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ZEROS OF THE WRONSKIAN OF CHEBYSHEV AND
ULTRASPHERICAL POLYNOMIALS

KARL DILCHER AND KENNETH B. STOLARSKY

ABSTRACT. For a polynomial f(z), the Wronskian W f(z)
is defined by f(z)f"(z) — (f'(z))?. The zero distribution of
W f(z) is studied in the cases where f(z) is a Chebyshev
polynomial of the first kind or an ultraspherical polynomial of
order 0 < A < 1.

1. Introduction. In the theory of special functions, two related
classes of inequalities have attracted some attention. These are the
Laguerre inequality [4, p. 171f.]

(1.1) [P'(z)]* — P(z)P"(z) > 0, —00 < & < 00,

which holds for all polynomials P(z) with only real zeros, and the Turan
inequality

(1.2) Pa(@) — Pacs(@)Pass() 20, €,

which has been proven for various sequences {P,(x)} of classical or-
thogonal polynomials, for appropriate intervals I. For a discussion of
these inequalities and the relationships between them, see [3, 6].

We have considered the inequality (1.1) and studied the zero distri-
bution of the polynomial to the left, in particular the distance of the
zeros from the real axis. General results in this direction were obtained
in [2]. There it was also shown that the zeros of the left-hand side of
(1.1) lie in the strip |Im (2)| < (4 4 logn)/27 if P(z) is a polynomial
of degree 2n + 1 having only real zeros that, in addition, are evenly
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distributed in the interval [—1, 1]. Similar results hold when the zeros
are slightly perturbed.

The main objective of this paper is to prove corresponding results
for the case where P is a Chebyshev polynomial of the first kind or an
ultraspherical polynomial of order 0 < A < 1.

2. Some basics. We define the nonlinear differential operator W
by

2

(2.1) W) = ) log £(2),

in analogy to the ordinary differential operator Df(z) = f(z)(d/dz)

log f(z). Throughout this paper, we assume that f is a polynomial.
Obviously, we have

(2.2) W(z) = £(2)f"(2) = [f ()] =

Because of this last determinant form we call the polynomial W f(z)
the “Wronskian of the polynomial f(z).”

The following properties are easy to verify. Let f,g and h be
polynomials. Then

W(gh) = ¢*Wh + h*Wg;
W(g") =ng** *Wg, neR;
W(z—a)=—1.

It is also easy to see that for a polynomial f(z) = (z —a1)™ ---(z —
ap)™, m; €N, j=1,...,k, we have

23 W) =[P { T bt

(z — 1) (z — ag)?

This immediately gives the inequality (1.1) for polynomials having only
real zeros. An upper bound on the zeros of W f(z) is given by the
following result.
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Lemma 2.1. If all the zeros of the polynomial f(z) are real and lie
on the interval [—1,1], then the zeros of W f(z) lie inside or on the unit
circle.

This was proved in [2]; it is also a special case of [5, Theorem 8.1].

3. Chebyshev polynomials. Let T,,(z) be the n-th degree
Chebyshev polynomial, defined by

(3.1) T, (cos ) = cosnb, z = cosf.

As an immediate consequence of (3.1), we get the explicit expression

for the zeros of T, (x), namely

2k —1
2n

Qp 1= COos m, k=1,2,... ,n.

This means that the ay are not evenly distributed in the sense of [2];
they crowd toward the endpoints —1 and 1. More precisely, the distance
between two consecutive zeros is of the order 1/n? near the endpoints,
and of the order 1/n near the middle. Using this fact, it is easy to
see that the results in [2] give bounds on the zeros of WT,,(z) that are
weaker than Lemma 2.1. In spite of this, we shall see that the zeros of
WT,(z) lie very close to the real axis.

Theorem 3.1. For n > 2, the zeros of WT,(z) lie inside the ellipse

2 2
x
LA

a2 tp =l

, z =x+ 1y,

where A, := (1/n)(logn — (1/2)loglogn + 1), B, := /1 + A2.
As an immediate consequence, we get the following.

Corollary 3.2. For n > 2, the zeros of WT,(z) lie in the strip

1 1
lyl < = <logn— = loglogn + 1> .
n 2
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FIGURE 1.

Theorem 3.1 and Corollary 3.2, for n = 20, are illustrated by Figure
1. The four corner zeros are approximately +0.9849 + 0.01293i, and
the two zeros on the imaginary axis are +0.1568%.

