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We prove that a unitary matrix has an exact representation over the Clifford + T gate set with local ancillas
if and only if its entries are in the ring Z[ 1√

2
,i]. Moreover, we show that one ancilla always suffices. These

facts were conjectured by Kliuchnikov, Maslov, and Mosca. We obtain an algorithm for synthesizing a exact
Clifford + T circuit from any such n-qubit operator. We also characterize the Clifford + T operators that can be
represented without ancillas.
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I. INTRODUCTION

An important problem in quantum information theory is the
decomposition of arbitrary unitary operators into gates from
some fixed universal set [1]. Depending on the operator to
be decomposed, this may either be done exactly or to within
some given accuracy ε; the former problem is known as exact
synthesis and the latter as approximate synthesis [2].

Here, we focus on the problem of exact synthesis for n-qubit
operators, using the Clifford + T universal gate set. Recall that
the Clifford group on n qubits is generated by the Hadamard
gate H , the phase gate S, the controlled-NOT gate, and the
scalar ω = eiπ/4 (one may allow arbitrary unit scalars, but it
is not convenient for our purposes to do so). It is well known
that one obtains a universal gate set by adding the non-Clifford
operator T [1],

ω = eiπ/4, H = 1√
2

(
1 1
1 −1

)
, S =

(
1 0
0 i

)
,

(1)

CNOT =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎠, T =

(
1 0
0 eiπ/4

)
.

In addition to the Clifford + T group on n qubits, as de-
fined above, we also consider the slightly larger group of
Clifford + T operators with ancillas. We say that an n-qubit op-
erator U is a Clifford +T operator with ancillas if there exists
m � 0 and a Clifford + T operator U ′ on n + m qubits, such
that U ′(|φ〉 ⊗ |0〉) = (U |φ〉) ⊗ |0〉 for all n-qubit states |φ〉.

Kliuchnikov, Maslov, and Mosca [2] showed that a single-
qubit operator U is in the Clifford + T group if and only if all of
its matrix entries belong to the ringZ[ 1√

2
,i]. They also showed

that the Clifford + T groups with ancillas and without ancillas
coincide for n = 1, but not for n � 2. Moreover, Kliuchnikov
et al. conjectured that for all n, an n-qubit operator U is in the
Clifford + T group with ancillas if and only if its matrix entries
belong to Z[ 1√

2
,i]. They also conjectured that a single ancilla

qubit is always sufficient in the representation of a Clifford + T

operator with ancillas. The purpose of this paper is to prove
these conjectures. In particular, this yields an algorithm for
exact Clifford + T synthesis of n-qubit operators. We also

obtain a characterization of the Clifford + T group on n qubits
without ancillas.

It is important to note that, unlike in the single-qubit case,
the circuit synthesized here are not in any sense canonical, and
very far from optimal. Thus, the question of efficient synthesis
is not addressed here.

II. STATEMENT OF THE MAIN RESULT

Consider the ring Z[ 1√
2
,i], consisting of complex numbers

of the form

1

2n
(a + bi + c

√
2 + di

√
2),

where n ∈ N and a,b,c,d ∈ Z. Our goal is to prove the
following theorem, which was conjectured by Kliuchnikov
et al. [2].

Theorem 1. Let U be a unitary 2n × 2n matrix. Then the
following are equivalent:

(a) U can be exactly represented by a quantum circuit over
the Clifford + T gate set, possibly using some finite number
of ancillas that are initialized and finalized in state |0〉.

(b) The entries of U belong to the ring Z[ 1√
2
,i].

Moreover, in (a), a single ancilla is always sufficient.

III. SOME ALGEBRA

We first introduce some notation and terminology, fol-
lowing Ref. [2] where possible. Recall that N is the set of
natural numbers including 0, and Z is the ring of integers.
We write Z2 = Z/2Z for the ring of integers modulo 2. Let
D be the ring of dyadic fractions, defined as D = Z[ 1

2 ] =
{ a

2n | a ∈ Z,n ∈ N}.
Let ω = eiπ/4 = (1 + i)/

√
2. Note that ω is an eighth root

of unity satisfying ω2 = i and ω4 = −1. We will consider
three different rings related to ω.

