
Convergence of lattice sums and Madelung’s constant
David Borwein, Jonathan M. Borwein, and Keith F. Taylor 
 
Citation: Journal of Mathematical Physics 26, 2999 (1985); doi: 10.1063/1.526675 
View online: http://dx.doi.org/10.1063/1.526675 
View Table of Contents: http://scitation.aip.org/content/aip/journal/jmp/26/11?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in 
Rapid calculation of individual ion Madelung constants and their convergence to bulk values 
Am. J. Phys. 78, 102 (2010); 10.1119/1.3243281 
 
Solution of convergence difficulties in the Madelung‐sum problem: An extrapolation scheme for sawtooth
sequences 
J. Math. Phys. 33, 349 (1992); 10.1063/1.529913 
 
Determination of Madelung constants for infinite and semi‐infinite lattices by direct summation 
J. Chem. Phys. 65, 843 (1976); 10.1063/1.433106 
 
Relationship between Certain Lattice Sums and the Madelung Constant 
J. Chem. Phys. 37, 681 (1962); 10.1063/1.1701404 
 
Madelung Constants and Coordination 
J. Chem. Phys. 21, 2097 (1953); 10.1063/1.1698788 
 
 

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  129.173.74.49 On: Wed, 26

Oct 2016 11:27:49

http://scitation.aip.org/content/aip/journal/jmp?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1328102470/x01/AIP-PT/JMP_ArticleDL_102616/nobel-prize_banner_JMP2.jpg/434f71374e315a556e61414141774c75?x
http://scitation.aip.org/search?value1=David+Borwein&option1=author
http://scitation.aip.org/search?value1=Jonathan+M.+Borwein&option1=author
http://scitation.aip.org/search?value1=Keith+F.+Taylor&option1=author
http://scitation.aip.org/content/aip/journal/jmp?ver=pdfcov
http://dx.doi.org/10.1063/1.526675
http://scitation.aip.org/content/aip/journal/jmp/26/11?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aapt/journal/ajp/78/1/10.1119/1.3243281?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jmp/33/1/10.1063/1.529913?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jmp/33/1/10.1063/1.529913?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/65/2/10.1063/1.433106?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/37/3/10.1063/1.1701404?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/21/11/10.1063/1.1698788?ver=pdfcov


Convergence of lattice sums and Madelung's constant 
David Borwein 
Department of Mathematics, University of Western Ontario, London, Ontario, N6A 5B9, Canada 

Jonathan M. Borwein 
Department of Mathematics, Statistics and Computing Science, Dalhousie University, Halifax, Nova Scotia, 
B3H 4H8, Canada 

Keith F. Taylor 
Department of Mathematics, University of Saskatchewan, Saskatoon, Saskatchewan, S7N OWo. Canada 

(Received 13 September 1984; accepted for publication 3 June 1985) 

The lattice sums involved in the definition of Madelung's constant of an NaCI-type crystal lattice 
in two or three dimensions are investigated. The fundamental mathematical questions of 
convergence and uniqueness of the sum of these, not absolutely convergent, series are considered. 
It is shown that some of the simplest direct sum methods converge and some do not converge. In 
particular, the very common method of expressing Madelung's constant by a series obtained from 
expanding spheres does not converge. The concept of analytic continuation of a complex function 
to provide a basis for an unambiguous mathematical definition of Madelung's constant is 
introduced. By these means, the simple intuitive direct sum methods and the powerful integral 
transformation methods, which are based on theta function identities and the Mellin transform, 
are brought together. A brief analysis of a hexagonal lattice is also given. 

I. INTRODUCTION 

Lattice sums have played a role in physics for many 
years and have received a great deal of attention on both 
practical and abstract levels. The term lattice sum is not a 
precisely defined concept: it refers generally to the addition 
of the elements of an infinite set of real numbers, which are 
indexed by the points of some lattice in N-dimensional space. 
A method of performing a lattice sum involves accumulating 
the contributions of all these elements in some sequential 
order. Unfortunately, the elements of the set are not, in gen­
eral, absolutely summable so the sequential order chosen can 
affect the answer. In this paper we are concerned with the 
particular lattice sums involved in Madelung's constant. In­
deed, attaining specificity in the definition of Madelung's 
constant is our primary motive. Although we are dealing 
with purely mathematical questions it is our belief that the 
results presented here may shed some light on the physics of 
crystals. Other researchers 1-3 have expressed concern about 
the ambiguities involved in summing a nonabsolutely con­
vergent series in a different manner, but it appears that no 
one has confronted it fully. 

Let L be a lattice in N-dimensional space and let 
A L = [al : lEL } be a set of real numbers indexed by L. There 
are two basic approaches to summing the elements of A L : by 
direct summation or by integral transformations. The major 
factors involved in choosing a method are physical meaning­
fulness and speed of convergence. 

The direct summation methods involve an orderly 
grouping of the elements of AL into sequentially indexed 
finite subsets increasing in size to eventually include any ele­
ment of A L . Sometimes fractions of elements are included in 
the subsets to maintain a physical principal such as electrical 
neutrality. Two commonly used direct summation methods 
are due to Evjen4 and HtSjendah1.5 

The most commonly used integral transformation 
method is known as the Ewald method.6 More recently the 
Mellin transformation applied to theta functions has been 
used to put the integral transformation methods in a general 
context. An excellent review article by Glasser and Zucker 1 

gives a development of these methods and an extensive bib­
liography. 

In this paper we deal primarily with NaCl-type ionic 
crystals in two or three dimensions. This is for two main 
reasons: the ease of notation and the fact that almost every 
textbook introduces Madelung's constant on this crystal 
first. From a mathematical and physical point of view there 
are two very reasonable simple direct summation methods 
that could be applied to give Madelung's constant for an 
NaCI-type ionic crystal. One could take a basic cube cen­
tered at the referenced ion with sides parallel to the basic 
vectors and let the cube expand as the contributions from all 
lattice points within the cube are accumulated. Alternately 
one could use expanding spheres centered at the reference 
ion. This latter method is intuitively appealing since all ions 
an equal distance from the reference ion are given equal 
treatment. Thus, many textbooks 7,8 (and some research arti-

cles) write down the resulting infinite series (6 - 12/{j. + 8/ 

J3 - 6/ J4 + ... ) as giving Madelung's constant for an NaCl­
type ionic crystal. Unfortunately, this infinite series does not 
converge. This was proven by Emersleben9 and, in light of 
the fact that most people are unaware of this divergence, we 
include a short elementary proof in Theorem 3. 

