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RANK-BASED ATTACHMENT LEADS TO POWER LAW GRAPHS∗

JEANNETTE JANSSEN† AND PAWE�L PRA�LAT‡

Abstract. We investigate the degree distribution resulting from graph generation models based
on rank-based attachment. In rank-based attachment, all vertices are ranked according to a ranking
scheme. The link probability of a given vertex is proportional to its rank raised to the power −α,
for some α ∈ (0, 1). Through a rigorous analysis, we show that rank-based attachment models lead
to graphs with a power law degree distribution with exponent 1 + 1/α whenever vertices are ranked
according to their degree, their age, or a randomly chosen fitness value. We also investigate the case
where the ranking is based on the initial rank of each vertex; the rank of existing vertices changes
only to accommodate the new vertex. Here, we obtain a sharp threshold for power law behavior.
Only if initial ranks are biased towards lower ranks, or chosen uniformly at random, do we obtain
a power law degree distribution with exponent 1 + 1/α. This indicates that the power law degree
distribution often observed in nature can be explained by a rank-based attachment scheme, based on
a ranking scheme that can be derived from a number of different factors; the exponent of the power
law can be seen as a measure of the strength of the attachment.
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1. Introduction. Many self-organizing networks such as the web graph have a
degree distribution that follows a power law: the proportion of vertices of degree k
is proportional to k−γ , for some exponent γ usually observed to be between 2 and 3.
The term scale-free networks, first coined in [2], is often used to describe such graphs.
The occurrence of power law degree distributions in a graph is often explained by
a model based on the principle of preferential attachment (PA). In the original PA
model proposed by Barabási and Albert [2], new vertices join a graph one by one, and
each new vertex chooses a predetermined number of neighbors at random, so that the
probability that a vertex is chosen as a neighbor (its link probability) is proportional
to its degree. Analysis shows that this model indeed generates power law graphs with
high probability (whp), where the exponent of the power law equals 3 [2, 4]. More
general PA models, such as the ones proposed and analyzed in [1] and [8] allow for the
creation of edges between existing vertices and the deletion of edges and vertices. The
power law of the degree distribution in this case depends on the probabilities with
which various kinds of steps (edge addition, vertex addition, deletion) are taken. By
varying these probabilities, any exponent in the range (2,∞) can be obtained. In [5],
[3], and [7], the preferential attachment with fitness is studied, in which the degree of
a vertex is scaled by its individual fitness factor to determine its attractiveness.

It is tempting to conjecture that the exponent of the power law can be controlled
by varying the strength of PA. Precisely, the link probability could be proportional to
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RANK-BASED ATTACHMENT 421

the degree raised to a power α; the hope is that the exponent of the power law would
be a function of α. This would give a more natural way to fit the model to real-life
data rather than that given by the generalized addition/deletion models: the ratio of
edge vs. vertex addition steps may well be dictated by considerations about the data
that are independent of the power law. Unfortunately, as pointed out in [13], this
approach does not work. Only the case where α = 1 (i.e., the standard PA model)
leads to a power law degree distribution. If α < 1 (weak PA), the degree distribution
is a stretched exponential, while if α > 1 (strong PA), the graph will be close to a
star, with one vertex adjacent to almost all other vertices.

In this paper, we show that the approach outlined above does give the proposed
results if the PA is based on a ranking of the vertices. In other words, the vertices
are ranked from 1 to n according to their degree (so the vertex with highest degree
has rank 1, etc.), and the link probability of a given vertex is proportional to its rank,
raised to the power −α for some α ∈ (0, 1); we will refer to α as the attachment
strength. (Negative powers are chosen since a low value for rank should result in
a higher link probability.) Then, whp, the resulting graph will have a power law
with exponent 1 + 1/α. The rank-based approach was first proposed by Fortunato,
Flammini, and Menczer in [9], and the occurrence of a power law was postulated
based on simulations.

In [9], the attachment strength α is allowed to be any positive real number.
However, if α > 1, then only a vanishingly small proportion of all vertices have any
acquired links at all. This is easy to show for the scenario where vertices are ranked
according to age. We feel confident that the same holds for the other ranking schemes
that lead to power law degree distributions. Since a scenario where almost all vertices
have the minimum degree does not correspond to a typical self-organizing network,
we have limited our analysis to the case where α ∈ (0, 1).

As we will show, rank-based attachment leads to power law graphs for a variety
of different ranking schemes. One obvious ranking scheme is to rank vertices by age
(the old get richer); we show that this leads to a power law with the same exponent
1 + 1/α. A more general graph model with rank-based attachment based on ranking
according to age is the protean graph model, which was proposed and explored by
�Luczak and Pra�lat [14], Pra�lat and Wormald [17], and Pra�lat [16]. It is also discussed
in [9] and [10]. In contrast, in this paper we also consider an inverse age ranking
scheme, where younger vertices are ranked higher. As can be expected, this scheme
is not likely to lead to a heavy tail degree distribution: whp, the maximum degree is
of order logn, where n is the total number of vertices.

In [9], a ranking scheme based on an external prestige label for each vertex is
given, and it is shown through a heuristic analysis and simulations that this scheme
also leads to power law graphs, with the same exponent. Precisely, each vertex at
its birth is assigned a randomly chosen fitness � ∈ (0, 1), and vertices are ranked
according to their prestige label. As argued below, since the ranking is based only
on the relative values of the fitness values, the distribution according to which � is
chosen is irrelevant (all distributions give equivalent graph generation processes).

In order to allow for a different distribution of “prestige”over the vertices, we also
considered a random ranking scheme. Here, each vertex is assigned an initial rank
according to a given distribution. We consider distributions of the following form.
Let Ri be the initial rank of a vertex born at time i. Then P(Ri ≤ k) = (k/i)s. First,
we show that if s = 1, then the situation is similar to the one described previously,
and vertices with initial rank Ri exhibit behavior as if they had received fitness Ri/i.
Thus, we obtain a power law graph.
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422 JEANNETTE JANSSEN AND PAWE�L PRA�LAT

Next, we consider the case where s > 1, so the rank of new vertices is biased
towards the lower ranks (note that low rank refers to a vertex with high value of
Ri). In this case, whp the rank of a vertex will remain close to its original value
throughout the process, so the behavior is similar to the case of ranking according to
age, and we obtain a power law graph. If s < 1, so initial ranks are biased towards the
higher ranks, then we show that vertices tend to drift towards the lower ranks, and
the behavior is similar to that of ranking according to inverse age, where no power
law is likely to occur. Thus, the value of s = 1 gives a sharp threshold for power law
behavior of the degree distribution.

These results suggest an explanation for the power law degree distribution often
observed in real-life networks such as the web graph, protein interaction networks, and
social networks. The growth of such networks can be seen as governed by a rank-based
attachment scheme, based on a ranking scheme that can be derived from a number
of different factors such as age, degree, or fitness. The exponent of the power law is
independent of these factors, but is rather a consequence of the attachment strength.
In addition, rank-based attachment accentuates the difference between higher ranked
vertices: the difference in link probability between the vertices ranked 1 and 2 is much
larger than that between the vertices ranked 100 and 101. This again corresponds to
our intuition of what constitutes a credible mechanism for link attachment.