Definition 1. Consider the following rings. Note that the
first two are subrings of the complex numbers, and the third
one is not.

(i) D[ω] = {aω3 + bω2 + cω + d | a,b,c,d ∈ D}.
(ii) Z[ω] = {aω3 + bω2 + cω + d | a,b,c,d ∈ Z}.

(iii) Z2[ω] = {pω3 + qω2 + rω + s | p,q,r,s ∈ Z2}.
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Note that the ring Z2[ω] only has 16 elements. The laws of
addition and multiplication are uniquely determined by the
ring axioms and the property ω4 = 1 (mod 2). We call the
elements of Z2[ω] residues (more precisely, residue classes of
Z[ω] modulo 2).

Remark 1. The ring D[ω] is the same as the ring Z[ 1√
2
,i]

mentioned in the statement of Theorem 1. However, as already
pointed out in Ref. [2], the formulation in terms of ω is far more
convenient algebraically.

Remark 2. The ring Z[ω] is also called the ring of algebraic
integers of D[ω]. It has an intrinsic definition, i.e., one that is
independent of the particular presentation of D[ω]. Namely,
a complex number is called an algebraic integer if it is the
root of some polynomial with integer coefficients and leading
coefficient 1. It follows that ω, i, and

√
2 are algebraic integers,

whereas, for example, 1/
√

2 is not. The ring Z[ω] then
consists of precisely those elements of D[ω] that are algebraic
integers.

A. Conjugate and norm

Remark 3 (complex conjugate and norm). Since D[ω] and
Z[ω] are subrings of the complex numbers, they inherit the
usual notion of complex conjugation. We note that ω† = −ω3.
This yields the following formula:

(aω3 + bω2 + cω + d)† = −cω3 − bω2 − aω + d. (2)

Similarly, the sets D[ω] and Z[ω] inherit the usual norm from
the complex numbers. It is given by the following explicit
formula, for t = aω3 + bω2 + cω + d:

‖t‖2 = t†t = (a2 + b2 + c2 + d2) + (cd + bc + ab − da)
√

2.

(3)

Definition 2 (weight). For t ∈ D[ω] or t ∈ Z[ω], the weight
of t is denoted ‖t‖weight, and is given by

‖t‖2
weight = a2 + b2 + c2 + d2. (4)

Note that the square of the norm is valued in D[
√

2],
whereas the square of the weight is valued in D. We also
extend the definition of norm and weight to vectors in the
obvious way: For u = (uj )j , we define

‖u‖2 =
∑

j

‖uj‖2 and ‖u‖2
weight =

∑
j

‖uj‖2
weight.

Lemma 1. Consider a vector u ∈ D[ω]n. If ‖u‖2 is an
integer, then ‖u‖2

weight = ‖u‖2.

Proof. Any t ∈ D[
√

2] can be uniquely written as t = a +
b
√

2, where a,b ∈ D. We can call a the dyadic part of t . Now
the claim is obvious, because ‖u‖2

weight is exactly the dyadic
part of ‖u‖2. �

B. Denominator exponents

Definition 3. Let t ∈ D[ω]. A natural number k ∈ N is

called a denominator exponent for t if
√

2
k
t ∈ Z[ω]. It is

obvious that such k always exists. The least such k is called
the least denominator exponent of t .

More generally, we say that k is a denominator exponent
for a vector or matrix if it is a denominator exponent for all
of its entries. The least denominator exponent for a vector or
matrix is therefore the least k that is a denominator exponent
for all of its entries.

Remark 4. Our notion of least denominator exponent is
almost the same as the “smallest denominator exponent” of
Ref. [2], except that we do not permit k < 0.

C. Residues

Remark 5. The ring Z2[ω] is not a subring of the complex
numbers; rather, it is a quotient of the ring Z[ω]. Indeed,
consider the parity function () : Z → Z2, which is the unique
ring homomorphism. It satisfies a = 0 if a is even and
a = 1 if a is odd. The parity map induces a surjective ring
homomorphism ρ : Z[ω] → Z2[ω], defined by

ρ(aω3 + bω2 + cω + d) = aω3 + bω2 + cω + d.