Section II is devoted to the two-dimensional square lat­
tice while Sec. III contains the above-mentioned result on 
expanding spheres. In Theorem 4 we prove that the method 
of expanding cubes converges. In Sec. IV, the mathematical 
tools become more sophisticated as we consider integral 
transformation methods and their relation to the direct sum-
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mation methods dealt with in Sec. III. We have included, in 
Sec. V, a careful analysis of some direct summation methods 
in two dimensions in light of the property of being analytic in 
the inverse power exponent. This analysis is quite illustrative 
of the relations between the various summation methods. In 
Sec. VI we do a brief analysis of a two-dimensional hexagon­
allattice. Section VII gives our conclusions. 

II. TWO DIMENSIONS 

It is convenient to introduce the notation in the two­
dimensional case of a simple lattice in the plane with unit 
charges located at integer lattice points (j,k) and of sign 
( - 1 Y + k. The potential energy at the origin due to the 
charge at (j,k) is - (- ly+k /V + k2)1/2. If we want the 
total potential energy at the origin due to all other charges, 
then we must sum all the numbers in the following set: 

A = {( - 1 Y + k /V + k 2)1I2:(j,k )eZ/(O,O) 1, 
where Z denotes the integers. Because the elements of the 
subset of A withj = k form a set of positive numbers with 
divergent sum, it is clear that the value of the sum is highly 
dependent on the order in which the elements of A are added. 
It is not immediately clear that any reasonable method will 
produce a convergent series. In addition, for the model to be 
physically relevant, all "reasonable" methods should con­
verge to the same number. Here are two very reasonable 
methods. 

First, consider the total potential due to all the charges 
within a circle of radius r about the origin and let r-+ 00 • This 
leads to the series 

. ~ (- l)nC2(n) (1) 
n~1 nl/2 

' 

where C2(n) is the number of ways of writing n as a sum of 
two squares of integers (positive, negative, or zero). In deriv­
ing (1), use the fact that ( - l)l+ k = (- 1)f+k2 = (- It, 
for any j,keZ withf + k 2 = n. We will refer to (1) as the 
method of expanding circles. 

Second, there is the method of expanding squares. This is 
intuitively appealing, as a perfect crystal grows by expansion 
of the shape of a basic unit cell. For each natural number n, 
let 

{
(_l)J+k } 

S2(n)=L (f+k2)112: -n<;..j,k<;..n and (j,k)#(O,O) . 

Then 

(2) 

is a way of expressing the series obtained by expanding 
squares. 

It turns out that both these methods converge as we will 
now show. 

Theorem 1: The series in (1) converges. 
Proof: To carry out the proof that the series in (1) con­

verges we introduce some notation and standard facts from 
number theory. Fer any sequence of real numbers {an l:~ I 
and P real we write an = 0 (nP) if the sequence {n -11 an 1 is 
bounded. LetAn = Z k'= I C2(k ),for each natural number n. 
ThenAn denotes the number of non origin lattice points in­
side or on a circle of radius n 1/2. It is fairly easy to see that A n 
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should be approximately 1Tn; in fact, the reader can easily 
show that An -1Tn = O(nI/2). However, this is not quite 
good enough for us here so we quote a stronger result, which 
can be found in Dicksonlo: 

An -1Tn = o (na
), for some a, 1 <a <j. (3) 

For a natural number n, a divisor ofn is a natural num­
ber d such that d divides n. Let d (n) denote the number of 
divisors of n and let d k (n) denote the number of divisors d of 
n with d congruent to k modulo 4, for k = 1 or 3. With this 
notation, Theorem 278 of Hardy and Wright ll implies 

C2(n) = 4(dl(n) - d3(n)). (4) 

This together with Theorem 315 of Hardy and Wrightll im­
plies that 

C2(n) = O(ns), for any 8>0. (5) 

Note that, dk(2n) = dk(n), for k = lor 3 and any n. So 

C2(2n) = C2(n), for all natural numbers n. (6) 

LetBn = l:k=d -1)kC2(k). Then 
2n 

B2n = L (-1)kC2(k) 
k=1 

n n 

= L C2(2k) - L C2(2k-l) 
k=1 k=1 

n 2n 

= 2 L C2(2k) - L C2(k). 
k=1 k=1 

Using (6), 

B 2n = Un - A 2n' 

From (3) and (7), we have that, with a as in (3), 

B 2n =O(nQ). 

Furthermore, this along with (5) implies that 

B2n + 1 =BZn - C2(2n + 1) = o (na
) 

Therefore, 

Bn = o (na). 

Now consider the partial sums ofthe series in (1): 

T = i ( - WC2(k) = Bn 
n k=1 kl/2 (n+1)112 

n 

+ L Bdk -1/2 - (k + 1)-112] 
k=1 

n 

(7) 

(8) 

=O(na - 1I2)_ LBd(k+ 1)-1I2_k-1/2 ]. (9) 
k=1 

By the mean value theorem, I(k + 1)-112 _ k - 1/21.qk -3/2 
and therefore 

IBd(k+ 1)-I12_k-1/2]1 =O(k a - 312). 

Since a - 3/2 < - 1, l:k= I Bd(k + 1)-1/2 - k -1/2] con­
verges absolutely. Since a -! <0, limn_ oo Tn 
= - l:k= I Bk [(k + 1)-1/2 - k -1/2] exists. That is, the se­

ries in (1) converges. Q.E.D. 
We now tum to the limit in (2). We need an easy lemma 

from calculus that will be left to the reader to verify. This 
lemma will also be used in the proof of Theorem 4. 
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Lemma: For any positive real numbers, a,b, and s, each 
of the following functions are strictly decreasing in t, for 
O<t< 00: 

11 .. (t)=t-', 

12 .. (t) = t-' - (t + a)-', 

h .. (t ) = t -, - (t + a) -, 

- (t + b) -, + (t + a + b) - '. 
Theorem 2: The limit in (2) exists. 
Proot We apply the lemma to 12" with 

a = (k + 1)2 - k 2 and s =!. Then, if j>O and k>O with 
j + k>l, we have 

12,1/2 (f + k 2) >/2,112 ((j + 1)2 + k 2). 
Explicitly this is 

(f + k 2) - 112 - (f + (k + 1 )2) - 112 

- ((j + 1)2 + k2}-1I2 + ((j + W + (k + W}-I12>O. 
(10) 

Let g(j,k ) denote the left-hand side of (10). Then ( - 1) J + k 

Xg(j,k) is the contribution to the potential at the origin due 
to a basic cell of four adjacent ions with the closest ion at 
(j,k). Inequality (10) says that the contribution always has 
the same sign as that of the nearest ion. 

