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Abstract. A k-stable set in a graph is a stable set of size at most k. We study the convex
hull of the k-stable sets of a graph, aiming for a complete inequality description. We also consider
colorings of weighted graphs by k-stable sets, aiming for a relation between the values of an optimal
coloring and an optimal fractional coloring. Results for k = 2 and k = 3 as well as a number of
general conjectures linking fractional and integral colorings are given.
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1. The results. Let G = (V,E) be a graph. A stable set of G is a set of mutually
nonadjacent nodes of G. The stable set polytope of G is the convex hull of incidence
vectors of its stable sets.

Let c ∈ Z
V (G)
+ . An (integral) coloring of G with respect to c, or simply a coloring

of (G, c), is an assignment φ of colors to the nodes of G such that
• φ(v) is a set of c(v) colors, for all v ∈ V (G), and
• φ(v) ∩ φ(u) = ∅ for any two adjacent nodes v and u of G.

Let J be the family of stable sets of G. In terms of vectors, a coloring of (G, c) is
any element of

PI(G, c) =

{
y ∈ ZJ+ :

∑
v∈S∈J

yS = c(v), v ∈ V (G)

}
.

A fractional coloring of (G, c) is any element of

P (G, c) =

{
y ∈ QJ+ :

∑
v∈S∈J

yS = c(v), v ∈ V (G)

}
.

For any given coloring y, fractional or integral, those stable sets S for which
yS > 0 are its color classes. The interest is in finding colorings of (G, c) that use as
few colors as possible. The number of colors used by any optimal (integral) coloring
of (G, c), known as the chromatic number of (G, c), is denoted by χ(G, c). In other
words,

χ(G, c) = min{1 · y : y ∈ PI(G, c)},
where 1 is the all-one row vector. The fractional chromatic number of (G, c), denoted
η(G, c), is the number

η(G, c) = min{1 · y : y ∈ P (G, c)}.
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BOUNDED STABLE SETS 263

A k-stable set of G is a stable set of cardinality at most k. By letting J be the
family of k-stable sets of G, we have the analogous notion of a coloring (fractional
or integral) by k-stable sets. The corresponding values of optimal colorings will be
denoted by χk(G, c) and ηk(G, c). The convex hull of incidence vectors of k-stable
sets of G will be referred to as the k-stable set polytope of G. This is a polytope
of full dimension in QV (G), since all unit vectors and the zero vector correspond to
k-stable sets of G.

There are two related problems we deal with in this paper. The first involves
“slicing off” the stable set polytope of a graph G with the inequality

∑
v∈V (G) x(v) ≤

k, for some positive integer k, and studying the remaining polytope. The integral
points of this polytope correspond to the k-stable sets of G, and we are interested in
the inequalities that define their convex hull.

For k = 2 we give a complete inequality description of the k-stable set polytope
of any graph. For k = 3 we give an analogous result for the k-stable set polytope of
bipartite graphs. In either case, the system described is totally dual integral and each
inequality is facet defining.

The second problem involves the study, for any c ∈ Z
V (G)
+ , of the relationship

between integral and fractional colorings by k-stable sets. A description of the k-
stable set polytope of a graph G gives a formula for ηk(G, c), the value of an optimal

fractional coloring of (G, c) by k-stable sets for any c ∈ Z
V (G)
+ . This formula can be

used as a starting point for studying (integral) colorings of (G, c) by k-stable sets. In
particular, when χk(G, c) = dηk(G, c)e, the corresponding polytope yields necessary
and sufficient conditions on the colorability of G by k-stable sets. In general, it is
desirable to obtain upper bounds on χk(G, c) expressed as functions of ηk(G, c).

For k = 2 we show that χk(G, c) ≤ ηk(G, c) + η(G)
2 , where η(G) = η(G,1). For

k = 3 we show that χk(G, c) ≤ dηk(G, c)e + 1 when G is bipartite. In terms of
polytopes, and in view of the results of Baum and Trotter, Jr. [2], the first inequality
shows that for every vector x in the 2-stable set polytope of G and every p ∈ Z+, px

can be written as the sum of dηk(G, c) + η(H)
2 e incidence vectors of 2-stable sets. An

analogous statement holds also for the second result.

Colorings by k-stable sets, or, as they are better known, k-bounded node colorings,
arise in chromatic scheduling problems when the number of rooms, machines, or other
resources is limited (see [11]). Chen and Lih [4] have established a formula for the k-
bounded chromatic number of an unweighted tree. Lower bounds, upper bounds, and
complexity results on k-bounded colorings are given by Hansen, Hertz, and Kuplinsky
[7].

For colorings in general, there is no relationship between the fractional and in-
tegral chromatic number of a graph. In [12] a family of graphs G is given such that
η(G)→ 2, whereas χ(G)→∞ as |V (G)| → ∞. However, for special classes of graphs,
relationships between fractional and integral colorings have been established even for
weighted graphs (see [10]). Colorings of line graphs (or edge colorings) in particular
have attracted great attention. Several high profile conjectures attempt to link frac-
tional and integral colorings in these graphs, but so far the results have been limited.
We refer the reader to [9] and [8] for further explanations on the problems involved.

The stable set polytope of graphs G with stability number at most 2 has been
described by Cook [5]. A proof of this result is also given in [15]. The stable set
polytope in general has been studied extensively. The reader is referred to [16] and
[1], where links to the corresponding literature can be found.
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264 JEANNETTE JANSSEN AND KYRIAKOS KILAKOS

2. Definitions and preliminaries. The graph-theoretical and polyhedral con-
cepts not defined here can be found in Bondy and Murty [3] and Schrijver [14], re-
spectively.

A graph G is an ordered pair (V,E), consisting of a node set V (G) and an edge
set E(G). The edges of G form a subset of {{u, v} : u, v ∈ V (G), u 6= v}. An
edge {u, v} is simply denoted by uv. The complement of G, denoted Ḡ, is the graph
(V (G), {uv : u, v ∈ V (G), uv 6∈ E(G)}). A matching of G is a set of independent
edges. A clique of G is a subset of mutually adjacent nodes of G. For v ∈ V (G),
N(v) denotes the set {v ∈ V (G) : uv ∈ E(G)}, and for T ⊆ V (G), N(T ) denotes the
set
⋃
v∈T N(v)\T . For a subset F of V (G), the subgraph of G induced by F , denoted

G[F ], is the graph (F, {uv ∈ E(G) : u, v ∈ F}). We will use the following well-known
result.