We call ρ the residue map, and we call ρ(t) the residue of t .
Convention 1. Since residues will be important for the

constructions of this paper, we introduce a shortcut notation,
writing each residue pω3 + qω2 + rω + s as a string of binary
digits pqrs.

What makes residues useful for our purposes is that many
important operations on Z[ω] are well defined on residues.
Here, we say that an operation f : Z[ω] → Z[ω] is well
defined on residues if for all t,s, ρ(t) = ρ(s) implies ρ(f (t)) =
ρ(f (s)).

For example, two operations that are obviously well defined
on residues are complex conjugation, which takes the form
(pqrs)† = rqps by (2), and multiplication by ω, which is
just a cyclic shift ω(pqrs) = qrsp. Table I shows two other
important operations on residues, namely multiplication by√

2 and the squared norm.
Definition 4 (k-residue). Let t ∈ D[ω] and let k be a (not

necessarily least) denominator exponent for t . The k-residue
of t , in symbols ρk(t), is defined to be

ρk(t) = ρ(
√

2
k
t).

Definition 5 (reducibility). We say that a residue x ∈ Z2[ω]
is reducible if it is of the form

√
2 y, for some y ∈ Z2[ω].

Moreover, we say that x ∈ Z2[ω] is twice reducible if it is of
the form 2y, for some y ∈ Z2[ω].

Lemma 2. For a residue x, the following are equivalent:
(1) x is reducible;
(2) x ∈ {0000,0101,1010,1111};
(3)

√
2 x = 0000;

(4) x†x = 0000.
Moreover, x is twice reducible iff x = 0000.

Proof. By inspection of Table I. �
Lemma 3. Let t ∈ Z[ω]. Then t/2 ∈ Z[ω] if and only if

ρ(t) is twice reducible, and t/
√

2 ∈ Z[ω] if and only if ρ(t) is
reducible.

Proof. The first claim is trivial, as ρ(t) = 0000 if and only
if all components of t are even. For the second claim, the
left-to-right implication is also trivial: assume t ′ = t/

√
2 ∈

Z[ω]. Then ρ(t) = ρ(
√

2 t ′), which is reducible by definition.
Conversely, let t ∈ Z[ω] and assume that ρ(t) is reducible.
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TABLE I. Some operations on residues.

ρ(t) ρ(
√

2 t) ρ(t †t) ρ(t) ρ(
√

2 t) ρ(t †t)

0000 0000 0000 1000 0101 0001
0001 1010 0001 1001 1111 1010
0010 0101 0001 1010 0000 0000
0011 1111 1010 1011 1010 0001
0100 1010 0001 1100 1111 1010
0101 0000 0000 1101 0101 0001
0110 1111 1010 1110 1010 0001
0111 0101 0001 1111 0000 0000

Then ρ(t) ∈ {0000,0101,1010,1111}, and it can be seen from
Table I that ρ(

√
2 t) = 0000. Therefore,

√
2 t is twice reducible

by the first claim; hence t is reducible. �

Corollary 1. Let t ∈ D[ω] and let k > 0 be a denominator
exponent for t . Then k is the least denominator exponent for t

if and only if ρk(t) is irreducible.
Proof. Since k is a denominator exponent for t , we have√

2
k
t ∈ Z[ω]. Moreover, k is least if and only if

√
2

k−1
t 	∈

Z[ω]. By Lemma 3, this is the case if and only if ρ(
√

2
k
t) =

ρk(t) is irreducible. �
Definition 6. The notions of residue, k-residue, reducibility,

and twice reducibility all extend in an obvious componentwise
way to vectors and matrices. Thus, the residue ρ(u) of a vector
or matrix u is obtained by taking the residue of each of its
entries, and similar for k-residues. Also, we say that a vector
or matrix is reducible if each of its entries is reducible, and
similarly for twice reducibility.