In order to establish the right attachment strength to model a given real-life
network we should consider the following. In order to imitate a power law degree
distribution with exponent γ (that is, the proportion of vertices of degree k is roughly
proportional to k−γ), the attachment strength α should be set so that 1 + 1/α = γ,
so α = 1/(γ − 1). For the web graph the distribution of total degrees is, at this
moment, unknown. However, the number of vertices of in-degree k decreases roughly
as k−2.1, while the fraction of vertices of out-degree k can be approximated by k−2.7

(cf. Broder et al. [6]). Thus, if the total degree of the graph is close to the distribution
of the in-degree, then the appropriate attachment strength for a rank-based model is
α ∼ 0.91.

2. Definitions. In this section, we formally define the graph generation model
based on rank-based attachment, which produces a sequence {Gt}∞t=1 = {(Vt, Et)}∞t=1

of undirected graphs, where t denotes time. Our model has two fixed parameters:
initial degree d ∈ N , and attachment strength α ∈ (0, 1). At each time t, each vertex
v ∈ Vt has rank r(v, t) ∈ [t] (we use [t] to denote the set {1, 2, . . . , t}). To obtain
a proper ranking, the rank function r(·, t) : Vt → [t] is a bijection for all t, so every
vertex has a unique rank. In agreement with the common use of the word “rank,”high
rank refers to a vertex v for which r(v, t) is small: the highest ranked vertex is ranked
number one, so it has rank equal to 1; the lowest ranked vertex in Vn has rank n.
The initialization and update of the ranking is done according to a ranking scheme.
Various ranking schemes are considered in this paper; we first give the general model,
and then list the ranking schemes.

For any 0 < α < 1, we define the function gα : N → R:

(1) gα(t) =

t∑
j=1

j−α =
t1−α

1 − α
+ O(1) .

Let G1 = (V1, E1) = ({v1}, ∅) be a fixed initial graph with a single vertex with
d loops, and rank r(v1, 1) = 1. For t > 1 we form Gt from Gt−1 according to the
following rules:
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RANK-BASED ATTACHMENT 423

• Add a new vertex vt together with d edges from vt to existing vertices chosen
randomly with weighted probabilities. The edges are added in d substeps. In
each substep, one edge is added, and the probability that vi is chosen as its
endpoint (the link probability) equals r(vi, t− 1)−α/gα(t− 1).

• Update the ranking function r(·, t) : Vt → [t] according to the ranking scheme.

Our model allows for loops and multiple edges; there seems to be no reason to
exclude them. However, there will not in general be very many of these, so excluding
them can be shown to not affect our conclusions in any significant way.

We now define the different ranking schemes that are considered in this paper.

• Ranking by age. The vertex added at time t obtains a rank t and retains this
rank. That is, r(vi, t) = i for i ∈ [t].

• Ranking by inverse age. The vertex added at time t obtains a rank 1, but its
rank shifts by one each time a new vertex is added. That is, r(vi, t) = t− i+1
for i ∈ [t].

• Ranking by random labeling. The vertex added at time t obtains a label
l(vt) ∈ (0, 1) chosen uniformly at random. Vertices are ranked according to
their labels: if l(vi) < l(vj), then r(vi, t) < r(vj , t).

• Random ranking. The vertex added at time t obtains an initial rank Rt which
is randomly chosen from [t] according to a prescribed distribution. Formally,
let F : [0, 1] → [0, 1] be any cumulative distribution function. Then for all
k ∈ [t],

P(Rt ≤ k) = F (k/t).

• Ranking by degree. After each time step t, vertices are ranked according to
their degrees in Gt, and ties are broken by age. Precisely, if deg(vi, t) >
deg(vj , t), then r(vi, t) < r(vj , t), and if deg(vi, t) = deg(vj , t), then r(vi, t) <
r(vj , t) if i < j.

In the rest of the paper, {Gt}∞t=1 is assumed to be a graph sequence generated
by the rank-based attachment model, with the ranking scheme as defined in each
particular section, and d and α are assumed to be the initial degree and attachment
strength parameters of the model as defined above. The results are generally about the
degree distribution in Gn, where the asymptotics are based on n tending to infinity.

We will use the stronger notion of wep in favor of the more commonly used
asymptotically almost surely (aas), since it simplifies some of our proofs. We say that
an event holds with extreme probability (wep), if it holds with probability at least
1 − exp(−Θ(log2 n)) as n → ∞. Thus, if we consider a polynomial number of events
that each holds wep, then wep all events hold. To combine this notion with asymptotic
notations such as O() and o(), we follow the conventions in [19].

3. Ranking by degree. The first ranking scheme we consider is the “ranking”
version of PA: vertices with higher degree are ranked higher. That is, the rank function
r(·, t) : Vt → [t] is determined by the degree sequence at time t: if deg(vi, t) >
deg(vj , t), then r(vi, t) < r(vj , t); otherwise (that is, if deg(vi, t) = deg(vj , t)) r(vi, t) <
r(vj , t) if i < j. In contrast to all other ranking schemes, this means that the rank of
a vertex can change by more than one in each step; if the degree of a vertex changes
from k to k + 1, then the change in its rank can be as large as the total number of
vertices of degree k and k + 1.

In this section only, in order to omit tedious details, we assume that d = 1. The
general case can be studied in a similar way.
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424 JEANNETTE JANSSEN AND PAWE�L PRA�LAT

For all t ≥ 1 and k ≥ 1, let Yk(t) denote the number of vertices of degree k in Gt,
and let Y≤k(t) = Y1(t) + · · · + Yk(t). (Note that Y0(t) = 0 for all t ≥ 1.) Note that,
at time t, the vertices of degree k have ranks starting at t−Y≤k(t) + 1, and ending at
t− Y≤k−1(t). When the edge vjvt+1 is added at time t+ 1, the change in the Yi’s has
contributions from two sources, namely, the change in degree of vertex vj , and the
addition of vertex vt+1 of degree 1. Note that the probability that a vertex of degree
k receives a link in step t + 1 equals

t−Y≤k−1(t)∑
j=t−Y≤k(t)+1

j−α

gα(t)
=

gα(t− Y≤k−1(t)) − gα(t− Y≤k(t))

gα(t)
.

Thus, the following equations express the expected change in each time step:

E(Y1(t + 1) − Y1(t) | Gt) = 1 − gα(t) − gα(t− Y1(t))

gα(t)

and similarly, for all k ≥ 2,

E(Yk(t + 1) − Yk(t) | Gt) =
gα(t− Y≤k−2(t)) − gα(t− Y≤k−1(t))

gα(t)

−gα(t− Y≤k−1(t)) − gα(t− Y≤k(t))

gα(t)
.

