The Annals of Statistics
1982, Vol. 10, No. 2, 386-393

ACCOUNTING FOR INTRINSIC NONLINEARITY IN NONLINEAR
REGRESSION PARAMETER INFERENCE REGIONS

By Davip C. HaMiLTON,! DoNaALD G. WaTTs? AND DoucLas M. BaTes?

University of Wisconsin, Dalhousie University and Queen’s University

Joint confidence and likelihood regions for the parameters in nonlinear
regression models can be defined using the geometric concepts of sample space
and solution locus. Using a quadratic approximation to the solution locus,
instead of the usual linear approximation, it is shown that these inference
regions correspond to ellipsoids on the tangent plane at the least squares
point. Accurate approximate inference regions can be obtained by mapping
these ellipsoids into the parameter space, and measures of the effect of
intrinsic nonlinearity on inference can be based on the difference between the
tangent plane ellipsoids and the sphere which would be obtained using a linear
approximation.

1. Introduction.

1.1 Likelihood and confidence regions. In a nonlinear regression model, the expected
response in the ¢th experiment depends on the settings of the k2 independent variables x,
= (X, X2 - -+, xu)’, and on a p-dimensional vector of unknown parameters, 6, through a
known response function f(4, x;). We assume that observed responses deviate from the
expected responses due to independent normally distributed random errors with zero mean
and constant variance for all x,;. The maximum likelihood, or least squares, estimates d
minimize the sum of squares function

(1.1) S(0) = Y1 {3 — (0, x)}".

The response for n experiments is denoted by the vector y = (y1, - - -, y»)’ which lies in the
n-dimensional sample space, and the corresponding expected responses may be similarly
collected into the vector (@) = (f(4, x1), - -+, f(8, x,))’. The set of all possible expected
response vectors, as @ varies, comprise a p-dimensional surface called the solution locus
(Box and Lucas, 1959). Therefore the estimates 0 canbe simply characterized geometrically
as the parameter vector whose image on the solution locus, 7§ = n(é), is closest to y. In
spite of its simple geometric definition, # must usually be obtained by minimizing (1.1)
using an iterative computer program.

Joint inference (i.e. confidence or likelihood) regions for the parameters also have
simple geometric definitions as the image, in parameter space, of inference regions on the
solution locus. The likelihood region, consisting of all values of 8 for which

(1.2) S(0) — S@) < 82,

contains all values of § which correspond to points on the solution locus which are within
the distance v{S(§) + 62} of y. Beale (1960) recommended such a region as an approximate
100(1 — )% confidence region with 6% equal to o*x%(p; ) if 6® is known, and ps*F(p, v; a)
if 0% is estimated by s* with » degrees of freedom.
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Exact confidence regions based on the x? and F distributions are obtained by comparing
squared lengths of projections of the error vector e(d) = y — 7(d) onto orthogonal
subspaces of sample space. If 8 is the true value, e(#)’ P(6)e(8) and e(@){I — P(8)}e(0d)
have independent o%x? distributions with p and n — p degrees of freedom, where P@0) is
the matrix of projection onto the tangent plane at 5(#). Exact confidence regions therefore
include all values 8, or points 7(#), satisfying

e(0)P(#)e(9) < o*x*(p; @)

if ¢ is known, or
tl

(1.3) e(0)'P(0)e(0) < ps*F(p, v; a)
if 02 is estimated independently by s2. For the case of no replications, one may use
(1.4) e(0)'P(0)e(d) < fe(8)e@)/(1 + [)

where f = pF(p, n — p; «)/n — p. These regions have been discussed by Beale (1960),
Gallant (1975, 1976) and Sundararaj (1978). Similar exact regions are described by Williams
(1962), Halperin (1963) and Hartley (1964).

Determination of likelihood and exact confidence regions usually requires substantial
computation. In addition, it is difficult to display exact regions when there are more than
two parameters, so there is considerable value in obtaining adequate approximate inference
regions which can be easily presented and summarized.

1.2 The linear approximation. A linear Taylor’s approximation of the model function
is often used to derive approximate inference regions. For convenience, we assume that the
data y, the model, and all the derivatives have been divided by p = svp, so that the
approximate inference region is

(1.5) @—-0yV'V.6-6) <F,
where V. is the n X p matrix of partial derivatives with ijth entry
of . .
vij=£j(0rxi)|0y l=1,"‘:n’l=1,"‘P>

and F is F(p, n — p; a) for likelihood or no-replications confidence regions and is
F(p, v, a) for a confidence region based on v degrees of freedom from replications. The
approximation (1.5) assumes that, over the region of interest, the mapping of 4 into n(6)
is

(1.6) 5+ V.0 - 0).