Example 1. Consider the matrix

U = 1
√

2
3

⎛
⎜⎜⎝

−ω3 + ω − 1 ω2 + ω + 1 ω2 −ω

ω2 + ω −ω3 + ω2 −ω2 − 1 ω3 + ω

ω3 + ω2 −ω3 − 1 2ω2 0
−1 ω 1 −ω3 + 2ω

⎞
⎟⎟⎠.

It has least denominator exponent 3. Its 3-, 4-, and 5-residues
are:

ρ3(U ) =

⎛
⎜⎜⎜⎝

1011 0111 0100 0010

0110 1100 0101 1010

1100 1001 0000 0000

0001 0010 0001 1000

⎞
⎟⎟⎟⎠,

ρ4(U ) =

⎛
⎜⎜⎜⎝

1010 0101 1010 0101

1111 1111 0000 0000

1111 1111 0000 0000

1010 0101 1010 0101

⎞
⎟⎟⎟⎠, ρ5(U ) = 0.

IV. DECOMPOSITION INTO TWO-LEVEL MATRICES

Recall that a two-level matrix is an n × n matrix that acts
nontrivially on at most two vector components [1]. If

U =
(

a b

c d

)

is a 2 × 2 matrix and j 	= �, we write U[j,�] for the two-level
n × n matrix defined by

U[j,�] =

· · · j · · · � · · ·
.
.
.
j
.
.
.
�
.
.
.

⎛
⎜⎜⎜⎜⎜⎝

I

a b

I

c d

I

⎞
⎟⎟⎟⎟⎟⎠

,

and we say that U[j,�] is a two-level matrix of type U .
Similarly, if a is a scalar, we write a[j ] for the one-level

matrix

· · · j · · ·

a[j ] =
...
j
...

⎛
⎝I

a

I

⎞
⎠ ,

and we say that a[j ] is a one-level matrix of type a.
Lemma 4 (row operation). Let u = (u1,u2)T ∈ D[ω]2 be

a vector with denominator exponent k > 0 and k-residue
ρk(u) = (x1,x2), such that x

†
1x1 = x

†
2x2. Then there exists a

sequence of matrices U1, . . . ,Uh, each of which is H or T ,
such that v = U1 · · · Uhu has denominator exponent k − 1, or
equivalently, ρk(v) is defined and reducible.

Proof. It can be seen from Table I that x
†
1x1 is either 0000,

1010, or 0001.
(i) Case 1: x

†
1x1 = x

†
2x2 = 0000. In this case, ρk(u) is

already reducible, and there is nothing to show.
(ii) Case 2: x

†
1x1 = x

†
2x2 = 1010. In this case, we know

from Table I that x1,x2 ∈ {0011,0110,1100,1001}. In partic-
ular, x1 is a cyclic permutation of x2, say, x1 = ωmx2. Let
v = HT mu. Then

ρk(
√

2 v) = ρk

((
1 1
1 −1

)(
1 0
0 ωm

)(
u1

u2

))

= ρk

(
u1 + ωmu2

u1 − ωmu2

)
=

(
x1 + ωmx2

x1 − ωmx2

)
=

(
0000
0000

)
.

This shows that ρk(
√

2 v) is twice reducible; therefore, ρk(v)
is defined and reducible as claimed.

(iii) Case 3: x
†
1x1 = x

†
2x2 = 0001. In this case, we

know from Table I that x1,x2 ∈ {0001,0010,0100,1000} ∪
{0111,1110,1101,1011}. If both x1,x2 are in the first set,
or both are in the second set, then x1 and x2 are cyclic
permutations of each other, and we proceed as in case 2. The

032332-3



BRETT GILES AND PETER SELINGER PHYSICAL REVIEW A 87, 032332 (2013)

only remaining cases are that x1 is a cyclic permutation of
0001 and x2 is a cyclic permutation of 0111, or vice versa. But
then there exists some m such that x1 + ωmx2 = 1111. Letting
u′ = HT mu, we have

ρk(
√

2 u′) = ρk

[(
1 1
1 −1

)(
1 0
0 ωm

)(
u1

u2

)]

= ρk

(
u1 + ωmu2

u1 − ωmu2

)
=

(
x1 + ωmx2

x1 − ωmx2

)
=

(
1111
1111

)
.

