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In this paper we summarize the analysis of nonmetric theories of gravity described in de-
tail in some previous papers. One of the main results of this analysis is that in a spherically
symmetric, static gravitational field, the class of metric-affine theories of gravity (MATG’s)
must take on their metric form. Some MATG'’s in the literature are then classified and
analyzed, with the result that none of the theories investigated are viable.

I. INTRODUCTION

This is the last in a series of papers involved in a
systematic analysis of nonmetric theories of gravity.
The class of metric theories of gravity (MTG’s) is
well defined in the literature.! A nonmetric theory
of gravity is a theory not belonging to the class of
MTG’s. Although the techniques and ideas used in
this analysis are quite general, they are primarily ap-
plied to a subclass of the class of all nonmetric
theories of gravity, called metric-affine theories of
gravity? (MATG’s). An MATG is essentially
characterized by the following:

(a) It is a geometric theory of gravity; that is,
spacetime is characterized by a four-dimensional,
Hausdorff, differentiable manifold of signature —2.

(b) The spacetime manifold is endowed with a
connection T and a (3) tensor field g. The gravita-
tional field is represented (completely) by I" and g.
(Note: T is not, in general, assumed to be the Chris-
toffel symbol constructed from the metric.)

(c) The unique curves of freely falling test parti-
cles are associated with the natural geometric curves
in the spacetime manifold, called paths. That is, the
motion of freely falling test particles is governed by
the (path) equation

d*® _, dx? dx°®
d\? % o an ~

A theory must also specify how other fields
should act in a gravitational field. In particular, the
laws of electromagnetism in a gravitational field
(which we shall call the gravitationally generalized
laws of electromagnetism or laws of GGEM) must
be given in an MATG. We find, however, that no
useful results are obtained from an analysis of the
laws of GGEM in their most general form.> There-

(1.1
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fore, we shall restrict attention to gravitational fields
that are spherically symmetric and static (SSS). In
this case we find that g and I take on the simplified
forms?

g00:f ’
(1.2)
g,u.vz'—gS,uv ’
and
e,,=(a),8,+(@) .8y +(B) o8,y
0= o (1.3)
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and the laws of GGEM can be written in terms of
four electromagnetic-gravitational coupling func-
tions &7, #, #, and 2 (in addition to g and T in
their simplified forms). In the above, f, g, a, @, S,
v, 8,8, o #,P,and 2 are arbitrary functions of
the Newtonian gravitational potential U.

Indeed, in an SSS gravitational field the gravita-
tionally generalized Maxwell (GGM) equations are
given by’

a3? _ leAa =
V2¢=%a%+&/g-l3t—+v¢ —4mgl,
(1.4a)
and
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f ar? +g( ) f
+B(VXA)XE+4mgT (1.4b)

1844 ©1983 The American Physical Society



28 ANALYSIS OF NONMETRIC THEORIESOF ... . IIL. ...

where t =x° is the time coordinate associated with
the static nature of the gravitational field, V is the
usual gradient operator, g is_the vector defined by

gt=0U/dx#, and A, =(—¢,A) and J, =(Jy, J) are
]

2, _ - _
%+ Vi) +[V(ia+a—56—8)-VIv+ V(BV

2

L JA =

e 1
m g | ot

where m is the rest mass of the test praticle, e is its
electromagnetic charge, X is its three-position, and
V=dX/dt is the coordinate three-velocity. L is an
arbitrary function of the gravitational field and V
[i.e., L =L (U,VU,V)], and can be written in terms
of the two arbitrary multiplying factors & and 2
[see Eq. (2.4) in Ref. 4].