Theorem 2.1 (Hall’s theorem). If G is a bipartite graph with partition (A,B),
then G has a matching of cardinality |A| if and only if for every T ⊆ A, |N(T )| ≥ |T |.

Let c ∈ Z
V (G)
+ and v ∈ V (G). We denote by α(G, c) the number max{c(S) :

S is a stable set of G}, and α(G) (= α(G,1)) is the stability number of G. Any stable
set that yields this maximum is referred to as a maximum weight stable set of (G, c).
We use the analogous notion for k-stable sets and the corresponding maximum is
denoted by αk(G, c). Denote by δ(v) the edges of G that contain v. An edge covering
(respectively, a b-matching) of (G, c) is collection of edges F such that for every
v ∈ V (G), |δ(v) ∩ F | ≥ c(v) (respectively, |δ(v) ∩ F | ≤ c(v)). In terms of vectors, an
edge covering of (G, c) is any point in

{x ∈ Z
E(G)
+ : x(δ(v)) ≥ c(v), v ∈ V (G)},

and a b-matching of (G, c) is any point in

{x ∈ Z
E(G)
+ : x(δ(v)) ≤ c(v), v ∈ V (G)}.

In both case, by letting x ∈ Q
E(G)
+ we obtain the corresponding notions of frac-

tional edge coverings and fractional b-matchings of (G, c).
Let c be a vector indexed by V (G), F a subset of V (G). The restriction of c to

F is the |F |-dimensional vector whose components correspond to the components of
c indexed by F . We denote by c(v), v ∈ V (G), the component of c indexed by v and
by c(F ) the number

∑
v∈F c(v). The incidence vector of F , denoted χF , is a vector

indexed by V (G), with a component equal to one if the corresponding node belongs
to F and is equal to zero otherwise. The support of c are those nodes of G that index
nonzero components of c.

To avoid confusion, we digress from the above notation when a vector y is indexed
by a family S of subsets of V (G). In this case, we use yS to denote the component of
y indexed by S ∈ S.

An inequality c · x ≤ δ is implied by a system of linear inequalities Ax ≤ b if
every x that satisfies the system also satisfies c · x ≤ δ.

Theorem 2.2 (Farkas’s lemma). Suppose that the inequality system Ax ≤ b,
x ≥ 0 has a solution. Then c · x ≤ δ is implied by this system if and only if there
exists a row vector λ ≥ 0 such that λA ≥ c and λ · b ≤ δ.

In terms of k-stable sets, Farkas’s lemma tells us that Ax ≤ b, x ≥ 0 defines the

k-stable set polytope of a graph G if and only if for every c ∈ Z
V (G)
+ , c · x ≤ αk(G, c)

is implied by Ax ≤ b. When λ in the above theorem can be chosen to be integral,
the system Ax ≤ b, x ≥ 0 is said to be totally dual integral.
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BOUNDED STABLE SETS 265

Given a polytope Q, an inequality a · x ≤ β is facet defining if it is valid for all
points of Q and the set {x ∈ Q : a · x = β} is a facet of Q.

Padberg [13] has introduced a procedure, called sequential lifting, which can be
used to build facet defining inequalities for the k-stable set polytope of a graph G
from those for induced subgraphs of G. Let X ⊆ V (G), and let a · x ≤ β be a facet
defining inequality for the k-stable set of G[X]. Let v be any node of V (G)\X, and
let π = β−max{a ·χS : S is a (k − 1)-stable set of G[X\N(v)]}. Then the inequality
πx(v) + a · x ≤ β is facet defining for the k-stable set polytope of G[X ∪ {v}]. A
lift of a · x ≤ β (in G) is any inequality obtained by a sequential application of this
procedure.

3. Polytopes. In this section we describe the 2-stable set polytope of graphs in
general and the 3-stable set of bipartite graphs. We begin with 2-stable sets.

The following theorem includes results of Cook and Shepherd and its proof can
be found in [15]. For a subset K of V (G), we denote by Ñ(K) the set

⋂
v∈K N(v)\K.

Theorem 3.1. For any graph G with α(G) ≤ 2, the following system describes
the stable set polytope of G and is totally dual integral, and each inequality is facet
defining.

(0) x(v) ≥ 0 for all v ∈ V (G).
(1) x(K) ≤ 1 for all maximal cliques K.
(2) 2x(K) + x(Ñ(K)) ≤ 2 for each clique K such that none of the connected

components of the complement of G[Ñ(K)] is a bipartite graph.
(3) x(V (G)) ≤ 2 if no connected component of the complement of G is bipartite.
Given the above theorem, it is rather easy to describe the 2-stable set of any

graph.
Definition 3.2. For a graph G, the system A2x ≤ b consists of the inequalities

(1)–(3) of Theorem 3.1 as well as the following:
(4) x(A) + 2x(K) + x(Ñ(K)\A) ≤ 2, for each set A such that every maximal

stable set in G[A] has size at least 2 and G[A] has a stable set of size at least
3, and for every clique K maximal in Ñ(A).

Note that all inequalities of type (4) can be obtained from the inequality x(S) ≤ 2,
where S is a stable set of size 3, by sequential lifting. If S = {v1, v2, v3}, the vectors
χ{v1,v2}, χ{v1,v3}, χ{v2,v3} are affinely independent, and they satisfy x(S) ≤ 2 with
equality. So the inequality x(S) ≤ 2 is facet defining for G[S]. When we lift this
inequality sequentially to all vertices of a set A that has the property that all stable
sets of G[A] have size at least 2, then all vertices of A will have coefficient 1, and we
obtain the inequality x(A) ≤ 2, facet defining for G[A]. If we then lift this inequality
to a vertex v in Ñ(A), this vertex will get coefficient 2, since the maximal stable set in
G[A\N(v)] is of size 0. The same is true for all vertices in a maximal clique K in Ñ(A)
that includes v. So we obtain the inequality x(A) + 2x(K) ≤ 2. When we lift this
inequality to the rest of the graph, any vertex v will get coefficient 0 if K 6⊆ N(v) and
coefficient 1 otherwise. So we obtain the inequality x(A) + 2x(K) + x(Ñ(K)\A) ≤ 2,
an inequality of type (4).