(Note that Yk(t) = 0 for all k > t.)
To analyze the behavior of the Yi, we use the differential equations method (see

[18] for a general survey). First, by interpolating variables Yi(t) by real functions and
presuming that the changes in the functions are equal to their expected changes, the
equations above can be turned into differential equations. The nature of the limiting
behavior as n → ∞ can be emphasized by considering real functions zi(x) to model the
behavior of 1

nYi(xn). Using the approximation (1), we obtain a system of differential
equations

z′1(x) =

(
1 − z1(x)

x

)1−α

,

z′k(x) =

(
1 −

∑k−2
j=1 zj(x)

x

)1−α

− 2

(
1 −

∑k−1
j=1 zj(x)

x

)1−α

,

+

(
1 −

∑k
j=1 zj(x)

x

)1−α

for k ≥ 2 ,

where z0(x) = 0 for all x. The initial conditions are zk(0) = 0 for all k (or more
precisely, the right limit as x approaches zero equals zero). The solutions of these
equations are zk(x) = ckx, where the constants ck are defined below. Let Ck =

1 −∑k
j=1 cj =

∑∞
j=k+1 cj , so ck = Ck−1 − Ck. Solving the differential equations one

by one, we get the following recurrence:

C0 = 1,

C1 = 1 − C1−α
1 ,

Ck−1 − Ck = C1−α
k−2 − 2C1−α

k−1 + C1−α
k for k ≥ 2 .(2)
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RANK-BASED ATTACHMENT 425

The recurrence (2) is telescoping, so it can be simplified. Indeed,

Ck(1 + C−α
k ) = C1−α

k−1 − C1−α
k−2 + Ck−1(1 + C−α

k−1)

= C1−α
k−1 − C1−α

1 + C2(1 + C−α
2 )

= C1−α
k−1 .

Thus, C0 = 1 and Ck + C1−α
k = C1−α

k−1 for k ≥ 1.
Lemma 3.1. Let the sequence (Ck : k ≥ 0) be recursively defined so that C0 = 1,

and Ck is the unique positive solution to the equation

(3) Ck + C1−α
k = C1−α

k−1 .

Then Ck = cαk
−1/α(1 + o(1)), where cα =

(
1−α
α

)1/α
.

Proof. Note first that the function f(x) = x + x1−α is concave and strictly
increasing when x > 0, so Ck is well defined and decreasing. Let Bk = Ckk

1/α. We
will show that Bk converges to a constant when k → ∞. Substituting the expression
for Bk into (3) we obtain the following recurrence relation:

B1−α
k +

Bk

k
=

(
1 +

1

k − 1

) 1−α
α

B1−α
k−1 .

Consider the function fk : [0,∞) → R given by

fk(x) = x1−α +
x

k
−
(

1 +
1

k − 1

) 1−α
α

x1−α.

The roots of the function fk are x = 0 and x = xk, where

xk =

(
k

(
1 +

1

k − 1

) 1−α
α

− k

) 1
α

.

Using the Taylor expansion of (1 + 1
k−1 )

1−α
α , and considering xα

k , we can show that

xk is a decreasing sequence for k ≥ 2, with limit
(
1−α
α

)1/α
= cα.

It is straightforward to verify that f ′
k(xk) > 0. Since fk(xk) = 0 and x1−α + x/k

is an increasing function of x, it follows that Bk−1 > xk implies that Bk < Bk−1, and
Bk−1 < xk implies that Bk > Bk−1. Using the recursive expression for Bk, we obtain
that

fk(Bk) = B1−α
k +

Bk

k
−
(

1 +
1

k − 1

) 1−α
α

B1−α
k

=

(
1 +

1

k − 1

) 1−α
α

(B1−α
k−1 −B1−α

k ).(4)

Since fk is increasing, x > xk if and only if fk(x) > fk(xk). Thus, if Bk−1 > xk,
then Bk−1 > Bk, so fk(Bk) > 0 and thus Bk > xk > xk+1 > cα. Therefore, if there
exists a value k0 > 2 so that Bk0−1 > xk0 , then {Bk : k ≥ k0} is monotone decreasing
and bounded from below by cα. If no such k0 exists, then Bk−1 ≤ xk for all k ≥ 2,
and thus Bk is monotonically increasing and bounded from above by a converging
sequence. In both cases, the sequence Bk converges.
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From (4), we can then conclude that fk(Bk) → 0, and thus Bk → xk → cα as
k → ∞.

Since ck = Ck−1 −Ck, the above lemma implies that ck = (1/α)cαk
−(1+1/α). We

will see in the rest of this section that the variables Yk indeed follows the behavior
suggested by the discussion above, as expressed in the following theorem.

Let

K = K(n) =
nα/(4α+2)

log2α/(2α+1) n
.

Theorem 3.2. Wep for all k, 1 ≤ k ≤ K and t, 1 ≤ t ≤ n,

Yk(t) = ckn(1 + o(1)) = (1/α)cαk
1/α+1n(1 + o(1)).

Note that if the random variable Yk(t) is smaller than ckt at some point of the
process, then the probability that Yk(t) increases in the next step will go up, so the
value will be increasing with a higher rate. Likewise, if Yk > ckt, then the probability
that Yk(t) stays equal goes up, so Yk(t) tends to stay at the same value for longer.
Thus, these random variables have a certain “self-repairing” quality, so we expect
them to behave well.

This suggests that, in order to show a concentration of Yk, the differential equa-
tions method can be used. In this case, the full force of this method need not be used,
but it suffices to use martingales, or bound the variables by stochastically dominat-
ing the behavior using binomially distributed variables—these can be considered as
primitive versions of the differential equations method. We present a technique based
on a well-known Azuma–Hoeffding inequality (see, for example, Lemma 4.2 in [18]).

Lemma 3.3. Let X0, X1, . . . , Xt be a supermartingale such that |Xj−Xj−1| ≤ cj,
1 ≤ j ≤ t, for constants cj. Then, for any ξ > 0

P(Xt −X0 ≥ ξ) ≤ exp

(
− ξ2

2
∑

c2j

)
.

To avoid tedious repetition, we present the full proof of Theorem 3.2 for variable
Y1 only. A proof sketch will be given for the other cases.

Theorem 3.4. Wep for all t, 1 ≤ t ≤ n,

Y1(t) = c1t + O(
√
n log n) .

Proof. Let X(t) = Y1(t) − c1t. Since we expect Y1(t) to stay around c1t, we thus
expect X(t) to be a random variable close to a martingale. For any two time instances
U < T , let us define event A(U, T ) as the conjunction of the following:

(i) X(U) ∈ [0, 1),
(ii) X(t) is nonnegative at time t for all U < t < T , and
(iii) X(T ) ≥ ξ =

√
n logn.

Now we estimate the probability that A(U, T ) holds for some fixed U, T , 1 ≤ U ≤
T ≤ n. Let T1 be the smallest t > U so that X(t) < 0 or t = T . For all t so that
U ≤ t < T1,

X(t+1)−X(t) =

{
1 − c1 with probability (1 − c1 −X(t)/t)1−α ≤ (1 − c1)1−α = c1,

−c1 otherwise.
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RANK-BASED ATTACHMENT 427

So, for U ≤ t ≤ T1,

E(X(t + 1) −X(t) | X(t)) ≤ (1 − c1)c1 − c1(1 − c1) = 0 .

Thus, X(U), X(U + 1), . . . , X(T1) is a supermartingale where |X(U)| ≤ 1 and |X(t+
1) −X(t)| ≤ 1. So from Lemma 3.3 it follows that

P
(
X(T1) ≥ ξ

) ≤ exp(−ξ2/2n) = exp(−Θ(log2 n)).

