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Algebraic exact solvability of trigonometric-type
Hamiltonians associated to root systems
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In this article, we study and settle several structural questions concerning the exact
solvability of the Olshanetsky—Perelomov quantum Hamiltonians corresponding to
an arbitrary root system. We show that these operators can be written as linear
combinations of certain basic operators admitting infinite flags of invariant sub-
spaces, namely the Laplacian and the logarithmic gradient of invariant factors of
the Weyl denominator. The coefficients of the constituent linear combination be-
come the coupling constants of the final model. We also demonstrate? tbem-
pleteness of the eigenfunctions obtained by this procedure, and describe a straight-
forward recursive procedure based on the Freudenthal multiplicity formula for
constructing the eigenfunctions explicitly. @99 American Institute of Physics.
[S0022-24889)01110-X

I. INTRODUCTION

The potentials first discovered by Calogero and Suthetfaadd subsequently generalized to
arbitrary root systems by Olshanetsky and Perelohptay a central role in the theory of classical
and quantum completely integrable systems. One of the main themes of the original work by
Olshanetsky and Perelomov was to establish quantum complete integrability, that is, the existence
of complete sets of commuting operators. The actual eigenfunctions of the corresponding Hamil-
tonians were discussed in numerous subsequent public4tibns.

Our purpose in this paper is study and settle a certain number of basic structural questions
concerning the exact solvability of the Olshanetsky-Perelomov Hamiltonians. In order to outline
the main results of our paper, we first need to give a precise definition of what we mean by exact
solvability. We will adopt a promising approach, which has recently arisen in the framework of
the theory of quasiexactly solvable potentils! by defining a quantum Hamiltoniak to be
algebraically exactly solvabléd one can explicitly construct an ordered basis for the underlying
Hilbert space such that the corresponding flag of subspacgs iisvariant. In terms of this
approach, the first step in the treatment of an exactly solvable operator must be the construction of
an infinite flag of finite-dimensional vector spaces ordered by inclusion, the determination of a
collection of basic operators that preserve this flag, and the demonstration that the operator in
question is generated by the basic ones. The second step is to prave ¢benpleteness in the
underlying Hilbert space of this family of subspaces.

In order to fit the Olshanetsky—Perelomov Hamiltonians of trigonometric type into this frame-
work, we first recall that these Hamiltonians are indexed by irreducible root systems, with the
Calogero—Sutherland potentials corresponding to typeroot systems. We thus consider the
vector space of trigonometric functions that are invariant under the Weyl ghdopthe given
root systemR. The partial order relation on dominant weights gives rise to a natural flag of
finite-dimensional subspaces of this infinite-dimensional vector space. It is quite evident that the
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flag in question is preserved by the ordinary, multidimensional Laplacian. Less evident is the fact
that one can obtain other flag-preserving operators by factoring the Weyl denominator,

A= H ea/2_e—a/2

aeRY

into factors corresponding to the various orbits of the Weyl groufRoh turns out(see Propo-

sition 12 that the gradient of the logarithm of each of the resulting factors also preserves the flag
in question. More generally, one obtains other flag-preserving second-order operators by taking
linear combinations of the Laplacian and of these gradients. The Olshanetsky—Perelomov Hamil-
tonians are then obtained by a ground-state conjugation. This approach also sheds light on the
presence of multiple coupling constants in some of the models; the number of coupling constants
is precisely the number of invariant factors Afi.e., the number of Weyl group orbits R or,
equivalently, the number of distinct root lengths. We then show that if all the coupling constants
are positive, then the action of the Hamiltonian on each subspace of the flag is diagonalizable. This
is the first main result of our paper; it is given in Theorem 1. The second main result concerns the
L2 completeness of the resulting eigenfunctions in the underlying Hilbert spacefofictions on

the alcove of the root systeR

It is also interesting to note that if all the coupling constants are equal to 1, then one recovers
a second-order differential operator whose eigenfunctions are precisely the characters of the cor-
responding simple Lie algebras. For certain other values of the coupling constants, one recovers
the spherical functions associated to any symmetric s@dke whereG is a semisimple real Lie
group andK is a suitable compact subgroup. If the restricted root system of the symmetric space
is of type A,,_; andm is the multiplicity of each restricted root, then the eigenfunctions corre-
sponding to the valuk.=m/2 of the deformation parameter are the zonal spherical functions on
G/K, as pointed out by Macdonald® Thus the coupling constants can be regarded as param-
eters in a deformation of the classical characters.