Thus the tangent plane projection of the solution locus inference region is a sphere and
the mapping from the tangent plane to the parameter space is linear. Using geometric
reasoning, Beale (1960) and Bates and Watts (1980) note that this approximation will be
acceptable only if the solution locus is sufficiently flat to be replaced by the tangent plane
and if straight, parallel equispaced lines in the parameter space map into straight, parallel
equispaced lines on the solution locus. They used second derivatives of the model function
to derive curvature measures of intrinsic and parameter effects nonlinearity to assess the
validity of these assumptions.

1.3 Geometrical approach to approximating inference regions. Geometrical reasoning
reveals that there can be two stages in obtaining approximate inference regions. The first
involves finding the solution locus inference region and obtaining its projection onto the
tangent plane, and the second involves mapping that tangent plane region into the
parameter plane. The latter problem is addressed in a separate paper (Bates and Watts,
1981). In this paper we focus on the effects of intrinsic nonlinearity on the tangent plane
projection of solution locus inference regions, and derive improved approximate regions.
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2. Improved approximate tangent plane projections of solution locus inference
regions. In this section we derive improved approximate projections of solution locus
inference regions onto the tangent plane, using a quadratic approximation. These improved
approximate projection regions are found to be ellipsoids, in contrast with the spherical
projections obtained with the linear approximation.

Consider a point @ in the parameter space. This point maps through the nonlinear
transformation, 9(#), to the point on the tangent plane with coordinates

(2.1) T=U'{n(0) — 1}

In (2.1) the columns of U form an orthonormal basis for the tangent plane (1.6) and U is
related to V. by U = V.L, where L is a p X p matrix and is the Jacobian of the mapping
from @ to T at 6.

The coordinates, 7, provide a natural reference system for the solution locus and
approximations to it. An approximation to the solution locus by a quadratic surface
centered at 17 is )

(2.2) Wi(7) =4 + Ur + [N][FA7)/2,

where the columns of the n X (n — p) matrix N are an orthonormal basis for the space
orthogonal to the tangent plane, A is the intrinsic curvature array, and the square bracket
multiplication involves summation over the numerator index (Bates and Watts, 1980).
This simple expression results because, as shown in the appendix, dn/dr|¢ = U and
d®n/d7*|, = [N][A]

Exact solution locus inference regions are defined by equations (1.2) through (1.4).
Approximate solution locus inference regions and their projections onto the tangent plane
can be defined by substituting approximate error vectors & = y — () for e(f) in those
equations. The approximate error vector at the point 5(7) is

(2.3) é=¢& — Ur—[N][rA7]/2.

2.1 Likelihood regions. The squared total length of € is
(2.4) €€é=8¢ +7(I— Byt + (T"A7) (T"A7) /4 = é'é + v'(I — B)7,

where B = [é’N ]J[A] is the p X p matrix obtained from the inner product of the rotated
residual vector N’é and the intrinsic curvature array. The matrix B is referred to as the
“effective residual curvature matrix” because it gives the effective normal curvatures
relative to the residual vector &.

Equation (2.4) may be explained geometrically as in Figure 1a, which shows, relative to
the origin 7, the three dimensions spanned by the vectors Ur, ¢ = [N ][T’A7]/2 and &é. The
point 7} projects onto the plane defined by the vectors q and & at the terminus of q, so that,

(2.5) €é=77+ (@€ —q)(é —7)=77+éé +qq—2é'q.

The value of q'q is || 7’A7]||)?>/4 and 2é’q equals 7’Br, which gives the equality in (2.4).

Now consider the vectors &, q and &€ — q in the plane defined by & and q, as shown in
Figure 1b, where we have exaggerated the size of q relative to & for illustrative purposes.
A linear approximation to the solution locus would yield an approximate error vector with
squared length

Iel*+ &) =r]*+ OX?,
the quadratic approximation would yield an approximate error vector with squared length
I=I*+1&—al®*=l7|*+ OY?
and the approximation used in (2.4) would yield a squared length
I 7]I* + OZ2.
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Thus, neglecting the term in (2.4) which involves fourth powers of the length of 7
corresponds to adjusting the linear approximation by the segment XZ instead of XY.

Inserting (2.4) into the scaled version of (1.2) gives the approximate solution locus
region defined by -

(2.5) (I — B)r=F(p, n — p; a).

Since I — B is positive definite, as shown below, the approximate tangent plane projection
of the solution locus likelihood region is an ellipsoid. Beale (1960, equation (2.3), page 46)
also noted that the sum of squares contours were approximately ellipsoidal in the 7
coordinates.

Box and Coutie (1956) recommended using

@-0yweo-b=<F
as an approximate confidence region for 8, where
W =% 9%S/30%|;.
In the notation of this paper,
W=V.V.-[e][V.]=(LYI-B)L™"

Thus the confidence region based on the second derivatives of the sum of squares function
may be considered the image in parameter space of the ellipsoidal tangent plane likelihood
region (2.5), assuming there is no parameter effects nonlinearity so that there is a linear
mapping from the tangent plane to the parameter plane. Since S(#) is a local minimum, it
also follows that W, and hence (I — B), is positive definite.