Since this is reducible, u′ has denominator exponent k.
Let ρk(u′) = (y1,y2). Because

√
2 y1 = √

2 y2 = 1111, we
see from Table I that y1,y2 ∈ {0011,0110,1100,1001} and
y
†
1y1 = y

†
2y2 = 1010. Therefore, u′ satisfies the condition of

case 2 above. Proceeding as in case 2, we find m′ such
that v = HT m′

u′ = HT m′
HT mu has denominator exponent

k − 1. This finishes the proof. �
Lemma 5 (column lemma). Consider a unit vector u ∈

D[ω]n, i.e., an n-dimensional column vector of norm 1 with
entries from the ring D[ω]. Then there exists a sequence
U1, . . . ,Uh of one- and two-level unitary matrices of types
X, H , T , and ω such that U1 · · · Uhu = e1, the first standard
basis vector.

Proof. The proof is by induction on k, the least denominator
exponent of u. Let u = (u1, . . . ,un)T .

(i) Base case. Suppose k = 0. Then u ∈ Z[ω]n. Since by
assumption ‖u‖2 = 1, it follows by Lemma 1 that ‖u‖2

weight =
1. Since u1, . . . ,un are elements of Z[ω], their weights are
non-negative integers. It follows that there is precisely one
j with ‖uj‖weight = 1, and ‖u�‖weight = 0 for all � 	= j . Let
u′ = X[1,j ]u if j 	= 1, and u′ = u otherwise. Now u′

1 is of the
form ω−m, for some m ∈ {0, . . . ,7}, and u′

� = 0 for all � 	= 1.
We have ωm

[1]u
′ = e1, as desired.

(ii) Induction step. Suppose k > 0. Let v = √
2

k
u ∈ Z[ω]n,

and let x = ρk(u) = ρ(v). From ‖u‖2 = 1, it follows that
‖v‖2 = v

†
1v1 + · · · + v

†
nvn = 2k . Taking residues of the last

equation, we have

x
†
1x1 + · · · + x†

nxn = 0000. (5)

It can be seen from Table I that each summand x
†
j xj is either

0000, 0001, or 1010. Since their sum is 0000, it follows that
there is an even number of j such that x

†
j xj = 0001, and an

even number of j such that x
†
j xj = 1010.

We do an inner induction on the number of irreducible
components of x. If x is reducible, then u has denominator
exponent k − 1 by Corollary 1, and we can apply the outer
induction hypothesis. Now suppose there is some j such that
xj is irreducible; then x

†
j xj 	= 0000 by Lemma 2. Because

of the evenness property noted above, there must exist some
� 	= j such that x

†
j xj = x

†
�x�. Applying Lemma 4 to u′ =

(uj ,u�)T , we find a sequence �U of row operations of types
H and T , making ρk( �Uu′) reducible. We can lift this to a
two-level operation �U[j,�] acting on u; thus ρk( �U[j,�]u) has
fewer irreducible components than x = ρk(u), and the inner
induction hypothesis applies. �

Lemma 6 (matrix decomposition). Let U be a unitary n × n

matrix with entries in D[ω]. Then there exists a sequence

U1, . . . ,Uh of one- and two-level unitary matrices of types X,
H , T , and ω such that U = U1 · · · Uh.

Proof. Equivalently, it suffices to show that there exist one-
and two-level unitary matrices V1, . . . ,Vh of types X, H , T ,
and ω such that Vh · · · V1U = I . This is an easy consequence
of the column lemma, exactly as in, e.g., Sec. 4.5.1 of Ref. [1].
Specifically, first use the column lemma to find suitable one-
and two-level row operations V1, . . . ,Vh1 such that the leftmost
column of Vh1 · · · V1U is e1. Because Vh1 · · · V1U is unitary, it
is of the form (

1 0
0 U ′

)
.