In the classical case, if one reexpresses the gradient éfilogerms of a formal power series,
one obtains Freudenthal’s recursion formula for the character coefficients. This trick also works
for the deformed characters, and leads to a recursion formula that allows one to straightforwardly
compute the eigenfunctions of the Olshanetsky—Perelomov Hamiltonians. This result is presented
in Sec. IV.

We should point out that the Weyl-invariant deformed characters that appear in the expres-
sions of the eigenfunctions of the Olshanetsky—Perelomov trigonometric Hamiltonians are related
by a change of variables to the multivariate Jacobi polynomials that have been investigated by
Heckman and Opdarf.In particular, the analog of the Freudenthal multiplicity formula that is at
the basis of the recursion formula we give in Proposition 19 for the eigenfunctions of the Hamil-
tonians also appears in the context of their study. We should also mention the interesting recent
contributions of Brink, Turbiner, and Wyllatdin the general effort aimed at understanding the
exact solvability for multidimensional systems in an algebraic context.

II. TRIGONOMETRIC-TYPE POTENTIALS ASSOCIATED TO ROOT SYSTEMS

We first recall the abstract definition of the trigonometric Olshanetsky—Perelomov Hamilto-
nians in terms of root systems. L¥t be a finite-dimensional real vector space endowed with a
positive-definite inner productu(v) € R, u, ve V. We use this inner product to identify with
V*. The induced positive-definite inner product & will also be denoted by(-,-). Let
A:C*(V;R)—C*(V;R) and V:C*(V;R)—TI'(TV) denote the corresponding Laplace—Beltrami
and gradient operators.

For a nonzeroa e V*, we seta=2al/(a,a) and lets, denote the reflection across the
hyperplane orthogonal ta:

Sa(B):ﬂ_(a!B)ay BEV*.



5006 J. Math. Phys., Vol. 40, No. 10, October 1999 N. Kamran and R. Milson

By a root system, we mean a finite, spanning suBset V* such that &R, s,(R)CR for
all eeR and (@,B) eZ for all «,BeR. A root systemR is said to be irreducible if it cannot be
partitioned into a union of root systems spanning orthogonal subspadaés of

To any root systenR corresponds a root lattic®={Zgzm_, «a:m, e 7} and a weight lattice
P={NeV*:(a,\)eZVaeR}. The Weyl group ofR, generated b, ,« e R, will be denoted
by W. The subgroup ofV fixing a particular\ e V* will be denoted byw, .

The hyperplane$\ e V*:(a,\) =0},a € R define a set of open Weyl chambers\iti. We

choose a Weyl chamb& and letR* = RN C denote the corresponding subset of positive roots.
Let BCR™ denote the set of simple roots, i.e., the positive roots that cannot be written as the sum

of two positive roots. LeP ' = RN C denote the set of dominant weights.
We will say that a real number>0 is aroot lengthif there exists ao € R such thatc
=||a|. Letc be a root length, and set

R.={aeR:||a|=c},

Ry =R.NR",

o
Uczzaer C052§.
c

Note'® that if c is a root length, therR, is nothing but theW orbit of «.
The Olshanetsky—Perelomov Hamiltonians with trigonometric potentials associated to a root
systemR are defined in terms of the above data by

H=—A+>, aU,,
C

where the sum is taken over all root lengthsand where th@.'s are real coupling constants.

Ill. THE ALGEBRAIC EXACT SOLVABILITY OF 'H

The affine hyperplane$\ e V*:(a,\) e 277} determine inV* a set of isometric open
bounded subsets called alcoves. Raenote the unique alcovesually referred to as the funda-
mental alcovgthat is contained i€ and that has the origin as a boundary point. inetenote the
Lebesgue measure @n From now on we use the inner product to idenéfyvith the correspond-
ing subset oV and restrict the domain of functions introduced subsequently. ©ur goal is to
construct a basis for the underlying Hilbert sp&@€A, m) in which the algebraic exact solvability
of H is manifest. The elements of this basis will be product$\eihvariant trigonometric func-
tions of certain linear forms oW with a common gauge factor vanishing along the wails
eV:a(u) e 277}, aeR of the potential term&J...