Rewrite S2(n) using the symmetries to get 

S2(n) = 4Q(n) + 4X(n), 

where 
n (_ I)J+k 

Q (n) = J,t;, I (f + k 2)112' 

n ( l)k 
X(n) = L---' 

k=1 k 
Since limn-.co X(n) = -In 2, if we prove that limn_co Q(n) 
exists, then the limit in (2) will exist. We will establish a 
number of properties of the sequence {Q(n)}:= I' which will 
be used to prove its convergence. 

Property 1: 

Q(2n) - Q(2n - 2»0, for all n>2. 

That is, the even indexed elements increase. To see this we 
group the terms ofQ (2n) - Q (2n - 2) into basic cells of4, as 
is illustrated in Fig. l(a) for Q (6) - Q (4). Thus, 

Q(2n) - Q(2n - 2) 
n n-I 

= Lg(2/- 1,2n -1) + L g(2n -1,2m - 1), 
I-I m=1 

where as before, g(j,k ) denotes the left-hand side of (10). So 
property 1 holds. 

Property 2: 

Q(2n+ 1)-Q(2n-l)<0, foralln>1. 

That is, the odd indexed elements of the sequence decreases. 
Referring to Fig. l(b) and correcting for the overlap at the 
(2n,2n) point we are led to the following grouping: 

Q(2n + 1) - Q(2n - 1) 
n n 

= I~I [ - g(2/- 1,2n)] + ~I [ - g(2n,2/- 1)] 

- [l/n..[2 -l/(n + 1)..[2] <0. 
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Property 3: 

Q(2n + 1) - Q(2n»0, for all n>1. 

Thus, the odd indexed elements are all greater than any even 
indexed element. This is clear again from a simple grouping 
of terms and using the monotonicity of/l ,I/2 ofthe lemma: 

Q(2n + 1) - Q(2n) 

lim Q(2n - 1) - Q(2n) = O. 
n-.co 

Thus, the difference between successive elements goes to 
zero. To see this, simply note that 

0<Q(2n+ 1)-Q(2n)<21[1 +(2n+ W]1I2 

+ l/(2n + 1 )..[2-0, as n_ 00 • 

It is now easy to see that properties 1-4 imply that limn-.co 
Q(n) exists. Q.E.D. 

This completes the proof of Theorem 2. Thus, we have 
shown that two of the most obvious methods of summing for 
a Madelung constant in two dimensions converge. At this 
point, no indication has been given that the two methods 
yield the same number. That this is indeed so will be shown 
in Sec. V. 

III. THREE DIMENSIONS 

In this section, the three-dimensional case will be con­
sidered. For Madelung's constant of an NaCI-type crystal 
one must investigate ways of summing the elements of the 
following set: 

B = {( - 1)i+ k + I /(f + k 2 + P)I12: 

(j,k,1 )eZ3/(0,0,0)} . 
In analogy with the two-dimensional case we will consider 
the method of expanding spheres about the origin and the 
method of expanding cubes. 

Our next theorem is a negative result, which is quite 
startling. Many textbooks in physical chemistry and solid 
state physics give the series dealt with in Theorem 3 as Ma­
de1ung's constant for a NaCI-type crystal.7

,8 It also appears 

7 
1-1 

Ql-9 Ql-9 (I 
I I I I 

6 9-(1 9-Q) 9-Ql 6 9-Q) 9-Ql 9-1-1 

~-~ I I I I 
5 (1-9 (1-9 5 (I 9 Ql e Ql e-Ql 

4 e (I a e e-(I 4 e Ql a (I e e-a 

3 Q) 9 (I 9 ~-~ 3 (I e (I 9 (I ~-~ 
2 a (I e (I 9-Ql 2 e Q) 9 Q) e T-~ I I (I 9 (I e (I-a (I 9 (I a Q) a-(I 

I 2 3 4 5 6 I 2 3 4 5 6 7 

(a) (b) 

FIG. 1. Illustrations of (a) property 1 and (b) property 2. 
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in research articles. Although no one sums this series direct· 
ly, it is physically misleading to believe that it converges to 
anything. 

Let e3(n) denote the number of ways of writing n as a 
sum of three squares. If we consider a sphere centered at the 
origin in three-space, add all the elements of B that corre­
spond to lattice points within the sphere, and then let the 
radius go to infinity, we are led to the infinite series 

(11) 

Theorem 3 (Emersleben'): The series in (11) diverges. 
Proof It is interesting that the proof that the series in 

(11) diverges is much less sophisticated than the proof in 
Theorem 1 that the series in ( 1) converges. Our main tool is a 
simple estimate of the number of nonzero lattice points on or 
inside a sphere of radius r. Call this number L,. Notice that, 

for Iii <r<.J1i+T, . 

" L, = 2: e3(k). 
k=l 

We leave to the reader the easy task of verifying that 

L, - trr = 0 (r). 
This implies that 

lim L,/r = f1T. (12) 
"""'00 

Proceeding with a proof by contradiction we assume 
that 

co ( 1)"C (n) L - 3 converges. 
,,=1 ,[ii 

This implies that €" = e3(n)l Iii -0, as n-+- 00 • For a natural 
number N, let MN =max{€,,: n>N}. Then MN-o, as 
N-+- 00. Fix N for the moment and consider, for n > N, 

L.f1I3 = n-3/2 [ i €k{k] 
(,[ii) k = 1 

<n-3/2[ f €k&] + MNn-3/2[ ± &]. (13) 
k=l k=N+l 

Now, 

" 1"+1 2: &< tl/2dt 
k=N+I N+I 

= H(n + 1)312 - (N + 1)3/2]. 

Inserting this in (13) implies that 

L.f1I <n-3/2[ f €k$] 
(m)3 k= I 

+ ~M,,[(n;lr/2 _(N;lyIT 
Letting n-+-oo , we see that lim suP" .... ", LJIi/(..Jn)3<jMN,for 
any N. Since M N-o as N-+- 00, we have that 

This is a contradiction of (12). Therefore, 
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.. (- Il"C (n) 2: 3 diverges. 
,,=1 Iii 

In fact, the contributions of individual spherical shells do not 
tend to zero. Q.E.D. 