2.2 Confidence regions with replications. Similar approximations can be obtained for
the exact confidence regions (1.3) and (1.4) by examining the components of the error
vector relative to the quadratic solution locus approximation. Differentiating (2.2) with
respect to T reveals that the tangent plane to the quadratic surface at 9(7) is defined by the
columns of a matrix (U + NM ), where the (n — p) X p matrix M = A7 has ijth entry
¥?_1 aij7r. The projection matrix onto this plane is

(U+ NM)I+M'M)(U+ NMY,

since (U + NM) (U + NM) = (I + M’M), and the squared length of the tangential
component of the error vector e is

(2.6) (I - B+ M'M/2)’(I+MM)'(I - B+ M'M/2)r.
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Assuming that terms involving M’M and its products may be neglected, since they produce
fourth order and higher products of 7, the approximate tangent plane region for the exact
confidence region (1.3) is bounded by values of T satisfying

(I — B)’r = x*(p; @)
or
2.7 (I — B)’r = F(p, v; a),

which is the equation of an ellipsoid.

2.4 Confidence regions with no replications. When the variance is unknown and
cannot be estimated independently, the length of the orthogonal component of the error
vector must also be considered. Using equations (1.4), (2.4) and (2.6), the tangent plane
coordinates of the boundary of the approximate solution locys confidence region satisfy

T"I—-B+M'M/2)I+M'M)'I-B+ M'M/2)r
(2.8)
={&eé+17I - B+ 7M'Mr/4}f/(1 + ),

and, assuming as before that terms in M’M may be ignored, (2.8) simplifies to
(2.9 7(I - B){I—- (1 +f)B}r =F(p,n— p; a),

which is also the equation of an ellipsoid, provided I — (1 + f)B is positive definite.

The tangent plane ellipsoids derived above depend on the residual vector-solution locus
configuration through the matrix B, whose entries give the projections of the acceleration
vectors on the residual vector. If the solution locus curves towards (away from) the residual
vector all the projections are positive (negative) and all the eigenvalues of B are positive
(negative) and the tangent plane ellipsoid is larger (smaller) than the linear approximation
sphere. This is intuitively correct because then the solution locus is curving towards (away
from) the residual vector and so more points on the solution locus are nearer (father from)
the observation point than if the solution locus was a plane.

3. Assessing the effect of intrinsic nonlinearity on inference regions. The
extent to which the tangent plane inference ellipsoid differs from the linear approximation
sphere gives a direct indication of the effects of intrinsic nonlinearity on inference. Each of
the matrices (I — B), (I — B)? and (I — B){I —(1 + f)B} has the same eigenvectors as B,
and has eigenvalues which are simple functions of the eigenvalues, \; < ..+ < A,, of B.
Therefore the axes of the different inference ellipsoids point in the same directions and the
length of the ith axis, as a proportion of the radius of the linear approximation sphere, is

1-=-a)v: for likelihood regions,
a1-a)t for confidence regions based on replications,
[@=A){1— @+ FA}I]TY? for no-replication confidence regions.

The extreme axis length ratios, obtained using A; and A,, can therefore be used to assess
directly the effect of intrinsic nonlinearity on likelihood and confidence regions.

Previous attempts have been made to assess the influence of intrinsic nonlinearity on
likelihood and confidence regions. Beale (1960) proposed that intrinsic nonlinearity be
accounted for by inflating the right hand side of (1.2) by the squared factor
n(p+2)
pln—p)~*
to ensure that the coverage probability of the likelihood region is at least as large as the
nominal confidence level. N, was therefore proposed as a measure of intrinsic nonlinearity,
and this role can be extended to the factor m.

Bates and Watts (1980) showed that N, is one quarter of the mean squared intrinsic
curvature, and hence the factor m is easily calculated from the array A. They also proposed

(3.1) mi=1+
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that intrinsic nonlinearity be measured by the maximum intrinsic curvature, 'Y, which is
also easily calculated from A.

The axis ratios for likelihood and no-replications confidence regions and the intrinsic
nonlinearity measures discussed above have been calculated for 18 data sets analyzed in
Bates and Watts (1981) and are shown below in Table 1, which reveals several interesting
features. First, Beale’s tangent plane inflation factor m is always extremely close to unity,
suggesting that the confidence level associated with the likelihood region (1.2) is very close
to the nominal level. Second, the maximum relative curvature I'"VF exceeds .5 for only
two data sets, suggesting that the solution locus may be adequately approximated by a
plane in 16 of the 18 cases at the 95% confidence level. Note that data set 21, for which the
ellipsoidal approximation breaks down at the 95% level as shown below, has an extreme
value for m and T™VF. Turning next to the likelihood axis ratios in columns 4 and 5, we
see that, except for the low value of .86 with data set 21 and the high values of 1.08 and
1.09, all the axis ratios are within .05 of unity. Thus the effect, of intrinsic nonlinearity on
likelihood regions is small. For the no-replications confidence region, however, 11 of the
axis ratios in columns 6 and 7 deviate more than .1 from unity so that intrinsic nonlinearity
has greater influence on confidence regions, as expected from the expressions.