Since condition (ii) is equivalent to T1 = T , we have

P(A(U, T )) ≤ P(T1 = T )P(X(T1) ≥ ξ|T = T1),

and by the previous argument the last probability is exponentially small.
Similarly, we can define events B(U, T ), applying conditions (i), (ii), and (iii) to

−X(t). (So condition (i) of B(U, T ) is that X(U) ∈ (−1, 0], etc.) It can then be shown
in an analogous way that P(B(U, T )) ≤ exp(−Θ(log2 n)) for any U, T, 1 ≤ U ≤ T ≤ n.
Since all events have small probability, wep none of them occur. Indeed,

E

⎛
⎝∑

U,T

IA(U,T ) +
∑
U,T

IB(U,T )

⎞
⎠ = O(n2) exp(−Θ(log2 n)) = exp(−Θ(log2 n)),

and this fact follows from Markov’s inequality. Given that none of the events occur,
the assertion holds deterministically.

We can repeat the same argument for all Yk’s (2 ≤ k ≤ K). Since the error terms
accumulate, in order to get an asymptotic behavior K has to satisfy the following
equation:

K
√
n logn = K−1−1/αn/ logn = o(cKn) .

Note that K(n) as defined earlier satisfies this equation. This completes the sketch
of the proof of Theorem 3.2.

4. Deterministic ranking schemes. In this section we consider two ranking
schemes that are deterministic, that is, the rank of a vertex r(vi, t) does not depend
on Gt, but is completely determined by i and t. In this case, the event that vi receives
a link in time step t is independent from the events that vi receives a link in any other
time step. Thus, deg(vi, n) is the sum of n − i independent Bernouilli trials with
predetermined probabilities. The general theory about such sums can be directly
applied to obtain the results in this section.

4.1. Ranking by age. Ranking by age means that older vertices have a lower
rank. Precisely, the rank of a vertex equals the time it is born, that is, r(vi, t) = i
for all 1 ≤ i ≤ t. As mentioned in the introduction, rank-based attachment with
ranking by age is a special case of the growing protean graph model defined in [17].
The growing protean graph model is more general since it permits deletion of vertices.
Theorems 5.1 and 5.2 in [17] give results for the degree of a vertex that apply to our
model. However, the next theorem gives stronger concentration results since it is
adopted to the special case that no deletion occurs.

Theorem 4.1. For ranking by age, the expected degree of a vertex vi, i ∈ [n], is
given by

Edeg(vi, n) =
(
1 + O(n−α(1−α)/3)

)
d

1 − α

α

((n
i

)α
+

2α− 1

1 − α

)
.
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428 JEANNETTE JANSSEN AND PAWE�L PRA�LAT

Moreover, if i < n/ log3/α n, then wep

deg(vi, n) =
(
1 + O(log−1/2 n)

)
d

1 − α

α

(n
i

)α
.

Proof. Let X(t, j) be a random indicator variable for an event that vertex vt joins
vi at substep j of step t (t ∈ [n], j ∈ [d]),

P(X(t, j) = 1) = 1 − P(X(t, j) = 0) =

{
i−α/gα(t) for t > i,

0 otherwise.

The number of neighbors vt of vi such that t > i is a random variable can be expressed
as a sum

∑n
t=i+1

∑d
j=1 X(t, j) of independent random variables. Since the number of

neighbors vt of vi such that t < i is always d, then

deg(vi, n) = d +
n∑

t=i+1

d∑
j=1

X(t, j) .

Thus, using (1),

Edeg(vi, n) = d + d

n∑
t=i+1

i−α

gα(t− 1)
= d + di−α

n∑
t=i+1

1 − α

t1−α + O(1)
.

Assuming that i ≥ nα/3, we get that

Edeg(vi, n) = d +
(
1 + O(nα(α−1)/3)

)
d(1 − α)i−α

n∑
t=i+1

tα−1

= d +
(
1 + O(nα(α−1)/3)

)
d

1 − α

α
i−α

(
nα − iα + O(iα−1)

)
=
(
1 + O(nα(α−1)/3)

)
d

1 − α

α

((n
i

)α
+

2α− 1

1 − α

)
.

A similar calculation can be done for i < nα/3, noting the fact that

Edeg(vi, n) = O(nα/3) + di−α
n∑

t=nα/3

1 − α

t1−α + O(1)
.

In order to finish the proof, we use the fact that a sum of independent random
variables with large enough expected value is not too far from its mean (see, for
example, Theorem 2.8 in [12]). From this it follows that, if ε ≤ 3/2, then

(5) P (| deg(vi, n) − Edeg(vi, n)| ≥ εEdeg(vi, n)) ≤ 2 exp

(
−ε2

3
Edeg(vi, n)

)
.

Note that Edeg(vi, n) = Ω(log3 n) for i < n/ log3/α n. If we let ε = logn/
√
Edeg(vi, n)

in (5), we get that wep deg(vi, n) = (1+O(ε))Edeg(vi, n), and the assertion follows.
Observe that, for small i, the expected degree of a vertex vi is dominated by the

factor d1−α
α

(
n
i

)α
. Consequently, the degrees are distributed according to the power

law. More specifically, let Zk = Zk(n, d, α) denote the number of vertices of degree k
and Z≥k =

∑
l≥k Zl. The following theorem shows that the Z≥k follows a power law
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RANK-BASED ATTACHMENT 429

with exponent 1/α. Since the Z≥k represents the cumulative degree distribution, this
implies that the degree distribution follows a power law with exponent 1 + 1/α.

Theorem 4.2. Let 0 < α < 1 and d ∈ N, k ≥ log4 n. Then wep

Z≥k =
(
1 + O(log−1/3 n)

)
n

(
1 − α

α
· d
k

)1/α

.

Proof. This theorem is a simple consequence of Theorem 4.1. One can show that
wep each vertex vi such that

i ≥ (1 + log−1/3 n
)
n

(
1 − α

α
· d
k

)1/α

has fewer than k neighbors, and each vertex vi for which

i ≤ (1 − log−1/3 n
)
n

(
1 − α

α
· d
k

)1/α

has more than k neighbors.

4.2. Ranking by inverse age. To contrast the other schemes, we considered
a scheme where new vertices are ranked the highest. Precisely, r(vi, t) = t − i +
1. Intuitively, this scheme breaks the effect of “cumulative advantage,” since no
vertex has high rank long enough to accumulate a high degree. The results from this
section give evidence that, indeed, this scheme does not lead to a power law degree
distribution.

Note that

Edeg(v1, n) = d + d

n∑
t=2

(t− 1)−α

gα(t− 1)
= (1 + o(1))d(1 − α)

n−1∑
t=1

1

t

= (1 + o(1))d(1 − α) log n,

and it is also not hard to see that Edeg(vi, n) > Edeg(vj , n) for 1 ≤ i < j ≤ n. Thus
Edeg(vi, n) < (1+o(1))d(1−α) logn for all i ∈ [n]. Again deg(vi, n) can be expressed
as a sum of independent 0 − 1 random variables, but since the expected degree is so
low we cannot hope for concentration; the Chernoff bound tells us only that wep the
maximum degree of Gn is Edeg(v1, n) + O(log n).

We also show that the number of vertices with expected degree at least k decreases
exponentially with k. This suggests that the degree distribution does not follow a
power law.

Theorem 4.3. Let 0 < α < 1, d ∈ N, and i = i(n) ∈ [n]. The expected degree of
a vertex vi satisfies the following inequalities:

Edeg(vi, n) ≥ d + (1 + o(1))d(1 − α)α log(n− i),

Edeg(vi, n) ≤ d + (1 + o(1))d(1 − α) log(n− i) .