SO it is not at all appropriate to define Madelung's con· 
stant via the method of expanding spheres. We turn to the 
method of expanding cubes. Let 

{ 
(_ 1)J+k+l 

S3(n) = 2: Ii + k2 + 12)112: 

- n<j,k,l<n, (j,k,/)¥(O,O,O)}. 

Theorem 4: lim S3(n) exists. 
" ..... 

Proof We proceed as in the proof of Theorem 2 in Sec. 
II. For j,k,l> 1 let 

g(j,k,/) = Ii + k 2 + 12) - 112 _ (f + (k + 1)2 + 12) - 112 

_ (f + k 2 + (I + 1 )2) - 112 

+ (f + (k + 1)2 + (I + 1)2) - 1/2 

_ ((j + 1)2 + k 2 + 12) - 1/2 

+ ((j + 1)2 + (k + W + 12)-112 

+ ((j + 1)2 + k 2 + (/ + W) - 112 

- ((j + W + (k + 1)2 
+ (/ + 1)2) - 112, 

Then, ( - 1 Y + k + I g (j,k,/) represents the contribution to the 
potential at the origin of a basic unit cell whose closest comer 
is at (j,k,/). An appropriate use of the monotonicity Of!3,112 
from the lemma in Sec. II shows that g(j,k,1 ) > 0, for all 
j,k,I>l. 

Let 

h (k,/) = (2k ~ + 12) - 112 _ (2k 2 + ([ + 1 )2) - 112 

+ (2(k + W + [2) - 112 

- (2(k + W + (I + 1 )2) - 1/2. 

USing!2,1/2' we get that h (k,l) > 0, for all k,l> 1. 
Let PIn) denote that part of S3(n) that comes from the 

positive octant. That is, for n> 1, 

" (_I)}+k+1 
P(n)= ~ . 

j.lc.~ I(f + k 2 + [2)112 

Then in a manner similar that used for the Q (n)'s, it can be 
shown that lim_ .. Pin) exists. We proceed with the details 
of this demonstration. 

The following identities are most easily seen by drawing 
a three-dimensional version of Fig. 1, but they can be verified 
directly: 

II 

P(2n + 1) - P(2n - 1) = 3 '5' g(2n,2k - 1,2/- 1) 
k,t=l 

II 

+ 3 Lh (2n,2j - 1) 
}=1 

+ (1/~)(1/2n - 1/(2n + 1)), 
(14) 
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II 

P(2n + 2) - P(2n) = - 3 k'~ 19(2n + 1,2k - 1,2/- 1) 

II 

- 32:)(2n + 1,2n + 1,2j - 1) 
j=1 

- g(2n + 1,2n + 1,2n + 1). (15) 

Both (14) and (15) hold for all n> 1. From (14) and (15) we get 
the properties of odd or even element monotonicity of the 
sequence of P(n)'s. 

Property 1': 
P (2n) - P (2n - 2) < 0, for all n>2. 
Property 2': 
P(2n + 1) - P(2n - 1) > 0, for all n> 1. 
Notice that the inequalities are reversed from those of 

properties 1 and 2 in the two-dimensional case. To get the 
analogs of properties 3 and 4 for the P (n)'s we need to refer to 
the lemma one final time. For n,j,k> 1, let 

ho(n,j,k) = (n2 + f + k 2) - 112 _ (n2 + (j + 1)2 + k 2) - 112 

_ (n2 + l + (k + 1 )2) - 1/2 

+ (n2 + (j + W + (k + W)-1I2. 

Witha=(k+ W_k2, 

ho(n,j,k) = AII2 (n2 + l + k 2) -/2,112 (n2 + (j + 1)2 + k 2), 

which is positive for all n,j,k> 1. 
With this notation 

II 

P(2n + 1) - P(2n) = - 3 ~ ho(2n + 1,2j - 1,2k - 1) 
),t:.1 

- 3 i [(2(2n + 1)2 + (2/- 1)2)-112 
1=1 

_ (2(2n + 1)2 + (21)2) - 112], 

- l/((2n + lW3). (16) 

This leads to the following property. 
Property 3': 
P (2n + 1) - P (2n) < 0, for all n> 1. 

Therefore, the decreasing even indexed elements are all 
greater than the increasing odd indexed elements. To see 
that there is a unique limit to the sequence ofthe P(n)'s, we 
only need the last property, which implies that the distance 
between successive terms approaches zero. This follows 
from (16) and 

P(2n + 1) - P(2n) > - 3/((2n + W + 2)112 

- l/((2n + lW3). (17) 

To verify (17) let 

2,. (_ 1)1+)+k 
X = ~ , for 1 ~<2n + 1. 
'j k~1 ((2n + 1)2 + f + k 2)112 

Using the function ho' defined above, write 

II 

Ix}I-lxi+11 = Lho(2n+ l,j,2k-l»0. (18) 
k=1 

Note that Xj itself is an alternating sum of decreasing terms, 
so the sign of Xj is ( - 1) j • With (18), this implies that 

211+ I _ 1 
0> ~ x >x >----=---

j~1 j 1 ((2n + W + 2) - 1/2 

Then, 
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211+ I 1 
P(2n+ 1)-P(2n)=3 LX) ----

j= I (2n + lW3 
3 >-------

((2n + 1)2 + 2)112 
1 

((2n + lW3) 

So (17) holds. Thus, the following property has been estab­
lished. 

Property 4': 

lim P(2n + 1) - P(2n) = O. 
n-oo 

Properties 1'- 4' imply that lim Pin) exists. 
n-oo 

Finally, 

S3(n) = 8P(n) + 8Q(n) + 6X(n), 

where, as before, 

and 

n (_ 1)i+k 
Q(n)=.L ('2+k2)112 

J,k= I ] 

II ( l)k 
X(n) = L---' 

k=1 k 

(19) 

Since each of the terms on the right-hand side of (19) ap­
proach a limit as n-+oo, we have that limn_ oo S3(n) ex­
ists. Q.E.D. 

Remark J: Although this method of summing over ex­
panding cubes is not rapidly convergent, it is extremely well 
behaved. The alternation of the P (n) and Q (n) above and be­
low their limiting values provide precise error bounds, which 
may be useful in theoretical considerations. 

