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Analysis of nonmetric theories of gravity. II. The weak equivalence principle
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A set of equations representing the (generalized) laws of electromagnetism in a gravita-
tional field for a class of nonmetric theories of gravity are written down. From these equa-
tions we calculate the center-of-mass acceleration (A, ) of a composite test body, consist-
ing of electromagnetically interacting charged point particles, in an external, spherically
symmetric and static (SSS) gravitational field. Demanding that the weak equivalence princi-
ple be satisfied, so that (A, ) contains no composition-dependent terms, puts severe con-
straints on the form of the original generalized equations. Indeed, the principle demands
that the laws of electromagnetism in an (SSS) gravitational field take on a "metric" form.
The observational constraints on the form of the (generalized) laws of electromagnetism
from Eotvos experiments are also discussed.

I. INTRODUCTION

This paper is one of a series of papers involved in
a systematic analysis of nonmetric theories of gravi-
ty. The class of metric theories of gravity (MTG's)
is well defined in the literature. ' A nonmetric
theory of gravity is a theory not belonging to the
class of MTG's. Although the techniques and ideas
used in this analysis are quite general, they are pri-
marily applied to a subclass of the class of all non-
metric theories of gravity, called metric-affine
theories of gravity' (MATG's). An MATG is essen-
tially characterized by the following:

(a) It is a geometric theory of gravity; that is,
spacetime is characterized by a four-dimensional,
Hausdorff, differentiable manifold of signature —2.

(b) The spacetime manifold is endowed with a
connection I and a (2) tensor field g. The gravita-
tional field is represented (completely) by I and g.

(c) The unique curves of freely falling test bodies
are associated with the natural geometric curves in
the spacetime manifold, called paths. That is, the
motion of freely falling particles is governed by the
(path) equation

d x dx dx
dA. dA.

[Note: An MTG is a special case of an MATG,
where the connection I is constructed from the (2)
tensor g (which is assumed to be the metric) and is
given by the Christoffel symbol. We are specifically
interested in the case when I and g are not related
in this way. ]

In addition, an MATG must specify how other
fields should act in a gravitational field. In particu-
lar the laws of electromagnetism in a gravitational
field must be given. The laws of electromagnetism
to be used in this work are certainly general enough
to incorporate the laws of electromagnetism in a
gravitational field for MATG's. Also, it is not
necessary (in this paper) to assume that g is the
metric; g could be a general (q) tensor (occurring in
the laws of electromagnetism). Consequently the re-
sults obtained are applicable to a larger class of
theories than MATG's.

In this paper we shall be concerned with the weak
equivalent principle (WEP), and its relation to
modern-day Eotvos experiments. We recall that the
WEP states that there is a unique trajectory for any
test body at a given point in spacetime, and with any
initial velocity, which is composition independent.
We shall find that there are severe constraints on the
form of a theory (of gravity) in order for the theory
to satisfy the WEP.

If we consider the acceleration of a test body due
to an external gravitational field (only), we see that
for MTG's and MATG's (with equations of motion
of test particles given by the geodesic and path equa-
tions, respectively), the WEP is satisfied trivially.
However, the acceleration of a test particle does not
depend solely on the gravitational field, but on all
the physical forces, and the WEP states that the ac-
celeration is composition independent with respect
to all such physical forces. (Indeed, the Eotvos ex-
periments are perfoirr|ed on real test bodies subject
to all the laws of physics. )
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In the following we shall consider the acceleration
of a test body due to the electromagnetic nature of
that body. Other forces producing an acceleration
of the body, such as nuclear forces, are beyond the
scope of this paper. That is, we shall calculate the
center-of-mass acceleration of a composite test body,
consisting of electromagnetically interacting charged
particles, in an external gravitational field. The cal-
culation uses the techniques developed by Lightman
and Lee and Haugan and Will. 3

However, the calculation is far too difficult for a
general gravitational field. In order that the equa-
tions be manageable, we idealize the gravitational
field to be spherically symmetric and static (SSS).
This idealization does not really weaken the calcula-
tion since: (a) We shall compare the results of the
calculation to the observations of the Eotvos experi-
ments, where the gravitational field of the Sun is ap-
proximated to be SSS. (b) If we demand that the ac-
celeration be composition independent for all gravi-
tational fields, it must certainly be composition in-

dependent for SSS gravitational fields.
The general form of the connection I and the (z)

tensor g in an SSS spacetime is

I „„=(a)p„+(a)„5„+(p) 5„„,
=(y)

I o„——(5) „, I „o——(5)„
and

(1.2)

goo f»—
gpv = g5pv ~

(1.3)

where f, g, ~, tz, p, y, 5, and 5, are arbitrary func-
fjons of the Newtonian gravitational potential U
(only).

In order to proceed with the calculation we need
to establish the laws of electromagnetism in a gravi-
tational field. In particular, we want to write these
laws in a general (or generalized) form in order to
include the possible laws of electromagnetism in a
gravitational field for nonmetric theories of gravity.
We shall call these the gravitationally generalized
laws of electromagnetism (laws of GGEM), and
these laws consist of the gravitationally generalized
Maxwell equations (GGM equations) and the gravi-
tationally generalized Lorentz equations (G GL
equations). These laws of GGEM are required to
satisfy the following conditions:

(a) They should reduce to the special-relativistic
laws in the appropriate limit.

(b) The laws of electromagnetism in MTG's are a
special case.

