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We investigate Lorentzian space—times where all zeroth and first order curvature
invariants vanish and discuss how this class differs from the one where all curva-
ture invariants vaniskVSl). We show that for VSI space—times all components of
the Riemann tensor and its derivatives up to some fixed order can be made arbi-
trarily small. We discuss this in more detail by way of example2005 American
Institute of Physics[DOI: 10.1063/1.19047Q7

I. INTRODUCTION

Recently it was proven that in four-dimensional Lorentzian space—times all of the scalar
invariants constructed from the Riemann tensor and its covariant derivatives are zero if and only
if the space—time is of Petra¥P)-type Ill, N or O, all eigenvalues of the Ricci tensor are zero and
hence of Pleh@ski—PetrouPP-type N or O(Ref. 1) and the common multiple null eigenvector of
the Weyl and Ricci tensors is geodesic, shear-free, expansion-free, and twist-free; let us refer to
these space—times as vanishing scalar invafi@st) space—times. VSI space—times include the
well-known pp-wave space—tim@s.

Since all of the scalar curvature invariants vanish, all VSI space—times are exact solutions of
higher-order Lagrangian based theorigswhich the action is given by higher order scalar cor-
rections to the usual general relativistic action based on the Ricci sdalaas subsequently been
argued that, as in the case p-waves, VSI space—times are exact solutions in string ti13e‘8ry,
when supported by appropriate bosonic massless fields of the ¢l as, for example, a
dilaton and an antisymmetric massless fielolutions of classical field equations for which the
counter terms required to regularize quantum fluctuations vainish they suffer no quantum
corrections to all loop ordersre also of importance because they offer insights into the behavior
of the full quantum theory.

In particular fundamental field theories only certain specific types of higher order corrections
occur (cf. Refs. 7-9, and so for a space—time to be a solution of a particular field theory to all
orders, with a specific effective action containing only certain higher order correction terms, it
may not be necessary fail curvature invariants to vanish. Consequently it is also of interest to
determine the set of spacetimes for whiolnly) the zeroth order curvature invariants vanisé.,
algebraic scalar invariants constructed from the Riemann tgrgsroted VSJ, those space—times
for which (only) the zerothand first order curvature invariants vanighe., scalar invariants
constructed from the Riemann tensor and its first covariant derivatiemoted VS|, and so on.

In fact, it was proven in Ref. 1 that if all of the zeroth, first, and second order curvature invariants
vanish, then necessarily all scalar curvature invariants vanish; so thaisv&juivalent to the set
of VSI space-times.

Let us first recall some properties of VSI space-times. Utilizing a complex null tetrad in the
Newman-Penros@NP) formalism it was shown that for P-types Il and N the repeated null vector
of the Weyl tensor® is geodesic, shear-free, expansion-free, and twist{fed the NP coeffi-
cientsk, o, andp are consequently zeroand the Ricci tensor has the form
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Rﬂ’ﬁ =- 2q)226a€ﬁ + 4¢)21€(am5) + 4(1)126(0(5,8), (1)

in terms of the nonzero Ricci componends. For P-type O, the Weyl tensor vanishes and so it
suffices that the Ricci tensor has the fofb). All of these space—times belong to Kundt's cléSs,
and the metrics for all VSI space—times are displayed in Ref. 1. The genenapiagdve solutions
are of P-type N, PP-type (o that the Ricci tensor has the form of null radiaji@rith =0, and
admit a covariantly constant null vector fidlThe Ricci tensofl) has four vanishing eigenvalues,
and the PP-type is N fo,#0 or O for ®,,=0. It is known that the energy conditions are
violated in the PP-type N modéfsand hence attention is usually concentrated on the more
physically interesting PP-type O case, which in the nonvacuum case corresponds to pure radiation.
It is well known that the necessary and sufficient conditions for space—times for which the
zeroth order algebraic scalar curvature invariants vaf&bl,) are of P-type Ill, N or O and
PP-type N or O. Moreover, the repeated principal null direction of Weyl must be aligned with an
eigenvector of the Ricci tensor. The last condition follows from the vanishing of the mixed
invariants(see Sec. 3.1 of Ref.)1Next we determine the VgSkpace—times.