Proof. Define

f(i) =

n−i−1∑
t=0

1

(t + 1)α(t + i)1−α
.

D
ow

nl
oa

de
d 

07
/2

1/
16

 to
 1

29
.1

73
.7

4.
49

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

430 JEANNETTE JANSSEN AND PAWE�L PRA�LAT

Then, using the approach as in Theorem 4.1, we obtain

Edeg(vi, n) = d + d

n∑
t=i+1

(t− i)−α

gα(t− 1)

= d + (1 + o(1))d(1 − α)
n∑

t=i+1

(t− i)−α

(t− 1)1−α

= d + (1 + o(1))d(1 − α)f(i)

for any i ∈ [n]. The assertion follows from the fact that

f(i) ≥
∫ n−i

0

1

(x + 1)α(x + i)1−α
dx =

∫ n−i

0

(
1 +

i− 1

x + 1

)α
1

x + i
dx

≥
∫ n−i

0

(
1 + α

i− 1

x + 1

)
1

x + i
dx =

∫ n−i

0

(
1 − α

x + i
+

α

x + 1

)
dx

= (1 − α) log(n/i) + α log(n− i + 1) ≥ α log(n− i)

and

f(i) ≤ 1 +

∫ n−i−1

0

1

(x + 1)α(x + i)1−α
dx = 1 +

∫ n−i−1

0

(
x + 1

x + i

)1−α
1

x + 1
dx

≤ 1 +

(
n− i

n− 1

)1−α

log(n− i) ≤ log(n− i) + 1 .

Corollary 4.4. Let 0 < α < 1, d ∈ N,

#{vi : Edeg(vi, n) ≥ k} ≥ n− (1 + o(1)) exp

(
k − d

d(1 − α)α

)
,

#{vi : Edeg(vi, n) ≥ k} ≤ n− (1 + o(1)) exp

(
k − d

d(1 − α)

)
.

5. Random ranking. In the two ranking schemes discussed in this section, the
initial rank r(vt, t) of a new vertex vt is a random variable Rt ∈ [t]. The new rank
function is simply formed by inserting the new vertex into the existing ranking, so for
all j ∈ [t − 1], r(vj , t) = r(vj , t− 1) if r(vj , t− 1) < Rt and r(vj , t) = r(vj , t− 1) + 1
otherwise. The difference in the two schemes lies in the way that Rt is chosen: in the
first scheme, the rank of each vertex is based on a fixed but randomly chosen label,
while in the second scheme, Rt is randomly drawn from [t].

5.1. Ranking by random labeling. In this scheme, each new vertex vt obtains
a label l(vt) ∈ (0, 1) chosen uniformly at random. (Note that the probability that
two vertices receive the same label is zero.) Vertices are ranked by their labels: if
l(vi) < l(vj), then r(vi, t) < r(vj , t).

First, we note that the process of choosing a label uniformly at random from
(0, 1) does not imply loss of generality. Namely, suppose that the labels are chosen
from R according to any probability distribution with a strictly increasing cumulative
distribution function F . Since F is an increasing function, labels F (l(vi)) lead to
exactly the same ranking as labels l(vi). But P(F (l(vi)) ≤ x) = P(l(vi) ≤ F−1(x)) =
F (F−1(x)) = x, so the values of labels F (l(vi)) are chosen from (0, 1) according to
the uniform distribution.
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Since the arguments used here are largely similar to those used in section 4
(namely, applying the Chernoff bounds for a sum of independent random variables),
we omit technical details.

Theorem 5.1. Let 0 < α < 1, d ∈ N, i = i(n) ∈ [n], and 0 < l(vi) = l(vi)(n) <
1. If i · l(vi) > log3 n, then the expected degree of a vertex vi that obtained a label l(vi)
is given by

Edeg(vi, n) = d + (1 + O(log−(1−α)/2 n))d(1 − α)l(vi)
−α log(n/i) ,

and wep

deg(vi, n) = Edeg(vi, n) + O(
√

Edeg(vi, n) logn) .

Proof. Note that r(vi, t) is the sum of independent indicator variables of the
events l(vj) ≤ l(vi) for i < j ≤ t. Using large deviation inequalities and the fact that
i · l(vi) > log3 n, we get that wep for all i < t ≤ n,

t · l(vi)(1 − log−1/2 n) ≤ r(vi, t) ≤ t · l(vi)(1 + log−1/2 n) .

Thus,

Edeg(vi, n) = d + d

n∑
t=i+1

(
t · l(vi)(1 + O(log−1/2 n))

)−α

gα(t− 1)

= d + (1 + O(log−(1−α)/2 n))d(1 − α)l(vi)
−α

n∑
t=i+1

1

t

= d + (1 + O(log−(1−α)/2 n))d(1 − α)l(vi)
−α log(n/i) .

Since deg(vi, n) can be expressed as a sum of independent random variables, we can
use the Chernoff bound to show the concentration result.

Using the notation from section 4 we present the main result.
Theorem 5.2. Let 0 < α < 1 and d ∈ N, log3 n ≤ k ≤ nα/2/ log3α n. Then wep

Z≥k = (1 + o(1))n

(
d(1 − α)

k

)1/α

Γ

(
1

α
+ 1

)
.

Proof. From Theorem 5.1 and the fact that k ≥ log3 n, it follows that wep all
vertices vi such that i ≥ ik = k1/α log4 n and

l(vi) ≥ (1 + log−(1−α)/3 n)

(
d(1 − α) log(n/i)

k

)1/α

have fewer than k − d = (1 + o(1))k neighbors, and each vertex vi for which

l(vi) ≤ (1 − log−(1−α)/3 n)

(
d(1 − α) log(n/i)

k

)1/α

has more than k neighbors.
Let X+

i , X−
i , i ∈ [n], be a family of independent random variables such that

P(X+
i = 1) = 1−P(X+

i = 0) =

⎧⎨
⎩(1 + log−(1−α)/3 n)

(
d(1−α) log(n/i)

k

)1/α
for i ≥ ik,

1 otherwise,
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and

P(X−
i = 1) = 1−P(X−

i = 0) =

⎧⎨
⎩(1 − log−(1−α)/3 n)

(
d(1−α) log(n/i)

k

)1/α
for i ≥ ik,

0 otherwise.

Then, Z≥k can be bounded from below by X− =
∑n

i=1 X
−
i and from above by

X+ =
∑n

i=1 X
+
i . Thus,

EZ≥k = O(k1/α log4 n) + (1 + o(1))

n∑
i=1

(
d(1 − α) log(n/i)

k

)1/α

= O(k1/α log4 n) + (1 + o(1))

(
d(1 − α)

k

)1/α

n

∫ 1

0

(log(1/x))
1/α

dx ,

and making the substitution u = log(1/x), we get

EZ≥k = O(k1/α log4 n) + (1 + o(1))

(
d(1 − α)

k

)1/α

n

∫ ∞

0

u1/αe−udu

= (1 + o(1))n

(
d(1 − α)

k

)1/α

Γ

(
1

α
+ 1

)
,

where Γ(x) denotes the (complete) gamma function. Since the gamma function is an
extension of the factorial, and is increasing for x ≥ 2, Γ(1/α + 1) is a constant which
lies between 
1/α�! and �1/α
!.