Proof of Theorem 3.1. Differentiating (3.1) twice with respect to 6,
we get

in(n)
T _ pSn()
nlcosd) =n sinf ’
T (cos ) = —n? CO'S(ZTLH) cos 9.513n(n9).
sin“ 6 sin® @
hence
. n(cosf) = ey S n nc()sg _

We shall show that the sin(2nf) term dominates the 2ntané term
outside the ellipse. If we set § = a + i, a, 8 € R, then

(3.3) sin = sin o cosh 8 + i cos asinh 3,

3.4) cos § = cosacosh B — isin asinh 3.

Since z = cos#, it suffices to consider the case 3 > 0. Now (3.3) and
(3.4) imply
sin® a cos? a 4 sinh? B cosh? B < sinh? 3 cosh? 8

(cos? o + sinh? 8)2 - sinh* 3

|tan f|* = ,
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hence
(3.5) | tan 6| < coth §.
On the other hand, we have

|sin(2n6)|? = sin?(2na) cosh®(2n8) + cos?(2na) sinh? (2n8)
> (sin?(2na) + cos?(2na)) sinh? (2n3),

and therefore
(3.6) | sin(2nd)| > sinh(2np).

Now we see with (3.5), (3.6) and (3.2) that WT,,(z) # 0 if we can show
that

(3.7) sinh(2n8) > 2n coth g,
or equivalently,
(3.8) (2P — e 28 (P — e P) > dn(f +eP).

If we set By = (logn — (1/2)loglogn + 9/10)/n and use the fact that
e? — e P > 23, we see that (3.8) with 3 = Gy follows from

_ 1loglogn  9/10 2 _
2 _ 2 (,1/2n 1/2n
(1-a )(1—5 log n +logn >69/5(a +a ),

where a := ™ = ¢°°n2/logn. This holds for n > 3. Now
sinh(2n/3) sinh 3/ cosh 8 is an increasing function for 8 > 0, so (3.7)
holds whenever

1 1 9
. >—11 — —logl — .
(3.9) 8> - <0gn 5 log 0gn+10>

Now we use the Maclaurin expansions for sinh 3 and cosh 8 to see that
for 8 > 0, we have

sinh,@’_ﬁ’[l—i—%ﬂz <1+§_§52+?7’_§54+...>]

<B <1 + %,82 cosh,B) .
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Since z = cos#, (3.4) implies |z|> = cosh® 8 — sin® a. Furthermore, by
Lemma 2.1 we may restrict our attention to |z| < 1. Hence, we have
cosh 8 < v/2, and consequently,

1 1
sinh 3 < 8 (1 + 662\@) <pB (1 + Zﬂ2> :
This shows that (3.9) follows from
. 1 1
(3.10) sinh 8 > . (logn ~3 loglogn + 1>

if we can verify that

1 1 1 1
—b(1+-—=b")<=(b+—
n(+4n2 >_n<+10>’
where b := logn — (loglogn)/2 + 9/10. But this is equivalent to
b3 /n? < 2/5 which holds for n > 6.

Finally, we note that for each 8 > 0, the equation

2 2
Yy x
3.11 + =1
( ) sinh?3  cosh? 8

defines an ellipse with foci +1 and principal half axes sinh 3, cosh .
Each point z = z + iy € C\[—1, 1] lies on an ellipse (3.11) for exactly
one 8 > 0. It is now clear that (3.10) holds whenever z = z + iy lies
outside the ellipse given in the statement of the theorem. But (3.10)
implies (3.9) and hence WT,,(z) # 0; this completes the proof for n > 6.
The cases n = 2,...,5 were verified by numerical computation.

Remarks. (1) It is easy to see from formula (3.2) that WT,(z) = 0
is equivalent to
2Ty, (2) = 4n?

and to
ZUanl(z) = 2”7

where U, (2) := sin[(n + 1)0]/sinf, z = cos 0, is the n-th Chebyshev
polynomial of the second kind.
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(2) Theorem 3.1 could be somewhat sharpened. For instance, in
the case /2 < 2na < 3w/2 (modulo 27) it is easy to see that
Im (sin(2nd)) < 0, and it is an easy consequence of (3.3) and (3.4)
that Im (tanf) > 0 for 8 > 0. Hence, WT,(cosf) # 0 for such
«a and for all 8 > 0. Also, it can be shown that Theorem 3.1 and
Corollary 3.2 are asymptotically sharp for the zeros of WT,,(z) that lie
on the imaginary axis. More specifically, only the constant term 1 in
logn — (loglogn)/2 + 1 can be slightly improved.