Note also that the inequality x(V (G)) ≤ 2 is implied by the inequality system
whenever α(G) ≥ 3. If no connected component of the complement of G is bipartite,
then this inequality is included in type (3). Suppose then that a connected component
of the complement of G is bipartite. This means that G contains two cliques, K1 and
K2, such that Ñ(K1) = Ñ(K2) = V (G)\(K1 ∪K2). If V (G)\(K1 ∪K2) contains a
stable set of size at least 3, then the inequality x(V ) ≤ 2 is implied by two inequalities
of type (4), one with K1 ⊆ K, one with K2 ⊆ K, and both with A ⊆ V (G)\(K1∪K2).
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266 JEANNETTE JANSSEN AND KYRIAKOS KILAKOS

If V (G)\(K1 ∪K2) does not contain a stable set of size at least 3, then α(G) = 2.

Theorem 3.3. For a graph G, the system A2x ≤ b, x ≥ 0 describes the 2-stable
set polytope of G and is totally dual integral, and each of the inequalities is facet
defining.

Proof. In view of Theorem 3.1, for each inequality of types (1)–(3) with support
X, there exists a collection of |X| affinely independent stable sets which satisfy it
with equality and which are subsets of X of size at most 2. Therefore, each of
these inequalities is facet defining for the 2-stable set polytope of G[X]. When the
inequalities are lifted to the rest of V (G), they remain facet defining.

For the inequalities of type (4), it is already noted that they can be obtained
by lifting the facet defining inequality x(S) ≤ 3, where S is a stable set of size 3.
Therefore, all inequalities of the system A2x ≤ b are facet defining.

For the rest of the proof, let c be a nonnegative integral vector indexed by the
nodes of G. We show that there exists an integral, nonnegative row vector λ indexed
by the rows of A2 such that λA ≥ c and λ · b ≤ α2(G, c).

We apply induction on α2(G, c). If α2(G, c) = 0, then c = 0, because every
vertex is by itself a stable set. So we can choose λ = 0. Next, we assume that the
theorem holds for any c′ with α2(G, c′) < α2(G, c). Furthermore, we may assume
without loss of generality that c(v) > 0 for all v ∈ V (G), since nodes with zero weight
can be deleted from the graph. (This is because any of the above inequalities can be
lifted to an inequality in G that contains v and is of one of the specified types.)

Note that it suffices to find an inequality a · x ≤ β of the system A2x ≤ b such
that α2(G, c − a) ≤ α2(G, c) − β and c − a ≥ 0. Then, by induction, there exists
a nonnegative integral vector λ′ such that λ′A2 ≥ c − a and λ′ · b ≤ α2(G, c − a).
Let λ be obtained from λ′ by simply increasing the coordinate of λ′ indexed by this
inequality by 1. This yields λA2 ≥ c and λ · b ≤ α2(G, c− a) + β ≤ α2(G, c).

If α(G) ≤ 2, then we are done by Theorem 3.1. Thus we assume that α(G) ≥ 3.
If every maximum weight 2-stable set has cardinality 2, then let a · x ≤ β be the
inequality x(V (G)) ≤ 2, if either this inequality or the weighted sum of the two
inequalities of type (4) that implies the inequality x(V (G)) ≤ 2 are included in the
system (see the note following the statement of the Theorem). In this case it is
immediate that α2(G, c − a) ≤ α2(G, c) − β. Otherwise, there exists a node v such
that c(v) = α2(G, c) (and α2(G, c) ≥ 2), and thus N(v) = V (G)\{v}. Let K be
a clique of G that contains v such that Ñ(K) = V (G)\K and K is maximal with
this property. Let a · x ≤ β be the inequality 2x(K) + x(Ñ(K)) ≤ 2. Because of
the maximality condition on K, all stable sets in G[V (G)\K] have size at least 2, so
this inequality is of type (4), with A = V (G)\K. Note that every maximum weight
2-stable set of G consists of either an element of K or two elements of Ñ(K). Thus,
since c(v) ≥ 2 and because K must include all vertices v such that c(v) = α2(G, c),
α2(G, c− a) ≤ α2(G, c)− β. The proof is complete.

Before we can adequately describe the facet defining inequalities of the 3-stable
set polytope of bipartite graphs, we need a few definitions.

Definition 3.4. A 2-star is a graph whose node set can be partitioned into
two sets T = {v1, v2} and B such that T is a stable set and B = N(T ). With
any given 2-star we identify the sets L = N(v1)\N(v2), M = N(v1) ∩ N(v2), and
R = N(v2)\N(v1). A 2-star is full if |N(v1)|, |N(v2)| ≥ 3 and |L|, |R| ≥ 2.

Definition 3.5. For a bipartite graph G, the inequality system A3x ≤ b consists
of the following inequalities:

(1) x(K) ≤ 1 for all maximal cliques K of G (i.e., edges and isolated nodes);
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BOUNDED STABLE SETS 267

(2) x(V (G)) ≤ 3 if both parts of a bipartition of G have at least four elements;
(3) the lift of x(S) ≤ 3 for each stable set S of size at least 4;
(4) 2x(T ) + 2x(u) + x(B\{u}) ≤ 4 for each full 2-star with M 6= ∅ and for each

node u ∈M ;
(5) 4x(v1) + 2x(v2) + 2x(N(v1)) + x(R) ≤ 6 for each full 2-star with |R| ≥ 3 and
|N(v1)| ≥ 4 if M 6= ∅ and each ordering (v1, v2) of T .