(c) The laws are certainly general enough to in-

O,'= CX = —P g
2 g

where a'=da/dU, and the four functions M, A',
H, and P are given by

1 f'
2 f

1 g'
2 g (1.5)

We shall be interested in calculating the center-
of-mass acceleration of a test body which is
"dropped" in the gravitational field, that is, a body
which is at rest at t=O (which is appropriate if we
wish to compare the results to the actual Eotvos ex-
periments performed). Therefore, we choose our
coordinate system so that X, =0 and V, =0 at
t=O, and calculate the instantaneous center-of-mass
acceleration. In order for the gravitational field to
be written in the form given by (1.2) and (1.3), we
must work in the appropriate coordinate system. In
particular, the coordinate system must be at rest
with respect to the spherically symmetric mass (gen-
erating the gravitational field). This condition, in
addition to the conditions X, =V, =0 at t=O,
determine the coordinate system in which we work
completely.

Next, let us discuss some of the details of the cal-
culation. We assume that the test body is made up
of electromagnetically interacting charged particles.
The motion of each individual particle is governed
by the gravitationally generalized Lorentz (GGL)
force law. The electromagnetic field (which is gen-
erated by the charged particles) is governed by the
gravitationally generalized Maxwell (GGM) equa-
tions. In addition, we assume that the masses of the
particles do not themselves contribute to the gravita-

elude all possible laws of GGEM for M&TG's.
Such a set of equations representing these general-

ized laws were obtained and investigated by Coley
(their generality was shown within). In particular,
these laws of GGEM take on a very simple form in
an SSS gravitational field in teiiris of the functions
f, g, a, a, P, y, 5, 5, and four arbitrary functions (of
U) M, A', H, and P (which represent the possible
"nonmetric" coupling of electromagnetism to gravi-
ty). The GGL equations in an SSS field are given
below by Eqs. (2.1) and (2.2), and the GGM equa-
tions by Eqs. (2.19) and (2.20). We note that the
laws of electromagnetism in MTG's are a special
case of these equations, with I equal to the metric
connection, viz. ,



ANALYSIS OF NONMETRIC THEORIES OF GRAVITY. II. 1831

tional field, so that the gravitational field is due to
the external SSS source (only).

We shall be looking for a perturbative solution.
The first small quantity in which we expand is the
squared particle velocity vk . We set

where we regard v as a typical squared particle
velocity. From the virial theorem (see Sec. II)

(typical charge of a particle)
(typical mass)(typical spatial separation of neighboring particles) ms

2
U

In the calculation we shall expand in terms of this
small quantity, and we label terms in the expansion
by 0(v"). Formally, we write

2e
vt, — =0(v ) .

A second small quantity is the size of the body
(which is typically -s). We expand all the arbitrary
functions of the gravitational field [e.g. , f ( U), u(U),
M(U), etc.] in a Taylor series about the instantane-
ous center of mass of the test body, viz. ,

f(U)=f (x)=fp+f p(g x), (1.9)

where fp and fp represent f and df /d U evaluated at
the center of mass.

All the effects of the gravitational field in a small
region containing the test body can be represented
by writing the functions of the gravitational field in
the form indicated by (1.9). fp and fp are then re-
garded as constants, and all the spatial dependence
(of the gravitational field) is contained in the factor
(g x). Moreover, g can also be regarded as con-
stant since, by the definition of a test body, we as-
sume that second derivatives of U are negligible.
Therefore, we shall also expand in terms of (g x),
which we shall label by 0(g) [or, more precisely,
0(gs)]. However, we only expand to first order in
0(g) in this calculation.

We seek a perturbative solution to the problem,
independently expanding in terins of 0 (v ) and
0(g). (Note that we are not expanding in terms of
the Newtonian potential U. We want the solution to
all orders in U.) The calculation then proceeds as
follows. We solve the GGM equations perturbative-
ly [in powers of 0(g) and 0(v )] for the elec-
tromagnetic potentials, and substitute these solutions
into the GGL equations to obtain an expression for
the acceleration of the kth particle ( ak ) entirely in
terins of particle coordinates. We then define a

center of mass X, for the test body and obtain
an expression for d X, /dt, which is related to
the center-of-mass acceleration of the test body, in
terms of the constituent particle coordinates. Hav-
ing obtained an expression for the instantaneous
center-of-mass acceleration, we use the viral rela-
tions to simplify the results (and express any body
dependence of this acceleration in terms of the
body's electromagnetic structure).

In the next section we shall calculate the center-
of-mass acceleration to second order, or post-post
Coulombian order [that is, up to and including
terms of order 0 (v ) and 0 (gv )]. Calculating the
center-of-mass acceleration to this order "com-
pletes" the calculation for all practical purposes for
the following reasons. If we were to continue the
calculation to post-post-post Coulombian order [that
is, 0(v ) and 0(gv )], we would need to take into
account terms arising due to electromagnetic radia-
tion, which is far beyond the scope of the calcula-
tion. We could continue the calculation to 0(g ),
but these terms represent effects such as post-
Newtonian corrections to the tidal forces, and would
consequently yield no information on the WEP
(moreover, as pointed out above, these terms would
be very small, and are really outside the approxima-
tion scheme completely). In addition, as we shall see
in Sec. III, the calculation to second order contains
all the information that the WEP could possibly
give on the structure of the GGEM equations.

In Sec. III we shall discuss the theoretical and ex-
perimental implications of the calculation with
respect to the WEP.