4. Ultraspherical and Legendre polynomials. If f(z) is a
polynomial of degree n whose zeros lie close to those of T),(z), it is
reasonable to expect the zeros of W f(z) to lie close to those of WT,,(2).
In this section we will see that this is, to some extent, the case when
f(z) is an ultraspherical (or Gegenbauer) polynomial; this class of
polynomials includes the Legendre and the Chebyshev polynomials of
the second kind as special cases. Although the results in this section
are probably far from best possible, they show that the zeros of the
Wronskians of these polynomials approach the real axis (uniformly)
with increasing degrees of the polynomials.

Lemma 4.1. Let -1 < 7 < By < --- < B, <1 and d :=
2n

maxi<k<n |Br — cos((2k — 1_)/ Yrr|. Then

n

1 .
(41) Fn(Z) = 2 m 7é 0, z=x+ Y

provided that

2+d/ly| d

(4.2) V/2sinh Bsinh(2n8) > 4n + 8(1 —4/ly])? (sinh B)

2
5 cosh”(nf),
where z = cos(a + i) = cosacosh B —isinasinh 8 = = + iy.

Proof. We compare F),(z) with

fu(2) = Z _ Qp, 1= CoS 2k = 17r.

z—ay)?’ 2n
o (F )
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By (2.3), (3.2) and (3.1) we have

n cos sin 6

= n
2sin® 0 cos2 nd cos

(4.3) fn(2) — sin(2n0)

(recall that z = cos ). Now let R, (z) := F,,(z) — fn(2); then with (4.3)
we have

(4.4)

Fo(2) ncos

~ 25in’ f cos? (nh)

' [0025 g(nsind + % sin® § cos? (n6) R (2)) — sin(2n9)] .

We will prove (4.1) by showing that the term in brackets in (4.4) is
nonzero. This is achieved if we can verify

. 2 . 1 .3 2
(4.5) | sin(2n6)| > ‘m (n sinf + - sin 6 cos (nQ)Rn(z)> ‘ .

By (3.6), we have
(4.6) | sin(2nd)| > sinh(2np),
and (3.4) yields

| cos 0|2 = cos? acosh? B + sin® asinh? 8

= sinh? B + cos? o > sinh? .

Hence

4.
(4.7) cosf

1 1
< .
‘ ~ sinh 8
Now (4.6) and (4.7) imply that (4.5) holds when

(48)  sinh(2n8) > % [nsinﬁ—l—%sin9|3|cos(n9)|2|Rn(z)| .

It follows from the definition of R, (z) that

n

Ru() = 3 (B — )22 2k = P

2 (=~ B2 (z — an)®
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We may assume y > 0 since the zeros are symmetric about the real
axis. Since

\Br — x| < d, |z —ai| = |z — ar +iy| > ¥,

we have
d
122 — ap — Br| < 2|z — ar| + Bk — ar| < |z — o] 2+§ ;

z—6k|=(z—am—(ﬂk—amz|z—ak|—dz|z—ak|<1—§)-

Hence
(4.9) IR, (2)] < dDZ |z — agx|™® < ndD|y|™3
k=1
where 2+ d/lyl
_ _2tally — _
Py T e e

Next we note that by Lemma 2.1, we may restrict our attention to
|z| = |cos ] < 1, or, by (3.4),

cos? avcosh? B + sin® asinh? 8 < 1

which is equivalent to |sin «| > |sinh 8|. By symmetry we may restrict
our attention to 0 < o < m, 8 > 0 (i.e., y = —sinasinhf < 0 by
(3.4)), so sina > 0, sinh 8 > 0 and

(4.10) sin o > sinh 3.

Also, by (3.3),

2

|sin #)? = sin? o cosh? 8 + cos? asinh® B = sin® a + sinh? 3.