When the inequality x(S) ≤ 3, where S is a stable set of size at least 4, is lifted to
the rest of the graph, and a vertex v is encountered that is adjacent to all previously
lifted vertices, then v will get coefficient 3 in the inequality. All other vertices will
then have coefficient 1 if they are adjacent to v, and 0 if this is not the case. If a
vertex v is adjacent to all previously lifted vertices except one single vertex or two
adjacent vertices, then v will get coefficient 2. All other vertices will get coefficient 1
if they are adjacent to v, or 0 if this is not the case. Otherwise, the inequality will be
lifted to x(V (G)) ≤ 3. So the type (3) inequalities are of the following form:

(3a) 3x(v) + x(N(v)) ≤ 3 for all v ∈ V (G) with |N(v)| ≥ 4;
(3b) 2x(v) + x(N(v)) + x(K) ≤ 3 for all v ∈ V (G) and each clique K with no

element in common with N(v) ∪ {v};
(3c) x(V (G)) ≤ 3 if G cannot be obtained from Km,n, m ≥ 1, n ≥ 4, by deleting

a (possibly empty) matching.

Theorem 3.6. For a bipartite graph G, the normalized version of the system
A3x ≤ b (i.e., where all inequalities have been divided by the right-hand side), x ≥ 0
is totally dual integral and describes the 3-stable set polytope of G, and each inequality
is facet defining.

Proof. We begin by showing that each of the inequalities given is facet defining.
This is done by exhibiting, in each case, the appropriate sets of affinely independent
vectors that satisfy the given inequality with equality. For convenience, we will say
that we find affinely independent stable sets, instead of affinely independent incidence
vectors of stable sets. The following fact can be proved by using the notion of lifting
as in the proof of Theorem 3.3.

Step 3.6.1. If S, |S| ≥ 4 (respectively, |S| ≥ 3), is a stable set of G, then it has
|S| affinely independent subsets of size 3 (respectively, 2).

The inequalities x ≥ 0 and those of type (1) are well known to be facet defining.
From (3.6.1) and the lifting procedure, it is immediate that the inequalities of type (3)
are facet defining. The same lemma may also be applied to each part of a bipartition
of G and thus the inequality of type (2) is facet defining as well. Consider now an
inequality of type (4). By (3.6.1), B\{u} has |B| − 1 affinely independent stable sets
of two nodes and thus, by including u to all these sets, B has |B|−1 such sets of three
nodes. Adding also the sets {v1, v2}, {v1, u3, u4}, and {v2, u1, u2}, where u1, u2 ∈ L
and u3, u4 ∈ R, we obtain a collection of |B| + |T | affinely independent 3-stable sets
that satisfy the given inequality with equality.

Finally, consider an inequality of type (5), and assume that |N(v1)| ≥ 4. N(v1)
contains |N(v1)| affinely independent stable sets of size 3. Also, R has |R| affinely
independent stable sets of size 2. By including v1 to these sets, we have that R ∪
{v1} has |R| affinely independent stable sets of size 3. Adding the sets {v1, v2} and
{v2, u1, u2}, where u1, u2 ∈ L, we obtain the required collection of affinely independent
stable sets. When |N(v1)| = 3 instead of N(v1), we use L∪{v2} to obtain |L| affinely
independent 3-stable sets.

We continue with the rest of the proof. Let c be a nonnegative integral vector
indexed by the nodes of G. We show that there exists an integral, nonnegative row
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268 JEANNETTE JANSSEN AND KYRIAKOS KILAKOS

vector λ indexed by the rows of A3 such that λA′3 ≥ c and λ · 1 ≤ α3(G, c), where
A′3x ≤ 1 is the normalized version of the system A3x ≤ b.

The proof is by induction on α3(G, c). If α3(G, c) = 0, then c = 0, so we can take
λ = 0. Next, we assume that the lemma holds for any c′ with α3(G, c′) < α3(G, c).
Furthermore, we may assume without loss of generality that c(v) > 0 for all v ∈ V (G).
(This is because any of the above inequalities for G − v, v ∈ V (G), can be lifted
to an inequality of G that contains v and is of one of the specified types.) As in
the proof of Theorem 3.3, it suffices to find an inequality a · x ≤ β which is the
sum (with the appropriate coefficients) of inequalities of A3x ≤ b and such that
α3(G, c− a) ≤ α3(G, c)− β and c− a ≥ 0.

If every stable set of G is of size at most 3, then the stable set and 3-stable set
polytopes ofG coincide, and it is well known that the former is given by the inequalities
of types (0) and (1). Otherwise, if every maximum weight 3-stable set of G is of size
exactly 3 and for all v ∈ V (G), c(v) < α3(G, c) − 1, then the required inequality is
x(V (G)) ≤ 3. Clearly, α3(G, c−χV (G)) = α3(G, c)−3. If the inequality x(V (G)) ≤ 3
is not of type (2) or (3c), then by the definition of A3x ≤ b, each bipartition of G has
a part with less than four nodes, and G can be obtained from Km,n, m ≥ 1, n ≥ 4 by
deleting a matching. If G can be obtained from K3,n, n ≥ 4, by deleting a matching,
then x(V (G)) ≤ 3 is the sum (with coefficients 1

3 ) of three inequalities of type (3b). If
G can be obtained from K2,n or K1,n by deleting a matching, then x(V (G) is implied
by an inequality of type (3b) or (3a).

Thus we may assume that G has a maximal 3-stable set T of size 1 or 2 and if
|T | = 2, then T is of maximum weight. Let B = N(T ). By increasing the weight
of components of c that correspond to vertices that are not part of maximum weight
stable sets, if necessary, we may thus assume the following.

Step 3.6.2. Every node of G belongs to a maximum weight 3-stable set of (G, c).

We now distinguish two cases.

Case 1. G is not a full 2-star.

If T has only one element v, then every 3-stable set of maximum weight consists of
either v or three nodes in N(v). Thus 3x(v) + x(N(v)) ≤ 3 is the required inequality,
since by (3.6.2), c(v) = α3(G, c) ≥ 3.