The laws of GGEM in MTG’s are a special case
of the above with

[T I=g
’ ’ 1-
o=5=8L_L (10
foo2f
and
_f & _
2f 2g ’ w9
1.7
A
=2 2=0,

where the prime denotes differentiation with respect
to U.
It is always possible to decompose I'" according to

Fabc={bac}+Aabc ’ (1.8)

where {,°.} denotes the Christoffel symbol and 4%,
is a tensor (sometimes called the difference tensor).
In an SSS gravitational field (1.8) can be realized by
writing {} according to (1.6), and denoting the part

of I' associated with 4 by a caret (.e.,
a'=g'/2g+a").
We can decompose 4 further,’ viz.,
A% =(S% —S:% +Spc“)
+5(Q% — Q% +Ch”) (1.9)

where S is the torsion tensor defined by S%,. =I"?[4},
and Q is the nonmetricity tensor defined by
Qubc = —8bc |o- In this paper a vertical bar is used
to denote covariant differentiation with respect to
the affine connection I', and a semicolon denotes co-
variant differentiation with respect to the metric

L2 L V- V(AV)+(V-V)A
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the components of the electromagnetic four-vector
potential and four-current, respectively.

The gravitationally generalized Lorentz (GGL)
equations are given by’

1
Y

connection. One final comment on notation; Latin
indices (a,b,c) range from O to 3, and Greek indices
(u,v,0) run from 1 to 3 (alternatively, three-vector
notation will be used).

In Sec. II we shall summarize the analysis of
MATG?’s outlined in the previous papers. We shall
then argue that the analysis demands that «, &, 83, 7,
8,08, o, B, 7, and 2 must take on their metric
forms (so that in an SSS gravitational field MATG’s
must reduce to MTG’s). This conclusion is reached
from both a theoretical and experimental investiga-
tion. From the theoretical standpoint we find that if
the theory is not an MTG, widely held principles of
physics (which will be clearly stated) are violated.

However, only experimental contradiction can
prove unquestionably that a theory is unviable. Un-
fortunately, since experiments are only valid to some
predetermined accuracy we can never show categori-
cally that a whole class of theories is not viable; ef-
fects may always be present that are undetectable to
a particular observational accuracy. In the next sec-
tion we will discuss solar system experiments in the
framework of the class of theories under investiga-
tion. In order to do this it is appropriate to expand
all the functions of the gravitational field in powers
of U, viz.,

f=1+f1U+£,U*+0O(UY) ,
g=14+g,U+g,U*+0(U?) ,
a=a,U+a,U*+0(U3) ,
a,U+a,U*+0(U? ,
BiU+BU*+0(U?)
nU+nU*+0(U?
| vr+o(ud)
§=51U+52U2+0(U3) .

l

(1.10)
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In addition, &/, #, &, and £ can be expanded in
powers of U. We shall find that the experimental
evidence supports the above theoretical conclusions.
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However, in this analysis we use the assumption that
the gravitational field is SSS, which is appropriate
for the experiments performed in the solar system,
but can only be valid to some order of approxima-
tion [possibly O(U?)]. Perhaps a more rigorous
statement of the above results, and one that is indeed
verifiable, is that in the solar system any viable
theory of gravity must take on a metric form.

In Sec. III we shall outline and classify some
MATG?’s in the literature. We shall then investigate
these theories using the analysis set out in Sec. II.
We shall find that none of the theories to be dis-
cussed are viable.

II. SUMMARY OF THE ANALYSIS

A. General structure

In this part of the analysis we ask very general
questions of the theories under investigation.

First we ask whether the theory is complete. For
a theory to be complete, all the fields representing
gravity must be specified in the presence of matter
(through the field equations of the theory). In addi-
tion, the theory must give a set of laws of GGEM.

For theories that are complete, we can calculate
the magnitude of the fields in the theory represent-
ing gravity. We can then determine whether any of
the fields (other than g) will produce effects in the
solar system that can be detected by solar system ex-
periments.

We must also ask whether the theory is internally
consistent. For example, if a theory is complete, we
can construct conservation laws by differentiating
the field equations. We must then ask whether these
conservation laws are consistent with the equations
of motion in the theory.®

B. The laws of GGEM

Here we shall summarize the analysis of the laws
of GGEM in an SSS gravitational field. However,
many theories in the literature are incomplete in the
sense that they do not specify the laws of GGEM.
Nevertheless, we can still obtain constraints on these
theories by such an analysis. The theories can be
completed by postulating their laws of GGEM; we
assume that the laws of GGEM for each individual
theory under investigation are a special case of the
“most general” form of the laws of GGEM, with
o, B, P, and 2 taking on specific forms. The
analysis then yields information on the structure of
each theory; the information essentially amounts to
constraints on the theory in order that electromagne-
tism can be incorporated into the theory in a con-
sistent and meaningful way.