Now recursively find row operations to reduce U ′ to the
identity matrix. �

Example 2. We will decompose the matrix U from Example
1. We start with the first column u of U

u = 1
√

2
3

⎛
⎜⎜⎝

−ω3 + ω − 1
ω2 + ω

ω3 + ω2

−1

⎞
⎟⎟⎠,

ρ3(u) =

⎛
⎜⎜⎜⎝

1011

0110

1100

0001

⎞
⎟⎟⎟⎠, ρ3(u†

juj ) =

⎛
⎜⎜⎜⎝

0001

1010

1010

0001

⎞
⎟⎟⎟⎠.

Rows 2 and 3 satisfy case 2 of Lemma 4. As they are not
aligned, first apply T 3

[2,3] and then H[2,3]. Rows 1 and 4 satisfy
case 3. Applying H[1,4]T

2
[1,4], the residues become ρ3(u′

1) =
0011 and ρ3(u′

4) = 1001, which requires applying H[1,4]T[1,4].
We now have

H[1,4]T[1,4]H[1,4]T
2

[1,4]H[2,3]T
3

[2,3]u = v = 1
√

2
2

⎛
⎜⎜⎝

0
0

ω2+ω

−ω+1

⎞
⎟⎟⎠,

ρ2(v) =

⎛
⎜⎜⎜⎝

0000

0000

0110

0011

⎞
⎟⎟⎟⎠, ρ2(v†

j vj ) =

⎛
⎜⎜⎜⎝

0000

0000

1010

1010

⎞
⎟⎟⎟⎠.

Rows 3 and 4 satisfy case 2, while rows 1 and 2 are
already reduced. We reduce rows 3 and 4 by applying
H[3,4]T[3,4]. Continuing, the first column is completely reduced
to e1 by further applying ω7

[1]X[1,4]H[3,4]T
3

[3,4]. The complete
decomposition of u is therefore given by

W1 = ω7
[1]X[1,4]H[3,4]T

3
[3,4]H[3,4]T[3,4]

H[1,4]T[1,4]H[1,4]T
2

[1,4]H[2,3]T
3

[2,3].

Applying this to the original matrix U , we have W1U =

1
√

2
3

⎛
⎜⎜⎜⎜⎝

√
2

3
0 0 0

0 ω3−ω2+ω+1 −ω2−ω−1 ω2

0 0 ω3+ω2−ω+1 ω3+ω2−ω−1

0 ω3+ω2+ω+1 ω2 ω3−ω2+1

⎞
⎟⎟⎟⎟⎠.
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Continuing with the rest of the columns, we find
W2 = ω6

[2]H[2,4]T
3

[2,4]H[2,4]T[2,4], W3 = ω4
[3]H[3,4]T

3
[3,4]H[3,4],

and W4 = ω5
[4]. We then have U = W

†
1 W

†
2 W

†
3 W

†
4 , or explic-

itly,

U = T 5
[2,3]H[2,3]T

6
[1,4]H[1,4]T

7
[1,4]H[1,4]

T 7
[3,4]H[3,4]T

5
[3,4]H[3,4]X[1,4]ω[1]

T 7
[2,4]H[2,4]T

5
[2,4]H[2,4]ω

2
[2]H[3,4]T

5
[3,4]H[3,4]ω

4
[3]ω

3
[4].

V. PROOF OF THEOREM 1

A. Equivalence of (a) and (b)

First note that, since all the elementary Clifford + T gates,
as shown in (1), take their matrix entries in D[ω] = Z[ 1√

2
,i],

the implication (a) ⇒ (b) is trivial. For the converse, let U be a
unitary 2n × 2n matrix with entries from D[ω]. By Lemma 6,
U can be decomposed into one- and two-level matrices of types
X, H , T , and ω. It is well known that each such matrix can
be further decomposed into controlled-NOT gates and multiply
controlled X, H , T , and ω-gates, for example using Gray codes
(Sec. 4.5.2 of Ref. [1]). But all of these gates have well-known
exact representations in Clifford + T with ancillas (see, e.g.,
Figs. 4(a) and 9 in Ref. [3]) (and noting that a controlled-ω
gate is the same as a T gate). This finishes the proof of (b) ⇒
(a).