Thus we may assume that G is a 2-star, although not a full one, and since α3(G) >
3, |B| ≥ 4. Let v1 and v2 be the elements of T , ordered so that |N(v2)| ≤ |N(v1)|. It
can be argued from the fact that c(v1)+c(v2) = α3(G, c) that c(v1) ≥ 2. Let a ·x ≤ β.
be the inequality 2x(v1) +x(N(v1)) +x(K) ≤ 3 (of type (3b)), where K is a maximal
clique in {v2} ∪R. Every maximum weight 3-stable set of (G, c) is also of maximum
weight in (G,a) and c− a ≥ 0. Thus α3(G, c− a) ≤ α3(G, c)− β, as required.

Case 2. G is a full 2-star.

We adopt the notation introduced in Definition 3.4. To proceed, we need to
identify certain nodes of G and introduce a simple lemma. Let t1 and t2 be the
weights of v1 and v2, and let m1,m2, . . . be the weights of the nodes of M , `1, `2, . . .
the weights of the nodes of L, and r1, r2, . . . the weights of the nodes of R, all in
decreasing order.

Step 3.6.3. There is no 3-stable set S of maximum weight such that S ∩ L 6= ∅,
S ∩R 6= ∅, and S ∩M = ∅.

This can be deduced from the fact that r1 + r2 ≤ t2 and `1 + `2 ≤ t1 (because
t1 + t2 = α3(G, c)), and thus both `1 + r1 + r2 and `1 + `2 + r1 are less than t1 + t2.

We consider three subcases.

The simplest case arises when no maximum weight 3-stable set of G is a subset
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BOUNDED STABLE SETS 269

of B. Let a · x ≤ β denote the inequality 2x(T ) + x(B) ≤ 4. Since t1 + t2 = α2(G, c),
t1 ≥ `1 + `2 ≥ 2, t2 ≥ r1 + r2 ≥ 2 and thus c − a ≥ 0. In addition, α3(G, c − a) ≤
α3(G, c) − β. Now if M 6= ∅, then a · x ≤ β is implied by an inequality of type (4);
if M = ∅, then it is implied by the two inequalities of type (5) (with coefficients 1

3 )
that correspond to the two orderings of T .

Next, suppose there is a 3-stable set of maximum weight that contains nodes from
each of L, R, and M—in other words, r1 + `1 +m1 = t1 + t2. Our analysis depends
on whether or not |M | ≥ 2 and m1 = m2.

If |M | ≥ 2 and m1 = m2, then let a · x ≤ β be the inequality 3x(T ) + x(B) +
x({u`, ur}), where u` and ur are the nodes of weight `1 and r1, respectively. Now by
(3.6.3), r1 + `1 + l2 < α3(G, c) = `1 +m1 + r1, so `2 < m1, and thus `1 +m1 +m2 >
`1 + `2 +m1. By symmetry, r1 +m1 +m2 > r1 + r2 +m2. Therefore, u` and ur are
the only nodes from L and R, respectively, that are contained in maximum weight
stable sets. Also, since `1 > `2 ≥ 1 and r1 > r2 ≥ 1, `1, r1 ≥ 2, and since `1 + `2 ≤ t1
and r1 + r2 ≤ t2, we have that t1, t2 ≥ 3. It follows that a · x ≤ b has the property
that all the maximum weight 3-stable sets of (G, c) are also maximum weight stable
sets of (G,a), and thus α3(G(c − a)) ≤ α3(G, c) − β, since c − a ≥ 0. In addition,
a · x ≤ β is the sum of two inequalities of type (3b).

If |M | = 1 or m1 > m2, then all maximum weight 3-stable sets in B have to
include the node u ∈ M of weight m1. Also, since `1 + `2 ≤ t2, r1 + r2 ≤ t1,
and because, by (3.6.3), r1 + r2 + `1 ≤ α3(G, c) = r1 + m1 + `1 (so m1 > r2), we
have that t1, t2, m1 ≥ 2. Thus by taking a · x ≤ β to be the type (4) inequality
2x(T ) + 2x(u) + x(B\{u}) ≤ 4, we have c− a ≥ 0 and α3(G, c− a) ≤ α3(G, c)− β.

To conclude, we assume that every maximum weight 3-stable set that is contained
in B is also contained in, say, N(v1). The inequality a · x ≤ β of the form 4x(v1) +
2x(v2) + 2x(N(v1)) + x(R) ≤ 6 has the property that every maximum weight stable
set of (G, c) is also a maximum weight stable set of (G,a). If |R| = 2, this inequality
is the sum of two inequalities of type (3b); if M 6= ∅ and |N(v1)| = 3, it is the sum of
two inequalities of type (1) and one inequality of type (4); otherwise it is an inequality
of type (5). In either case we are done, provided that t1 ≥ 4, t2 ≥ 2, and c(u) ≥ 2 for
all u ∈ N(v1).

Since t1 + t2 = α3(G, c), t1 + t2 ≥ t1 + r1 + r2 and thus t2 ≥ 2. Next we show
that c(u) ≥ 2 for all u ∈ N(v1). If u ∈ M , then by (3.6.2), there is a 3-stable
set S = {u,w1, w2} of maximum weight that contains u. Since u ∈ M , S ⊆ B.
By the assumption that every maximum weight stable set is contained in N(v1),
c(w1) + c(w2) + r1 < α3(G, c) = c(u) + c(w1) + c(w2). Thus c(u) ≥ 2. Now if u ∈ L
we may assume that c(u) is minimal. Suppose that every maximum weight stable
set that contains u also contains v2. (If this is not so, we are done by the same
reasoning as for u ∈ M .) Then c(u) ≥ `2, and since c(u) is minimal, c(u) = `2 and
`1+2`2 < α3(G, c). By assumption, there is a maximum weight stable set S′ contained
in B, but by the above, it does not contain a node with weight `2. Thus |M | ≥ 2 and
m1+m2+`1 ≤ α3(G, c) = `1+`2+t2. But, by (3.6.2), r1+r2 = t2 ≥ m1+m2−`2 and
thus `2 ≥ m1+m2−r1−r2. But we saw thatmi > r1 (somi−r1 ≥ 1) for all i, so `2 ≥ 2.
Thus for all u ∈ N(v1), c(u) ≥ 2. Finally, since t1+t2 = α3(G, c) ≥ t2+`1+`2 ≥ t2+4,
we have t1 ≥ 4, as required.