We now proceed to define this basis. Recall that a choice of positive roots naturally induces
a partial order relationss, on the weight lattice. Fox e P* set

Pa=U,, oyiW(p)ipe P and u<\},
P,_= UWEW{W(/.L):/.L eP* and ui\}.
For SCV* let trig(S) denote the complex vector space spanned by functions of the form

e'* N eS. If Sis aW-invariant subset of/*, then there is a well-defined action ¥f on trig(S),
namely

w-ert=e"™  weW, NeS.
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In this case, let trigh)"’ denote the subspace W-invariant functions.

Recall that a root systeR is said to be reduced if for everye R, the only roots homothetic
to a are—a anda itself. A root « will be called nondivisible ife/2 is not a root. Similarlya will
be called nonmultiplicable if @ is not a root. Of course, iR is reduced, then all roots are both
nondivisible and nonmultiplicable. An irreducible nonreduced system must be isomorphic to a
root system of type BCfor somen. To describe the latter, také=R" and leteq,...,e, denote the
dual basis of the standard basisRf The root system in question consists of three types of roots:
short roots=* ¢, medium rootst €; > ¢;, i #j, and long rootst 2¢; .

For reasons that will become clear later, it is convenient to reexpress the coupling coastants
appearing irf{ as follows. We let.=k.(k.—1) if cis the length of a nonmultiplicable root, and
a.=k¢(k.+ky.—1) if Ris nonreduced and is the length of the short roots. Let

Lo 1
Ac= 1_[+ S|n§1 FZI:[ |Ac|kc1 Pe=5 2+ «@, p:; Kepe -

aeRC aeR;

The following theorems, which are the main results of our paper, shows that the Olshanetsky—
Perelomov trigonometric Hamiltoniari¢ are exactly solvable in the algebraic sense, and that the
corresponding eigenfunctions are physically meaningful.

Theorem 1: Let \ be a dominant weight. If l&0 for each root length c, then there exists a
uniqued, e trig(P, )" such that Fp, is an eigenfunction of with eigenvalud X + p||?. Further-
more, if Fg, ¢ e trig(P)"V is an eigenfunction oK, then ¢= ¢, for somex e P™.

Theorem 2: The subspace Fig(P)" is dense in B(A,m). Moreover, if k=0 for all root
lengths c, then the operatdt is essentially self-adjoint on the domaintriig(P)WC L%(A,m).

We begin with the proof of Theorem 2, assuming Theorem 1 to be true. We first have the
following.

Lemma 3: Let D be an open, bounded subset of Euclidean space,:Brd X a bounded
continuous function that does not vanish on D (but may vanish on the boundary). With these
assumptionsfL?(D,m) is a dense subset of(D,m).

Proof: Let Dy, an open subset @, be given, and chood®,; such thaBlc Dy and such that
m(Dg) —m(D4) is smaller than a givee>0. Note tha1h=f‘1)(D1 is a well-defined element of

L?(D) and thatfh=XDl. Consequently,)(DO lies in the closure offL?(D). The conclusion

follows from the fact that the characteristic functions form a dense subset(b). |

Proof of Theorem 2Let T denote the toruy*/(27Q). We use the inner product ov to
identify T with the identical quotient o¥/. Recall that trigP) is dense inL?(T) by the Fourier
representation theorem. NoW acts onT and A serves as a fundamental region for this action
(Ref. 17, Chap. VI, No. 2)1 Consequently, trig?)" is dense irL2(T)W and the latter is naturally
isomorphic toL?(A,m). We therefore conclude th&ttrig(P)" is dense irL2(A,m) by applying
the preceding Lemma with=F.

We now prove the essential self-adjointnesgtofn the domairF trig(P)". Let A,C A be an
open subset with a piecewise smooth boundary. &ete, e trig(P)V be given. Settingy;
=F¢;, i=1,2, we have

IH(%)lﬁz_lﬂlH(lﬁz):f diV(lﬁzVIﬂl_thlﬂz):f F2(¢a Vi~ 1 V).
Ag Ag Ao

Hence, as the boundary 8§ approaches the boundary Af the above integrals tend to zero, so
that the operatol is a symmetric. By Theorem 1 and the densityrafig(P)" in L2(A,m), the
span of eigenfunctions ¢# is dense in_2(A), and thereforé{ must be essentially self-adjoint.

We now proceed with the proof of Theorem 1. The strategy behind the proof of this theorem
is to conjugate the Olshanetsky—Perelomov Hamiltonidrisy a suitable multiplication operator
chosen in such a way that the resulting operator has a simple action on the spa@'trighis
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will give rise to an essential intertwining relation that will, in turn, imply the algebraic exact
solvability. In order to determine this multiplicative factor, we need a series of facts about root
lengths.