II. VSI,

We begin by assuming V§land determine the conditions which imply {SFrom the
Bianchi identities it follows for VSJ that xk=0. The invariants used here are all constructed from
spinors that are symmetrized before and after contractions. Since contractions are always per-
formed with symmetrized spinors we need only give the number of indices contracted between
any two spinors. In particular, we shall make use of the following invarigrt,(VW)2(VW)2,
Here(VW)?2 is used to indicate the contraction over four indices of two copies pf¥scpg- The

result is then symmetrized and contracted with its conjugate tolgive

A. Petrov-type Il

Using W3 # 0 with PP-type N or O, we have from the Bianchi identities tdt;=p®,, and
x=0. Applying k=0 throughout, we find that two of the Bianchi identities yield the following
relation:

DW;5=pdy + o®p+ 2(p— &) ¥s. 2

Computingl, and using(2), we obtain

l1= %2[81(03‘1'3‘1_’3)2 + gV W XX+ (XX, 3

WhereX:p(D21+;q)12+ 5p\1f3

The vanishing ot necessarily implies that=0, thus from the Bianchi identitiggP,,=0. If
p=0 we get VSI. Ifd,,=0 then(3) becomes; =576 ppW¥;¥;)? which vanishes whep=0, giving
VSI with PP-type O(null radiatior).

B. Petrov-type N

Using =0 in the Bianchi identities we find that®,,=—o®,, and p®,,=0. Therefore if
®,,# 0 thenp=0 implies thato=0, hence we recover VSI. ,,=0 then two of the Bianchi
identities combine to yieldV,=p®d,,. The conditionsc=P,,=0 andoV,=p®d,, are necessary to
characterize the V$PP-O null radiation models. Suppose that0; then eithep=0 and we have
VS, or p# 0 and®,,=0 which necessarily characterizes the vacuum,\isbdels.(See Ref. 13.

To show sufficiency, we assume=®,,=0 and then note that the remaining curvature com-
ponents, ¥, and ®,,, both have boost weight -2. In the compactg&HP) formalisnt® the
relevant operators have boost weight 0 or 1 and the only spin coefficients with positive boost
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weight areo and p with weights 1, it follows that the covariant derivative of eith&pgcp Or
D pps Will have components with only negative boost weight. Therefore, all zeroth and first order
curvature invariants vanish, implying VSI

C. Petrov-type O

The freedom in the frame can be used here to consider PP-type N and PP-type O null radiation
separately, and it follows trivially from the Bianchi identities that o0=p=0, so that we obtain
VSI. Therefore all Petrov type O V§hre VSI from the Bianchi identities.

In summary, the only space—times in the class\MBat are not VSI are of P-type N and all
have k=®,,=0. The first of these V$Imodels haverV,=p®,,; exact solutions were found by
Plebaiski.* The second of the V$Imodels haver=®,,=0, and these are the vacuum Petrov-
type N solutions withp=O+iw# 0. If w=0 these solutions belong to the Robinson—Trautman
class and all are knowt.If w# 0 then the only twisting, vacuum, P-type N solution known is that
of Hauser!

There are other cases that may also be of interest. Notice the example in Ref. 14 in which
there are scalar curvature invariants that are nontzewastant, depending on a cosmological
constant while all higher order scalar curvature invariants are zero.

lll. e-PROPERTY

A scalar invariant for a matrix is a polynomial of the matrix entries that is invariant with
respect to all changes of basis. It is easy to characterize all such invariantg. hetannXn
matrix. The characteristic polynomial & is given by

n
pu(x) = detxl = M) =x"+ > (= Doy (M)x".

j=1
The expressions;(M) are called the elementary symmetric polynomialsvbind are the scalar
invariants ofM [o;(M) is just the trace oM and o,(M) is the determinant All other scalar
invariants can be given as polynomials ®f(M),o(M),...,0,(M). A matrix M for which the
characteristic polynomial is just is nilpotent. Now a matrix with the-property, i.e., the property
that all entries can be made smaller than every givéy a change of basis, must be nilpotéht.
The converse is also true, that is, every nilpotent matrix necessarily possesseproperty.
Therefore, a matrix is VQIif and only if it is nilpotent. Hence we anticipate that VS| space—times
will have thee-property, and this is what we prove next.

Theorem: For and only for VSI space-timg# arbitrary dimensiorD and C* metric) one
can find, for arbitrarily largeN and for arbitrarily smalk, a tetrad in which all components of the
Riemann tensor and its derivatives up to orbleare smaller thar.