Comparing the various columns, we see a positive correlation between Beale’s factor m
and the scaled maximum curvature I' "WF. This correlation was noted in Bates and Watts
(1980), who suggested the dependence N, (yM.)?/4 = (T'™)?/(1 + p)®. Beale’s inflation
factor and the maximum curvature of Bates and Watts both are negatively correlated with
the smallest axis ratios in columns 8 and 5. Finally, there is little relationship between m
and TVVF and the largest axis ratios in columns 4 and 6.

In deriving the approximate tangent plane inference ellipsoids, terms involving fourth
powers of the length of 7 were ignored. A crude upper bound for the proportion of the
ignored term relative to the quadratic term can be calculated from the expression in the
previous paragraph as

1+ p)?
16(1 — Ap)°°

TM’F

A= o
\D

TABLE 1
Axis Ratios and Nonlinearity Measures (95% Confidence Level)

axis ratios

data set m NVF likelihood confidence
smallest largest smallest largest
1 1.00 .08 1.00 1.00 1.00 1.00
2 1.00 .13 1.00 1.00 1.00 1.00
3 1.00 .20 1.00 1.08 1.00 1.28
4 1.00 .15 1.00 1.05 1.00 1.16
5 1.01 47 .95 1.00 .87 1.00
9 1.00 41 99 1.03 .98 1.10
13 1.00 .03 1.00 1.00 .99 1.00
14 1.00 .29 96 1.00 .89 1.01
15 1.00 .16 1.00 1.02 .99 2.81
16 1.00 .08 .99 1.00 97 1.00
17 1.00 43 92 1.00 .82 1.00
18 1.00 .00 1.00 1.00 1.00 1.00
19 1.00 .03 1.00 1.01 .99 1.02
20 1.00 .32 1.00 1.03 1.00 1.06
21 1.02 1.43 .86 1.03 72 1.07
22 1.00 .14 1.00 1.09 1.00 1.27
23 1.00 .15 .95 1.01 .88 1.03

24 1.00 .54 95 1.02 .88 1.056
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This proportion was calculated for the data sets in Table 1, and was found to be less than
6% for every data set except data set 21, which had a value of 49%. Thus the ellipsoidal
approximation is acceptable for the 95% regions except for that one data set.

In conclusion, in this paper we have shown that intrinsic nonlinearity can be accounted
for by using ellipsoids rather than spheres on the tangent plane and that the shape of the
ellipsoid is determined by the components of the acceleration vectors in the direction of
the residual vector. The ellipsoids are therefore directly related to the actual design and
responses from an experiment, and hence are specific to the particular inference situation.
We have also shown that summary intrinsic curvature measures, such as the maximum or
mean square curvature, are not closely related to the more direct indicators presented
here.

APPENDIX

The first and second partial derivatives of § with respect.to 7 are used in Section 2 to
obtain a second-order Taylor’s series approximation to the mapping from 7 to 6. Differ-
entiating the identity 7(6(7)) = 7 twice using the chain rule gives

(dr/d0)(d8/dr) = I, (d8/dr) (d*r/d6?)(d6/d7) + [dr/d0][d*8/dr*] =0,

where the square brackets denote numerator multiplications (Bates and Watts, 1980).
Rearranging and substituting known quantities yields

d6/dr|o = (dr/d8|s)" = (U'V)" =L
and
d*0/dr*|o = —[d0/d71e[(d0/d7) (d*7/d0%)(dB/dT)]o
= —[LIL[UV..IL] = -[L]AT],

where V.. is the array of second derivatives and A7 is the parameter-effects array derived
in Bates and Watts (1980).

The first and second partial derivatives of 7(#(r)) with respect to  may also be obtained.
Differentiating uising the chain rule gives

dn/dr|o = (dn/d0)|i(d8/dr)|o = V.L = U
and
d®n/dr?|e = (d0/d7|0)(d’n/d0°|5)(dB/dr|i) + [dn/d0]|i[d*0/dr" o]
= L'V.L - [V]IL]AT]
=[I- UU'[L'V.L] = [NN'][L’V..L] = [N][A"],

where the columns of N form an orthonormal basis for the space orthogonal to the tangent
plane and AY is the intrinsic curvature array (Bates and Watts, 1980).
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