream following pre-training.



38

(a) Overall (b) Ent filter

(c) Ent-PA filter (d) Bv-GP

Figure 5.5: Re-trigger rates over SPS stream following pre-training. Subplot (a)
denotes the overall combined number of re-trigger events across the length of the
stream. The remaining subplots separate the re-trigger count across the different
partitions of the stream.
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Table 5.4: Per block student T-test p-values for Bv-GP versus each alternate algo-
rithm.

SPS data set.
Ent Ent-PA Baseline-GP

skype-1 0.75062 0.24764 0.6557
p2p-1 0.57394 0.93874 0.13478
skype-2 0.24422 0.37513 0.72949
skype-3 0.3237 0.79357 0.63402
p2p-2 0.72898 0.62541 0.37671

SPS-NIMS data set.
Ent Ent-PA Baseline-GP

block-1 0.68293 0.5775 0.001214
block-2 0.23624 0.34969 0.13478
block-3 0.80152 0.84195 0.003289
block-4 0.69664 0.81106 0.00005543
block-5 0.74945 0.65205 0.000149

KDD data set.
Ent Ent-PA Baseline-GP

DoS-1 0.45384 0.24802 0.011799
Probe-1 0.836 0.71556 0.00063401
DoS-2 0.403 0.29116 0.079582
DoS-3 0.67294 0.84723 0.0024116
Probe-2 0.21864 0.48974 7.5623e-06
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retraining on skype-1 and p2p-2 while frequently ignoring the transition into p2p-1

and skype-2. Conversely, Bv-GP re-triggers on both initial instances of skype and

p2p, then ignores the second and third instances of skype, and finally re-triggering

on the last block of p2p.

In the SPS-NIMS dataset (Figures 5.6 and 5.7), the distribution of detection

rate using the Bv-GP change detection method matches that of the filter methods

and returns a statistically significant improvement over the baseline (Table 5.4). As

previously known, SSL represents a separate class from other protocols and in block-3

(skype2 811x), new SSL data is introduced in the stream. However, Bv-GP retains a

tight detection rate variance even though it does not make use of label information.

In terms of trigger counts (Figure 5.7), Ent seems to be ignoring the introduction of

the new data in blocks 2 and 3 , whereas Ent-PA appears to be ignore the new data

in block 3. In comparison Bv-GP returns most of its re-triggering during the first

three blocks and has a wide variance on the last block. As a result, Bv-GP continues

to match the performance of the labelled streaming variants (Ent filter and Ent-PA

filter) and provides significant improvements over the Baseline for 4 of the 5 blocks

(Table 5.4).

As per the SPS-NIMS data set, the detection rates for the three online algo-

rithms under the KDD data set (Figure 5.8) are now statistically independent from

the (offline) baseline method (Table 5.4). The overall and block-wise distribution of

re-trigger events however, are again rather different (Figure 5.9). Both of the filter

methods (Ent and Ent-PA) follow a similar pattern for re-triggering training. Con-

versely, Bv-GP did not trigger retraining on the ‘Probe-1’ block in 50% of the runs.

Moreover, there appears to be an incremental decrease in the instance of retraining as

the number of blocks increases. This appears to indicate that the content of ‘Probe-2’

is significantly different from ‘Probe-1’. Most agreement in re-trigger activity across

all algorithms appears with respect to Probe-1 i.e., a low amount of retriggering.
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Figure 5.6: Average detection rate over SPS-NIMS stream following pre-training.
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Figure 5.7: Re-trigger rates over SPS-NIMS stream following pre-training. Subplot
(a) denotes the overall combined number of re-trigger events across the length of the
stream. The remaining subplots separate the re-trigger count across the different
partitions of the stream.
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(a) Baseline (b) Ent filter

(c) Ent-PA filter (d) Bv-GP

Figure 5.8: Average detection rate over KDD stream following pre-training.
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(a) Overall (b) Ent filter

(c) Ent-PA filter (d) Bv-GP

Figure 5.9: Re-trigger rates over SPS stream following pre-training. Subplot (a)
denotes the overall combined number of re-trigger events across the length of the
stream. The remaining subplots separate the re-trigger count across the different
partitions of the stream.



Chapter 6

Conclusion & Future Work

In this thesis, the task of change detection has been considered from the perspective of

an online streaming context. The classical approach to this task assumes an entropy

pairwise sliding window approach in which class-wise entropy is used to trigger re-

training events (Ent and Ent-PA). The principle drawback of such an approach is

the need for label information that is the stream has to be pre-labelled. From the

perspective of streaming applications, such as network traffic analysis, this assumption

would be prohibitively expensive. We demonstrate that by instead concentrating on

the behaviour of the team of pre-trained champion GP individuals responsible for

classifying the stream data, change detection can be performed without reference

to any label information (bv-GP). Thus, only when changes are detected is label

information requested. We demonstrate that bv-GP matches the stream detection

rates of the classical approach without requiring the prior labelling of the stream

itself. Moreover, the number of re-trigger events is frequently lower when using bv-

GP, suggesting that the process for detecting changes is also more efficient / accurate.

Considering detecting changes without requiring labels, it should be noted that

there is no ground truth. Previously seen attribute combination can be labeled later

as different sets. Thus, it could potentialy result in thrashing of the archive content,

learners and point archives(PA and LA), as described in [6].

It is envisaged that future research will extend the algorithm to the case of gradual

as opposed to step changes in stream content. Currently changes in the datasets used

were imposed manually for ease of measurement and comparison purposes. Moreover,

the features used in the datasets should be investigated further to identify the most

suitable composition in the case of UCIS (real world dataset). In addition, this re-

search was limited to the datasets from network traffic analysis and could be expanded

to other data streams in the field of, say financial markets or signal processing.

The idea of change detection without requiring labels was specifically implemented

45
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on the CMGP framework. More percised investigation should be done on initial pa-

rameter settings of the CMGP framework. Also, important attributes and features

that were used most frequently by CMGP should be studied thoroughly. Moreover,

future research might consider similar algorithms in which Pareto archiving is em-

ployed but extend it to non Gaussian wrapper operators. Likewise, benchmarking

against other non-evolutionary streaming algorithms for classification would be ap-

propriate e.g., MOA [10]. One step further would be applying this technique on other

machine learning algorithms such as unsupervised learning models.

In conclusion, applying a change detection method without requiring labels is

a relatively new method for reducing human interaction with learning algorithms.

Human interaction is needed in order to provide proper labels and this technique

attempts to decrease the labelling requirement without impacting on the detection

rate.
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