Proof: For non-VSI space—times there always exist a nonvanishing curvature invariant. Its
value of course does not depend on the choice of the tetrad and thus there does not exist a tetrad
with the desired property. It was proven in Ref. 1 that in four-dimensional VSI space-times the
boost weight of all components of the Riemann tensor and its derivatives is negative. Thus with an
appropriate boost we can make all components of the Riemann tensor and its derivatives up to a
desired ordeN arbitrarily small*®’ O

It was pointed out by Penrose in Ref. 18 that P-types Ill and N have “the property that
gravitational density can be made as small as we please by a suitable choice of tirfiellaxis
ing the wave.” It turns out that for VS} space—times, not only the gravity density but the
energy-momentum tensor can be made arbitrarily small by an appropriate boosting of the frame.
In the case of VSl space-times we can also make the first derivatives of the Riemann tensor
essentially undetectable, and for VSI space—times it is possible to do this for arbitrarily large
derivatives as well. Since experiments measure tetrad components of the Riemann tensor and as
every experiment has some sensitivity limit, we can effectively, by an appropriate boost, “locally
transform away” the Riemann tensor and its derivatives.
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It is of interest to consider if any of the VSI space-times satisfy the following stronger
e-property. We shall say that the Riemann tensor has the unéepnoperty if, given an arbitrarily
small ¢, there exists a tetrad in which the components of the Riemann tensor and all of its
derivatives are smaller thasni Not all VSI space—times satisfy the uniforsmproperty; this is
shown by considering P-type N vacuum VSI space—times wittD. Let us denote

Xi= Cabede, o N*MPNMIMEL - m%, Y, = Cypege, .o ANAMPNTMF ML -+ m%). (4)

By induction onk we shall show that the componeBy,4.3.3=X,=-k! ¥, for all ordersk.
From Ref. 1 we have the following relations:

k=0c=p=€=0, 7=7=2B=2a, N=u=(2/3)y, (5)

where all of these spin coefficients are real, anid nonzero and complex as well. The Bianchi
identities and NP equations then give

o¥,=-1v, DV,=0, ér=7* Dr=0. (6)

It can be shown directly that; =Cy4,4.5= -7V, and using strong induction we assume tKahas

the required form. In general, the following recursive relation hilgsoX,_1—Yy_1, consequently

this implies thatY,_;=2(k-1)! 7*¥,. Similarly, X,,,= X~ Y,, and on expandin, we observe

that it is composed of terms with boost weight -2 and -1, but the boost weight —1 terms vanish
as a result of a similar proof found in Ref. 1. To show this we note that in this case we have

b¥,=0, pr=0, pp' =-27=po’, bk =67’ (7)

with commutators?®

bo-db=1b, pp' —p'b=2rd+3)-(p+q)7.
Assuming thaty is a tetrad component of the Weyl tensor of arbitrary otdeith boost weight
-2 such thab#=0, it is straightforward to show that the following boost weight -1 scalars,

P m), Pa'n, Pp'm, blrm), b(r'm), bin bi'n, PP'n

all vanish. ThereforeY, consists of only the boost weight -2 term, hence we have Yhat

27X, and thusX,,;=—(k+1)! 7*1W¥,. Since the componert,,,4.3.3 can be made arbitrarily

large by increasing the order, in this case the Riemann tensor cannot therefore satisfy the uniform
e-property.

A subclass of the VSI space—times for which the unifarfproperty is satisfied are those in
which VVR,, =0, where(N) denotesN covariant derivatives. Since only a finite set of compo-
nents of the Riemann tensor and its derivatives are nonzero, then by an appropriate boost all
components of the Riemann tensor and its derivatives can be made smaller thahe case of
N=1 we have the VSI symmetric spaces in whi€hR,,.=0 (cases in whichN>1 will be
referred to as higher order symmetric spacege shall show that this class is nonempty. We
consider the following line-element:

ds? = 2h du? + 2 du dv — dx? - dy? (8)

and solveV R, ,.¢=0, assuming that=h(u,x,y). After an appropriate coordinate transformation,
which preserves the form of the metric, we find thatk(x?+y?) +c?(x>—y?) wherek andc are
arbitrary constants. Using the NP tetrétk &), n%=&;—-hd] and m?=(i 53— &)/ 2 it follows that
the only nonvanishing spin coefficientiswith ®,, andW¥, being constants. lk=0 andc+# 0 we
recover the P-type N vacuum symmetric sp%ifdé,kqt 0 andc=0 we obtain the P-type O, PP-type
O null radiation symmetric spac¢é.These VSI symmetric spaces clearly satisfy the uniform
e-property. In P-type Il it is known that no symmetric spaces eXistowever, the possibility
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remains that P-type Il VSI space—times satisfying the uniferproperty may existfor example,
if VVR,,.s=0 for N>1).

