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Algebraic exact solvability of trigonometric-type
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In this article, we study and settle several structural questions concerning the exact
solvability of the Olshanetsky–Perelomov quantum Hamiltonians corresponding to
an arbitrary root system. We show that these operators can be written as linear
combinations of certain basic operators admitting infinite flags of invariant sub-
spaces, namely the Laplacian and the logarithmic gradient of invariant factors of
the Weyl denominator. The coefficients of the constituent linear combination be-
come the coupling constants of the final model. We also demonstrate theL2 com-
pleteness of the eigenfunctions obtained by this procedure, and describe a straight-
forward recursive procedure based on the Freudenthal multiplicity formula for
constructing the eigenfunctions explicitly. ©1999 American Institute of Physics.
@S0022-2488~99!01110-X#

I. INTRODUCTION

The potentials first discovered by Calogero and Sutherland1,2 and subsequently generalized to
arbitrary root systems by Olshanetsky and Perelomov3 play a central role in the theory of classical
and quantum completely integrable systems. One of the main themes of the original work by
Olshanetsky and Perelomov was to establish quantum complete integrability, that is, the existence
of complete sets of commuting operators. The actual eigenfunctions of the corresponding Hamil-
tonians were discussed in numerous subsequent publications.4–7

Our purpose in this paper is study and settle a certain number of basic structural questions
concerning the exact solvability of the Olshanetsky-Perelomov Hamiltonians. In order to outline
the main results of our paper, we first need to give a precise definition of what we mean by exact
solvability. We will adopt a promising approach, which has recently arisen in the framework of
the theory of quasiexactly solvable potentials,8–11 by defining a quantum HamiltonianH to be
algebraically exactly solvableif one can explicitly construct an ordered basis for the underlying
Hilbert space such that the corresponding flag of subspaces isH invariant. In terms of this
approach, the first step in the treatment of an exactly solvable operator must be the construction of
an infinite flag of finite-dimensional vector spaces ordered by inclusion, the determination of a
collection of basic operators that preserve this flag, and the demonstration that the operator in
question is generated by the basic ones. The second step is to prove theL2 completeness in the
underlying Hilbert space of this family of subspaces.

In order to fit the Olshanetsky–Perelomov Hamiltonians of trigonometric type into this frame-
work, we first recall that these Hamiltonians are indexed by irreducible root systems, with the
Calogero–Sutherland potentials corresponding to typeAn root systems. We thus consider the
vector space of trigonometric functions that are invariant under the Weyl groupW of the given
root systemR. The partial order relation on dominant weights gives rise to a natural flag of
finite-dimensional subspaces of this infinite-dimensional vector space. It is quite evident that the

a!Electronic mail: nkamran@math.mcgill.ca
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flag in question is preserved by the ordinary, multidimensional Laplacian. Less evident is the fact
that one can obtain other flag-preserving operators by factoring the Weyl denominator,

A5 )
aPR1

ea/22e2a/2,

into factors corresponding to the various orbits of the Weyl group onR. It turns out~see Propo-
sition 12! that the gradient of the logarithm of each of the resulting factors also preserves the flag
in question. More generally, one obtains other flag-preserving second-order operators by taking
linear combinations of the Laplacian and of these gradients. The Olshanetsky–Perelomov Hamil-
tonians are then obtained by a ground-state conjugation. This approach also sheds light on the
presence of multiple coupling constants in some of the models; the number of coupling constants
is precisely the number of invariant factors ofA, i.e., the number of Weyl group orbits inR, or,
equivalently, the number of distinct root lengths. We then show that if all the coupling constants
are positive, then the action of the Hamiltonian on each subspace of the flag is diagonalizable. This
is the first main result of our paper; it is given in Theorem 1. The second main result concerns the
L2 completeness of the resulting eigenfunctions in the underlying Hilbert space ofL2 functions on
the alcove of the root systemR.