Remark 2: The work of Campbe1l3 must be mentioned 
at this point. He states general conditions on a doubly in­
dexed series and concludes a convergence result, which is 
stronger than Theorem 2 above. However, there is a serious 
error in his proof and his general theorem is false. A simpli­
fied version of Campbell's claimed result would be the fol­
lowing: Let {alJ } :: I ,j"= I be a doubly indexed "sequence" of 
reals satisfying (A) for all i, {Ia il I, 10121, 1013 I, .. ·} is a mono­
tonically decreasing sequence with lim}-+co alj = 0, and for 
allj, (Ialj I, 102) I, ... } is a montonically decreasing sequence 
with lim/_co 0 1) = 0; and (B) the sign of ail is (- 1)1+i+ I. 

Then :Ii= I (:Ij'''= I alj) exists. 

Here is a counterexample to this claim. Let the al}'s be 
defined as in the array in Table I. Let 

TABLE I. The ij th entry in the array is denoted aij • to form a counterex­
ample to the general convergence resUlt claimed by Campbell. 

2 -! _10-2 

3 ! 
4 -! -10-3 

5 ! 
6 -1-10-4 

2 

-! 
! - 10-3 

-! 
! -10-4 

-1 
1- 10-' 

3 4 

! -1 
-! - 10-4 1- 10-5 

1 -1 
_ ! _ 10-5 ! _ 10-6 

! -1 
-1- 10-6 1- 10-7 

5 

1 
-1- 10- 6 ... 

1 
_+_10-' ... 

+ 
-1 - 10-8 

... 
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00 

Ui = 2: ail' for i = 1,2,3, .... 
j= I 

Clearly, each Ui exists and the sign of Ui is ( - l)i+ I. The 
odd indexed Ui are all positive and easily calculated: 

UI = In 2 = 1/1 X2 + 1/3x4 + 1/5X6 + ... , 
U3 = In 2 + 1 = 1/2 X 3 + 1/4 X 5 + 1/6 X 7 + .... 

In general, 

UZk _ I = ( - l)k + I [In 2 - (1 -! + ... + ( - W I(k - 1))] 

00 1 

= l~O (k + 2j)(k + 2j + 1)' k>2. 

Any U Zk is negative and given by 

00 1 to- k 

UZk = l=f2+ I - to j = - -9-' 

Note, that 

00 1(00) 2: UZk = -- 2: to- k = 
k=1 9 k=1 

1 
81 

On the other hand 

Since the sum of the positive terms diverge and the sum of 
the negative terms converge, it follows that limn_ oo 1:7= lUi 

does not exist. 
Thus, 

i~1 (~Iaij) diverges, 

even though it satisfies Campbell's conditions for conver­
gence. Campbell goes on to claim that the analogous result 
holds for any dimension and that one could also prove con­
vergence if one summed by expanding rectangles. Both these 
statements are unfounded. 

Remark 3: In light of the above, it appears that there is 
no simple proof in the literature of the convergence of any of 
the most elementary direct summation methods. That is why 
the detailed proofs of Theorems 2 and 4 are given. Emersle­
ben's result (Theorem 3) indicates that a noncasual approach 
is justified. 

Remark 4: The proofs given to Theorems 2 and 4 are 
simple and intuitive, based as they are on the fact that the 
contribution of a basic unit cell to the sum is always of the 
sign of the nearest point in the cell to the origin. We have 
abstracted this property and have obtained quite general 
convergence results for multidimensional alternating series. 
These results will be published elsewhere. We will point out 
later that Theorems 2 and 4 also follow from the deeper 
considerations of the next section. 
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IV. INTEGRAL TRANSFORMATIONS AND 
ANALYTICITY 

Our purpose in this section is to establish a firm connec­
tion between the elementary direct summation methods dis­
cussed above and the integral transformation methods, 
which are described by Glasser and Zucker in their survey 
article. lOne major consequence of this connection is that we 
can give a definition of Madelung's constant, which has a 
firm mathematical foundation and is unique in a strong 
enough sense to indicate why diverse methods of performing 
the lattice sums lead to the same number. We begin with a 
general discussion of analyticity of certain lattice sums in N­
dimensional space. Of course, N = 2 and 3 are the most in­
teresting cases, but the general notation is just as convenient. 

For a complex number s, let Re s denote the real part of s 
and let 

A N(S) = {( - It/linWs: neZN I{O)}, 

where for n = (nl,nZ, .. ·,nN)eZN, (- It = (- It +···+nN 

and Ilnll = (ni + n~ + ... + n~)l/z. We also use the nota­
tions 

Inl = (Ind,lnzl,,,·,lnNiJeZN, 

and for meZN, 

n>m, if n j >m j' for 1 <j.;.N. 

If Re s > N 12, then a simple comparison test shows that 
1:n .. O 1/1 Inl 12.< < 00. So the elements of AN (s) are absolutely 
summable if Re s > N 12. Let 

dN (2s) = 2:{ (- l)n: neZN I{OJ}. 
Ilnll2.< 

Then dN(z) is a function of the complex variable z for 
Re z > N. In fact, it is a multidimensional zeta function, ana­
lytic on this domain. To see this, define for meZ" , with m > 0, 

dm(z) = 2:{ (- l)n: neZN I{O} and Inl<m}. (20) 
IlnW 

The ~ (z) is analytic for Re z > O. For fixed B> 0, if 
Rez>N+B, 

IdN(Z)-diZ)I';'~{ 1 :neZN'\{leZN: III<mJ}. 
~ IlnllNH 

(21) 

The right-hand side of (21) can be made arbitrarily small by 
letting the minimal coefficient of m get large. Thus, on the 
region (Re z> N + B), d N (z) is the uniform limit of analytic 
functions and is therefore analytic. Since B > 0 was arbitrary 
we have established the following proposition. 

Proposition 1: The function dN(2s) is analytic in s for 
Res>NI2. 

Now comes the crucial step for the definition of Made­
lung's constant. The functions dN (2s) can be analytically 
continued to the region (Re s> 0). To accomplish this we 
follow the ideas of Glasser and Zucker! and introduce () 
functions and the Mellin transform. We need, in particular, 

n = - 00 

So 
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00 

04(e- t ) = L (- lte-"Zt, O<t< 00. (22) 
n= - co 

For a continuous functionf(t ) defined forO < t < 00, bounded 
as t-o and decaying sufficiently fast as t_ 00, one can define 
a normalized Mellin transform M. (f) for Re s > 0 by 

M.(f) = r -I(S)fof(t)t'- 1 dt, 

where r is the usual gamma function given by 

r (s) = Loo e - tt S - 1 dt, for Re s > O. 