Since k ≤ nα/2/ log3α n, EZ≥k = Ω(
√
n log3 n). Using large deviation inequalities

one more time, we can show that whp Z≥k = (1 + o(1))EZ≥k. This finishes the proof
of the theorem.

5.2. Randomly chosen initial rank. Next, we consider the case where the
rank of the new vertex vt, Rt = r(vt, t), is chosen at random from [t]. As described
earlier, the ranks of existing vertices are adjusted accordingly. In contrast to the
previous scheme, in this case it now matters according to which distribution Rt is
chosen. We make the assumption that all initial ranks are chosen according to a similar
distribution. In particular, we fix a continuous bijective function F : [0, 1] → [0, 1],
and for all integers 1 ≤ k ≤ t, we let

P(Rt ≤ k) = F

(
k

t

)
.

Thus, F represents the limit, for t going to infinity, of the cumulative distribution
functions of the variables Rt. To simplify the calculations while exploring a wide array
of possibilities for F , we assume F to be of the form

F (x) = xs, where s > 0.

A special case is the case s = 1, where the distribution of each Rt is uniform. We
will see that this case is the threshold for a power law degree distribution; if s < 1,
then the probability that a new vertex receives a high rank (that is, a low value of
Rt) is enhanced, and thus we get behavior similar to that of age-based ranking, as
seen in subsection 4.1, including a power law degree distribution; if s > 1, then the
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probability that a new vertex receives a high rank is diminished, and we get behavior
similar to the inverse age ranking scheme described in subsection 4.2.

To study the degree of a given vertex vi in Gn under this ranking scheme, we
again use the differential equations method. Assume that vertex vi received an initial
rank Ri. Then r(vi, t), t > i, is a random variable, which in time step t increases
by one precisely when Rt ≤ r(vi, t − 1). Since the latter happens with probability
F (r(vi, t− 1)/t), we have that

(6) E(r(vi, t) − r(vi, t− 1) | Gt) =

(
r(vi, t− 1)

t

)s

.

Using a real function z(x) to model the behavior of r(vi, xn)/n, the above equation
leads to the following differential equation for z:

(7) z′(x) =

(
z(x)

x

)s

,

with the initial condition z(i/n) = Ri/n.
If s = 1, the general solution is z(x) = Cx, C ∈ R, and the particular solution

is z(x) = Ri

i x. This suggests that a random variable r(vi, t) should be close to a

deterministic function Ri

i t. We will use martingales to show that this is indeed the
case.

Let Yt = r(vi,t)
t+1 for all i ≤ t ≤ n. The sequence {Yt : i ≤ t ≤ n} is a martingale

with respect to the random process {Gt}. Namely,

E(Yt | Yt−1) =
r(vi, t− 1) +

(
r(vi,t−1)

t

)
t + 1

=
r(vi, t− 1)

t
= Yt−1 .

In order to show a concentration for Yt, and thus for r(vi, t), we use a well-known
Azuma–Hoeffding inequality (see, for example, Lemma 4.1 in [18]).

Lemma 5.3. Let X0, X1, . . . , Xt be a martingale such that |Xj − Xj−1| ≤ cj,
1 ≤ j ≤ t, for constants cj. Then, for any α > 0

P(|Xt −X0| ≥ α) ≤ 2 exp

(
− α2

2
∑

c2j

)
.

Now, we are ready to state a concentration theorem.
Theorem 5.4. Let i = i(n) ∈ [n], Ri = Ri(n) such that 1 ≤ Ri ≤ i, and

R2
i /(i+1) > log4 n. If the vertex vi obtained an initial rank Ri, and l(vi) = Ri/(i+1),

then wep

t · l(vi)(1 − log−1/2 n) ≤ r(vi, t) ≤ t · l(vi)(1 + log−1/2 n)

for all t, i < t ≤ n.
Proof. Let Yt be a random variable defined as before. Note that l(vi) = Yi. It has

been shown that {Yt} is a martingale, and it is also easy to see that |Yt − Yt−1| ≤ 1
t .

Since

n∑
t=i

(
1

t

)2

=

∫ n

i

x−2dx + O(1) = O

(
1

i

)
,
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we can apply Lemma 3.3 with ct = 1
t and α = logn√

i
to obtain that wep |Yt − Yi| ≤ α.

So wep

Yt = Yi

(
1 + O

(
α

Yi

))
= l(vi)

(
1 + O

(
logn√
i · l(vi)

))
= l(vi)(1 + O(log−1 n)) .

Moreover, one can use a concept of a stopping time (see section 12.4 in [11]) to show
that wep all values of Yt, i ≤ t ≤ n, lie within the bounds given by the equation
above. This finishes the proof.

Since the proofs of Theorems 5.5 and 5.6 are almost the same as the proofs of
Theorems 5.1 and 5.2, we omit them stating the results only.

Theorem 5.5. Let 0 < α < 1, d ∈ N, i = i(n) ∈ [n], Ri = Ri(n) such that
1 ≤ Ri ≤ i. If the vertex vi obtained an initial rank Ri such that R2

i /(i + 1) > log4 n
and l(vi) = Ri/(i + 1), then the expected degree of vi is

Edeg(vi, n) = d + (1 + O(log−(1−α)/2 n))d(1 − α)l(vi)
−α log(n/i)

and wep

deg(vi, n) = Edeg(vi, n) + O(
√

Edeg(vi, n) logn) .

Theorem 5.6. Let 0 < α < 1 and d ∈ N, log3 n ≤ k ≤ nα/3/ log2α n. Then wep

Z≥k = (1 + o(1))n

(
d(1 − α)

k

)1/α

Γ

(
1

α
+ 1

)
.

Note that Theorems 5.2 and 5.6 suggest that the random ranking scheme with
uniform distribution behaves similarly to the random labeling scheme. However, the
upper bound values k for which the power law holds is lower in this case. This can
be explained by the fact that the eventual rank of a vertex is not always easy to
predict in this scheme. For example, assume that in the random labeling scheme, the
first vertex obtained a label of 1/2. Then its rank at time n is almost surely close to
its expected value of n/2. In the current scheme, if a vertex has initial rank Ri/2i,
then the expected rank at time n also equals n/2 but this rank is not concentrated.
Namely, the rank behaves like the proportion of white balls in Polya’s urn problem,
and thus r(v1, n)/n converges to a random variable with uniform distribution on [0, 1].

Next, we consider the case where s > 1. The general solution of the differential
equation (7) is z(x) = (x1−s+C)−1/(s−1). Thus, we expect r(vi, t) to be approximately
equal to nz(t/n) = (t1−s + c)−1/s−1. Note that, if t gets large, this function converges
to a constant. As we will see, the definition below captures the value of this constant.

(8) R∗
i =

(
R1−s

i − (i + 1)1−s
)−1/(s−1)

.

Theorem 5.7. For all i ≥ n1/2 logs+1 n, if vertex vi has initial rank Ri so that
n1/2 logs+1 n ≤ Ri ≤ (1 − log1−s n)i, then wep

r(vi, t) = R∗
i

(
1 +

(
R∗

i

t + 1

)s−1
) −1

s−1

(1 + O(log−1 n)).