Finally, we shall make a few brief comments on
the notation to be used. We shall use latin indices
(a, b,c) to range from 0 to 3 and greek indices
(p, v, o ) to range from 1 to 3 (alternatively, we shall
use three-vector notation). We shall also use latin
subscripts (i,j,k) to range over the number of parti-
cles; that is, i = 1 to n, where n = the number of par-
ticles constituting the test body. This double use of
latin index notation should not cause any confusion
since it will be clear from the context which nota-
tion is employed.
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II. CALCULATION OF THE CENTER-OF-MASS ACCELERATION OF A TEST PARTICLE, MADE
UP OF ELECTROMAGNETICALLY INTERACTING CHARGED POINT PARTICLES,

IN AN EXTERNAL, SPHERICALLY SYMMETRIC, STATIC GRAVITATIONAL FIELD,
TG POST-POST-COULOMBIAN ORDER

A. Equations of motion for the kth particle

First we establish the equations of motion for the kth particle (of the composite body made up of elec-
tromagnetically interacting charged particles), under the action of the electromagnetic and SSS gravitational
fields. This is given by the GGL equations

ak ( x k ) = —V ( y) —[ V (a+ cx 5 5—) v k—]U/, —V (13)v k + L ( U ( x k ), U p, v k ) —Al ( x k ) +—AL ( x I, )
g f

(2.1)

where all functions (f,g, a, etc. ) are evaluated at xk, mpk is the rest mass of the kth particle, ek its charge, xk
its three-position, and vk its three-velocity. AI and AL are defined by

+ VP —V'( vk A)+ ( v. V )A (2.2a)

and

+ Vp 'vk vk (2.2b)

[where P and A are related to the electromagnetic four-potential A, by A, =( —P, A)], and represent elec-
tromagnetic contributions to the acceleration. (They are, of course, generalizations of the "usual" Lorentz
force. ) We wish to expand the right-hand side of (2.1) in powers of O(g) and O(v ). We recall that functions
depending on the gravitational field can be written according to (1.9). The gradients of these functions can
therefore be written as

Vf(xk)=fog . (2.3)

We can use (1.9) and (2.3) to expand (2.1) in powers of 0 (g). Also, we must expand L ( U, U &,vk") appropriate-
ly. The correct expansion is found to be

xy,1g)g)=f0 1+AD(g'xy) — vg — f )vg )(g'x )d)k
2 p p t

+ —
2

+ +—
~

—— (g.xk)vk +O(g )+O(v ),1 go o go o 1 gofo 1 go 2 2 4

0 0 fp 0
(2.4)

where we have only expanded L to O(gv ) in order
for ak to remain O(gv ). The expansion of L is in
teriris of two arbitrary functions (of U) H and P.
These two functions can be thought of as arbitrary
multiplying factors for the (g.x) and (g x)v terms
in L. (The v term is fixed in order to obtain the
correct special-relativistic limit. )

To see that the expansion for L given by (2.4) is
appropriate, we consider two examples of possible
GGL equations, and hence two examples of possible
L 's, and see how the L 's expand in these two cases.

In the first example we consider the GGL equa-
tions in an MTG (written in terms of the coordinate
time t) given by
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d x" ~ dxb dx' o dx" dx dx'
(the validity of this equation is discussed in Ref. 1).
For a=0 this equation becomes

e d7
m dt

pdx pdx dx
dt " dt dt

(2.5)

d t p dx dx' dt2 b c

dt dt dA.

' 1/2
dx dx
dt dt

L(x, v)=
dt

In this example L is given by
r

(2.6)

8 pdx dt
m " dt dA,

(2.10)

and for a =p (written in terms of the coordinate
time t)

In an SSS gravitational field this becomes

L(x, v)=(f —gv )'i (2.7)

Expanding f and g according to (1.9), and using
the binomial theorem to expand (2.7) in terms of
0 (g) and 0 (u ), we find that L expands according
to (2.4) with Hp and Bo given by

d2x" dx" dx'+r~„
dt dt

r

e dA,

m dt

rpp dx" dx dx'
dt dt dt

pdx pdx dx
dt " dt dt

(2.11)

1 fo
2fo '

Bp——0.
(2.8)

In this second example

L(x, v)= (2.12)

d'x dx' dx'+pa
dA.

e ~dx
m

"
dA.

(2.9)

In the second example we take the GGL equa-
tions in the form

We wish to calculate the value of d A, ldt along the
trajectory defined by Eq. (2.9). Calculating F„v"by
evaluating (d/dt)(v v) an. d using (2.11), and using
the forins of g and I in an SSS gravitational field,
Eq. (2.10) becomes

d t d — dt g gv
dA, dA. f f 2 dA, dA, dA, dA,

d — t 2

dA,
(5+5—a —a —P) v

(2.13)
Expanding the right-hand side of this equation in terms of 0 (g) and 0(u ) to 0 (gv ) yields

d t d
dk

T

go'Yo, —, 1 go 2 go
p
—

p g'x + v
fo 2 fo fo

5o+So —ao —ao —Po—goYO 2 dt

(2.14)

where

go 1 go 1 fo, —. . . , goYo
C'o = — —— +5o +5o —ao —ao Po——

fo 2 go 2 fo fo

Integrating Eq. (2.14) yields

(2.15)

1 go go'Yo+ —5o —5o
2 fo fo

go, —. . . , g o'Yo
5O+5O —ap —ap —Pp-

fp fp
(g.x)v

+4 V g X tl+ g2+ U4
(2.16)
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where the "arbitrary constant of integration" has been chosen as fo '~ in order for (2.16) to reduce to its
"metric" form in the appropriate limit.