To illustrate a higher order symmetric space, consi@emwith h=g(u)(x>*-y?), a subclass of
the P-type N vacuum VSI space—times witk0. Next, apply a boost so that=Al and n’
=A"ln where the boost paramet&e Cg' (u) with C constant. Dropping the primes and working in
the boosted frame we have the following nonvanishing scalars,2g(y+ix)/A?, y=A"/(2A?),
andW¥,=-2g/A? It follows that the Weyl tensor has the forth

Cabed= %Czizj{famg)fcmg)}, (9

wherei,j=3,4m®=m, andm®=m, the only nonvanishing Wey! tetrad components &g,
=29/ A2. Let Xq=Cysi, then(9) is Copeq™ %XO~{€a (')é’cmfj')} and

VeCabcd: %Xlee{eamg)gcmg)}: (10)

whereX; =AXq+4vyX,. It can be shown that theth order covariant derivative of the Weyl tensor
has the following simple form:

Ve = Ve Cabed= %xngen. . €el{€amg)€c U (11)

Proceeding inductively, we obtain the following recurrence relabigrAX,_1+2(n+1)yX,_1.
From(11) we have that the only nonvanishingh order tetrad components of the Weyl tensor will
be Cyi»...o. Again, by induction, one can show thait=2AM"D/(CA™?) for all n=1 (denoting
the n-1 derivative of A asA™? andA©Q =A).

We now have an expression for thih order derivatives of the tetrad components of the Weyl
tensor

2qM
Caiziz- 2= (CSW (12)
where it is assumed thgt # 0, otherwise the boost is degenerate. Therefore, fonaag we can
obtain annth order symmetric space simply by settig@) to be any polynomial iru of degree
n-1. All of these VSI space—times will satisfy the unifoeyproperty; more generally this is also
satisfied if there exists a constavitsuch thaig™|<M for all n andg’ # 0. On the other hand, we
can usg12) to find examples of VSI space—times that do not satisfy the unifoproperty. It is
known ! that every geodesic @B) is either of type 1 or type 2, where type 1 refers to geodesics
in the 2-surfaces and v constant and type 2 refers to geodesics in the 2-suarely constant.
Let us consider type 2 geodesics, andxsex,, y=Y,. We find that the tangent vectors are given
by wa:(a,b/(Za)—ag(u)(xg—yg),0,0) and parametrized by. Here,U=a is a constant and=1 or
0 for timelike or null geodesics, respectively. The NP tetrad defined above is parallel propagated
along such geodesics, hence froh®) if the uniform e-property is not satisfied at some order
then we obtain a parallel propagated curvature singularity of okdérhat is, the curvature
components of ordek in a parallel propagated frame become unbounded along the geodesic;
whenk=0 we recover the definitiGh of a parallel propagated curvature singularity. In Ref. 23,
geodesic motion in vacuum Kundt-type N solutions witlt 0 have revealed the existence of
parallel propagated curvature singularities of order O.

IV. CONCLUSION

We have determined the necessary and sufficient conditions that characterizepd&é—
times. Assuming VS| we have shown that in P-type Ill, VSimplies VSI and in P-type O, Vgl
implies VSI. The only proper VSlspace-times occur in P-type N and PP-type O with®,,
=0. In addition, the nonvacuum VSépace—times are further characterizedoW,=p®,,, and
the vacuum space—-times hawe ®,,=0. It has been shown that tleeproperty offers an alterna-
tive characterization of the VSI space—times, in the sense that only for VSI space-times can a
tetrad be found in which the Riemann tensor and its derivatives up to any fixed order can be made
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arbitrarily small. A strengthening of the property leads us to define the unifoerproperty; this
condition determines a subclass of the VSI space-times where there exists a tetrad in which the
components of the Riemann tensor and all of its derivatives can be made arbitrarily small. Some
examples of VSI space—times satisfying the unifarfproperty have been presented.
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