(a) First let us cc}\nsider _the two factors
[f?’—}-(g/f)?’] and (&' +a'—b5' —38'). There are the-
oretical reasons for requiring both these terms to be
zero. If these factors are not zero then the WEP is
not satisfied,Y and the equation governing the
motion of photons deduced from the optical limit of
the GGM equations would not be equivalent to the
mass—0, speed— 1 limit of the equation of motion
(1.1) governing timelike test particles.>

These theoretical arguments are supported by ex-
periment. Indeed, experiments Qlat measure the de-
flection of light demand that [B'+(g/f)?'] is zero
to first order in U (see next subsection). Both terms
are required to be zero to both first and second or-
ders in U by modern-day E6tvos experiments? (to in-
itial order these experimental constraints are very
severe, while to second order they are rather weak-
er).

We conclude that both factors must be zero (and
consequently take on their “metric” form), viz.,

ﬁ/ + & ?’20 R
S

a'+a —5—8=0 .

(b) Next let us consider ./ and #. The general
condition for charge to be conserved is>

(2.1)

a—p-L & o . (2.2)
foog

If we demand charge conservation in a more specific
form (such as, for example, g%J,,=0 or
g%J, |»=0), more precise constraints on .« and #
are obtained (see Ref. 3).

If we demand that the WEP is theoretically satis-
fied,* then

wolf 1g

2/ 2¢g 2.3)
_1g 1f
A= 2

(that is, .27 and & take on their metric forms).

Eotvos experiments demand that .o and % take
on their metric forms. The experimental con-
straints on & to the first order in U are very strong
and they are reasonably strong on .27 to second or-
der and £ to first order. Unfortunately, the experi-
ments do not constrain % to second order in U very
severely.

(c) Let us consider Z and 2. Theoretically the
WEP demands that*

11 g7
2 f  f 7
0 .

P =
D — (2.4)
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Eotvos experiments verify these theoretlcal results.
Z is measured to be equal to f /f—(g/f )P to
both first and second orders in U while 2 is mea-
sured to be zero only to first order in U.

An investigation of the laws of GGEM w111 yield

information on the six quantities @' +a -8 -9,
(B'+(g/ ¥, o, B, P,and 2. From the above

! ' = 'R 1 (Hg)’ (Hf
= -6 b)) =—A=HB =— —
s(a'+a ) B 2 | (ug) wf)
’ ' —1 py
po_ller L), 1wt
2 (ug) 2 (ug) 2 (u7'f)

where u is a scalar defined by u'/2u=g?9'/f. We
now wish to attempt to find constraints on %’ (or, al-
ternatively, u).

Therefore, we turn to the purely gravitational
laws of the theories under investigation. The equa-
tion of motion of test bodies in a gravitational field
Q.e., the path equatign) is written in terms of @’

, B, ¥, d', and &. However, these six func-
tlons only occur in (1.1) in terms of the three factors

Y, (@' +a' — —3 ), and B, since the antisymmetric
and prOJectlvely related parts of I' do not contribute
to the path equation. We have chosen to write the
path equation in terms of the six functions rather
than the above three factors to highlight the fact
that we are specifically concerned with theories in
which an affine connection appears. Moreover, al-
though the remaining three functions (or other three
“degrees of freedom”) do not occur in the path
equation, they may couple to other laws of physics
(e.g., they may occur in a theory of weak interac-
tions in a gravitational field). However, only an
analysis of such laws will enable us to determine
whether these functions can occur in this way.
Therefore, the analys1s here  will only yield in

formation on 7, (&' +&' —8&' — 5 ), and B’. As a con-
sequence, we note that the results of our analysis can
only be applied to those laws of physics specifically
under consideration.