Finally, using d A, ldt =(dtld A), we find that in this second example (with L =dk ldt), L expands accord-
ing to (2.4) with Ho and &0 defined by

go'Yo
~0=&o+&o-

fo

1 go 1 fo, —. . . , go'Yo
&0= — —— +Oo+ &o cIo —cto —Po—

2 go 2 fo fo

(2.17)

Having found the required general expansion of L, we can now write down the equations of motion for the
kth particle to 0 (gv ). Substituting the value of L given by Eq. (2.4) into Eq. (2.1), we obtain

ak( xk ) = Vog (%0+&0—50 —60)( g vk ) vk

—ppvk g+ 'fp 1+Ho(g'xk) Vk
mok 2fo

1 go~0 go&0

fo fo
1 gofo 1 go
2 f2 2f g

p t
1 go

1 — (g xk) Al (xk)
go

1 fo
1 — (g xk) AL(xk)

0 0

+0(g )+0(v ) . (2.18)

B. Solution of the CxGM equations

The CrGM equations in an SSS gravitational field, for a source consisting of electromagnetic point particles,
are given by

and

1/2

V p= — +M g + Vp —4Ir
~A - f

f I)t' Bt g
ek x —xk

k
(2.19)

1 /2
gBA f -- - g —+ ~ gV' A= —,+—(V'.A)V' —+%0(V'xA)xg —4~—f at' g f ek vk x —xk

k
(2.20)

where M and A are arbitrary functions of the gravitational field.
We expand (2.19) and (2.20) in powers of 0 (g) and 0(v ), and look for a perturbation solution for A and P.

A and P expand according to

P-0(g )[0(v )+0(v )+. ]+0(g)[0(v )+0(v )+ ]+
A-0(g )[0(v')+0(v')+ ]+0(g)[0(v')+0(v')+ ]+ .

Formally, we write

(2.21)

A=AO+A)+
(2.22)
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0o-0(u ), Pi-0(gv ), Pt —0(u ), P2-0(gv ),
Ao-0(u ), A&-0(gu )+0(v ) .

(2.23)

Since we only wish to calculate ak [from Eq. (2.18)] to 0 (gu ), we need only calculate Ap, A&, Pp, P&, P&, and
2'
First we calculate Ap. From (2.20) the equation for Ap is

1/2
2 go

V Ap ———4m, ge;v;5 (x —x, ), (2.24)

which has the solution

1/2
go e;v;

Ao(xk) =
I

xki
I

where xk; ——xk —x;, and the summation is assumed to exclude the case i =k.
Therefore, from Eq. (2.20) the equation for A& is

2 1/2go~Ao fo -- - g Ro goV' A]: + ( V' Ap)V' +~p( V' XAp)X g
p Bt gp go

(2.25)

(2.26)

fo e;v;(g x;)
fo; [xk, i

go

(2.27)

[where we retain 0 (gu ) and 0 (v ) terms only], in tei-ins of the vector "superpotential" 0' given by

where we retain terms up to 0(gv ) and 0(v ), and Ap is given by (2.25). The solution of Eq. (2.26) is given by

1/2 2 /

1 go go go BV fo
Ai(xk) =- +, + — (& +)g+p(V'X+)Xg1/2 g fo &t' fo

1 g'o
4(xk)= —,ge;v;

~
xk;

~i/2 l l (2.28)

where, to 0 (gv) and 0 (u ),

Ao=V 4 .

From (2.19) the equation for Po is

which has the solution

fo'"
0o(xk) = er.

1/2

1/2
V' Pp ———4n pe;5 (x —x;),fo 3

1/2
go

(2.29)

(2.30)

(2.31)

Therefore, the equation for Pi is

which has the solution,

I

(g x)ge;5 (x —x;),
go

(2.32)

1 fo' f'o go e;(g x;) go a'V
1 xk =— „, — +, +Mp(g V'Y)

2 go fo go ;
i xk, i

o at'

[where we keep 0 (gu ) terms only], in terms of the "superpotential" Y defined by

(2.33)
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Y(xk) =— „,g e
I

xki I

1 fo'"
(2.34)

where

V2Y (2.35)

Next, the equation for P 1 is
2

gp 00

fo at'

which has the solution

(2.36)

g'0 a Y
i xk (2.37)

Finally, the equation for p2 is

g a 4'0 go a 4i go a iI5'i

V P2 ———
2 + 2 + 2 +Mp(g. Vpi)+Mp g.

at p at p at

The solution of this equation is given by

aA0
(2.38)

r

2 I

(~ )
g a Y 2go go

f at' fo go

fo
fo

- a'A
g'

go a'n go' a'A go - a'A „a2e+~0 g 2at
(2.39)

where we retain O(gu ) terms only. The "superpotentials" A and n are defined by

24 g
i/2

r

1 fo' goro 1 fo'" fon(xk)= i/2 +Wo +ei(g'xk;)
I xki I

+—
8 go'" 4g i/2

go Xe(g'x )Ixk I

go
(2.40)

so that

V A=Y,
V2n=yi .