It is also interesting to note that if all the coupling constants are equal to 1, then one recovers
a second-order differential operator whose eigenfunctions are precisely the characters of the cor-
responding simple Lie algebras. For certain other values of the coupling constants, one recovers
the spherical functions associated to any symmetric spaceG/K, whereG is a semisimple real Lie
group andK is a suitable compact subgroup. If the restricted root system of the symmetric space
is of type An21 and m is the multiplicity of each restricted root, then the eigenfunctions corre-
sponding to the valuekc5m/2 of the deformation parameter are the zonal spherical functions on
G/K, as pointed out by Macdonald.12,13 Thus the coupling constants can be regarded as param-
eters in a deformation of the classical characters.

In the classical case, if one reexpresses the gradient of logA in terms of a formal power series,
one obtains Freudenthal’s recursion formula for the character coefficients. This trick also works
for the deformed characters, and leads to a recursion formula that allows one to straightforwardly
compute the eigenfunctions of the Olshanetsky–Perelomov Hamiltonians. This result is presented
in Sec. IV.

We should point out that the Weyl-invariant deformed characters that appear in the expres-
sions of the eigenfunctions of the Olshanetsky–Perelomov trigonometric Hamiltonians are related
by a change of variables to the multivariate Jacobi polynomials that have been investigated by
Heckman and Opdam.14 In particular, the analog of the Freudenthal multiplicity formula that is at
the basis of the recursion formula we give in Proposition 19 for the eigenfunctions of the Hamil-
tonians also appears in the context of their study. We should also mention the interesting recent
contributions of Brink, Turbiner, and Wyllard15 in the general effort aimed at understanding the
exact solvability for multidimensional systems in an algebraic context.

II. TRIGONOMETRIC-TYPE POTENTIALS ASSOCIATED TO ROOT SYSTEMS

We first recall the abstract definition of the trigonometric Olshanetsky–Perelomov Hamilto-
nians in terms of root systems. LetV be a finite-dimensional real vector space endowed with a
positive-definite inner product (u,v)PR, u, vPV. We use this inner product to identifyV with
V* . The induced positive-definite inner product onV* will also be denoted by~•,•!. Let
D:C`(V;R)→C`(V;R) and“:C`(V;R)→G(TV) denote the corresponding Laplace–Beltrami
and gradient operators.

For a nonzeroaPV* , we set ă52a/(a,a) and let sa denote the reflection across the
hyperplane orthogonal toa:

sa~b!5b2~ ă,b!a, bPV* .

5005J. Math. Phys., Vol. 40, No. 10, October 1999 Algebraic exact solvability of . . .
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By a root system, we mean a finite, spanning subsetR of V* such that 0PR, sa(R),R for
all aPR and (ă,b)PZ for all a,bPR. A root systemR is said to be irreducible if it cannot be
partitioned into a union of root systems spanning orthogonal subspaces ofV.

To any root systemR corresponds a root latticeQ5$(Rmaa:maPZ% and a weight lattice
P5$lPV* :(ă,l)PZ,;aPR%. The Weyl group ofR, generated bysa ,aPR, will be denoted
by W. The subgroup ofW fixing a particularlPV* will be denoted byWl .

The hyperplanes$lPV* :(a,l)50%,aPR define a set of open Weyl chambers inV* . We

choose a Weyl chamberC and letR15RùC̄ denote the corresponding subset of positive roots.
Let B,R1 denote the set of simple roots, i.e., the positive roots that cannot be written as the sum

of two positive roots. LetP15RùC̄ denote the set of dominant weights.
We will say that a real numberc.0 is a root length if there exists aaPR such thatc

5iai . Let c be a root length, and set

Rc5$aPR:iai5c%,

Rc
15RcùR1,

Uc5
c2

4 (
aPRc

1
cos2

a

2
.

Note16 that if c is a root length, then,Rc is nothing but theW orbit of a.
The Olshanetsky–Perelomov Hamiltonians with trigonometric potentials associated to a root

systemR are defined in terms of the above data by

H52D1(
c

acUc ,

where the sum is taken over all root lengths,c, and where theac’s are real coupling constants.