From the above we see that we have already ob-
tal/r\led,\constramts on the two factors (@’ +a
—8—8’) and [3’+(g/f)‘}>’]. We shall therefore in-
vestigate the purely gravitational laws in order to
obtain information on %’. This investigation will be
based on the following: (i) The equivalence princi-
ple. (ii) Solar system tests. (iii) The principle of
universality of gravitational red-shift,! and clock
measurements in general. In the next subsection we
shall discuss experiments in the solar system; we will
return to this analysis in Sec. II D.

analysis, it is reasonable to conclude that these six
terms must take on the values given by (2.1), (2.3),
and (2.4). We note that all these terms must take on
their metric form except &, which can have a non-
metric contribution depending on a nonzero . We
can rewrite these results in the following form:

C. Solar system experiments

We shall now consider the experiments performed
in the solar system that test the nature of the gravi-
tational field. Solar system experiments (other than
Eotvos experiments, which were dealt with in Ref. 3
and the results of which were outlined above) can be
essentially divided into two classes: those that mea-
sure test particle motion (such as the Newtonian
limit, perihelion shifts, and light deflection), and
those that measure the effects of gravity on clocks
(such as the gravitational red-shift and the time-
delay in radar propagation). We note that this
division is not consciously made when dealing with
MTG’s, where all experiments are regarded as
measuring the same thing (i.e., the metric). In par-
ticular, we note that in nonmetric theories of gravity
(such as, for example, MATG’s) the light-deflection
experiment and the time-delay experiment measure
two different manifestations of the gravitation field.
All the observational results to be quoted here are
described in Refs. 1 and 2, within which the refer-
ences to the actual experiments can be found. the
methods used to calculate the experimental con-
straints are, in the main, standard, and can be found
in Ref. 2 and many standard textbooks.

1. The Newtonian limit

The motion of test bodies is governed by Eq. (1.1).
We can rewrite this equation in terms of the coordi-
nate time ¢. In the solar system gravity is weak and
the typical velocity v of a solar body is small; conse-
quently we can perform a weak-field—low-velocity
expansxon of the equation of motion, where formally
U~v?~¢€? (¢ is a parameter that qualifies the ex-
pansion scheme). Assuming that the gravitational
field of the Sun is SSS, we can use (1.3) and expand
all functions of the gravitational field in powers of
U=M;/r according to (1.10), so that to second or-
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der in U (i.e., €*) the equation of motion becomes

L_dF
dt?
1 My 1 s
=(7f1+7’1)—r—3‘1'+(f2—781f1+27’2) T
_ = Ms
+(g1+a1+051—f1—51—51)—r*3—(r'V)v
Mg
+(B— 2gl)-}(“v’ T (2.6)

where Mg is the mass of the Sun, V=dT1/dt, and
Vi=(V-V).

The Newtonian limit demands that to first order
in € the equatlon of motion takes on its Newtonian
form, d*T/dt*=V U, consequently

shi+rn=—1 . 2.7)

2. Perihelion shifts

Assuming that the first-order term in (2.6) takes
on its Newtonian form, the first-order approxima-
tion gives rise to the Keplerian solutions that state
that test particles move on ellipses around the Sun,
with the Sun as a focal point. The second-order
terms in (2.6) cause a perihelion shift of these orbits.

]

|6—A| = | 6+f2-%glfl +2y,+2f1 +28,+25,

3. Light deflection

We can calculate the deflection of electromagnetic
waves in the presence of the gravitational field of
the Sun if we assume that photons are governed by
the mass—O0, speed—1 limit of Eq. (1.1). We do
this by considering the effect as an initial order per-
turbation (in U) on the straight-line motion defined
by

dax®
dl =(1,1,0,0) ,
(2.11)
dx*® dx -0
Nab™an an ~ "

that is, we look for a solution of the form
(1,14+0(U),dx?/dA,0) to Eq. (1.1).

Using (2.11), to first order Eq. (1.1) becomes
(where we assume dx“®/dA ~1 for lightlike particles)

We calculate this shift by regarding the second-
order terms as a perturbation on the initial-order
Keplerian orbits.