(2.41)

Consequently the solutions for P and A to the ap-
propriate order are given by Eqs. (2.25), (2.27),
(2.31), (2.33), (2.37), and (2.39). Substituting these
solutions into Eq. (2.18) [using (2.2)] gives us an ex-
pression for the kth particle's acceleration ak up to
O(gu ). In order to write this expression explicitly
in teiiris of particle coordinates we must evaluate the
(appropriate) derivatives of the superpotentials in
the solution. The time derivatives of the superpo-
tentials will give rise to terins containing the single-
particle acceleration; therefore, in order to obtain a
consistent approximation for ak to 0 (gu ) we must
iterate the equations for P and A and the expression
for ak [given by (2.2) and (2.18)].

C. The center-of-mass acceleration

1X, = g (mkxk),

1 go
mk =Bipk+ mokvk +

2gp j I xjk I (2.43)

(2.42)

Having obtained an expression for the accelera-
tion of a single particle, we now define a center of
mass X, and calculate the instantaneous center-
of-mass acceleration A, of the body. To some ex-
tent the definition of the center of mass to be used is
unimportant, so long as it remains within the body.
Indeed, since ultimately we shall be interested in a
time-averaged acceleration, any point (representing
X, ) that remains within the body will yield the
same numerical result on average.

The definition that we shall use for the center of
mass is given by the following equations:
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and

Plk (2.44)

Note that we have defined mk [in Eq. (2.43)] up
to 0(u ) only. If we had included teriris in mk of
0(u ) and 0(g), these teiias would also contribute
to (A, ) to 0 (gu ). However, these additional
terir|s in (A, ) would all cancel when use is made
of the virial relations (to be discussed in the next
subsection). A detailed calculation can be made to
prove this. '

From Eq. (2.42)

d X, d X,
m = m

dt dt o(g)

d X,+ m
dt . 0(gu2)

m
dt 0 (gu 4)

+0(u ) . (2.46)

0(guz). We need to use ak to 0(gu ) to calculate

gk mkak to 0(gu ). Collecting all tenpins together
we can write down the expression for md X, /dt2
to 0(gu ). However, since this expression contains
over 100 teriiis, it will not be written explicitly here
but represented symbolically by

Xq~ d mk mk
m Xk+2 vk

dt k dt k

+ gmkak .
k

(2.45)

In order to calculate md X, Idt2 to 0(gu4) we
need to calculate dmk Idt to 0 (gu ) and d mk/dt
to 0 (gu ), using our calculated expression for ak to

There are no 0(u ) nor 0(u ) tern|s present since
they essentially come from the special-relativistic
contributions to md X, /dt . (It is relatively easy
to calculate these terins and show that they do
indeed vanish. )

We wish to obtain an expression for the time-

averaged center-of-mass acceleration. Taking the
time average «Eq. (2.46), we then define the
center-of-mass acceleration ( A, ) to be

d2X,
(A, )= m ',™

0(g)

d X,+ m
dt

d X,+ m
o(~2)

+0(u') .
O(g 4)

D. Virial relations

In this subsection we shall establish a set of virial relations, which are relations between different terms in
(A, ), obtained by setting ((d/dt)(M")) equal to zero, for internal, structure-dependent quantities M".
This set of virial relations can then be used to simplify the expression for (A, ).

(a) "Second-order" tensor virial relations.
Setting ((d Idt)(M") ) =0, where M" is defined by

e;ek
U "Xk"-

f
x,k f

yields the virial relation

(2.48)

(2.49)

where we have used the calculated value of a; to 0(u ). Other "second-order" tensor virial relations that we
shall use are

(
pfo eteJek ( x jk xJQ )xj esek+ g (V;'VV)X; VX; Q + g (V;'XV)V; QX Q)go;,Jk mok fxtk f fxkJ f';,k fxkf';,J, fxJ, f3

e-e e.es k (v;.xtk)x;"kut k
—3 (vik x;k)(v; x k) tkxtkx=0, (2.50)
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x" dv"k k eei k
eek f (vk. xk ) dt + g (Vk xk;)xk"Uk")=0,

i, k

~ ~

2 ~ ~ p vfo e;e, ek (xkj xik)Xi kXj eiek e;ek+ Q (Vk'V k)X' kX' + g (Vk X;k)U; kX; )go
' i, k mok

I xk, I'I xki I', k
I
xi I'

e;ek e;ek+ g (vk xk)x;"kv;" —3 g (vk xkNvk xk)xekx;")=0,
i, k Ixikl i, k Ixikl

fo e;ejei ( xkj' x;k )xi xk e ek e;ek
X l l + X l (Vk elk)Xk Uk + X l (Vk elk)xk Xk )go ij,k mok

I
"a

I I "kj I
) k

I ")k I i.k I xik
I

-e e e+ g (vk'xlk)Uk Xk 3 g (xlk'V;k)(vk'xlk)Xk xk )=0,
.k I

X k I

'

(2.52)

(2.53)

(2.54)

and

(
2 0 e;e e;ek

(V;'X;k)U; X; + +PI UVUkllk Uk + g V; X; kX; )=0.
go ik

I xik
I

k go ik
I

xik I'
Due to the symmetry of the last virial relation (in vk"vk ) we obtain the virial identity

(2.55)

e;e e;e=2 $ '
(v, xk)(g x;)v; + $ v, k(g. x, )xk) .