Let M.:W—{=1} be the class function defined by

—1, if aeBNR,

Mc(S)=1 1 if aeBR,.
The following result is a straightforward consequence of the definitiofof

Proposition 4: For we W one has WWA;) =M (w)A.. In other words A, is a relative in-
variant of W with multiplier M.. Moreover, we have the following.

Proposition 5: Let ¢ be a root length. ¢ e B, then(a,p.) takes one of four possible values:
1if|al|=c, 2if |a|=c/2, 1/2 if | a||=2c, O in all other cases

Proof: Let @ € B be given. The action of, mapsa to —a and permutes the elementsRf
not homothetic tax (Ref. 17, Chap. VI, No. 1)6 Let e R_ be given and seB’ =s,(3). Note
that if 3= 8’, then (@, 8)=0; and that if3’ # 8, then @,8+ B')=0. If |a| € {c,2c,c/2}, thena
is not homothetic to any element B, and hence one can break ppinto subterms of length
one and two such that each subterm is annihilated by his proves the fourth assertion of the
proposition. If|a|=c, thenp. is the sum ofa/2 and a remainder perpendicular &0 Conse-
quently, @,p.)=1, thereby proving the first assertion.||l&||=c/2, then 2v is also a root, and,
consequentlyp, is the sum ofae and a remainder perpendicular & This implies the second
assertion. The case three assertion is proven similarly. O

Corollary 6: If c is the length of a nonmultiplicable root, then is a weight. If R is nonre-
duced, and c is the length of the short roots, tiperis merely a half-weight

Corollary 7: Let ¢ be a root length. Then for alte R., one has(a,p.) € Z.

Proof: If cis the length of a nonmultiplicable root, then the claim follows from the preceding
corollary. Suppose then thatds also a root length. Fost € R, note that 2(2)” =« and that
2p.=psc. Hence

(Z(vpc) = ((20[)V1p20)'

Since 2v is nonmultiplicable, the right-hand side is an integer by the preceding corollary.]
Corollary 8: Let ¢ be a root length and wW. Then w(p.) e Q—p¢.
Proof: Note that

1
Wpe)=5 2 ouWa,

aeR,

where o,,(w) is either 1 or—1. Hence,p.+W(p.) is the sum of allee R, such thato ,(w)
=1. O

We are now ready for the next step leading to the required intertwining relation, which is to
show that trigP, )" is an invariant subspace & log|A . First, we have the following.

Proposition 9: Let ¢ be a root length. b e trig(P—p.) is a relative invariant of W with
multiplier M., then ¢=A. ¢, for someg, e trig(P) ™.

Proof: By assumptiong,=e'’e¢ is an element of trigp). Let a e RZ be given. The first
claim is that¢; is divisible by é*—1 in trig(P). By assumptiong is a linear combination of
expressions of the form’e- dr' where\ +p.e P, and\'=s,(\). Since\ is the difference of
a weight andp., Corollary 7 shows thatd,\) e Z. By switching\ and\’, if necessary, one may
assume without loss of generality thaf(@,\) e N. The claim follows by noting that

eix_eix’=ei>\(1_efi(a,>\)a)’

and by factoring the right-hand side in the usual fashion.



J. Math. Phys., Vol. 40, No. 10, October 1999 Algebraic exact solvability of . . . 5009

Note that trigf) with the natural function multiplication is a unique factorization domain
(Ref. 17, Chap. VI, No. 3)L Hence, the preceding claim implies that there existgha
e trig(P), such that

h1= o 1_[+ (e*—1).

aeRC

The proof is concluded by noting that up to a constant fadigris equal to

e e [ (e*—1).

+
aeR;

The W invariance of¢, follows from the fact that\. and ¢ are relative invariants with the same
multiplier. O
We have:
Corollary 10: Let c be a root length. One has

1 )
(2i)#ReA = W EW M (w)e'W(re), (1)
chE

Proposition 11: The differential operatdV log|A, has a well-defined action omig(P)".

Proof: Let ¢ e trig(P)V. The claim is that ¥ log |AJ)(¢) etrig(P)"V. By Corollaries 8 and 10,
Acetrig(Q—pc), and hence&V A (¢) etrig(P—p.). SinceV is a W-invariant operatorV A.(¢)
is a relative invariant oW with multiplier M. Hence, by Proposition 9, there existsd¢g
etrig(P)" such thatVA.(¢)=A.dg. O

We now have the following.