III. THE ALGEBRAIC EXACT SOLVABILITY OF H
The affine hyperplanes$lPV* :(a,l)P2pZ% determine inV* a set of isometric open

bounded subsets called alcoves. LetA denote the unique alcove~usually referred to as the funda-
mental alcove! that is contained inC and that has the origin as a boundary point. Letm denote the
Lebesgue measure onA. From now on we use the inner product to identifyA with the correspond-
ing subset ofV and restrict the domain of functions introduced subsequently toA. Our goal is to
construct a basis for the underlying Hilbert spaceL2(A,m) in which the algebraic exact solvability
of H is manifest. The elements of this basis will be products ofW-invariant trigonometric func-
tions of certain linear forms onV with a common gauge factor vanishing along the walls$u
PV:a(u)P2pZ%, aPR of the potential termsUc .

We now proceed to define this basis. Recall that a choice of positive roots naturally induces
a partial order relation,<, on the weight lattice. ForlPP1 set

Pl5ø
wPW

$w~m!:mPP1 and m<l%,

Pl25ø
wPW

$w~m!:mPP1 and mÞ
,l%.

For S,V* let trig(S) denote the complex vector space spanned by functions of the form
eil,lPS. If S is a W-invariant subset ofV* , then there is a well-defined action ofW on trig(S),
namely

w•eil5eiw~l!, wPW, lPS.

5006 J. Math. Phys., Vol. 40, No. 10, October 1999 N. Kamran and R. Milson

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  129.173.74.41 On: Wed, 26 Oct 2016

14:35:44



In this case, let trig(S)W denote the subspace ofW-invariant functions.
Recall that a root systemR is said to be reduced if for everyaPR, the only roots homothetic

to a are2a anda itself. A roota will be called nondivisible ifa/2 is not a root. Similarly,a will
be called nonmultiplicable if 2a is not a root. Of course, ifR is reduced, then all roots are both
nondivisible and nonmultiplicable. An irreducible nonreduced system must be isomorphic to a
root system of type BCn for somen. To describe the latter, takeV5Rn and lete1 ,...,en denote the
dual basis of the standard basis ofRn. The root system in question consists of three types of roots:
short roots6e i , medium roots6e i6e j , iÞ j , and long roots62e i .

For reasons that will become clear later, it is convenient to reexpress the coupling constantsac

appearing inH as follows. We letac5kc(kc21) if c is the length of a nonmultiplicable root, and
ac5kc(kc1k2c21) if R is nonreduced andc is the length of the short roots. Let

Ac5 )
aPRc

1
sin

a

2
, F5)

c
uAcukc, rc5

1

2 (
aPRc

1
a, r5(

c
kcrc .

The following theorems, which are the main results of our paper, shows that the Olshanetsky–
Perelomov trigonometric HamiltoniansH are exactly solvable in the algebraic sense, and that the
corresponding eigenfunctions are physically meaningful.

Theorem 1: Let l be a dominant weight. If kc>0 for each root length c, then there exists a
uniqueflPtrig(Pl)W such that Ffl is an eigenfunction ofH with eigenvalueil1ri2. Further-
more, if Ff,fPtrig(P)W is an eigenfunction ofH, thenf5fl for somelPP1.

Theorem 2: The subspace Ftrig(P)W is dense in L2(A,m). Moreover, if kc>0 for all root
lengths c, then the operatorH is essentially self-adjoint on the domain Ftrig(P)W,L2(A,m).

We begin with the proof of Theorem 2, assuming Theorem 1 to be true. We first have the
following.

Lemma 3: Let D be an open, bounded subset of Euclidean space, and f:D→R a bounded
continuous function that does not vanish on D (but may vanish on the boundary). With these
assumptions, f L2(D,m) is a dense subset of L2(D,m).