I
X k I

'

(b) The "first-order" tensor virial relation with "second-order" corrections.
With

g mkXk vk
k

where mk is defined by Eq. (2.43), setting ((d Idt)(M") ) =0 yields

(2.56)

(2.57)

Xk"Uk" —, mk Uk"Uk" + —, mkXkI'ak
k k k

Calculating dmk/dt, using ak to 0(v"), and keeping all terms to 0(v ), we obtain the virial relation

fo 1
mk ok"vvk+ 3~2 g 3X kX k + gmokvk vk vk +»2 g 3v; vk

k 2go' ', k
I

x;k I' 2go

e;e e;e
(V;'Vk)X; kX; k

—
lvk g (V;'Xk)(VU'Xk)X; kX; k)

4go ', k
I

xik
I

4go i k
I

xik
I

e;ek eiek
(Vk'Xk)U; X; k + g (Vk'Xk)x; kv; )=0,

, k I
xk I' 2go'", k lxk I'

(2.58)

(2.59)

where the "second-order" virial relations in part (a) have been used to simplify this result. The first two terms
in this equation are 0 (v ), while the rest are 0 (v ).

The calculation now proceeds as follows. First we simplify the 0(gv ) terms in (A, ) using (2.59). This
simplification is achieved at the cost of introducing extra 0(gv ) terms into (A, ) [arising from the 0(v )

correction teirns in (2.59)]. Then the 0(gv ) terms are simplified using the "second-order" tensor virial rela-
tions. After an exceedingly long calculation we find that (A, ) is given by

7) Q1 7/
—k Q) ~ EI —v lEQ

(A, ) = —yo g + rt+ c7)+ WI+ Wp+ W3+ W4+ Wq,
Pl P?l PT Ptl Pl

(2.60)
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where

'g =g &
&= g'Xik Xik

(k x(k

, q, +, q„Wz
1 ~ 1 ~ 1 ~ 1

'Qz ~ i ~z+
1 ~ 1 ~ 1 ~ 1

4 2JI~ 2 ~+ 2 2 2 4~

with

(2.61)

e;e e;e
2)}= g g (V;'Vk), 'g2= g g (Xk;'V;)(Xk;'Vk))

i, k fxik f
i, k fxik

e;e e;e
442= g (g'V2)Vk, 422 — g (g'Vk)(V2'Xk2)Xk2)

i, k fx;kf i.k fxikl'
e;e

442= g (g.xk;)(v; xk;)Vk),
fx;i, f3

e;e
444= g (V 'Vk)(g'Xk )Xk;)

(2.62)

e;e
425= g (V,. 'Xk,. )(Vk'Xk;)(g'Xk;)Xk;)

, k f xik I

'
3/z

424= +2224;V; (g V;)V;),
fo

and the multiplying factors are given by

1

1/2
go

1

1/2
go

go Yo
0+ 0 r

gonzo 1 fo+~0+~o——
0 0

1 go —50 —60+ao+ izo
2 go (2.63)

1 1 go 1 fo
go 2 go 2 fo

1 1 fo 1 go
e2 ——

, %0+-
go 2 fo 2 go

1 1 fo 1 go, —. . . , go'Yo—&0— + +&o+ &o &o &o Po- — —
go'" 2 fo 2 go fo

Finally, we remark that the O(gu ) terms g and
co and the O(gu ) terms W~, W2, W3, W4, and W5
are completely independent of one another.

III. SUMMARY AND CONCLUSIONS

A. Theoretical discussion

In this paper we have taken the gravitationally
generalized laws of electromagnetism (GGEM), and
obtained a (predicted) expression for the quantity

(A, ) [given by Eq. (2.60)], which is related to the
acceleration of a "real" test body. In Eq. (2.60) we
see that only the first (Newtonian-type) terrgg is com-
position independent, all the other terms represent
accelerations depending on the internal structure of
the test body. Moreover, the composition-dependent
accelerations f, io, W&, W2, W3, W4, and W5 are all
independent of one another. Therefore, the only
way that the WEP can be (theoretically) satisfied, so
that (A, r) does not contain any composition-
dependent terms, is for the five multiplying factors
7J, CO, E(, E2, and g' to b'e independently zero, viz. ,
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rj =co=@1——e2 ——/=0 . (3.1)

Equation (3.1) represents conditions for the WEP to
be satisfied. These results can be thought of as
physical constraints on the original (mathematical)
equations.

Let us analyze the results given by Eq. (3.1). We
have not specified the initial location of our test
body with respect to the external gravitating source.
Since we wish the WEP to hold everywhere, Eq.
(3.1) should be satisfied at any point the test body is
deposited, and so we can remove the zero subscripts
from all quantities appearing in this equation
[through Eq. (2.63)].

In order to write Eq. (3.1) in full it is convenient
to split the functions a, a, P, y, 5, and 5 into metric
and nonmetric parts (it is always possible to decom-
pose I according to I 'b, ——Ib, 1+3'b„ for some
tensor A). The metric parts of these functions are
given by (1.4). We shall use the caret notation to
denote the nonmetric part of a particular function
(e.g., a' can be written as a' = —,g'/g + (1,

''—the
prime denotes differentiation with respect to U).
Therefore, Eq. (3.1) becomes (in full)

formation could be obtained on the structure of the
laws of GGEM. (Moreover, the higher-order terms
[i.e., O(g ) and O(v ) terms] are really outside the
scope of the approximation scheme. ) Therefore, as
remarked earlier, we can regard the calculation to be
"complete. "