Working in a spherical polar coordinate system
(¢,r,6,0), we find that the motion is confined to a
plane of constant 8, which we choose as 8=m/2.
The rate of change of w (the angle of perihelion rela-
tive to the equinox) is given by

d_a) £ ~“—a, cos¢ + —E———)—a¢ sing , (2.8)
dt ~ he
where e, p, and h are, respectively, the eccentricity,
semilatus rectum, and angular momenta per unit
mass of the (Keplerian) orbit; @, denotes the rth
component of (2.6), and the coordinate ¢ is the angle
of the test body measured from the perihelion.

Using (2.6) to calculate a, and a4 to second order
and the Keplerian initial-order values of r, v,, and
v4, we can establish (2.8) to the lowest order of ap-
proximation. We can then integrate to obtain the
change dw in w in one orbit, which is given by

7TMS

(2.9

Observations of the perihelion shift of Mercury
yield an experimental limit on 8w to be
6TM /PMercury (OT 43 sec of arc per century) to an
accuracy of 1%. Consequently, we have that

—3g,—2a,—2a,+2B,| <0.06 . (2.10)
[
iﬁ’. ax? _ ¥ v
dxzz dr 0T xx
Mgy
(%f1+7’1~%81+/31)—‘__

~(3f14+71—381+B)

Mgb

X b 21

where b is the minimum distance between the elec-
tromagnetic wave and the Sun during its motion.
Equation (2.12) integrates to

MS 1 1
y==p (3 f1+71—581+B1)

X[(x2+b3)"2 4 x]1+b , (2.13)
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where we have used the boundary conditions that straint on f:
y=banddy/dx =0as x—— w.
The angle of deflection 6 is consequently given by | f1+2]<0.02 . 2.19)
y 2Ms ]
6~tanf~ S =" (z/1+71—581+B1). 5. Time delay in radar propagation
X —> o0
(2.14) We shall calculate the round-trip travel time, as
) measured by a clock on Earth, of a radio wave sent
The most recent observations yield the following ex- out from Earth and reflected back by a reflector
perimental constraint: elsewhere in the solar system. We choose a coordi-
1 | nate system so that the transmitter, reflector (both
|12+ 3f1+71—781+B1| <0.02 . (2.15) of which are assumed to be at rest), the Sun and the

path of the beam are in the same plane (z =0), and
the path of the beam is along the x coordinate direc-
tion with y =b.

Let us suppose that the metric plays a physical For the null ray, g;;dx idx’=0, which becomes in
role in the measuring process. Indeed, let us assume the SSS gravitational field of the Sun
that the time measur i cks is proper
ry definedeby asured by ideal clocks is prope [14f,U+0(UY)]ds?

o 2 2_
d72=g,~jdx‘dx1 . (2.16) +[—-1—g, U+0(U")}dx"=0 . (2.20)
Consequently, the lapse of coordinate time for the

round trip from transmitter to reflector is given by
(to first order in U)

4. Gravitational red-shift

If we consider an electromagnetic wave emitted in
a static gravitational field which travels from an
emitter to a receiver, both at rest with respect to the
coordinate system, the wave undergoes a frequency -2 f’R dt
. . Itp =
shift according to tr

e dTree (800N LI P —Ms

rec c _ 00 1e/2 ) 2.17) =2 f—aT 1+2(g1—~f1)(x2+b2)1/2 dx s
Aem dTem (800)em

Defining the gravitational red-shift by (2.21)
Zi] =(}‘f;§_)‘em)/ Ae'}" and expanding go in powers of where ay refers to the x coordinate of the reflector

» we find that to initial order in U in the coordinate system centered on the Sun.
7= % FiUe—Ue) . (2.18) The lapse of proper t.ime as measured by an
Earth-based clock is given by At
Experiments that measure the gravitational red- =trr{ 800 | '"%at Eartn}, Which becomes after in-

shift effect put the following experimental con- tegrating (2.21),
|

[aR+(aR2+b2)1/2][aT+(aT2+b2)1/2]

