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We show that the three-body Calogero model with inverse square potentials can be
interpreted as a maximally superintegrable and multiseparable system in Euclidean
three-space. As such it is a special case of a family of systems involving one
arbitrary function of one variable. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2345472�

I. INTRODUCTION

The purpose of this article is to investigate the relation between the rational three-body
Calogero model in one dimension3 and superintegrable systems in two and three dimensions.5,7,16

The original �quantum� Calogero model was written in the form
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�x1
2 +
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�x3
2� +
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Upon introducing the center-of-mass coordinate R and the Jacobi relative coordinates � and
�,13

R =
1

3
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�x1 − x2 − 2x3� �2�

Eq. �1� was rewritten3 as follows:
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�2�� = E� , �3�

where the motion of the center-of-mass has been factored out.
A superintegrable system is one that admits more integrals of motion than it has degrees of

freedom. Systematic searches for superintegrable systems of the form

H�x,p� = 1
2p2 + V�x� �4�

have been conducted in Euclidean spaces En for n=2 and 3.5,7,16 The classical or quantum Hamil-
tonian �4� is said to be superintegrable if it admits n+k, 1�k�n−1 integrals of motion, n of
them in involution. It is minimally superintegrable for k=1 and maximally superintegrable for
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k=n−1. For n=2 the two cases coincide and superintegrability simply means the existence of
three functionally independent integrals of motion �including the Hamiltonian�. For n=3 a super-
integrable system can have either four or five functionally independent integrals of motion.

The N-body Calogero model4 �and, in particular, the three-body one3� is known to be
superintegrable.1,2,12,20,21,26 An extensive literature exists on superintegrability in classical and
quantum systems of the form �4� �see Refs. 14, 22, and 24, and references therein� devoted mainly,
though not exclusively9,8 to systems with integrals of motion of at most second order in the
momenta. Superintegrable systems with complete sets of commuting quadratic integrals of motion
are multiseparable. This means that the corresponding Hamilton-Jacobi, or Schrödinger equation
allows the separation of variables in more than one system of �orthogonal� coordinates. Alterna-
tively, multiseparability can be described in terms of the geometric properties of the Killing
two-tensors determined by the first integrals of motion that are quadratic in the momenta �see Ref.
12 as well as the relevant references therein�.

In what follows, we shall deal with the quantum mechanical problem, but all conclusions are
the same �mutatis mutandis� for the classical ones. For the systems admitting integrals of motion
of order three or higher, this is not necessarily the case.9,8,11

II. THE CALOGERO MODEL IN THE CLASSIFICATION OF SUPERINTEGRABLE
SYSTEMS

In a recent article12 the invariant theory of Killing tensors �see also Refs. 17, 18, and 25, and
relevant references therein� was used to classify orthogonally separable Hamiltonian systems in
the Euclidean space E3. In particular, it was shown that the inverse square Calogero model with
the potential

V =
1

�x1 − x2�2 +
1

�x2 − x3�2 +
1

�x3 − x1�2 �5�

allows the �orthogonal� separation of variables in five different coordinate systems, namely spheri-
cal, circular cylindrical, rotational parabolic, prolate spheroidal, and oblate spheroidal �see also
Refs. 2 and 21�.

In this study12 the potential �5� was viewed as a potential in the Hamiltonian �4�, correspond-
ing to a single particle in a potential field in E3. The potential �5� was shown to allow five
functionally independent first integrals �including the Hamiltonian�. From them it is possible to
construct five inequivalent pairs of integrals in involution �in addition to the Hamiltonian�. Each
such pair is determined by two Killing tensors that share the same orthogonal eigenvectors, thus
generating an orthogonal separable system of coordinates. For example, the spherical coordinate
system is generated by the following pencil of Killing tensors �including the metric� whose
components given in terms of the Cartesian coordinates �x1 ,x2 ,x3� are as follows:12


a1 + c2x3
2 + c3x2

2 − c3x1x2 − c2x1x3

− c3x1x2 a1 + c3x1
2 + c2x3

2 − c2x2x3

− c2x1x3 − c2x2x3 a1 + c2x1
2 + c2x2

2 � . �6�

The formula �6� can be rewritten as

a1gij + c2K1
ij + c3K2

ij, i, j = 1,2,3, �7�

where K1
ij and K2

ij are the components of two canonical Killing tensors K1, K2 that share the same
orthogonally integrable �i.e., surface forming� eigenvectors and gij are the components of the
metric g of E3 �see Ref. 12 for more details�.