We note that (sin? a4 sinh? 3)3/2/sin® a sinh® 8 (for 3 # 0) is decreas-
ing as sin« increases. Hence, by (4.10),

|sinf® (sin? a + sinh? §)3/2 2v/2

4.11 = .
( ) ly|? sin® o sinh® 3 ~ sinh® g
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We also have

(4.12) | cos(nB)|? = cosh? nB — sin? na < cosh® nf

and, with (3.3) and (4.10),

(4.13) |sin @] = (sin2 « + sinh? ,8)1/2 <(2 sin? a)1/2 <+2.

Finally, we see with (4.9), (4.11), (4.12) and (4.13) that (4.8) holds
when

sinh(2n3) > % V2n + 2v/2dD cosh?(nB)(sinh 8) 73| .

Now (4.2) follows, and the result is proved. O

In applying Lemma 4.1, we restrict our attention to the special
case that will be applicable to the polynomials mentioned in the
introductory paragraph.

Theorem 4.2. Let ¢ < 1.6, and let f(z) be a polynomial of degree
n with zeros B, = cos[(2k — 1) /2n] + ek, where |Bx| < 1, lex| < ¢/n,
k=1,2,...,n. Then for n > 20, the zeros of W f(z) lie in the ellipse

2 2
Y x
£ "B

where A, := max{(15¢/n)*/4,\/1/n}, B, := /1 + A2.

=1, z =z + 1y,

Proof. We may restrict our attention to the lower half plane, y < 0;
then sinh 8 > 0. We will show that there are no zeros of W f(z), i.e.,
that (4.1) holds, whenever
(4.14) sinh 8 > max{(15¢/n)"/4,1/1/n}.

The theorem now follows from (4.14) just as Theorem 3.1 does from
(3.13).

We suppose that (4.14) holds and estimate the various terms in (4.2).
By (3.4) and (4.10), we have

(4.15) ly| = sinasinh 8 > sinh? 3
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since we may restrict our attention to |z| < 1, by Lemma 2.1. Since
d < ¢/n, we get with ¢ < 1.6 and n > 20 that

dc\/ﬁ<2

< Z .
ly| ~ nv/15¢ ~ 5v/30

Therefore,

(4.16) D=15(=7),  7>1/250.

Next we note that 8/sinh 8 is decreasing for § > 0; therefore,

1
sinh(1)

(4.17) B8 > sinh 5 > 1/n

1
sinh(1)
by (4.14). Hence,

e~ 2B < em2Vn/sinh(1) 1 /9000

and therefore

1 1
(4.18) sinh(2nf) = (1 - e~ 4nP)enh > 5= §)e??,
where § :=2.5-1077. Also

1 1
(4.19) cosh?(nfB) = S+ e mh)22nB < iths £)e2P,
where ¢ < 1.1 -1073. Furthermore, again by (4.17),

e2nB sinh 8 > ne2v/n/sinh(1),,—3/2 > nez@/ sinh(1)9—3/2 4?571

Hence, with (4.16), (4.18) and (4.19), hypothesis (4.2) holds when
1 58 1

sinh 3= (1 §)e?™? > éeznﬁ sinh B+ = d(sinh ) 2~ (1+¢)(1 —y)e2"?
2 45 3 4

which is equivalent to

. 1+e)(1—17)
fgo sl |
sinh™ 8 > 15 1= 45629 d;
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this holds for sinh 8 > (15¢/n)'/* since (1+¢)(1—)/(1—456/29) < 1.
This verifies (4.2), and the proof is complete. O

Remark . The proofs of Lemma 4.1 and Theorem 4.2 indicate that
the results are not best possible. In particular, the constant “15” in
Theorem 4.2 can be improved if we take n sufficiently large. Also,
the restriction ¢ < 1.6 can easily be modified. The term 1/1/n in the
definition of A,, is of a technical nature; it can be avoided by imposing
a lower bound on c.

To conclude this section, we apply Theorem 4.2 to the ultraspherical
polynomials C;)(z) which can be defined by the generating function

(1—2zt+12) =D Co(2)t", |t <LA#0.
n=0

For A > —1/2, A # 0, the C;)(2) have the explicit expression

1 B Dt n—m) o,
Ch(z) = ) > (1) m@z)

m=0

(see, e.g., [1, Chapter 22]).

Corollary 4.3. For 0 < A < 1 and n > 20, the zeros of WC) lie
inside the ellipse

2 2
) v . .
A—%-f—B—%—l, Z=x+1y

where A, := (15m/2n)"/4 B, := /1 + A2.