Proposition 12: Ifx e P™, thentrig(P, )" is an invariant subspace & log|A,.

Proof: Let ¢etrig(P,)V be given. Set¢y=(V log|AJ)(¢). By Proposition 11, ¢q
etrig(P)V. Let u be a maximal element of suppg). Consequentlyy+ p. is a maximal element

of suppl(A.¢o). Now
A.=b,e'’c+lower-order terms,
¢=h,e'*+lower-order terms,
whereb,, b, are nonzero constants, and hence,
(VA (¢)=—bib,(pc,\)ePe™ +lower-order terms.

Since (p¢,\)>0, one must have.+\=p.+ u. Thereforew=\, and ¢, e trig(P,) V.

The basic identity that will give rise to the intertwining relation that we are looking for is
given in the following proposition.

Proposition 13: Let {,...,f,, be smooth real-valued functions afy let ky,...,k, be real
constants; and let

n n
X=> 2kVloglfi|, F=][T |fi|".
i=1 =1

We have the identity
F(—A-X)=(—A+U)F,

where
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2 Vf,,Vf,
U= ki(ki— 1)”—2i Z kijLZ ki— .
i fi fif; i f;
The application of this proposition to the Olshanetsky—Perelomov Hamiltofiaresjuires a
number of intermediate formulas.
Proposition 14: Let ¢ be a root length. One has

AA=— ||pC||2A01 2
[VAJZ=(Uc—lpdl?) A2 (3)
Proof: Note that forx e V* one hasie'*= —||\|%e™. Formula(2) follows immediately from

(1). Note that
VA== Z cot—Va (4)

2 aER
Consequently,
c? a 1 a B
2_ |2 = - 1 a2

IvAdR=| 5 EC; cot22 +7 2#: (a,B)cot; cot | AZ. (5)

Taking the divergence d#), one obtains

AA. (ﬁRc)c 1

A = ; (a,ﬁ)cot% cotg.

Solving for the second term of the right-hand side of the latter equation, substitutingh)read
applying (2), we obtain(3). O

Proposition 15:If g, ¢, are distinct root lengths such that the corresponding roots are not
homothetic, then

(VA VA )=—(pc,.pc)Ac Ac, (6)
If R is nonreduced and c is the length of the short roots, then
(VA VAz)=[Uc=(pc.pac) IAcA - (7
Proof: Letc,, c, be given. A straightforward generalization of the argument in Proposition 9

yields

Ac A 2 M (WM (w)e'(pe,*rey),

©2 ﬁW +p weW

Hence,
A(AclAcz) == ||Pcl+ Pcz||2Ac1Ac21

and the desired conclusion follows immediately from the usual product rule for the Laplacian.
Next, assume that the second of the proposition’s hypotheses holds. SSet
HaER cos/2), and note thaf,.=2A.S;. SinceR is of type BG,, a direct calculation will

show thatAS =—|pdI?S.. Consequently,

2(VA;,VSy) = %AAZC_AC AS.—ScAA.=— HPC”ZAZC .
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(VA VAy)=— ||pc||2A2c+ ZSC”VACHZ'

The formula to be proved now follows froi3). O

We can now state and prove the intertwining relation, which is fundamental to the proof of
our main result.

Proposition 16: Let

H=—A—-> 2k.V log|A.
C

We have

FH=HF—pll*

Proof: Apply Propositions 13, 14, and 15. (I

Finally, we are ready to give the proof of Theorem 1, that is of the algebraic exact solvability
of the Olshanetsky—Perelomov Hamiltoniah We begin with the following simple result from
linear algebra.

Proposition 17: LetV a finite-dimensional vector space overandV,;CV a codimension 1
subspace. Let T be an endomorphismVVo$uch thatV, is an invariant subspace, and lete C
denote the unique eigenvalue of the corresponding endomorphistivaf If « is not an eigen-
value of T[\,l, then « is a multiplicity 1 eigenvalue of.T

It should be noted that the assumptikgx=0 in Theorem 1 is crucial. The necessity of this
assumption is explained by the following proposition. Indeed, one should remark that there exist
certain negative values &f, for which the action ofH fails to be diagonalizable.

Proposition 18: Letu<\ be dominant weights. If &0 for each root length c, thefix
+pl>n+pl.