That notwithstanding, the Calogero potential �5� does not appear �at least explicitly� in the list
of superintegrable systems in E3, established earlier5,16 under the assumption that the first integrals
that afford maximal or minimal superintegrability were to be quadratic in the momenta. To unravel
this mystery we first observe that the Killing tensors that determine the corresponding integrals of
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motion obtained for the potential �5� in Ref. 12 are not in a canonical form �as in �6�, for
example�, but are rotated with respect to this form. As an example, let us consider again spherical
coordinates �r ,� ,�� in E3 generated by the hypersurfaces of the orthogonally integrable eigenvec-
tors of the Killing tensor �6� given by the following coordinate transformations to the Cartesian
coordinates �x1 ,x2 ,x3�:

x1 = r sin � cos �, x2 = r sin � sin �, x3 = r cos � . �8�

A potential that allows separation in these coordinates must have the form

V�r,�,�� = f�r� +
1

r2g��� +
1

r2 sin2 �
k��� �9�

and the corresponding additional integrals of motion quadratic in the momenta will be in their
standard form, namely

F1 = L1
2 + L2

2 + L3
2 + 2�g��� +

1

sin2 �
k���
 ,

F2 = L3
2 + 2k��� , �10�

where Li , i=1,2 ,3 are the infinitesimal generators of SO�3�, that can be determined in terms of the
Cartesian coordinates xi, i=1,2 ,3 as follows: L1=x2p3−x3p2, L2=x3p1−x1p3, L3=x1p2−x2p1.
Note that the first integrals �10� in terms of the Cartesian coordinates can be rewritten as

F1 = K1
ijpipj + U1�x1,x2,x3� ,

�11�
F2 = K2

ijpipj + U2�x1,x2,x3� ,

where i , j=1,2 ,3, K1
ij, K2

ij are the components of the “spherical” Killing tensors �7� and �p1 , p2 , p3�
are the operators �� /�x1 ,� /�x2 ,� /�x3�, respectively �quantum mechanics case� or the momenta
components corresponding to the Cartesian coordinates �x1 ,x2 ,x3� �classical mechanics case�.

If we rotate the x1, x2, and x3 axes in �8�, the form of the potential �9� changes, so do the
integrals �10�, but separation of variables will still occur �in spherical coordinates with different
axes�.

In the case of the potential �5� the rotation taking the Killing tensors into their standard form
is a nontrivial one, given by12 �compare with �2��

�x1

x2

x3
� =

1
	6� 2 0 	2

− 1 	3 	2

− 1 − 	3 	2
��x̃1

x̃2

x̃3
� . �12�

Accordingly, for the Calogero potential �5� we obtain

V = 2� 1

�	3x̃1 − x̃2�2
+

1

�	3x̃1 + x̃2�2
+

1

x̃2
2
 �13�

and we see that the variable x̃3 is absent from �13�. Expressing x̃1 and x̃2 in terms of spherical
coordinates �8�, we get

V =
2

r2 sin2 �
� 1

�	3 cos � − sin ��2
+

1

�	3 cos � + sin ��2
+

1

sin2 �

 , �14�

i.e., a potential in the form �9� with f�r�=0, g���=0 and k��� specified.
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In what follows we show that after the rotation �12� it is possible to see that the Calogero
potential �13� is a member of an infinite family of potentials, depending on one arbitrary function
and sharing a number of important properties, such as superintegrability. Indeed, recall that all
superintegrable potentials that separate in spherical coordinates plus at least one other system were
derived in Ref. 16. The potential

V =
k���

r2 sin2 �
�15�

occurs several times. In what follows we list five functionally independent first integrals �including
the Hamiltonian H� that afford multiseparability for the potential �15�:

H =
1

2
�p1

2 + p2
2 + p3

2� +
k���

r2 sin2 �
,

F1 = L1
2 + L2

2 + L3
2 +

2k���
sin2 �

,

�16�
F2 = L3

2 + 2k��� ,

F3 = 1
2 p3

2,

F4 = L1p2 + p2L1 − p1L2 − L2p1 − 4
cos �

r sin2 �
k��� ,

where k��� is an arbitrary function. The functional independence of the first integrals �16� has
been verified with the aid of a computer algebra package �i.e., the Jacobian
��H ,F1 ,F2 ,F3 ,F4� /��x1 ,x2 ,x3 , p1 , p2 , p3� is of rank 5 at a generic point�. It is important to note
that the functionally independent first integrals �16� are linearly connected, which means that they
are subject to an additional constraint specified by the following expression in terms of the
coordinates x= �x1 ,x2 ,x3�:

f0�x�H + f1�x�F1 + f2�x�F2 + f3�x�F3 + f4�x�F4 = 0, �17�

where f0�x�=2x3
2, f1�x�=1, f2�x�=−1, f3�x�=−2�x1

2+x2
2+x3

2�, f4=x3. This formula is a conse-
quence of the following “rotational” symmetry, that can be defined in a coordinate-free way. We
can write all of the expressions in formula �16� as Fk=Kk

ijpipj +Uk, where i , j=1,2 ,3. Then the
Killing tensor Kk with the components Kk

ij �including the metric� is subject to the following
formula:

LL3
Kk = 0, �18�

where L denotes the Lie derivative. We also note that the vector space spanned by the quadratic
parts of the first integrals �16� are invariant with respect to translations along the x3 axis.