We can simplify (3.2) by either exploiting the
"conformal invariance" of the GGM equations [and
choosing a "gauge" in which (gj&'If + H —,f'If)—
is zero], or by imposing the constraints that
(gP 'If +P ') and (5 '+ 5 ' —a ' —a ') are both zero.
These two constraints are theoretically justified by
(3.2) and by the desire for the equation governing
the motion of photons deduced from the optical lim-
it of the GGM equations to be equivalent to the
mass~0, speed~1 limit of the GGL equations for
an uncharged particle. (In addition, these two con-
straints are also supported, at least to some order of
observational accuracy, by experiments that measure
the deflection of light. )

Subtracting out the conditions that (gy'If +P')
and (5'+5 ' —a ' —a ') are zero, we obtain the
following four (independent) equations for W, A,
H, and B:

gi'+p. ~ 1 f'+ 1 g'

f 2f
1 f' 1 g'+-f 2 g

(3.2a)

(3.2b)

1 f'
f 2 f

+— =0,1 f' 1 g'
2 f 2 g

=0,1 f' 1 g'
2 f 2 g

(3.3a)

(3.3b)

(3.3c)

and

1 f' 1 g' =0,
2 f 2 g

=0,1 f' 1 g'
2f

(3.2c)

(3.2d)

alld

=0. (3.3d)

We can rewrite the relations (3.2)/(3. 3) in the fol-
lowing way:

B+ +P' —(5'+5' —a' —a')=0.

(3.2e)

1, (pg)' (pf)'
(pg) (pf)

From the structure of the calculation, the most
that can be expected from the WEP is that it should
give us information on the four electromagnetic-
gravitational coupling functions W, &, W, and
B, and on the two quantities (gP'If +P')
and (5'+5' —(1,

' —a'). From (3.2) we see that the
six quantities are constrained by five equations, and
since the GGM equations are invariant under
(f,g)~(pf,pg) ("conformally invariant") these re-
sults contain all the infornlation that could possibly
be hoped for. Consequently, if we continued the cal-
culation of (A, ) to higher order, no further in-

1 (pf)'y'=—
2 (pg)

'

~=0, P=
2 (pg) (3.4)

1 (p 'f)'
(p 'f)

where p is a scalar field defined by p'/2p =g P '/f.
From the forms of M and & in (3.4) we see that the
GGM equations take on a "metric" form with
respect to pg, b [this of course follows from Eqs.
(3.2c) and (3.2d) and the "conformal invariance" of
the GGM equations]. From the forms of H and B
in (3.4) and Eqs. (2.4), (2.7), and (2.8), we observe

1 2 1/2that L is of the form L =(p 'f —p 'gv )'~ . L
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occurs in Eq. (2.1) through the terms (1/f)L and
(1/g)L, which can now be written as
[1/(pf)](pf —pgv )'~ and [1/(pg)](pf —pgv )'~ .
From (3.4) we observe that all other terms in (2.1)
representing the gravitational field can be written as
p multiplied by the appropriate metric form. Con-
sequently, we have shown that relations (3.4) are
precisely those for which the GGL equations take
on a "metric" form with respect to pg b. Therefore,
the WEP demands that the laws of GGEM must
take on a "metric" form with respect to a tensor
conforinally related to g,b.

There are two ways to view the results above.
First, if we analyze the work outlined in this paper
in isolation, we have considered a class of relativistic
theories of gravity characterized by a set of laws of
GGEM [represented by Eqs. (2.1), (2.18), (2.19), and
(2.20)], and shown that the WEP demands that these
laws of GGEM be metric with respect to pg, b

Moreover, since pg, b is the only object occurring in
the laws under investigation, it takes on the role of
"physical metric"; that is, it is pg, b that is interpret-
ed to be of physical importance in the laws under
consideration. Thus we could state the results of
this paper as follows: For the class of relativistic
theories of grauity under inuestigation, the WEI'
demands that the laws of GGEM (in this class of
theories) must take on their metric form.

On the other hand, we could attempt to view the
results above in the context of an overall analysis of
nonmetric theories of gravity, whose structure
would include physical laws other than just the laws
of GGEM investigated here. In such an analysis,
g b may take on a role of physical importance (for
example, g,b may be of physical significance in the
measuring process —see Ref. 4). We have not shown
that the laws of GGEM under investigation here
must take on their metric form with respect to g,b.
To show this we must prove y'=0, or, alternatively,
p=constant, results which cannot in general be ob-
tained from the WEP due to the "conformal invari-
ance" of the laws of GGEM. Further analysis must
therefore be done outside the framework of the
WEP. Immediately we see that for a nonzero y' the
Einstein equivalence principle is broken. Evidence
to prove that y

' is zero would come from an
analysis of solar system experiments involving test
particle motions and clock measurements (which
will verify the result up to the PN order of approxi-
mation), and from an analysis involving the con-
sistency of gravitational red-shift experiments. This
analysis will be presented in a later paper.

As we mentioned above, in general no further in-
foririation can be obtained from the above analysis.
However, if we investigate some particular cases
(that is, theories in which the laws of GGEM are

more specific than the general case considered up to
now), additional, more specialized information may
be obtained. From Eqs. (3.3) we observe that M,
A, and B must take on their metric form with
respect to gab, while, due to the presence of the y'
terin, H need not. We could interpret Eq. (3.3a) in
other ways. First, in the context of MTG's, with
GGL equations of the form

d2x" ~ dxb dx' o dx" dx" dx'
dt2 Ibc l dt dt I bc j

= e L(x, v) F„dx" F„odx—" dx"
di dt dt

(3.5)

1
given (3.6)

In Sec. II A, we considered two examples of possible
GGL equations (which, in fact, we regard as the two
most "reasonable" possibilities). What information
does Eq. (3.6) yield in these two examples' ?