Of course, rand r -I are analytic functions on (Re s> 0). A 
useful property of the Mellin transform is that for a> 0 andf 
such that its Mellin transform exists, Ms (Tal) = Ms if)/ as, 
where T aI(t) = f(at ) for all t> O. In particular, 

(23) 

Consider now a truncation of the series for 04' For some 
positive integer m, let (,brn (q) = 1::;'= _ m ( - It q"Z . IfmeNN, 
say m = (ml, ... ,mN)' then let m = min { ml, ... mN j. We wish 
to approximate the Nth power of 04 with products of (,bm,. 
ForO<t< 00, 

10Z'(e-
t
)- ;DI(,bm,(e-

t
)I 

"I ill [1 04(e-
t
) - (,bm,(e-t)1 

N N 

= IT (b; + a;) - IT ai> (24) 
;=1 ;=1 

where a; = (,brn, (e- t) and b; = 104(e- t) - (,brn,(e- t)l. Note 
that 0 < a;, b; < 1, for i = 1, ... , N and the last expression in 
(24), IIf= 1 (b; + a;) - IIf= 1 a; represents the difference in 
volume between an Nbox of side lengths b; + ai' i = 1, ... ,N 
and one of side lengthsa;,i = I, ... ,N. Clearly IIf= db; + ad 
- IIf= 1 a; < max {b;:I"i"NjN2N- I . Now 104(e- t ) 
-(,bm(e-tll is the maximum b; and 104(e- t ) 
- (,brn (et ) I < 2e - rnZt. So (24) becomes 

!oZ'(e- t ) - ;DI(,brn,(e- t )! <N2Ne-
rnZt

. (25) 

We also need the Mellin transform of IIf= l(,brn, (e- t
) - 1, 

which is easily found using linearity and (23): 

Ms[.IT (,bm,(e- t) -1] =Ms[L' (_l)De-IIDWt] 
,= 1 IDI<m 

, (-It 
=LIDI<m~ 
= d m(2s). (26) 

The prime on the summation sign indicates that the n = 0 
term is omitted. 

We are now ready for the main theorems of this section. 
DefineF(s) = M. [OZ'(e- t ) - I] wherever it exists. 
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Theorem 5: The Mellin transform F (s) of ° Z'(e - t) - I 
exists and is analytic for all s with Re s > O. Furthermore F 
provides an analytic continuation of dN (2s) to the region 
(Res>O). 

Theorem 6: For any meZN
, m ~ 0, m = min { m;: 

l"i"N j and Res>O 

IF(s) - d m(2s)1 < N2Nr (Re s)/(m2Re'lr (s) I). (27) 

Proof (of Theorems 5 and 6 combined): Let s be a com­
plex number such that Re s > O. Since 

0,,1- 0Z'(e-t)"N [1- 04(e- t )]"Ne- t, 

for all 0 < t < 00, 

then 

LooIOZ'(e- t)-llltS - lldt 

"N LOOe-ttRes-1 dt = Nr(Res). 

Therefore, if Re s > 0, then 

Loo [OZ'(e- t) - 1 ]t s- I dt = F(s) 

exists. Using (25) and (26), with m as in Theorem 6, 

Ir(s)IIF(s) - d m(2s)1 

"roo !oZ'(e- t ) - IT (,bm,(e-t)!ltS-lldt Jo ;= 1 

"N2N Lao e- rnZtt Res- 1 dt 

= N2Nr(Re s)/m2 Re •• 

Thus (27) holds. In tum, (27) implies that F(s) can be uni­
formly approximated by the ~ (18) on any region of the form 
Rt;,M = {s:lsl <M and Res>8j. To see this letKbe an up­
per bound for the continuous function N 2N (Re s)/Ir (s) I on 
the closure of Rt;,M' Then, for any E> 0 and any m such that 
m = min{m ..... ,mN j > (K /E)I/2t;, 

IF (s) - d m(2s) I < E, for all SeRt;,M' 

Since E is arbitrary and dm is analytic, F is analytic on R,s,M 

for any 8> 0 and 0 < M < 00. Therefore F is analytic on 
(Re s > 0). Finally, it is now clear that F (s) agrees with d N (18) 
if Re s > N /2. Thus F is an analytic continuation of 
dN • Q.E.D. 

In light of Theorem 5, we will drop the use ofF and write 

dN(2s)=Ms [0Z'(e- t)-l], for Res>O. (28) 

A rigorous mathematical definition can now be given for 
Madelung's constant. 

Definition: For a three-dimensional NaCl-type ionic 
crystal, Madelung's constant is the number 

d3(1)=M1/2[0!(e- t )-l]. 
Of course, this is the very number that has been approxi­

mated by many different methods over the years. We have 
just given a definition that avoids all the ambiguities of 
meaning that have existed. The uniqueness of analytic con­
tinuation explains the special significance of this particular 
sum of elements of 
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{( - lV+J+ k l(i2 + f + k 2
)1/2: (i,j,k )eZ3/(0,0,0)}. 

Formula (27) emphasizes the strong connection between the 
integral transformation methods and the direct summation 
methods. In fact it is worthwhile to formulate a corollary to 
Theorem 6, which gives explicit error bounds for a finite sum 
approximation to Madelung's constant. 

Corollary 1: Let m; > 0, for i = 1,2,3 and 
m = min{m l ,m2,m3 }. Then 

Remark 5: The above corollary says the Madelung's 
constant for NaCI can be obtained, not only by expanding 
cubes, but by expanding any rectilinear shape and the order 
of convergence is the inverse of the minimum dimension. In 
fact, it is permissible to let some coordinates go to infinity 
before others. 

Remark 6: Of course Theorems 2 and 4 follow immedi­
ately from Theorems 5 and 6 but we preferred to present the 
simple direct proofs of Secs. II and III for the reasons given 
in remark 4. 

V. BACK TO TWO DIMENSIONS 

In this section we consider the analyticity of various 
methods of summing the elements of the set 

As = {( - lY+ k 1(/ + k 2
)': (j,k )eZ/(O,O)}. 