It is easy to show now that the potential �15� is orthogonally separable with respect to other
systems of coordinates as well. Indeed, the pairs of involutive first integrals leading to the or-
thogonal separation of variables in the Schrödinger equation are �F1 ,F2� �spherical�, �F2 ,F3�
�circular cylindrical�, �F2 ,F4� �rotational parabolic�, and �F2 ,F1�a22F3� �oblate, and prolate
spheroidal�. Another way to see this is by looking at the separable potentials derived in Ref. 16. In
terms of Cartesian coordinates the potential �15� is given by
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V =
k�x2/x1�
x1

2 + x2
2 . �19�

Recall16 that the separable potentials corresponding to “rotational” coordinates, namely spherical,
circular cylindrical, rotational parabolic, oblate and prolate spheroidal in the Cartesian coordinates
�x1 ,x2 ,x3� all have the form

V = f + g +
k�x2/x1�
x1

2 + x2
2 , �20�

where k are arbitrary functions, while f and g are specified differently in each case. The common
part of the five separable potentials is exactly the potential �19�.

These observations put in evidence that the potential �19� defines a family of maximally
superintegrable potentials separable with respect to the five “rotational” orthogonal coordinate
systems, namely spherical, circular cylindrical, rotational parabolic, oblate, and prolate spheroidal
whose Killing tensors are constrained by the rotational symmetry condition �18�. As for the
Calogero potential �13�, in the coordinates �x̃1 , x̃2 , x̃3� determined by the transformation �14�, it
assumes the form �19� for

k�t� = 2�1 + t2�� 3 + t2

�3 − t2�2 + 1
 , �21�

where t= x̃2 / x̃1.
The potential �15� can be imbedded into more general families of potentials in E3 that are

minimally superintegrable. In contrast to maximally superintegrable potentials they admit three
additional integrals rather than four. They are

V1 = 	�x1
2 + x2

2 + x3
2� +




x3
2 +

1

x1
2 + x2

2h��� ,

V2 =
	

r
+ 


cos �

r2 sin2 �
+

1

r2 sin2 �
h��� , �22�

V3 = k�x1
2 + x2

2� + 4kx3
2 +

1

x1
2 + x2

2h��� .

The potential V1 with �	 ,
�� �0,0� separates in all of the five “rotational” coordinate systems
considered above except rotational parabolic ones. V2 separates only in spherical and rotational
parabolic, while V3 in cylindrical and rotational parabolic. We mention that a special case of V2

with 
=0 and h���=const is the Hartmann potential used in molecular physics to describe ring-
shaped molecules.10,15

The rotation �12� in E3 has a simple meaning for three particles on a line with inverse square
potentials. Comparing �3� with �14�, we see that the rotation corresponds to introducing center-
of-mass coordinates �2�. If we factor out the center-of-mass motion �i.e., drop the term 1 � 2 p3

2 in
the kinetic energy�, we reobtain the Hamiltonian �3� with �=0.

The system �3� can be viewed as one particle in a potential in the Euclidean plane E2.
Interestingly, it is not multiseparable. For both �=0 and ��0 it separates only in polar coordi-
nates, so it allows only one second-order integral of motion �in addition to the Hamiltonian�,
namely
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F = L3
2 − � g1

�	3 sin � − cos ��2
+

g2

�	3 sin � + cos ��2
+

g3

cos2 �

 . �23�

If the system �3� is superintegrable in E2, the second integral of motion must be of higher order in
the momenta, not commuting with F given by �23�. Multiseparability of a physical system, in
particular the Calogero model, may also be of interest from the point of view of different possible
quantizations. In a recent article Féher et al.6 have used separation of variables in circular cylin-
drical coordinates in the three-body Calogero model to investigate all possible self-adjoint exten-
sions of the corresponding angular and radial Hamiltonians. The question arises whether separa-
tion of variables in other coordinates might not lead to different quantizations.

III. CONCLUSIONS

The beauty of the Calogero model is lost when its potential is written in the form �13�. The
formula �13� does however show that this system is a member of a family of maximally superin-
tegrable systems determined by the general formula �15�, involving an arbitrary function of one
variable, the azimuthal angle �. All of them allow the orthogonal separation of variables in the
five different “rotational” coordinate systems. The complete set of commuting operators �first
integrals� in each case consists of the Hamiltonian H and F2 of �16� and one more operator
�F1 ,F3 ,F4 and F1�a2p3

2, respectively�. The operator F2 that is thus singled out corresponds, in the
case of the free motion, to a one-dimensional subgroup of the �orientation-preserving� isometry
group I�E3�, which is the symmetry group of the Schrödinger equation without a potential. This
subgroup generates the angle �, common to all five “rotational” orthogonally separable coordinate
systems.