B. One ancilla is sufficient

The final claim that needs to be proved is that a circuit for
U can always be found using at most one ancilla. It is already
known that for n > 1, an ancilla is sometimes necessary [2].
To show that a single ancilla is sufficient, in light of the above
decomposition, it is enough to show that the following can be
implemented with one ancilla:

(1) a multiply controlled X gate;
(2) a multiply controlled H gate;
(3) a multiply controlled T gate.

We first recall from Fig. 4(a) of Ref. [3] that a singly controlled
Hadamard gate can be decomposed into Clifford + T gates
with no ancillas,

H
=

S H T T † H S†
.

We also recall that an n-fold controlled iX gate can be
represented using O(n) Clifford + T gates with no ancillas.
Namely, for n = 1, we have

iX
= S

,

and for n � 2, we can use

...

...

iX

...

...

=

H T † T T † T H

...
...

...
...

...
...

...
...

,

with further decompositions of the multiply controlled NOT

gates as in Lemma 7.2 of Ref. [4] and Fig. 4.9 of Ref. [1].

We then obtain the following representations for (a)–(c), using
only one ancilla:

(a)
...

X

... =
...

0 iX

X

−iX 0

...

(b)
...

H

... =
...

0 iX

H

−iX 0

...

(c)
...

T

... =
...

0 iX T −iX 0.

...

Remark 6. The fact that one ancilla is always sufficient in
Theorem 1 is primarily of theoretical interest. In practice, one
may assume that on most quantum computing architectures,
ancillas are relatively cheap. Moreover, the use of additional
ancillas can significantly reduce the size and depth of the
generated circuits (see, e.g., Ref. [5]).

VI. THE NO-ANCILLA CASE

Lemma 7. Under the hypotheses of Theorem 1, assume
that det U = 1. Then U can be exactly represented by a
Clifford + T circuit with no ancillas.

Proof. This requires only minor modifications to the proof
of Theorem 1. First observe that whenever an operator of the
form HT m was used in the proof of Lemma 4, we can instead
use T −m(iH )T m without altering the rest of the argument. In
the base case of Lemma 5, the operator X[1,j ] can be replaced
by iX[1,j ]. Also, in the base case of Lemma 5, whenever n � 2,
the operator ω[1] can be replaced by W[1,2], where

W =
(

ω 0
0 ω−1

)
.

Therefore, the decomposition of Lemma 6 can be performed
so as to yield only two-level matrices of types

iX, T −m(iH )T m, and W, (6)

plus at most one one-level matrix of type ωm. But since all two-
level matrices of types (6), as well as U itself, have determinant
1, it follows that ωm = 1. We finish the proof by observing
that the multiply controlled operators of types (6) possess
ancilla-free Clifford + T representations, with the latter two
given by

...

T−m(iH)T m

... =
...

T m S H T iX T † H S† T−m

...

...

W

... =
...

iX T −iX T †

...

�
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As a corollary, we obtain a characterization of the n-qubit
Clifford + T group (with no ancillas) for all n.

Corollary 2. Let U be a unitary 2n × 2n matrix. Then the
following are equivalent:

(a) U can be exactly represented by a quantum circuit over
the Clifford + T gate set on n qubits with no ancillas.

(b) The entries of U belong to the ring Z[ 1√
2
,i], and:

(i) det U = 1, if n � 4;
(ii) det U ∈ {−1,1}, if n = 3;

(iii) det U ∈ {i, − 1, − i,1}, if n = 2;
(iv) det U ∈ {ω,i,ω3, − 1,ω5, − i,ω7,1}, if n � 1.
Proof. For (a) ⇒ (b), it suffices to note that each of the

generators of the Clifford + T group, regarded as an operation
on n qubits, satisfies the conditions in (b). For (b) ⇒ (a), let
us define for convenience d0 = d1 = ω, d2 = i, d3 = −1, and
dn = 1 for n � 4. First note that for all n, the Clifford + T

group on n qubits (without ancillas) contains an element Dn

whose determinant is dn, namely Dn = I for n � 4, D3 =
T ⊗ I ⊗ I , D2 = T ⊗ I , D1 = T , and D0 = ω. Now consider
some U satisfying (b). By assumption, det U = dm

n for some
m. Let U ′ = UD−m

n , then det U ′ = 1. By Lemma 7, U ′, and
therefore U , is in the Clifford + T group with no ancillas. �

Remark 7. Note that the last condition in Corollary 2,
namely that det U is a power of ω for n � 1, is of course
redundant, as this already follows from det U ∈ Z[ 1√

2
,i] and

| det U | = 1. We stated the condition for consistency with the
case n � 2.