From Theorem 6, it follows that the method of expanding 
squares leads to d2(2s), which is analytic for Re s > O. In fact, 
expanding rectangles of any shape with sides parallel to the 
axes lead to d2(2s). In Theorem 1, we showed that the method 
of expanding circles converged when s =!, but there is no 
reason to believe that d2( 1) is obtained unless one shows that 
the appropriate function is analytic. Using the notation of 
Sec. II, let 

(29) 

whenever the right-hand side converges. Then G (s) is the 
sum of the elements of As obtained by expanding circles. 

Theorem 7: The function G (s) exists and is analytic for 
Re s > ~. Thus, G (s) = d2(2s) if Re s >~; in particular, 
d2(1) = l::= d - 1)nC2(n)/nI/2. 

Proof As in the proof of Theorem 1, let Bn 
= l:k= 1(- l)k C2(k). By (8), 

Define Gn (s) for all s with Re s> 0 by 

G,,(s) = i (- 1)kC2(k). 
k=1 k S 

As in (9) 

(30) 

B " 
G,,(s) = " + L Bdk -s - (k + I)-a]. (31) 

(n + l)S k= I 

By (30), if Re s>~, then IBn I(n + 1)' 1-0, uniformly in s. 
Note that 
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Ik -O_(k+ 1)'1 

= I( -S)Lk+lt -(s+l)dt 1<lsILk+lt -(Res+l)dt 

< Islk - (Res+ I). (32) 

So for sER M = {z: Re z>~, Izl <M} with M a fixed positive 
number and l<N<N', 

Ik~NBdk -a - (k + I)-a] I 
N' 

< L IBkilk -O_(k+ 1)-01 
k=N 

N' 

<K L k I/3 -"lk -O_(k+ 1)-61 by(30) 
k=N 

N' 
<KM L k Il3 -,,-Reo-1 by (32) 

k=N 
<KMN 1/3 - ,,- Res 

<KMN-" 
-0 asN,N'--~, 

uniformly for sERm • Thus, the sequence of functions 
{Gn (s)}: = I is uniformly Cauchy on RM and it converges 
uniformly to a limit function G (s). Furthermore, each G n (s) is 
analytic, so G (s) is analytic for sERM • Since M is arbitrary, 
G (s) exists and is analytic for all s with Re s > ~. Q.E.D. 

Remark 7: It is not know what the minimum non-nega­
tivepis, such that G (s) exists for alls with Re s > p. However, 
if we consider another method of summing the elements of 
As, we can get a very complete and illuminating analysis. 
This is the method of expanding diamonds. 

For each k = 1,2,3, ... , and complex s with Re s > 0, let 
k 

t5k(s) = L{(k-Jj2+f}-s. 
}=o 

For each n = 1,2,3, ... , let 

" ..1,,(s) = 4 L (- Wt5k(s) - 4Xn(s), (33) 
k=1 

where X,,(s) = l:k= d - l)k Ik s. Note that ..1 n(s) counts the 
contributions within the diamond Ik I + VI <no Now, 
limn_oo Xn(s) = l:k= d - l)k Ik s = -1](s) and 1] is known 
to be analytic for Re s> O. Therefore, in order to determine 
for which s the limit of the ..1 n (s) exists and is analytic, it is 
sufficient to analyze l:k= d - l)kt5k(s). We begin by estab­
lishing a number of facts about the sequence of t5k • 

Proposition 2: (a) limk_ oo t5kHl =..[i In(..[i + 1). Thus 
l:k= d - Wt5kHl diverges. 

(b) For real r>!, t5k _ I (r»t5k (r), k = 2,3,4, .... 
(c) l:k= d - l)kt5k(s) exists and is analytic for Res>!. 

Proof:(a) 

t5k(~) = ± [(k - Jj2 + f] -112 
2 J=O 

=jto(!)[(l- ~r +(~r]-1I2 

--f [(1- t)2 + t 2] - 1I2dt, as k __ ~ 
=..[i In(..[i + 1). 
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For the proofs of (b) and (c) it is very convenient to introduce 
the following function. For Re s>!, let [

/4 

VIr) = 2r 0 (2 cos2 ())' d() - 1 

[

/4 

> 0 .J2 cos () d() - 1 = O. v (s) = 2s(2S) [/4 COS2s () d() - 1. 

We proceed now to the proof of (b). 
Then V is continuous and V m = O. If r>!, then Let r>! and k>2, 

c5k _ dr) - c5k (r) 
k 

= L {[(k - J12 + (j - W] -r - [(k - J12 + '] -r} - k -2r 
1-1 _ i (1 2ndt _ k -2r> i (1 2ndt _ k -2r 

-1-1J1-1 [(k-J12+t 2]'+1 1=IJ1-1 [(k_t)2+t 2]'+1 

_ i
k 

2n dt _ k - 2r _ k - 2r{il 2ru du _ I} 
- 0 [(k_t)2+t 2]'+1 - 0 [(I_U)2+U2]'+1 

k -2r{2 fill (v + 1/2)dv I} ( 1 ) 
= r -1/2 2'+ l(vl + 1/4)r+ 1 - V = U - '2 
= k - 2r{~i1/2 dv _ I} = k - 2r{2r[/4(2 cos2 ())r d() - I} (tan () = 2v) 

2r + 1 0 (V2 + 1/4)'+ 1 0 

= k -2rV(r»O. 

That is, 15k _ 1 (r»c5k (r), for r>!, k = 2,3,4,... . 
To prove (c), let E>O andM < 00 be arbitrary. Let 

R = {z: Rez>! + E and Izl <M}. 

For seR, let r = Re s. For k>2, we can write 
k-l 

c5k_.(s) -c5k(s) = L {[(k -Jl + (j - 1)2] -s - [(k -J12 +/] -S} + (k - 1)-2& - 2k-2& 
j=1 

k-
1ii =L 

1= 1 j-l 
Thus, 

Ic5k_ds)-c5k(s)I/~lrj 21sltdt +3(k_l)-2r 
j~IJj-l [(k - J12 + t 2]'+ 1 

<:"2Mk~1 (j tdt + 3(k _1)-2r 
jf-l Jj _ 1 [(k _ 1 - t )2 + t 2] r+ 1 

= 2Mik-1 tdt + 3(k _ 1)-2r 
o [(k - 1 - t )2 + t 2)' + 1 

= (k - 1)-2r{2Mi
l 

U du + 3} = (k _ 1)-2r{(M Ir)V(r) + (M Ir) + 3} <:..(k _ 1)- 2rC, 
o [(1 - U)2 + U2]'+ 1 

I 

(34) 

(35) 

where C is the maximum of the continuous function (M I 
r)V(r) + M Ir + 3 for ! + E<:..r<:..M. Now, for each n, 
l:~ = dc52k _ .Is) - c52k (s)) is an analytic function of s for 
Res> ! and 

Then lim"_", .1" (s) exists and is analytic for Re s > !. Al­
though {.1" m} :' = 1 fails to converge, 

k~l( - l)kc5ds) = !~ [ - ktl(c52k - .Is) - c52k (S))] 

exists uniformly on R, by (35) and the Weierstrass M test. 
SinceE> 0 andM < 00 are arbitrary, (c) has been established. 