(a) In the first example L =de/dt In this ca.se H
is given by [from Eq. (2.8)]

1 f'
(a) (3.7)

so that Eq. (3.6) yields

y(a) (3.8)

(b) In the second example L =dA, /dt. In this case
W is given by [from Eq. (2.17)]

+ (b) ~(b) +~(b) y(b) + (3.9)

and Eq. (3.6) yields
I

&(b)+&(b) =0 ~ (3.10)

Equations (3.8) and (3.10) represent "strong" con-
straints on the possible form of I .

We have shown that the WEP (theoretically) im-
plies that the GGEM equations take on a metric
form in an SSS gravitational field. However, it is

we could calculate the conditions the WEP imposes
on L. In this case y'=0, and so H = , f'/f. —
Therefore, for MTG's equations (3.3) imply that the
laws of GGEM take on their metric form. Indeed
for any class of theories with y

' =0, the WEP im-
plies the laws of GGEM take on their metric foiin.

Second, for a theory with given GGL equations
(that is, with L, and thus H and B, specified), we
could calculate the conditions the WEP then im-
poses on the remaining nonmetric coupling func-
tions. That is, we regard (3.3a) as an equation for
y', in terms of the given function H, viz. ,
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theoretically conceivable (for a particular theory of
gravity), that the GGEM equations are metric in the
SSS approximation, but nonmetric in other, more
general, cases. Therefore, we cannot conclude that
the GGEM equations must be metric in general.
Nonetheless, the ealeulation does represent a very
severe constraint on the for-ni of the most general
GGEM equations.

In our calculation we have considered only "elec-
tromagnetic" test bodies. Since we wish to apply
our results to real test bodies consisting of actual
atoms, subject to nuclear interactions as well as the
laws of electromagnetism, we should include in
(A, ) terms which involve nuclear energies. We
should then ask whether it is theoretically possible
for the nuclear terms to cancel the electromagnetic
terirxs. Lightman and Lee considered this question,
and concluded that there is no credible mechanism
that could lead to such a cancellation. (If nuclear
energies were included in the calculation, the WEP
could then be used to constrain the possible form of
gravitational-nuclear interactions. )

In the Moscow version of the experiment, platinum
and aluminum were used to obtain the result

i (A, )A) —(A, )p, i

(A, )
(3.12)

Let us investigate to what order the Eotvos exper-
iments test the GGEM equations. ' We note that
the composition-dependent accelerations rl, io, f i,
Y/2 co i co 2 co 3 co 4 (o 5 and co 6 [defined by (2.6 1 )
and (2.62)] occurring in (A, ) [as given by Eq.
(2.60)] are, in general, completely independent of one
another. But in any given experiment they may be
related in some way. In particular, the bodies used
in the aforementioned Eotvos experiments were ap-
proximately spherical (at least in the time-averaged
sense), so that the above composition-dependent ac-
celerations satisfy the following conditions:

B. Experimental implications 2
'ri =

2 co = gEe

Experimental support for the WEP comes from
the so-called Eotvos experiments, which measure the
relative acceleration toward the Sun of two different
substances. The two experiments of highest pre-
cision were perforiried in Princeton and Moscow.
In the Princeton experiment, gold and aluminum
were used as the test substances, with the (null) re-
sult

3

4 ~&= 4 ~&= 4 ~4= gEm(1),

(3.13)

«. )Al (A. )A

(A,

igl
(3.1 1)

2 ~6 gEm(3) i

where E„E (i), E (3), and E (3) are defined in the
above relations. Using (3.13), we can then write
(A, ) as

c.mI .)g+ [2(g+ 3 &)]g + ('g+ 3 CO+ 3 E2)g+ (''g+
&

(O+ —P&+ —P2)g+ — (2()g
m

(3.14)

From this equation we can now interpret E, as the
electrostatic self-energy of the body, and the E 's as
related to the magnetostatic self-energy of the body.

Since (A, ) has been calculated to all orders in
U, in order to compare (3.14) with experiment all
functions of the gravitational field must be expand-
ed in powers of U. Using the numerical values for
the differences between the electrostatic and magne-
tostatic self-energies of aluminum and platinum es-

timated in Refs. 2 and 3 and a numerical estimate
for U (for Earth-bound experiments), we can now
use (3.12) and (3.14) to calculate the experimental
limits [on the arbitrary functions of the gravitational
field in (3.14)] by demanding that each
composition-dependent term (to each power of U)
must separately satisfy the experimental lower limit
obtained from the Moscow version of the experi-
ment.
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The actual experimental constraints obtained are
rather complicated and will not be reproduced here
(although the results are available). The results
essentially amount to the following. Equations
(3.3a), (3.3b), (3.3c), and (3.3d), for H, M, A, and
B, respectively, are experimentally verified to first
order in U (very strongly). H is weakly constrained
to second order in U. Eotvos experiments must im-
prove in accuracy by three orders of magnitude to
significantly constrain W, A, and B to second or-
der in U. We conclude that experimental evidence

supports the postulate that the GGEM equations are
of a metric form.
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