Parenthetically, we remark that the ideas behind the inequalities of types (4) and
(5) of Definition 3.5 can be extended to construct facet defining inequalities for the
stable set polytopes of graphs. Let H be a graph such that x(V (H)) ≤ α(H) is a facet
defining inequality for the stable set polytope of H and H has two stable sets S1, S2
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270 JEANNETTE JANSSEN AND KYRIAKOS KILAKOS

with |S1| = |S2| = α(H) and S1∩S2 = ∅. Let G be a graph obtained from H by adding
three new nodes v1, v2, u and for i = 1, 2 the edges {viu} ∪ {viv : v ∈ V (H)\Si}. Let
α = α(G). Then the inequality

(α− 1)x({v1, v2, u}) + x(V (H)) ≤ 2α− 2

is facet defining for the stable set polytope of G. Alternatively, let H1 and H2 be
two graphs such that the inequalities x(V (H1)) ≤ α(H1) and x(V (H2)) ≤ α(H1)
are facet defining for the stable set polytope of H1 and H2, respectively. Let G
be obtained from H1 and H2 by adding two new nodes v1 and v2 and the edges
∪2
i=1{viv : v ∈ V (Hi)} ∪ {vw : v ∈ V (H1), w ∈ V (H2)}. Let α = α(G). Then the

inequality

(α(α− 2) + 1)x(v1) + (α− 1)x(v2) + (α− 1)x(V (H1)) + x(V (H2)) ≤ α(α− 1)

is facet defining for the stable set polytope of G. The proof in both cases is analogous
to the one given in Theorem 3.6. (Examples illustrating both constructions are shown
in Figure 3.1; the coefficients not shown are equal to 1 and the right-hand sides are,
respectively, 6 and 12; in both cases α = 4.) We note that the above constructions
can be generalized to obtain many families of facet defining inequalities for the stable
set polytopes of graphs, but this falls beyond the scope of the present paper.

(a)

3 3

3

(b)

3

3

3

3

3

3

3

9 3

Fig. 3.1. An illustration of facet defining inequalities for the stable set polytope.

4. Colorings. We will now use the results of the previous section to obtain
upper bounds on the value of integral colorings of the corresponding cases involved.

Note first that a description of the k-stable set polytope of a graph G provides
necessary and sufficient conditions on the fractional colorability of (G, c) by k-stable

sets, where c is any vector in Z
V (G)
+ . Indeed, by definition, y is a fractional coloring

of (G, c) of value r if and only if 1
rc belongs to the k-stable set of G, i.e., if and only

if Akc ≤ rb, where Akx ≤ b, x ≥ 0 is an inequality description of the k-stable set of
G. Thus,

ηk(G, c) = max{ 1
β (a · c) : a · x ≤ β is an inequality of Akx ≤ b}.

We will use this min-max equality throughout. To begin, we introduce a simple lemma
that explains how color classes from optimal fractional colorings intersect with the
support of any given valid inequality of the k-stable set polytope of a graph.
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BOUNDED STABLE SETS 271

Lemma 4.1. Let G be a graph and c ∈ Z
V (G)
+ . Let a · x ≤ β, β 6= 0, (a, β)

integral and nonnegative, be a valid inequality for the k-stable set polytope of G. If
a · c = (ηk(G, c)− t)β, then in any optimal fractional coloring y of (G, c) by k-stable
sets,

∑
{S∈S:a(S)<β} yS ≤ tβ.

Proof. Let S0 (respectively, S1) consist of those k-stable sets S ∈ S such that
a(S) = β (respectively, a(S) ≤ β− 1). Let p0 =

∑
S∈S0

yS and p1 =
∑
S∈S1

yS . Since∑
S∈S0

ySχ
S +

∑
S∈S1

ySχ
S ≥ c,

β(ηk(G, c)− t) = a · c
≤ a · (∑S∈S0

ySχ
S +

∑
S∈S1

ySχ
S)

=
∑
S∈S0

ySa(S) +
∑
S∈S1

ySa(S)

≤ p0β + p1(β − 1)

= ηk(G, c)− p1,

as required.
Next we show that an upper bound on colorings by 2-stable sets can be obtained

as the solution of two linear programs.
Theorem 4.2. For any graph G and any (strictly) positive vector c ∈ ZV (G),

χ2(G, c) ≤ η2(G, c) + η(G)
2 .

Proof. We proceed by induction on η2(G, c). That is, we assume that the theorem

holds for any graph G′ and c′ ∈ Z
V (G′)
+ with η2(G′, c′) ≤ η2(G, c) − 1. In the base

case, G is the empty graph and the theorem holds trivially.
If the only inequality a ·x ≤ β of A2x ≤ b for which a · c > (η2(G, c)− 1)β is the

inequality x(V (G)) ≤ 2 (of type (3)), then let S be any 2-stable set of G of size 2. Let
d = c− χS . Then A2d ≤ (η2(G, c)− 1)b, and consequently η2(G,d) ≤ η2(G, c)− 1.
Let G′ = G − {v ∈ V (G) : d(v) = 0} and let c′ be the restriction of d to V (G′′).
By induction, χ2(G′, c′) ≤ η2(G′, c′) + η(G)

2 . Since any coloring of (G, c′) can be
augmented with S to form a coloring of (G, c),

χ2(G, c) ≤ η2(G′, c′) + η(G)
2 + 1 ≤ η2(G, c) + η(G)

2 ,

as required.
Thus we assume that there is an inequality a · x ≤ β of A2x ≤ b that is not of

type (3) such that a · c > η2(G, c) − 1. Choose this inequality so that for any other
inequality a′ · x ≤ β′ that is not of type (3), 1

β (a · c) ≥ 1
β′ (a

′ · c). Let K be the clique

involved in the definition of the support of a. If the support of a is K, let G′ be the
empty graph and G′′ be G itself. Otherwise, let G′ be the subgraph G[Ñ(K)] of G
and G′′ the subgraph G− Ñ(K) of G. Let c′ be the restriction of c to V (G′), and let
c′′ be the restriction of c to V (G′′). We now use induction to color (G′, c′), whereas
we color (G′′, c′′) explicitly.