Proof: Let D0 , an open subset ofD, be given, and chooseD1 such thatD̄1,D0 and such that
m(D0)2m(D1) is smaller than a givene.0. Note thath5 f 21xD1

is a well-defined element of
L2(D) and that f h5xD1

. Consequently,xD0
lies in the closure off L2(D). The conclusion

follows from the fact that the characteristic functions form a dense subset ofL2(D). h

Proof of Theorem 2:Let T denote the torusV* /(2pQ). We use the inner product onV to
identify T with the identical quotient ofV. Recall that trig(P) is dense inL2(T) by the Fourier
representation theorem. NowW acts onT and A serves as a fundamental region for this action
~Ref. 17, Chap. VI, No. 2.1!. Consequently, trig(P)W is dense inL2(T)W and the latter is naturally
isomorphic toL2(A,m). We therefore conclude thatF trig(P)W is dense inL2(A,m) by applying
the preceding Lemma withf 5F.

We now prove the essential self-adjointness ofH on the domainF trig(P)W. Let A0,A be an
open subset with a piecewise smooth boundary. Letf1 ,f2Ptrig(P)W be given. Settingc i

5Ff i , i 51,2, we have

E
A0

H~c1!c22c1H~c2!5E
A0

div~c2 “c12c1 “c2!5E
]A0

F2~f2 “f12f1 “f2!.

Hence, as the boundary ofA0 approaches the boundary ofA, the above integrals tend to zero, so
that the operatorH is a symmetric. By Theorem 1 and the density ofF trig(P)W in L2(A,m), the
span of eigenfunctions ofH is dense inL2(A), and thereforeH must be essentially self-adjoint.h

We now proceed with the proof of Theorem 1. The strategy behind the proof of this theorem
is to conjugate the Olshanetsky–Perelomov HamiltoniansH by a suitable multiplication operator
chosen in such a way that the resulting operator has a simple action on the space trig(P)W. This

5007J. Math. Phys., Vol. 40, No. 10, October 1999 Algebraic exact solvability of . . .
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will give rise to an essential intertwining relation that will, in turn, imply the algebraic exact
solvability. In order to determine this multiplicative factor, we need a series of facts about root
lengths.

Let Mc :W→$61% be the class function defined by

Mc~sa!5 H 21,
1

if aPBùRc ,
if aPB\Rc .

The following result is a straightforward consequence of the definition ofAc .
Proposition 4: For wPW one has w(Ac)5Mc(w)Ac . In other words, Ac is a relative in-

variant of W with multiplier Mc . Moreover, we have the following.
Proposition 5: Let c be a root length. IfaPB, then(ă,rc) takes one of four possible values:

1 if iai5c, 2 if iai5c/2, 1/2 if iai52c, 0 in all other cases.
Proof: Let aPB be given. The action ofsa mapsa to 2a and permutes the elements ofR1

not homothetic toa ~Ref. 17, Chap. VI, No. 1.6!. Let bPRc
1 be given and setb85sa(b). Note

that if b5b8, then (ă,b)50; and that ifb8Þb, then (ă,b1b8)50. If iaiP$c,2c,c/2%, thena
is not homothetic to any element ofRc , and hence one can break uprc into subterms of length
one and two such that each subterm is annihilated byă. This proves the fourth assertion of the
proposition. If iai5c, thenrc is the sum ofa/2 and a remainder perpendicular toă. Conse-
quently, (ă,rc)51, thereby proving the first assertion. Ifiai5c/2, then 2a is also a root, and,
consequently,rc is the sum ofa and a remainder perpendicular toă. This implies the second
assertion. The case three assertion is proven similarly. h

Corollary 6: If c is the length of a nonmultiplicable root, thenrc is a weight. If R is nonre-
duced, and c is the length of the short roots, thenrc is merely a half-weight.

Corollary 7: Let c be a root length. Then for allaPRc , one has(ă,rc)PZ.
Proof: If c is the length of a nonmultiplicable root, then the claim follows from the preceding

corollary. Suppose then that 2c is also a root length. ForaPRc note that 2(2a)˘ 5ă and that
2rc5r2c . Hence

~ ă,rc!5„~2a!˘,r2c….