Q.E.D. 
We can now describe the behavior of the diamond sums. 
Theorem 8: For each complex number s with Re s > 0 

and each n = 1,2, .. , let 

.1"(s) = i(-I)/{:L [/+k 2 ]-s}. 
1= 1 VI + Ikl =1 
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d2(1) = lim (lim .1,,(r)). (36) 
r-1/2+ ,,_'" 

Proof: These claims all follow immediately from Propo­
sition 2. 

Remark 8: Further analysis along the lines of Proposi­
tion 2 shows that although 

is divergent, it is Cesaro summable or Abel summable to 
d2(1). 
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The diamond sums provide a nice illustration of how a 
method of summing the elements of As can be analytic in s 
for Re s large, then with decreasing Re s, this analyticity fails 
at a specific point. With the diamond sums it happens to be at 
!, with expanding squares or rectangles it is at O. It is not 
clear where the expanding circles fails; it is at some point less 
than i. In three dimensions the method of expanding spheres 
fails at some point greater then l' 

VI. THE HEXAGONAL LATTICE 

As an illustration of what is obtained when one studies 
other crystal lattices in the above manner, we include a brief 
summary of results on Madelung's constant of a two-dimen­
sional regular hexagonal lattice with ions of alternating unit 
charge. 

In order to obtain a tractable expression for the terms 
appearing in the lattice sum, choose a coordinate system 
with an angle of tP = 11'/3 between the positive axes. Then an 

arbitrary site in the lattice has coordinates ( n,m) with nand 
m integers. A charge of + 1, - 1, or 0 is attached to that site 
in a regular fashion (see Fig. 2). By considering the two paral­
lelograms indicated in Fig. 2, one can see that this charge 
may be expressed by 

q(n,m) = t[ - sin(n8 )sin((m - 1)8) 

+sin((m+ 1)8)sin((n+ 1)8)], 8=211'/3. 

The distance of the point ( n,m) from the origin is given 
by 

I( n,mll = [In + m/2f + 3(m/2fl 112. 

The set of numbers to be summed is then 

Cs = !q(n,m)/I( n,mWs: (n,m)eZ2/(O,O)), 

for Res>O. 

As before, the elements of Cs are absolutely summable for 
Re s > 1 and we wish an analytic continuation of their sum to 
a region which includes s = !. Arguments, like those used for 
the diamond sums, will show that direct summation by ex­
panding shells of hexagons will converge analytically for 
Re s> i and even have a limit as s approaches i from the 
right. However, for precise calculation purposes an analytic 
continuation via the integral transform methods is far supe­
rior. Let 

H2(2s) = I{ q(n,m) : (n,m)eZ2/(O,O)}, (37) 
I( n,m lI20 

for Res> 1. Then Hz is an analytic function of s and the 
series converges absolutely. Substituting the expression for 
q(n,m) and using elementary trignometric identities yields 

H2(2s) = ~ I,cos((m - n)8) 
3 I( n,mll 2o 

_ [~I' sin((m - n)8)], 
3 I( n,m)1 2o 

(38) 

where 1:' indicates the sum is over (n,m)eZ2/(O,O). By sym­
metry considerations, the second term in the right-hand side 
of(38) is zero. Further manipulation of theta functions (using 
the modular equation of order 3) produces a rectangular sum 
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(39) 

A theta function identity due to CauchylO and a Mellin 
transform yields 

(40) 

where 5 (s) is the standard zeta function (1::= 1 n - S) and 

L_3(S) = 1_2-s+4-s_5-s+7-s_8-s+ .... 

The formula (40) can also be deduced directly from (38) by 
using results in Sec. IV of Glasser and Zucker. I While the 
intermediate sums (39) and (40) are only analytic for Re s > 1, 
the standard continuation of the zeta function, 

(I - 21
- S)5(S) = i (- I)n+ In -s = a(s), 

n=1 

gives 

H2(2s) = 3(1 - 31 -1(1 - 21
-

9
) -la (slL_3(S). (41) 

The right-hand side of (41) is an analytic function of s for 
Re s > 0 and therefore (41) provides the required analytic 
continuation, which is necessary for Madelung's constant of 
this hexagonal crystal lattice: 

H 2(1) = 3(.]3 - IHv'2 + l)a(l/2lL_3(l/2). (42) 

This can be considered as a solution to this lattice sum prob­
lem, as both aHl and L_3(!) can be rapidly calculated by 
known techniques. At s = 1, we have an exact result: 

(43) 

VII. CONCLUDING REMARKS 

We have investigated some fundamental properties of 
the multiply indexed series involved in the definition of Ma­
delung's constant for an NaCl-type ionic crystal in two and 
three dimensions. We have provided elementary proofs that 
convergent series are obtained if the series is summed by 
letting the shape of a basic unit cell expand. The natural 
method of summing the effects of all ions within a fixed dis­
tance and letting the distance go to infinity leads to a conver­
gent series in two dimensions but not so in three dimensions. 

FIG. 2. The hexagonal lattice. 
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We have provided a unity to the concept of Madelung's 
constant by the use of analytic continuation of a complex 
function. Thus, although conditionally convergent when 
summed by expanding squares (or cubes), other methods of 
summing will provide the same answer provided that they 
are "analytic" in the correct sense. We have provided an 
analysis of the expanding circles and expanding diamonds 
methods in two dimensions to illustrate this point. 

Perhaps the most important results are those in Sec. IV, 
rationalizing the integral transformation methods with the 
direct summation methods. These integral transform meth­
ods are the most useful in practice as they lead to very rapid­
ly convergent series. 

In the course of these investigations we have encoun­
tered many curious facts, most of which are probably known 
to experts in the area. However, the formulas (42) and (43) 
seem to be unknown and may be of sufficient interest to have 
been included; at least, as an illustration that the techniques 
of analytic continuation are applicable to other lattices. 
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