This raises the question whether other maximally superintegrable systems involving arbitrary
functions exist. All superintegrable systems in E3 separating in spherical coordinates and in one
further system were found in Ref. 16. All further systems separable in �at least� two coordinate
systems were found in Ref. 5. In the lists provided by Evans5 five systems are maximally super-
integrable and each one depends on artibrary constants. In addition, eight systems are listed as
minimally superintegrable, each depending on one arbitrary function and up to three constants.
One of the minimally superintegrable systems has the potential

V1 = F�r� +
c1

x1
2 +

c2

x2
2 +

c3

x3
2 , �24�

where c1, c2, and c3 are arbitrary constants. Here and in the following, r, �, and � are spherical
coordinates as specified by �8�. Its superintegrability is due to the fact that the corresponding
Hamiltonian commutes with the operators

F1 = L1
2 +

2c2 cos2 �

sin2 � sin2 �
+

2c3 sin2 � sin2 �

cos2 �
,

F2 = L2
2 +

2c1 cos2 �

sin2 � cos2 �
+

2c3 sin2 � cos2 �

cos2 �
, �25�

F3 = L3
2 +

2c1

cos2 �
+

2c2

sin2 �
.

This potential becomes maximally superintegrable for F=��x1
2+x2

2+x3
2�. For c1=c2=c3=0 it sim-

ply becomes rotationally invariant �but not maximally superintegrable�. Four of the minimally
superintegrable potentials have the form
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Vi�x1,x2,x3� = Ṽi�x1,x2� + f�x3�, i = 2,3,4,5, �26�

where Ṽi�x ,y� is one of the four multiseparable potentials in E2.7 In each case the set of integrals
of motion consists of

F1 = 1
2 p3

2 + f�x3� �27�

and three further operators, the principal parts of which lie in the enveloping algebra of the Lie

algebra of the isometry group I�E2�. In particular, for Ṽi�x1 ,x2�=0 the Hamiltonian and F1 of �27�
commutes with the Lie algebra �L3 , p1 , p2�, i.e., H and F1 are invariant under the orientation-
preserving isometry group I�E2�. This provides a total of four integrals of motion, never five. Out
of these four functionally independent integrals of motion we can form four inequivalent triplets of
integrals of motion in involution, namely �H ,F1 ,Xi�, i=1,2 ,3 ,4 with

X1 = p1
2, X2 = L3

2, X3 = L3p1 + p1L3, X4 = L3
2 + a2�p1

2 − p2
2� ,

where a�0.These triplets correspond to the separation of variables in the Cartesian, polar, para-
bolic translational, and elliptic translational, coordinates, respectively. Within the x1x2 plane the
origin and the orientation of axes can be chosen arbitrarily.

Finally, three of the minimally superintegrable systems depend on an arbitrary function of the
azimuthal angle �. They all have the form

Vi�r,�,�� = Ṽi�r,�� +
k���

r2 sin2 �
, i = 4,7,8. �28�

The integral F2 of �16� is present in each case, together with H and one of F1, F3, or F4. In

particular, for Ṽi�r ,��=0 all of the operators �16� are integrals of motion.
We conclude that in E3 the potential �15� is the only potential that is maximally superinte-

grable and depends on an arbitrary function �of one variable�. The three-body Calogero model
corresponds to one particular choice of this function, namely that given in �15� and �21�.

An important question arises in this context. Namely, what are the physical consequences in
classical and quantum mechanics, of the existence of a maximally superintegrable system, depend-
ing on an arbitrary function? In classical mechanics maximally superintegrable sysetms have the
property that their finite trajectories are closed.19 In quantum mechanics they have degenerate
energy levels and it has been conjectured23,22 that they are exactly solvable. We cannot expect
these properties to hold for the potential �15� with k��� arbitrary. We suspect that the reason for
this paradox is that the five integrals �16� are functionally independent, but linearly connected.

One of the messages that we arrive at is that results considered to be “canonical” in one
approach to a problem may be quite nonobvious in another. Thus, the Killing tensors obtained in
Ref. 12 were not in canonical �standard� form for the Calogero model viewed as an E3 problem.
The advantage of the invariant approach used in Refs. 12, 17, 18, and 25 is the following. For a
given isometry group action in a vector space of Killing tensors one can employ the approach
developed in Refs. 12, 17, 18, and 25 to determine which orbit a Killing tensor belongs to and then
find the corresponding isometry group action mapping the Killing tensor in question to its canoni-
cal form �i.e., the corresponding moving frames map�.
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