Since 2a is nonmultiplicable, the right-hand side is an integer by the preceding corollary.h
Corollary 8: Let c be a root length and wPW. Then, w(rc)PQ2rc .
Proof: Note that

w~rc!5
1

2 (
aPRc

1
sa~w!a,

wheresa(w) is either 1 or21. Hence,rc1w(rc) is the sum of allaPRc
1 such thatsa(w)

51. h

We are now ready for the next step leading to the required intertwining relation, which is to
show that trig(Pl)W is an invariant subspace of“ loguAcu. First, we have the following.

Proposition 9: Let c be a root length. IffPtrig(P2rc) is a relative invariant of W with
multiplier Mc , thenf5Acf0 for somef0Ptrig(P)W.

Proof: By assumption,f15eiref is an element of trig(P). Let aPRc
1 be given. The first

claim is thatf1 is divisible by eia21 in trig(P). By assumption,f is a linear combination of
expressions of the form eil2eil8, wherel1rcPP, andl85sa(l). Sincel is the difference of
a weight andrc , Corollary 7 shows that (ă,l)PZ. By switchingl andl8, if necessary, one may
assume without loss of generality that2(ă,l)PN. The claim follows by noting that

eil2eil85eil~12e2 i ~ ă,l!a!,

and by factoring the right-hand side in the usual fashion.
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Note that trig(P) with the natural function multiplication is a unique factorization domain
~Ref. 17, Chap. VI, No. 3.1!. Hence, the preceding claim implies that there exists af0

Ptrig(P), such that

f15f0 )
aPRc

1
~eia21!.

The proof is concluded by noting that up to a constant factor,Ac is equal to

e2 irc )
aPRc

1
~eia21!.

TheW invariance off0 follows from the fact thatAc andf are relative invariants with the same
multiplier. h

We have:
Corollary 10: Let c be a root length. One has

~2i !]RcAc5
1

]Wrc

(
wPW

Mc~w!eiw~rc!. ~1!

Proposition 11: The differential operator“ log uAcu has a well-defined action ontrig(P)W.
Proof: Let fPtrig(P)W. The claim is that (“ log uAcu)(f)Ptrig(P)W. By Corollaries 8 and 10,

AcPtrig(Q2rc), and hence“Ac(f)Ptrig(P2rc). Since“ is a W-invariant operator,“Ac(f)
is a relative invariant ofW with multiplier Mc . Hence, by Proposition 9, there exists af0

Ptrig(P)W such that“Ac(f)5Acf0 . h

We now have the following.
Proposition 12: IflPP1, then trig(Pl)W is an invariant subspace of“ log uAcu.
Proof: Let fPtrig(Pl)W be given. Set f05(“ loguAcu)(f). By Proposition 11, f0

Ptrig(P)W. Let m be a maximal element of supp(f0). Consequently,m1rc is a maximal element
of suppl(Acf0). Now

Ac5b1eirc1 lower-order terms,

f5b2eil1 lower-order terms,

whereb1 , b2 are nonzero constants, and hence,

~“Ac!~f!52b1b2~rc ,l!ei ~rc1l!1 lower-order terms.

Since (rc ,l).0, one must haverc1l5rc1m. Thereforem5l, andf0Ptrig(Pl)W.
The basic identity that will give rise to the intertwining relation that we are looking for is

given in the following proposition.
Proposition 13: Let f1 ,...,f n be smooth real-valued functions onV; let k1 ,...,kn be real

constants; and let

X5(
i 51

n

2ki“ logu f i u, F5)
i 51

n

u f i uki.

We have the identity

F~2D2X!5~2D1U !F,

where
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U5(
i

ki~ki21!
i“ f i i2

f i
2 1(

iÞ j
kikj

~“ f i ,“ f j !

f i f j
1(

i
ki

D f i

f i
.

The application of this proposition to the Olshanetsky–Perelomov HamiltoniansH requires a
number of intermediate formulas.