Proof. We determine the constant ¢ in Theorem 4.2. The k-th zero
Bk of C(z) is located in the interval

E+Xx—1 km
_ < < _ =1,...
COS( I 7r> < B < cos <n+)\>’ k=1, , N
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(see, e.g., [1, p. 787]). Now
2k -1 E+A—-1
cos | —cos| ———
2n n+A

. ™ 2k—1+k+)\—1 . ™ k+)\—172k—1
. 2 2n n+ A m 2 n+ A 2n

. <7r2n)\2k)\n+)\>‘
sin

dy, : =

=2

IN

2

2 2n(n+ A)
Since —n < —n4+ A <2nA—2kA —n+ A < n(2\—1) — A < n, we have

™ n T 7r
dj, <2sin [ ————— | < 2sin— < —.
k= Sm<22n(n+)\)>_ 1 S
Similarly, we find
/" 2k—1 km 71'
w = |cos m | — cos —.
2n n+A 2n

Hence we may choose ¢ = 7/2 in Theorem 4.2. Finally, we observe that
(15m/2n)Y/* > \/1/n for all n > 1. The proof is now complete. O

Remarks. (1) Corollary 4.3 covers, in particular, the Chebyshev
polynomials of the second kind U, (z) and the Legendre polynomials

P,(z). Note that P,(z) = Crl/z(z), U,(z) = CL(z2). For U,(z), see also
Corollary 5.2 below.
(2) We conjecture that Corollary 4.3 and Theorem 4.2 can be

improved to give bounds of the same order as those in Theorem 3.1.
The following section is related to this question.

5. Wronskians of asymptotics. There are various asymptotic
expressions for the ultraspherical polynomials; see, e.g., [7, Chapter 8].
One such expression is

_ 21—Ar(n + A) cos[(n + A\)f — /2]
n!T'(A) sin* 0
valid for all A # 0,—1,-2,... and 0 < 0 < 7 (see, e.g., [7, p. 197]).

The aim of this section is to determine the zero distribution of the
Wronskian of the main term in (5.1). We denote

cos[(n 4+ A\)0 — /2]

sin* 0

(5.1)  C)(cosh) +0(n*7?),

(5.2) T;l\(cos 0) :=
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Theorem 5.1. Let A\ be any fized real number. Then for all
n > max{8,e*} — \ the zeros of WT)(z) lie inside the ellipse

2 2 _

(5.3) %—l—ﬁ:l, 2=z + 1y,

where A, = (1/(n + A))(log(n + ) — (1/2)loglog(n + A) + (3/2)),
B, = (1+ A2)/2,

The Chebyshev polynomials of the second kind can be defined by

sin((n + 1)9).

U, (cosf) = p—"y;

Then by (5.2) we have U,(z) = T!(z); thus we get the following
consequence of Theorem 5.1.

Corollary 5.2. For n > b4, the zeros of WU,(z) lie inside the
ellipse (5.3) with A, = (log(n+ 1) — (loglog(n+1))/2+3/2)/(n +1).

Proof of Theorem 5.1. To simplify notation we set ¢ := (n + \)f —
mA/2. With z = cos§ we differentiate (5.2) to obtain

d sin ¢ cos 6 cos ¢
4 —TMz) = A
(5-4) dz™" (2) = (n+ )sin)‘+1 0 sin*t29
and
(5.5)
d 1 9 cos? 0
ET” (2) = m{[)\ —(n+XN)costy + A(A+2) Zd cos 9

sin @

+(n+ 0@ +1)28? sin¢}.

With (5.3)—(5.5) we get

(5.6)
n—+ A)cosf [ .

22 1+cos?f
-2 _ .
(n+A)tanf + n+ Asinfcosd 1/}}
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We estimate now the last term in (5.6). With (3.6) we get
. 1 . 1 .
|sinf cos 6| = 5\ sin(260)| > 3 sinh(28) > 8

and with (4.12), | cos | < cosh[(n + A)] so that with |cosf| = |z| <1
(recall that we may restrict our attention to |z| < 1) we have

4X cosh[(n 4+ \)f]

2\ 1+ cos?4d .
(n+ Mg

(5.7) n+ X sinfcosé

s | <

Now we proceed as in the proof of Theorem 3.1. We note that, similar
to (3.7), we have

(5.8) |sin(2(n + X)0 — Aw| > sinh(2(n + X)B).