M
Ar=2(ar+ag) 1+%f1(—‘;—2—*s*~ +(g1—/f1 )Mslnl
T

+ b 2 ) 1/2 b 2
(2.22)
I

Experiments that measure the time-delay effect theories further by appealing to the purely gravita-
therefore put an observational limit on the factor tional laws (of the theories) as well as the laws of
(g1—S1), viz,, GGEM. In particular, we are looking to restrict the

form of .
g1 —f1—4]<0.2 . (2.23) First let us ask whether the theories under investi-
gation satisfy the equivalence principle. This is best
D. The purely gravitational laws done by quoting some results from Ref. 4. From the
form of 22 and 2 in (2.5) we find that L is of the
In Sec. IIB we found severe constraints on the form L =(u~'f —p~'gVv )2, L occurs in Eq. (1.5)
form of the theories of gravity under investigation. through the terms (1/f)L and (1/g)L, which can

We shall now attempt to restrict the form of these now be written as [1/(uf))(uf—ugv?!/? and
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[1/(ug))(f —uugV »!/%. From this result, and the
form of the other terms in (2.5), we find that rela-
tions (2.5) are precisely those for which the laws of
GGEM take on a “metric” form with respect to
18- Therefore, the analysis in Sec. IIB demands
that the laws of GGEM must take on a metric form
with respect to a tensor conformally related to g, (it
does not prove however that the laws must be metric
with respect to the physically important g,;). This
result is useful here, since we can now see quite
clearly that unless u is a constant (i.e., '=0), the
equivalence principle is indeed violated. (Moreover,
a nonzero ' leads to a practical breakdown in the
equivalence principle in that energy is no longer
conserved.’) Parenthetically we remark that we have
therefore shown that for the theories of gravity
under investigation the equivalence principle is satis-
fied if and only if the theories are metric.

In Sec. II B we considered the GGL equations in
their general form. For any particular theory of
gravity the GGL equations would be given; that is,
L, and therefore & and £, would be specified. We
could then regard (2.4) as a constraint on the form
of . In some cases this constraint can be shown to
prove that ' is zero. For example, let us consider
two examples of possible GGL equations (see Ref.
4). In the first L =dr/dt, so that 2 = f"/f and
2 =0, and (2.4) consequently yields

?'@=0. (2.24a)
In the second L =d A /dt, so that
oo
and
92(’8\1+8—r~61_31)_ ﬁ"”‘??’ ,
and (2.4) yields
8 5)+8"5)=0. (2.24b)

Therefore, if the GGL equations of any particular
theory are of the above form we can apply the con-
straints represented by (2.24).

In the last subsection we described solar system
tests, which give experimental values to the func-
tions appearing in the analysis. These experimental
constraints support the theoretical constraints out-
lined in Sec. II B. In addition, the experiments give
information on the possible form of the function 9'.
This information is obtained, in part, from experi-
ments concerned with clock measurements in the
gravitational field of the Sun. Indeed, we observe
from (2.7) and (2.19) that observations demand that
v1=0. This result supports the assertion that P’ is

zero. Unfortunately, we need second-order gravita-
tional red-shift experiments in order to determine y,.

We conclude that the above analysis indicates that
P’ must be zero. Consequently, we have found that
MATG’s must reduce to their metric form in an
SSS gravitational field if the theoretical and experi-
mental conditions outlined in this section are to be
satisfied.

III. CLASSIFICATION AND ANALYSIS
OF THEORIES IN THE LITERATURE

In this section we shall consider several examples
of MATG’s in the literature. First we shall classify
the theories, and then investigate them using the
analysis described in Sec. II.

A. Weyl-affine theories

In this class of theories we have that

I“abcz{bac}_"'z»[}abc ’ (31)
where
¥ pe =8°Ugpadbe +8eadb —8hePa) » (3.2)

and ¢, is a vector field (usually constructed from a
scalar field by ¢, =¢ ,). Using (3.1) and (3.2) we see
that

8ab |c = _Zgabqscioy I‘a[bc]ZO . (3.3)

In an SSS gravitational field 9%, takes on the fol-
lowing form:

a!l‘:a:l‘z _B’#=_§T‘?’#=8’#=S,ﬂ=¢# ’ (3.4)

where ¢ is a scalar field. In a weak field we can ex-
pand ¢ according to

= U+¢U*+ - - - . (3.5)

In Weyl-affine theories of gravity the motion of
test particles in a gravitational field is governed by
the path equation (1.1), for the connection defined
by (3.1). In the six theories of gravity outlined
below, the above construction has been used in an
attempt to produce a theory that is invariant under
an arbitrary change of units.