The proof uses the supermartingale method of Pittel, Spencer, and Wormald [15],
as described in [18, Corollary 4.1]. We need the following lemma.
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Lemma 5.8. Let G0, G1, . . . , Gn be a random process, and let Xt be a random
variable determined by G0, G1, . . . , Gt, 0 ≤ t ≤ n. Suppose that for some real β and
constants γt,

E(Xt −Xt−1 | G0, G1, . . . , Gt−1) < β

and

|Xt −Xt−1 − β| ≤ γt

for 1 ≤ t ≤ n. Then, for all α > 0,

P
(
for some t with 0 ≤ t ≤ n : Xt −X0 ≥ tβ + α

) ≤ exp

(
− α2

2
∑n

j=1 γ
2
t

)
.

Proof of Theorem 5.7. We transform r(vi, t) into something close to a martingale.
Consider the following real-valued function:

(9) H(x, y) = y1−s − (x + 1)1−s.

Let wt = (t, r(vi, t)), and consider the sequence of random variables (H(wt) : i ≤ t ≤
n). Note that H(i, Ri) = (R∗

i )1−s. We will show that wep H(t, r(vi, t)) is close to
H(i, Ri). The function H is chosen so that H(w) is constant along every trajectory
w of the differential equation (7).

Note that

grad H(wt) =
(−(1 − s)(t + 1)−s, (1 − s)r(vi, t)

−s
)
.

It follows from the choice of H , and can be checked using (6), that

E(wt+1 −wt | Gt) · grad H(wt) = 0.

Using the fact that Ri ≤ r(vi, t) ≤ t at all times, we can show that all second-order

partial derivatives of H evaluated at wt are O(R
−(s+1)
i ). Therefore,

(10) H(wt+1) −H(wt) = (wt+1 −wt) · grad H(wt) + O(R
−(s+1)
i ).

Taking the expectation of (10) conditional on Gt, we obtain that

E(H(wt+1) −H(wt) | Gt) = O(R
−(s+1)
i ).

The rank changes by at most one in each step, so from the above, we obtain

|H(wt+1) −H(wt)| ≤ (s− 1)
(
r(vi, t)

−s + (t + 1)−s
)

+ O(R
−(s+1)
i )

= O(R−s
i ).

Now we may apply Lemma 5.8 to the sequence (H(wt) : i ≤ t ≤ n), and sym-

metrically to (−H(wt) : i ≤ t ≤ n), with α = R−s
i n1/2 logn, β = O(R

−(s+1)
i ), and

γt = O(R−s
i ). From the lower bound on Ri it follows that nβ = O(α), and we obtain

that wep

|H(wt) −H(wi)| = O(R−s
i n1/2 logn)
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for i ≤ t ≤ n. As H(wi) = (R∗
i )1−s, this implies from the definition (9) of the function

H , that wep

r(vi, t)
1−s = (R∗

i )1−s + (t + 1)1−s + O(R−s
i n1/2 logn)

=
(
(R∗

i )1−s + (t + 1)1−s
)

(1 + O((R∗
i )s−1R−s

i n1/2 logn))

for i ≤ t ≤ n, so

r(vi, t) = R∗
i

(
1 +

(
R∗

i

t + 1

)s−1
) −1

s−1

(1 + O((R∗
i )s−1R−s

i n1/2 logn)).

Since Ri/i ≤ (1 − log1−s n), we have that

(11) R∗
i /Ri = O(log n).

Since Ri ≥ n1/2 logs+1 n, we have that

(R∗
i )s−1R−s

i n1/2 logn = O
(
R−1

i n1/2 logs n
)

= O(log−1 n),

which finishes the proof of the theorem.
We can now use the same approach as for age-based ranking.
Theorem 5.9. For a vertex vi so that n1/2 logs+1 n ≤ Ri ≤ (1 − log1−s n)i and

R∗
i ≤ n log−3/α n, wep,

deg(vi, n) = (1 + O(log−min{1/2,3(s−1)/α} n))d
a

1 − α

(
n

R∗
i

)α

.

Moreover, for all vertices vi, wep

deg(vi, n) = d
1 − α

α

(
n

Ri

)α

+ O(log2 n).

Proof. The proof follows the same reasoning as the proof of Theorem 4.1. To
prove the first part, using Theorem 5.7, we obtain the expected degree of vi at time
n as follows:

Edeg(vi, n) = Edeg(vi, 2R
∗
i ) + d

n∑
t=2R∗

i +1

r(vi, t)
−α

gα(t)
.

For the first term, we use the fact that r(vi, t) ≥ Ri for all t ≥ i,

Edeg(vi, 2R
∗
i ) ≤ d + d

2R∗
i∑

t=i+1

R−α
i

gα(t)
(12)

= d + (1 + o(1))dR−α
i (1 − α)

2R∗
i∑

t=i+1

tα−1

= O((R∗
i /Ri)

α).

Since (R∗
i /Ri) = O(log n) (see (11)) and, by assumption, n/R∗

i ≥ log3/α n, we have
that

Edeg(vi, 2R
∗
i ) = O(logα n) = O((n/R∗

i )
α

log−2 n).
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Now, we can estimate the second part as follows:

d

n∑
t=2R∗

i +1

r(vi, t)
−α

gα(t)

= (1 + O(log−1 n))d(1 − α)(R∗
i )−α

n∑
t=2R∗

i +1

(
1 +

(
R∗

i

t+1

)s−1
) α

s−1

t1−α

= (1 + O(log−1 n))d(1 − α)(R∗
i )−α

n∑
t=2R∗

i +1

(
tα−1 + O((R∗

i )s−1tα−s)
)

= (1 + O(log−1 n))d(1 − α)(R∗
i )−α

(
nα/α−O((2R∗

i )α) + O((R∗
i )s−1nα−s+1)

)
= (1 + O(log−min{1,3(s−1)/α} n))d

1 − α

α

(
n

R∗
i

)α

since R∗
i ≤ n log−3/α n. Therefore,

Edeg(vi, n) = (1 + O(log−min{1,3(s−1)/α} n))d
1 − α

α

(
n

R∗
i

)α

.

Using the Chernoff bound as before (see (5)), together with the fact that Edeg(vi)

= Ω(log3 n) for R∗
i < n log−3/α n, and putting ε = logn/

√
Edeg(vi) in (5), we get

that wep deg(vi) =
(
1 + O(ε)

)
Edeg(vi) and the assertion follows.

To prove the second part, we can use a calculation similar to (12) to show that
Edeg(vi, n) = d

(
1−α
α

) (
n
Ri

)α
+ O(1), and use the Chernoff bound to prove the state-

ment of the theorem.
Theorem 5.10. Let k be so that log4 n ≤ k ≤ nα/2 log−α(s+3) n. For random

ranking with initial rank distribution given by F where F (x) = xs and s > 1,

Z≥k =
(
1 + O(log1−s n)

)
n

(
1 − α

α
· d
k

)1/α

.

Proof. Let ω(n) = n1/2 logs+1 n. Fix k so that logmax(3α,3/α+2) ≤ k ≤ nα/2 log−α(s+3) n.
Define sets S+

k and S−
k as follows:

S−
k =

{
vi

∣∣∣∣R∗
i ≤ (1 − log1−s n

)
n

(
1 − α

α
· d
k

)1/α
}
,

S+
k =

{
vi

∣∣∣∣R∗
i ≥ (1 + log1−s n

)
n

(
1 − α

α
· d
k

)1/α
}
.