Also, with (3.5),

(5.9) |tan@| < cothf = (e® + e7P)/(e® — eP) <28 /28 = €°/B.
We see now with (5.6)—(5.9) that WT)(z) # 0 if we can show that

4\ cosh®[(n 4+ \)g]
n+A B

(5.10)  sinh(2(n+ A)B) > 2(n + )\)% +

or, equivalently,
(5.11)

ZA 1\ 2(nn)8 ZA 1\ —2(nanp g, _4A
<B n+)\>e 'B+n+)\ e >4(n+ Ae +n+)\'

It is easy to verify that the left-hand side of (5.11) grows faster than
the right-hand side as functions of 8. Hence, (5.11) holds for all 3 > S,
if it holds for

1 1 5
(5.12) B =00 = n—-l-)\ <log(n + )\) — Eloglog(n + )\) + Z)
Then

+0)?
1 28 _ 5/2_(M
(5.13) e e Tog(n + )’
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and with the assumption
(5.14) n>et -\

we get

2\ 1 1 1 5
. - > — - — —
(5.15) <B n—i—)\) Z (2 log(n + A) 5 loglog(n + A) + 4>

and, for n + A > 8,

2\ 1 3 1 )
. < = - -] <1
(5.16) <B+n+)\> SIS <2 log(n+M) 2loglog(n+/\)+4> <1

We also use the fact that for n + A > 8 we have with (5.12),
(5.17) 4¢P < 5.8.

Now with (5.13)—(5.17), we see that (5.11) holds when

1 1 5 (n+A)?
~1 A) — = logl A) = )P
n+/\<2 og(n+A) = 5 loglog(n + )+4>6 log(n + \)
log(n + A) log(n + A)
X TA S A) 4 BT A
65/2(n+>\)2>58(n+ )+ DY
or
1 1llogl 4
(518) - = 0g Og(n+)\) 5/ 65/2 >
2 2 log(n+2A) log(n + A)

log(n + ) 1
9.8 + (n+ N2 <1+ 65/2(n+)\))'

It is now easy to verify that the term in parentheses on the left-hand
side of (5.18) is minimal when loglog(n + A) = 7/2, with minimum
(1 —e~7/2)/2. With this we see that (5.18) holds whenever n + X\ > 8.
Thus, we have shown that (5.10) is true when n + A > 8, (5.14) and

1 1 5
. > —— —
(5.19) 8> Y <log(n+)\) 5 loglog(n + A) + 4>
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are all satisfied. As in the discussion around (3.10), we see that (5.19)
follows from

(5.20) sinh 5 > %H <log(n +A)— %log log(n + \) + g)

if we can verify that

b (1 (b Yot (L
n+A 4\ n+ A T n+A 4)’
where b :=log(n+A) — (1/2) loglog(n+A)+5/4. But this is equivalent
to b3/(n + A)? < 1 which holds for n + X\ > 8. The statement of the

theorem now follows from (5.20), as in the conclusion of the proof of
Theorem 3.1. O

Acknowledgment. We thank Mike Bennett for doing the numerical
computations for this paper and for preparing Figure 1.

REFERENCES

1. M. Abramowitz and I.A. Stegun, Handbook of mathematical functions, Na-
tional Bureau of Standards, Washington, 1970.

2. K. Dilcher and K.B. Stolarsky, Zeros of the Wronskian of a polynomial, J.
Math Anal. Appl. 162 (1991), 430-451.

3. S. Karlin and G. Szeg6, On certain determinants whose elements are orthog-

onal polynomials, J. Analyse Math. 8 (1960-1961), 1-157.
4. E. Laguerre, QOeuvres, vol. 1, 2nd ed., Chelsea Publishing, New York, 1972.

5. M. Marden, Geometry of polynomials, 2nd ed., American Mathematical Soci-
ety, Providence, 1966.

6. M.L. Patrick, Some inequalities concerning Jacobi polynomials, STAM J. Math.
Anal. 2 (1971), 213-220.

7. G. Szegd, Orthogonal polynomials, 4th ed., American Mathematical Society,
Providence, 1975.

DEPARTMENT OF MATHEMATICS, STATISTICS AND COMPUTING SCIENCE,
DALHOUSIE UNIVERSITY, HALIFAX, Nova Scortia, CaNADA B3H 3J5

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS, URBANA, ILLINOIS,
USA 61801