Proof: Note that

N+ pll2 =1+ plP= N2 = lP+2( = ).

Using the fact thak — e P*, one can easily show thik | > x. Furthermore, sinck — u is a
linear combination of basic roots with positive coefficients, Proposition 5 implies thatu(, p)
>0. O
Finally, we have the following.
Proof of Theorem 1Let \ be a dominant weight. By Proposition 12, tijy() " is an invariant

subspace oft. Using an argument similar to the one given in the proof of Proposition 12, it is not
hard to verify that if¢ e trig(P, )", then

(H=IN2=2(p.M)( ) € trig(P, )", 8)
Note that trigP, )" is a codimension 1 subspace of tiy()". Furthermore, by Proposition 18,

INIZ+2(0, ) > |+ 2( . ),

for all dominant weightsu<\. Hence, by Proposition 17, there exists a unigye= trig(P, )"

such thatH e, = (|\|2+2(p,\)) . The first of the desired conclusions now follows by Proposi-
tion 16.

To prove the converse I&¢ with ¢ e trig(P)"V be an eigenfunction ok with eigenvaluex.
Let A e P* be a maximal element of su@p). Since trigP,-)" is a codimension 1 subspace of
trig(P,)", (8) implies thatx=||\||?+2(\,p). Consequently) is the unique maximal element of
supf¢). By Proposition 174 has multiplicity 1, and this gives the desired conclusion. [
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IV. A RECURSION FORMULA FOR THE EIGENFUNCTIONS OF H

In the present section we show how to explicitly compute the eigenfunctions of the
Olshanetsky—Perelomov Hamiltonian by using.gparametrized analog of the Freudenthal mul-
tiplicity formula. The generalized formula actually yields the eigenfunctignsof the related

operatorH. One should mention that the eigenfunctiefsfirst appeared in the investigations of
Heckman and Opdaff,who regard these functions as multivariable generalizations of the Jacobi
polynomials. The eigenfunctions @{ are, of course, obtained by multiplication with the gauge
factor F.

By way of motivation it will be useful to recall the context of the original Freudenthal
formula. Suppose thaR is reduced and ley, , A e P* denote a character of the corresponding
compact, simply connected Lie group. The Weyl character formula states that

Sy wSgriw)e 7

0TS, cwsgrwie ™ ©

wherep is the half-sum of the positive roots. Nowkf=1 for all ¢, then the potential term oft
is zero, and the gauge factbris nothing but theA-antisymmetric denominator @P). Further-
more, the numerator if@) is the uniqueW-antisymmetric eigenfunction af with highest-order
terme'®*P). Hence, by the intertwining relation described in Proposition 16, the Weyl character
formula is equivalent to the statement thgt is an eigenfunction of{ with eigenvalue X,\
+2p). This observation leads directly to the classical Freudenthal formula for the multiplicities of
X » and to the following generalization involving the parameters(See Ref. 18 for more details
regarding the Weyl and Freudenthal formulas.

Proposition 19: Let¢A=e”+2M<xnﬂe‘” be the eigenfunction df described in the state-
ment and proof of Theorem 1. Setting=nl and n,=0 for v\, the remaining coefficients n
u<A\, are given by the following recursion formula

(It plP =l pl?n,=2 2 2, Ka(apt iy - (10
Proof: Rewriting
Acmer 11 1-em),
one obtains

e*ia
a‘l_e—la

H=—A-iVp-2i X kK

+

Va.

aeR

Let trig((P)) denote the vector space of formal power seigs. pc#e‘“. Since elements of
trig(P) are finitely supported sums, one has a well-defined multiplication operatio(fRjig

Xtrig(P)—trig((P)). Thus, setting the domain 61 to be trig(P), one can extend the operator’s
coefficient ring and write

H=—A-iVp-2i 2 2 ke '*Va.
+ j=1

aeR

However, because of Proposition 11 one can take the codoméintofe trig(P) rather than all
of trig((P)). Acting with the right-hand side of the latter equation ¢y, collecting like terms,
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and using the fact thap, is an eigenfunction with eigenvalue\(\ +2p) immediately yields
(10). O

It is important to remark that by Proposition 18 the coefficient pfappearing in(10) is never
zero. Consequently10) can indeed be used as a recursive formula for the coefficigntOne
should also remark that th&/ symmetry of ¢», means that it suffices to use formula0) to
calculaten,, with e P™.
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