If we apply the analysis outlined in Sec. II to
Weyl-affine theories we obtain the following results:

(A) Theoretical: Weyl-affine theories violate the
equivalence principle. The laws of GGEM for
Weyl-affine theories have been written down in a
general form (.e., .o/, B, P, 2, etc., have not been
specified). For any particular theory the laws must
be written down explicitly; we can then examine
whether the given theory satisfies the WEP. In par-
ticular, if the GGL equations are of the form



28 ANALYSIS OF NONMETRIC THEORIESOF ... . IIL. ... 1851

represented by (2.24) the Weyl-affine theory in ques-
tion would violate the WEP.

(B) Experimental: Solar system experiments
demand that ¢;=0 [see (3.4), (3.5), (2.7), and (2.19)].
If the GGL equations are of the form (2.5), E6tvis
experiments demand that ¢ is zero to first and
second orders in U. Consequently, the ¢ field can
play no observable part in the solar system.

Many examples of this type of theory can be
found in the literature, some of which we will brief-
ly describe here. (i) Ross’s theory’: ¢, is constructed
from a scalar field. The field equations in Ross’s
theory, which are given in Ref. 7, are incomplete.
The laws of GGEM are not specified. (ii) Lord’s
theory®: In this theory there is a scalar field o as
well as the vector field ¢,. The field equations are
complete (but horrendously complicated). The
GGM equations are given, in which

gLl _1g
A=—B=g g

The GGL equations are not specified. (iii) Omote’s
theory’: This theory is a special case of Lord’s
theory above. (iv) Rothwell’s theory!'%: ¢, is con-
structed from a scalar field. Neither are the field
equations complete, nor the laws of GGEM speci-
fied. (v) Cohn’s theory'!: ¢, is constructed from a
scalar field. The field equations are complete. The
laws of GGEM, however, are not specified. (vi)
Modified Brans-Dicke theory®: ¢, is constructed
from a scalar field. The field equations are com-
plete, but the laws of GGEM are not given. In this
theory T"”;,, =0, which leads to an internal incon-
sistency within the theory.®

Since the laws of GGEM are not given in any of
the above, none of these theories are complete. In
addition, in two of the theories above the field equa-
tions are not complete either. In all the cases in
which the field equations are complete we find that
¢ ~O0(U) (i.e., ¢;50), which contradicts the experi-
mental evidence outlined above. We conclude that
none of these theories are viable.

B. Weyl-Dirac theories!?

These are the theories that attempt to identify the
¢, field in the Weyl-affine theories with the elec-
tromagnetic potential 4,, and thus unify gravity and
electromagnetism. As noted by Ross,!® these
theories imply that electromagnetic field couples to
all other fields, regardless of whether they are
charged or not. We shall not consider these theories
any further.

C. Nonconservation theories

These are theories in which T"b; » 1S nonzero.
Smalley’s theory'* is an example of such a theory in

which T"b;b =0oR"% where R is the curvature scalar
and o an arbitrary parameter. In this theory the
motion of test particles is governed by the geodesic
equation (therefore the theory is an MATG); this
leads to an inconsistency in Smalley’s theory if o is

1101’1261'0.6

D. Torsion theories
In this class of theories we have that
T = {3} +S%c —Sc% +Sp? » (3.6)

where §%,. =T is the torsion. From (3.6) we see
that

gab|c=0 . y (3.7)

In an SSS gravitational field I'%;, takes on the fol-
lowing form:

A

o g 5 [ A~
8,u=7?,u=7‘,w Au=—Bu=Lu 8,=8,=0,
(3.8)

where A and £ are scalar fields. In a weak field we
expand A (for example) by

A=MU+MU>+ - - -, (3.9)

In torsion theories of gravity the motion of test
particles in a gravitational field is governed by the
path equation for the connection given by (3.6). If
we apply the analysis outlined in Sec. II to torsion
theories, we obtain the following results.