We will argue below that wep all but a small fraction of the vertices in S−
k have a

degree of at least k, and in S+
k have a degree of less than k. First, we estimate the

size of S−
k and S+

k .
Let f(k) be a function so that f(k) = Θ(k−1/αn); f(k) is meant to represent the

bound on R∗
i that defines S+

k or S−
k . The bounds on k imply that f(k) = O(n log−3 n)

and f(k) = Ω(ω(n) log2(n)).
From (8), R∗

i ≤ f(k) if and only if Ri ≤ ((i + 1)1−s + f(k)1−s)−1/(s−1). Thus for

any i, the probability that R∗
i ≤ f(k) equals

(
1+
( f(k)
i+1

)1−s) −s
s−1 (1+ 1

i ). The expected
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number of vertices vi so that R∗
i ≤ f(k) is expressed by the following sum:

n∑
i=1

(
1 +

(
f(k)

i + 1

)1−s
) −s

s−1 (
1 +

1

i

)
=

∫ n

1

(
1 +

(
f(k)

x

)1−s
) −s

s−1

dx + O(log n)

= f(k)

∫ n/f(k)

1/f(k)

(1 + ys−1)
−s
s−1 dy + O(log n)

= f(k)(1 + O(n−1/2)).

The last step can be explained as follows. The antiderivative of (1 + ys−1)
−s
s−1

equals (1 + y1−s)
1

1−s , and thus
∫∞
0

(1 + ys−1)
−s
s−1 dy = 1. The integral from 0 to

1/f(k) is at most 1/f(k) = O(n−1/2). The integral from n/f(k) to infinity equals
1

s−1

( f(k)
n

)s−1
(1 + o(1)) = o(1). The result then follows because f(k) = Ω(n1/2 logn).

Using the Chernoff bound, and the lower bound on f(k), it follows that wep the
number of vertices with R∗

i ≤ f(k) equals (1 + O(log−1 n))f(k). Therefore, wep

|S−
k | =

(
1 − log1−s n

)
n

(
1 − α

α
· d
k

)1/α

,

while the number of vertices that is neither in S+
k nor in S−

k is O(log1−s |S−
k |).

Consider the vertices in S−
k . Let f(k) =

(
1 − log1−s n

)
n
(
1−α
α · d

k

)1/α
. From the

bounds on k it follows that R∗
i ≤ f(k) = O(n log−3 n), so we may assume that R∗

i ≤
n log−3/α n. By Theorem 5.9, if ω(n) ≤ Ri ≤ (1− log1−s n)i, then wep deg(vi, n) ≥ k.

Consider the vertices in S−
k with initial rank Ri < ω(n). Since lower initial rank

will wep lead to higher degree, and since deg(vi, n) would have been at least k even
if the initial rank Ri had been 2ω(n), we can conclude that these vertices also have
degree at least k.

If vi ∈ S−
k and Ri > (1 − log1−s n)i, then this implies that i ≤ ik, where ik is so

that

(1 − log1−s n)ik = ((ik + 1)1−s + f(k)1−s)−1/(s−1)

=

(
1 +

(
f(k)

ik + 1

)1−s
)−1/(s−1)

(ik + 1).

It is straightforward to verify that ik = Θ(f(k) log−1 n). Since |S−
k | = Θ(f(k)), the

number of vertices in S−
k that do not have degree at least k is O(|S−

k | log−1 n).
Next, consider the vertices in S+

k . From the bounds on k, it follows that R∗
i =

Ω(ω(n) log2(n)). If Ri ≤ (1 − log1−s n)i, then R∗
i /Ri = O(log n), and thus we may

assume that Ri ≥ ω(n).

If R∗
i ≤ n log−3/α n and ω(n) ≤ Ri ≤ (1 − log1−s n)i, then, by Theorem 5.9, wep

deg(vi, n) < k. If R∗
i > n log−3/α n, then, by the second part of Theorem 5.9, wep

deg(vi, n) = O(log3+α n) < k.

This time, let f(k) =
(
1+log1−s n

)
n
(
1−α
α · d

k

)1/α
. If Ri > (1− log1−s n)i and i ≥

3f(k), then we may assume that Ri ≥ 2f(k), and, using the second part of Theorem
5.9, we find that wep deg(vi, n) < k. The probability that Ri > (1− log1−s n)i equals
1− (1− log1−s n)s ≤ s log1−s n. So the expected number of vertices vi with i ≤ 3f(k)
and Ri > (1− log1−s n)i is O(log1−s nf(k)), and, using the Chernoff bound again, we
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can conclude that wep the actual number is at most of the same order. Since f(k)
and |S−

k | are both Θ(k−1/αn), we can conclude that the total number of vertices in
S+
k that do not have degree less than k is O(|S−

k | log1−s n). This completes the proof
of the theorem.

If s < 1, then the solution of the differential equation (7) is the same as for the
case that s < 1. Using methods almost identical to the ones used for the case where
s > 1, we can show that wep the rank is close to the one suggested by the differential
equation.

Theorem 5.11. For all i ≥ n1/2 logs+1 n, if vertex vi has initial rank Ri so that
n1/2 logs+1 n ≤ Ri, then wep

r(vi, t) =

(
t− (R∗

i )1−s

1 − s
ts
)

(1 + O(ts−1n(1−s)/2 logn)).

Proof. The initial part of the proof is identical to the proof of Theorem 5.7, and
is thus omitted. Using the differential equation method, we can show that

r(vi, t)
1−s = (R∗

i )1−s + (t + 1)1−s + O(R−s
i n1/2 logn)

=
(
(R∗

i )1−s + (t + 1)1−s
)

(1 + O(ts−1R−s
i n1/2 logn))

=
(
(R∗

i )1−s + (t + 1)1−s
)

(1 + O(ts−1n(1−s)/2 log n))

for i + 1 ≤ t ≤ n, so

r(vi, t) = t

((
R∗

i

t

)1−s

+

(
t + 1

t

)1−s
) 1

1−s

(1 + O(ts−1n(1−s)/2 logn))

=

(
t +

(R∗
i )1−s

1 − s
ts
)

(1 + O(ts−1n(1−s)/2 logn)).

Thus, the rank of a vertex at time t tends to be close to t, which means we are in
a situation similar to the inverse age case. In emulation of Theorem 4.3, we can show
that almost all vertices have an expected degree of at most O(log n). Since the proof
is almost identical to the proof of Theorem 4.3, it is omitted.

Theorem 5.12. Let 0 < α < 1, d ∈ N, and i ≥ n1/2 log2(1−s) n. Then

Edeg(vi, n) = O(log n).
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varying vertex intrinsic fitness, Phys. Rev. Lett., 89 (2002), 258702.

[8] C. Cooper and A. Frieze, A general model of web graphs, Random Structures Algorithms,
22 (2003), pp. 311–335.

[9] S. Fortunato, A. Flammini, and F. Menczer, Scale-free network growth by ranking, Phys.
Rev. Lett., 96 (2006), 218701.

[10] K.-I. Goh, B. Kahng, and D. Kim, Universal behavior of load distribution in scale-free net-
works, Phys. Rev. Lett., 87 (2001), 278701.

[11] G. R. Grimmett and D. R. Stirzaker, Probability and Random Processes, 2nd ed., Clarendon
Press, Oxford University Press, New York, 1992.
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