Remark 8. The situation of Theorem 1 and Corollary 2
is analogous to the case of classical reversible circuits. It is
well known that the NOT gate, controlled-NOT gate, and Toffoli
gate generate all classical reversible functions on n � 3 bits.
For n � 4 bits, they generate exactly those reversible boolean
functions that define an even permutation of their inputs (or
equivalently, those that have determinant 1 when viewed in
matrix form) [6]; the addition of a single ancilla suffices to
recover all boolean functions.

VII. COMPLEXITY

The proof of Theorem 1 immediately yields an algorithm,
albeit not a very efficient one, for synthesizing a Clifford + T

circuit with ancillas from a given operator U . We estimate the
size of the generated circuits.

We first estimate the number of (one- and two-level) opera-
tions generated by the matrix decomposition of Lemma 6. The
row operation from Lemma 4 requires only a constant number
of operations. Reducing a single n-dimensional column from
denominator exponent k to k − 1, as in the induction step of
Lemma 5, requires O(n) operations; therefore, the number of
operations required to reduce the column completely is O(nk).

Now consider applying Lemma 6 to an n × n matrix with
least denominator exponent k. Reducing the first column
requires O(nk) operations, but unfortunately, it may increase
the least denominator exponent of the rest of the matrix, in the
worst case, to 3k. Namely, each row operation of Lemma 4
potentially increases the denominator exponent by 2, and
any given row may be subject to up to k row operations,
resulting in a worst-case increase of its denominator exponent
from k to 3k during the reduction of the first column. It

follows that reducing the second column requires up to
O(3(n − 1)k) operations, reducing the third column requires
up to O(9(n − 2)k) operations, and so on. Using the identity∑n−1

j=0 3j (n − j ) = (3n+1 − 2n − 3)/4, this results in a total of
O(3nk) one- and two-level operations for Lemma 6.

In the context of Theorem 1, we are dealing with n

qubits, i.e., a 2n × 2n operator, which therefore decomposes
into O(32n

k) two-level operations. Using one ancilla, each
two-level operation can be decomposed into O(n) Clifford + T

gates, resulting in a total gate count of O(32n

nk) elementary
Clifford + T gates.

VIII. FUTURE WORK

As mentioned in the introduction, the algorithm arising out
of the proof of Theorem 1 produces circuits that are very
far from optimal. This can be seen heuristically by taking
any simple Clifford + T circuit, calculating the corresponding
operator, and then running the algorithm to resynthesize a
circuit.

Moreover, it is unlikely that the algorithm is optimal even
in the asymptotic sense. The algorithm’s worst case gate count
of O(32n

nk) is separated from information-theoretic lower
bounds by an exponential gap. Specifically, the number of
different unitary n-qubit operators with denominator exponent
k can be bounded: for n � 1, it is between 22n−1k and 24n(4+2k).
Therefore, such an operator carries between �(2nk) and
O(4nk) bits of information. Regardless of where the true
number falls within this spectrum, the resulting information-
theoretic lower bound for the number of elementary gates
required to represent such an operator is exponential, not
superexponential, in n.

While the information-theoretic analysis does not, of
course, imply the existence of an asymptotically better
synthesis algorithm, it nevertheless suggests that it may be
worthwhile to look for one.

Given that the gate count estimate is dominated by the term
32n

, the most obvious target for improvement is the part of the
algorithm that causes this superexponential blowup. As noted
above, this blowup is caused by the fact that row reductions
that reduce the denominator exponent of one column might
simultaneously increase the denominator exponent of the
remaining columns.
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