Proposition 14: Let c be a root length. One has

DAc52irci2Ac , ~2!

i“Aci25~Uc2irci2!Ac
2. ~3!

Proof: Note that forlPV* one hasDeil52ili2eil. Formula~2! follows immediately from
~1!. Note that

“Ac5
Ac

2 (
aPRc

1
cot

a

2
“a. ~4!

Consequently,

i“Aci25S c2

4 (
a

cot2
a

2
1

1

4 (
aÞb

~a,b!cot
a

2
cot

b

2 DAc
2. ~5!

Taking the divergence of~4!, one obtains

DAc

Ac
52

~]Rc!c
2

4
1

1

4 (
aÞb

~a,b!cot
a

2
cot

b

2
.

Solving for the second term of the right-hand side of the latter equation, substituting into~5! and
applying ~2!, we obtain~3!. h

Proposition 15:If c1 , c2 are distinct root lengths such that the corresponding roots are not
homothetic, then

~“Ac1
,“Ac2

!52~rc1
,rc2

!Ac1
Ac2

. ~6!

If R is nonreduced and c is the length of the short roots, then

~“Ac ,“A2c!5@Uc2~rc ,r2c!#AcA2c . ~7!

Proof: Let c1 , c2 be given. A straightforward generalization of the argument in Proposition 9
yields

Ac1
Ac2

5
1

]Wrc1
1rc2

(
wPW

Mc1
~w!Mc2

~w!eiw~rc1
1rc2

!.

Hence,

D~Ac1
Ac2

!52irc1
1rc2

i2Ac1
Ac2

,

and the desired conclusion follows immediately from the usual product rule for the Laplacian.
Next, assume that the second of the proposition’s hypotheses holds. SetSc

5PaPRc
cos(a/2), and note thatA2c52AcSc . SinceR is of type BCn , a direct calculation will

show thatDSc52irci2Sc . Consequently,

2~“Ac ,“Sc!5 1
2 DA2c2Ac DSc2Sc DAc52irci2A2c .
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~“Ac ,“A2c!52irci2A2c12Sci“Aci2.

The formula to be proved now follows from~3!. h

We can now state and prove the intertwining relation, which is fundamental to the proof of
our main result.

Proposition 16: Let

H̃52D2(
c

2kc“ loguAcu.

We have

FH̃5HF2iri2.

Proof: Apply Propositions 13, 14, and 15. h

Finally, we are ready to give the proof of Theorem 1, that is of the algebraic exact solvability
of the Olshanetsky–Perelomov HamiltonianH. We begin with the following simple result from
linear algebra.

Proposition 17: LetV a finite-dimensional vector space overC, and V1,V a codimension 1
subspace. Let T be an endomorphism ofV such thatV1 is an invariant subspace, and letkPC
denote the unique eigenvalue of the corresponding endomorphism ofV/V1 . If k is not an eigen-
value of Tuv1

, thenk is a multiplicity 1 eigenvalue of T.
It should be noted that the assumptionkc>0 in Theorem 1 is crucial. The necessity of this

assumption is explained by the following proposition. Indeed, one should remark that there exist
certain negative values ofkc for which the action ofH fails to be diagonalizable.

Proposition 18: Letm,l be dominant weights. If kc>0 for each root length c, thenil
1ri.im1ri .

Proof: Note that

il1ri22im1ri25ili22imi212~l2m,r!.

Using the fact thatl2mPP1, one can easily show thatili.imi . Furthermore, sincel2m is a
linear combination of basic roots with positive coefficients, Proposition 5 implies that (l2m,r)
.0. h

Finally, we have the following.
Proof of Theorem 1:Let l be a dominant weight. By Proposition 12, trig(Pl)W is an invariant

subspace ofH̃. Using an argument similar to the one given in the proof of Proposition 12, it is not
hard to verify that iffPtrig(Pl)W, then

„H̃2ili222~r,l!…~f!P trig~Pl2!W. ~8!