Consider (G′, c′) and assume that G′ is nonempty. By definition of the support of
a, every stable set in the graph G[V (G′)∪K] that contains an element of K is of size
1. Also, by the choice of a ·x ≤ β, G[V (G′)∪K] with c restricted to V (G′)∪K has a
fractional coloring by 2-stable sets of value 1

β (a ·c). If we remove from this coloring all
stable sets of size 1 that consist of a node of K, we are left with a fractional coloring of
G′ of value 1

β (a ·c)−c(K). Thus η2(G′, c′) ≤ 1
β (a ·c)−c(K). It follows, by induction,

that

χ2(G′, c′) ≤ η2(G′, c′) + η(G′

2 ≤ 1
β (a · c)− c(K) + η(G′)

2 .
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272 JEANNETTE JANSSEN AND KYRIAKOS KILAKOS

Consider (G′′, c′′). Let P be the node set of G− (V (G′)∪K). Let t = η2(G, c)−
1
β (a · c). Note that t = 0 or t = 1

2 . We show that χ2(G′′, c′′) ≤ c(K) + 2t.

We construct a bipartite graph H with node set A ∪ B as follows. For each
v ∈ K (respectively, v ∈ P ), let Av (respectively, Bv) be a set of c(v) nodes. Let
A = ∪v∈KAv, B = ∪v∈PBv. To define the edges of H, consider an optimal fractional
coloring of (G, c) by 2-stable sets and join all elements of Au to all elements of Bv if
and only if there is a color class that consists of u and v. If |A| > |B|, we expand B
with |A| − |B| additional nodes, each joined to all nodes of A. Note that the way H
is constructed guarantees that |N(T )| ≥ |T | for each T ⊆ A. Thus, by Theorem 2.1,
H has a matching of size A. Also, at most 2t nodes of B are not contained in this
matching. This is because, by Lemma 4.1, there are at most weight 2t color classes S
of the fractional coloring that do not contain an element of K and S∩ (V (G)\P ) ≤ 1.
Now in an obvious manner, this matching and the node not saturated by it, if it
exists, correspond to a coloring of (G′′, c′′) with at most c(K) + 2t 2-stable sets.
Thus, χ2(G′′, c′′) ≤ c(K) + 2t.

The proof is now complete:

χ2(G, c) ≤ χ2(G′′, c′′) + χ2(G′, c′) ≤ c(K) + 2t+ 1
β (a · c)− c(K) + η(G′)

2

≤ η2(G, c) + η(G)−1
2 + t ≤ η2(G, c) + η(G)

2 ,

since η(G′) ≤ η(G)− 1, 1
β (a · c) + t = η2(G, c), and t ≤ 1

2 .

Note that in the above proof, if c(V (G)) < 2η2(G, c), then there must be an
inequality that is not of type (3) for which 1

β (a · c) = η2(G, c). Thus we are in the
second case and t = 0. In this case the proof has demonstrated the following, slightly
stronger, statement. We will use it in the next theorem.

Corollary 4.3. Let G be a graph, c ∈ ZV (G), c > 0, and r ≥ η2(G, c). If

c(V (G)) < 2r, then χ2(G, c) < r + η(G)
2 .

The upper bound of Theorem 4.2 is tight. If, for instance, G is the complete
p-partite graph with each color class having an odd number of nodes, then χ2(G) =

η2(G) + η(G)
2 .

We note that for any graphG and any vector c ∈ Z
V (G)
+ , χ2(G, c) can be computed

efficiently using the theory of matchings. First observe that any v ∈ V (G) such that
N(v) ∪ {v} = V (G) will account for c(v) color classes in any optimal coloring of
(G, c) by 2-stable sets. Thus, we can ignore them and assume that every node of G
belongs to a stable set of size 2. As a consequence, we may further assume that in
any optimal coloring of (G, c) by 2-stable sets, all color classes are of cardinality 2.
Thus optimal colorings of (G, c) correspond to optimal edge coverings of (Ḡ, c). Now
in turn, it is well known that optimal edge coverings of (Ḡ, c) can be computed with
the aid of optimal b-matchings of (G, c). Namely, given an optimal b-matching x of

(Ḡ, c), greedily construct a vector x′ ∈ Z
E(Ḡ)
+ such that x + x′ is an edge covering of

(Ḡ, c). (Note that 1 · (x + x′) = 1 · c.) It is straightforward to verify that x + x′ is an
optimal edge cover of (Ḡ, c). We note finally that the problem of finding an optimal
b-matching in (Ḡ, c) can be solved efficiently using Edmonds’s matching polyhedron
theorem [6].

We would like to mention that the relationship between b-matchings and edge
coverings outlined here is based on Gallai’s theorem (see [3]) concerning the case
where c is the all-ones vector. Also, this relationship can be extended to the fractional
counterparts of edge coverings and b-matchings. In this case, for any graph G and
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BOUNDED STABLE SETS 273

any positive c ∈ ZV (G) the inequality of Theorem 4.2 implies that

µ(G, c) ≥ µ′(G, c)− η(H)
2 ,

where µ(G, c) and µ′(G, c) are the values of an optimal b-matching and an optimal
fractional b-matching of (G, c), respectively, and H = Ḡ− {v : N(v) = ∅}.

We now turn our attention to colorings by 3-stable sets.

Theorem 4.4. For any bipartite graph G and c ∈ Z
V (G)
+ , χ3(G, c) ≤ dη3(G, c)e+

1.
The crux of the proof is the following result.

Lemma 4.5. Let G be a bipartite graph and c ∈ Z
V (G)
+ . If one of the following

two conditions holds, then χ3(G, c) = dη3(G, c)e.
(i) c(V (G)) < η3(G, c) and 1

β (a · c) = η3(G, c) for an inequality a · x ≤ β of

A3x ≤ b, which is not of type (1).
(ii) G can be obtained from a 2-star by deleting zero or more nodes.
Proof. Any coloring is also a fractional coloring and thus χ3(G, c) ≥ dη3(G, c)e.