(A) Theoretical: If A and £ in (3.8) are not identi-
cal, then the theory would not satisfy the WEP, nor
would the equation governing the motion of photons
calculated from the optical limit of the GGM equa-
tions be equivalent to the mass —0, speed — 1 limit
of the path equation. Let us assume that A=£-£0,
then torsion theories violate the equivalence princi-
ple, and if the GGL equations are of the form
represented by (2.24), they also violate the WEP.

(B) Experimental: Experiments prove that A and £
must be equivalent. This equivalence is inferred to
first order from the light-deflection experiment (i.e.,
A1=¢&,), and to first and second orders from Eotvos
experiments. Solar system experiments then
demand that A, =0 [sce (3.8), (3.9), (2.7), and (2.19)].
Depending on the precise form of the GGL equa-
tions for a particular torsion theory, EGtvos experi-
ments may also measure A to first and second or-
ders. We conclude from the observational evidence
that A is unobservable in the solar system.

We shall now briefly describe three examples of
torsion theories in the literature. (i) Dunn’s theory!'>:
In this theory the torsion is defined by
S% =~5(8%A , —83A ) where A is a scalar field.
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The field equations are incomplete and the laws of
GGEM are not formulated. (ii) Halford’s theory!®:
In this theory the torsion is defined by
S%.= %(52)»,, — 83 A, ), where A, is a vector field, as-
sumed to be cosmological in origin (and related to
the cosmological constant). The field equations are
incomplete and the laws of GGEM are not specified.
(iii) U4 theory: Here we mention the first version of
the theory formulated by Hehl et al,!” in which the
torsion is assumed to be related to spin angular
momentum. Since the equations of motion in the
theory are obtained by integrating the conservation
laws, and U, is not really a “classical” theory of
gravity but a theory that attempts to unify the quan-
tum phenomenon of spin angular momentum and
gravity in a consistent way, it is not clear whether
the analysis can be applied to the U, in a meaning-
ful way. (We note that in the solar system U, essen-
tially reduces to general relativity.)

E. Theories with both torsion and
nonmetricity nonzero

A second version of U, (Ref. 18) has been
developed with nonzero nonmetricity, in which
8ab|c 1s assumed to be related to “hypermomen-
tum.”

A second example of this type of theory is provid-
ed by Sen and Dunn.!®?® Their theory incorporates
an arbitrary scalar field ¥ and is based on a general-
ized Riemannian geometry called a Lyra geometry.
The authors attempt to produce a theory which is
invariant under arbitrary units transformations.

In this theory the motion of test particles is
governed by the path equation for the connection
defined by

1
T ={bc} +q¥,58. — P68 ,a » (3.10)
where the constants p and g may take on different

values. Sen and Dunn suggest that either (i)
p =q =1, so that test particles follow the geometric
curves in the Lyra geometry called “extremals,” or
(i) p-—:—%,q:%, so that test particles follow the
geometric curves in the Lyra geometry called “auto-
parallels.” Let us consider the two cases as two dif-
ferent theories.

In case (i) we find that T takes on the following
form in an SSS gravitational field:

<a+§),ﬂ=<8+8>,”=—2/3’,”=2§?,u=¢,u :

(3.11)

Depending on how the antisymmetric part of I is
defined, this case would either be a theory of the
type described in Sec. III (A) or Sec. III (D).

In case (ii) we find that T takes on the following
form in an SSS gravitational field:

<a+a>,#=(a+5),y=/3,y=—%,,‘:%% ENCRP)
This theory is different from all the others above in
that g, |0 and (depending on how the antisym-
metric part of the connection is defined) possibly
S abc¢0-

Finally, we note that although the field equations
are given in the theories of Sen and Dunn, the laws
of GGEM are not; the theories are therefore incom-
plete.

We conclude by noting that an additional conse-
quence of the analysis outlined in this paper is that
none of the theories listed here are viable.
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