Note that trig(Pl2)W is a codimension 1 subspace of trig(Pl)W. Furthermore, by Proposition 18,

ili212~l,r!.imi212~m,r!,

for all dominant weightsm,l. Hence, by Proposition 17, there exists a uniqueflPtrig(Pl)W

such thatH̃fl5„ili212(r,l)…f. The first of the desired conclusions now follows by Proposi-
tion 16.

To prove the converse letFf with fPtrig(P)W be an eigenfunction ofH with eigenvaluek.
Let lPP1 be a maximal element of supp~f!. Since trig(Pl2)W is a codimension 1 subspace of
trig(Pl)W, ~8! implies thatk5ili212(l,r). Consequently,l is the unique maximal element of
supp~f!. By Proposition 17,k has multiplicity 1, and this gives the desired conclusion. h
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IV. A RECURSION FORMULA FOR THE EIGENFUNCTIONS OF H̃

In the present section we show how to explicitly compute the eigenfunctions of the
Olshanetsky–Perelomov Hamiltonian by using akc-parametrized analog of the Freudenthal mul-
tiplicity formula. The generalized formula actually yields the eigenfunctionsfl of the related

operatorH̃. One should mention that the eigenfunctionsfl first appeared in the investigations of
Heckman and Opdam,14 who regard these functions as multivariable generalizations of the Jacobi
polynomials. The eigenfunctions ofH are, of course, obtained by multiplication with the gauge
factor F.

By way of motivation it will be useful to recall the context of the original Freudenthal
formula. Suppose thatR is reduced and letxl , lPP1 denote a character of the corresponding
compact, simply connected Lie group. The Weyl character formula states that

xl5
(wPW sgn~w!eiw~l1 r̃ !

(wPW sgn~w!eiw~l! , ~9!

wherer̃ is the half-sum of the positive roots. Now ifkc51 for all c, then the potential term ofH
is zero, and the gauge factorF is nothing but theW-antisymmetric denominator of~9!. Further-
more, the numerator in~9! is the uniqueW-antisymmetric eigenfunction ofD with highest-order
term ei (l1 r̃). Hence, by the intertwining relation described in Proposition 16, the Weyl character

formula is equivalent to the statement thatxl is an eigenfunction ofH̃ with eigenvalue (l,l
12r̃). This observation leads directly to the classical Freudenthal formula for the multiplicities of
xl , and to the following generalization involving the parameterskc . ~See Ref. 18 for more details
regarding the Weyl and Freudenthal formulas.!

Proposition 19: Letfl5eil1(m,lnmeim be the eigenfunction ofH̃ described in the state-
ment and proof of Theorem 1. Setting nl51 and nn50 for n<” l, the remaining coefficients nm ,
m,l, are given by the following recursion formula:

~ il1ri22im1ri2!nm52 (
aPR1

(
j >1

kuau~a,m1 j a!nm1 j a . ~10!

Proof: Rewriting

Ac5eirc )
aPRc

1
~12e2 ia!,

one obtains

H̃52D2 i “r22i (
aPR1

kuau
e2 ia

12e2 ia “a.

Let trig((P)) denote the vector space of formal power series(mPPcmeim. Since elements of
trig(P) are finitely supported sums, one has a well-defined multiplication operation trig„(P)…

3trig(P)→trig„(P)…. Thus, setting the domain ofH̃ to be trig(P), one can extend the operator’s
coefficient ring and write

H̃52D2 i “r22i (
aPR1

(
j >1

kuaue
2 j i a

“a.

However, because of Proposition 11 one can take the codomain ofH̃ to be trig(P) rather than all
of trig„(P)…. Acting with the right-hand side of the latter equation onfl , collecting like terms,
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and using the fact thatfl is an eigenfunction with eigenvalue (l,l12r) immediately yields
~10!. h

It is important to remark that by Proposition 18 the coefficient ofnm appearing in~10! is never
zero. Consequently,~10! can indeed be used as a recursive formula for the coefficientsnm . One
should also remark that theW symmetry offl means that it suffices to use formula~10! to
calculatenm with mPP1.
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