We show the reverse inequality by induction on η3(G, c). That is, we assume that the

lemma holds for any c′ ∈ Z
V (G)
+ such that η3(G, c′) ≤ dη3(G, c)e − 1. With no loss

of generality, c(v) > 0 for all v ∈ V (G). Denote by S the color classes of an optimal
fractional coloring y of (G, c). We distinguish two cases.

Case 1. (G, c) fulfills condition (ii).
Suppose that G is a 2-star. With the notation of Definition 3.4, we assume that

|R| ≥ |L|. Let S be a member of S that contains v1. If necessary, include additional
nodes in S so that it is either maximal or |S| = 3. Let a · x ≤ β be an inequality of
A3x ≤ b. If a · c = βη3(G, c), then by Lemma 4.1, a · c − a · χS = β(η3(G, c) − 1).
Otherwise, it can be readily checked that a · c − a · χS ≤ β(dη3(G, c)e − 1). Thus
η3(G, c−χS) ≤ dη3(G, c)e− 1 and, by induction, χ3(G, c−χS) ≤ dη3(G, c−χS)e. It
follows that

χ3(G, c) ≤ χ3(G, c− χS) + 1 ≤ dη3(G, c− χS)e+ 1 ≤ d(η3(G, c)e,
as required.

So assume that G is not a 2-star. If there is a node v such that |N(v)| ≥ 4, let
S be a member of S that contains v. Otherwise, let S be any member of S. It is
routine to check that χ3(G, c − χS) ≤ dη3(G, c)e − 1. Again the theorem follows by
induction.

Case 2. G does not fulfill condition (ii).
Let a · x ≤ β be such that 1

β (a · c) = η3(G, c). Denote by P the nodes of G

that do not belong to the support of a. Our goal will be to reduce (G, c) into two
weighted graphs (G′, c′) and (G′′, c′′) and then color the first one using induction and
the second one using Corollary 4.3.

Let S ′ =

{
{S ∈ S : S ∩ P 6= ∅ or |S| = 2} if a · x ≤ β is of type (3b),

{S ∈ S : S ∩ P 6= ∅} otherwise.

Let p =
∑
S∈S′ yS . By Lemma 4.1 and by the definition of a ·x ≤ β, there exists a

node v ∈ V (G) such that v ∈ S for all S ∈ S ′. (When a ·x ≤ β is of type (3a) or (3b)
v is a node with coefficient 2 or 3, respectively, and in the other cases it is any node
from the set T of the support of a.) Thus v is not adjacent to any other node that
belongs to a member of S ′. Let G′ be the graph induced by the nodes different from
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v that belong to some member of S ′, and let c′ be the restriction of
∑
S∈S′ ySχ

S to
V (G′). Let G′′ be the graph induced by the support of a, and let c′′ be the restriction
of c−∑S∈S′ ySχ

S − dpeχ{v} to V (G′′).
Suppose for the moment that both c′ and c′′ are integral (so p = dpe). Because

c(V (G)) ≤ 3η3(G, c), not every S ∈ S ′ is of size 3. Thus c′(V (G′)) < 2p and by
Corollary 4.3, (G, c′) has a coloring with at most p 2-stable sets. Each one of these
stable sets can be extended to include v. In addition, y restricted to S\S ′ gives a
coloring of (G′′, c′′) of value η3(G, c) − p. Moreover, (G′′, c′′) fulfills condition (ii);
therefore, by Case 1, (G′′, c′′) has a coloring of value dη3(G, c)− pe. Combining these
two colorings gives a coloring of (G, c) of value dη3(G, c) − pe + p = dη3(G, c)e, as
required.

To conclude the case and the lemma, we now show that, if necessary, the coloring
vector y can be altered (while keeping S unchanged) so that it is still an optimal
fractional coloring and both c′ and c′′ are integral.

If c′ and c′′ are nonintegral, then a · x ≤ β must be an inequality of the form
2x(v) + x(N(v)) + x(K) ≤ 3, where v is the special node identified earlier and K has
exactly two elements u and w. This follows from Lemma 4.1 and the fact that c(P ) is
integral. (The mentioned inequality is the only one for which there can be more than
one color class of size less than 3 in the optimal fractional coloring of its support.)
Note that since c is integral, u and w index the only nonintegral components of c′ and
c′′. Let pu =

∑
{S∈S′:u∈S} yS and pw =

∑
{S∈S′:w∈S} yS . By Lemma 4.1, any member

of S that contains v must also contain u or w, so pu + pw = c(v) and p = pu + pw.
So p is an integer and, by assumption, pu and pw are both not integers. Consider the
set of nodes Q ⊆ P that belong to some member of S ′ together with {v, u}. Since
c(Q) is an integer, either y{u,v} 6∈ Z or there exists a z ∈ Q such that y{u,v,z} 6∈ Z. In
the former case, if y{u,v} 6∈ Z, then since c(P ) =

∑
{S∈S′:|S|=3} yS ∈ Z we have that

y{v,u} + y{v,w} ∈ Z. Now decrease y{v,u} by y{v,u} − by{v,u}c and increase y{v,w} by
the same amount. In the latter case, {v, w, z} must also be in S ′ since c(z) ∈ Z and
y{v,u,z} 6∈ Z. Then decrease y{v,u,z} by y{v,u,z} − by{v,u,z}c and increase y{v,w,z} by
the same amount. Repetition of this procedure yields the desired coloring.

Proof of Theorem 4.4. We prove the theorem by induction on dη3(G, c)e. If (G, c)
fulfills one of the conditions of Lemma 4.5, we are done. If not, then choose any color
class S from an optimal fractional coloring of (G, c) by 3-stable sets and, if necessary,
add nodes until S is either maximal of size 3. If η3(G, c− χS) < dη3(G, c)e − 1, then
we can apply induction and find a coloring of (G, c − χS) with dη3(G, c − χS)e + 1
3-stable sets. Otherwise, it must be that (G, c − χS) fulfills condition (i) of Lemma
4.5 and the result follows.

Again, the upper bound of the theorem is tight, for if G is a complete bipartite
graph where every color class is larger than 3 and equal to 1 mod 3, then χ3(G) =
dη3(G)e+ 1.
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