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Closed cosmologies with a perfect fluid and a scalar field
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Closed, spatially homogeneous cosmological models with a perfect fluid and a scalar field with an expo-
nential potential are investigated, using dynamical systems methods. First, we consider the closed Friedmann-
Robertson-Walker models, discussing the global dynamics in detail. Next, we investigate Kantowski-Sachs
models, for which the future and past attractors are determined. The global asymptotic behavior of both the
Friedmann-Robertson-Walker and the Kantowski-Sachs models is that they either expand from an initial
singularity, reach a maximum expansion and thereafter recollapse to a final singularity~for all values of the
potential parameterk), or else they expand forever towards a flat power-law inflationary solution~when k2

,2). As an illustration of the intermediate dynamical behavior of the Kantowski-Sachs models, we examine
the cases of no baryotropic fluid, and of a massless scalar field in detail. We also briefly discuss Bianchi type
IX models.
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I. INTRODUCTION

Cosmological models with a scalar field and an expon
tial potential are of fundamental importance in the study
the universe. These models are motivated by the fact
they arise naturally in alternative theories of gravity and
cur as the low-energy limit in supergravity theories@1,2#. By
using qualitative techniques, the well-known power-law
flationary solution has been shown to be an attractor for
initially expanding Bianchi models~except for a subclass o
the Bianchi type IX models which will recollapse! in the
class of spatially homogeneous Bianchi models@3,4#. More
recently, cosmological models which contain both baryot
pic matter and a scalar field with an exponential poten
have been studied@5#, partially motivated by the fact tha
there exist spatially flat isotropic scaling solutions in whi
the energy density due to the scalar field is proportiona
the energy density of the perfect fluid@6#. In @7# the stability
of these cosmological scaling solutions within the class
spatially homogeneous cosmological models with a per
fluid subject to the equation of statep5(g21)m ~whereg is
a constant satisfying 0,g,2) was studied and it was foun
that wheng.2/3, and particularly for realistic matter wit
g>1, the scaling solutions are unstable; essentially they
unstable to curvature perturbations, although they are st
to shear perturbations. In addition, in@8# homogeneous and
isotropic spacetimes with non-zero spatial curvature w
studied.

It is clearly of interest to study more general cosmologi
models. One class of models of particular interest are th
with positive spatial curvature. These models have attracte
less attention since they are more complicated mathem
cally. Positive-curvature Friedmann-Robertson-Walk
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~FRW! models @8–11#, Kantowski-Sachs models@12# and
Bianchi type IX models@3,10,13,14# have been studied usin
qualitative methods, although rigorous analyzes using a n
set of compact variables have not been carried out. The
anchi type IX models are known to have very complicat
dynamics, exhibiting the characteristics of chaos@10,15#, and
are hence beyond the scope of the present study. Rec
@16# positive-curvature FRW models and Kantowski-Sac
models with a perfect fluid and a cosmological constant h
been investigated using qualitative methods and utiliz
compactified variables.

The outline of this paper is as follows. We shall fir
comprehensively study the qualitative properties of the cl
of positive-curvature FRW models with a baryotropic flu
and a non-interacting scalar field with an exponential pot
tial, extending and generalizing work by Turner@17#, who
used different basic variables. We shall then analyze
qualitative properties of the Kantowski-Sachs mode
Positive-curvature FRW models and Kantowski-Sachs m
els belong to the class of spherically symmetric models,
hence the present work is a natural extension of recent w
@18,19#. Indeed, it turns out that understanding the dynam
of the Kantowski-Sachs models is crucial for understand
the global dynamics of general spherically symmetric sim
larity models@20#.

Matter model

The matter content of the models is taken to be a per
fluid and a scalar field with exponential potential. The cor
sponding energy-momentum tensor is

Tab5~Tpfab1Tsfab!, ~1!

Tpfab5muaub1p~uaub1gab!, ~2!

Tsfab5f ,af ,b2S 1

2
f ,cf

,c1V~f! Dgab , ~3!
©2000 The American Physical Society26-1
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V~f!5V0e2kf, ~4!

wherek is a non-negative constant, and the pressure is g
by p5(g21)m, with the equation-of-state parameter in t
range 1<g<2. The fluid energy densitym and the scalar
field f are functions of a timelike coordinatet. A dot denotes
differentiation with respect tot and throughout units are use
in which c58pG51. The matter components are assum
to be non-coupled, and thus they are separately conserv

¹aTpf
ab505¹aTsf

ab . ~5!

For convenience, we define

X5
1

A2
ḟ. ~6!

II. CLOSED FRIEDMANN MODELS

We start our investigation of closed cosmological mod
with a perfect fluid and a scalar field by looking at the clos
FRW models. The line element for these models can be w
ten

ds252dt21S~ t !2dr21S~ t !2 sin2rdV2. ~7!

The expansion of the fluid congruence is given byu

53Ṡ/S, and the evolution equation for the curvatureK
[9/(u2S2) is

K̇52
2K

3u
~3u̇1u2!. ~8!

The conservation equations yield

ṁ52gum, ~9!

Ẋ52uX1
k

A2
V. ~10!

From the field equations we obtain

m5
1

3
@~11K !u223X223V#, ~11!

u̇52
1

3 H u21
1

2
D21

3

2
@3X223V13~g21!m#J .

~12!

Assumingm>0, the Friedmann equation, Eq.~11!, shows
that D5A(11K)u2 is a dominant quantity. Thus, compa
variables can be defined according to

Q05
u

D
, U5

A3X

D
, W5

A3V

D
. ~13!

Note also that the curvature is given by
04352
n

d
d:

s
d
it-

K5
12Q0

2

Q0
2

. ~14!

The Friedmann equation becomes

VD5
3m

D2
512U22W2. ~15!

Defining a new independent variable, 85d/dt
5(3/D)d/dt, the evolution equation forD

D8523Q0S U21
g

2
VDDD ~16!

decouples. Thus, a reduced set of evolution equations is
tained:

Q085~12Q0
2!F123S U21

g

2
VDD G ,

U853Q0UF211S U21
g

2
VDD G1A3

2
kW2,

W853Q0S U21
g

2
VDDW2A3

2
kUW. ~17!

There is also an auxiliary evolution equation

VD8 523Q0@~12VD!g22U2#VD , ~18!

and it is straightforward to consider the set of variab
(Q0 ,U,VD), rather than (Q0 ,U,W) @17#. Note that by set-
ting k50, U50, and identifyingL5V0 , VL5W2, the evo-
lution equations corresponding to closed FRW models wit
cosmological constant are obtained@16#.

It is also useful to consider the deceleration parame
given by

qpf[2S 113
upf

a ¹aupf

upf
2 D 52

1

Q0
2 F123S U21

g

2
VDD G ,

~19!

for Q0Þ0. From this expression, we can see that there is
inflationary region (qpf,0) in the state space whenev
VD,(2/3g)(123U2). However, as will be seen below, it i

FIG. 1. The state space for closed FRW models with a sc
field whenk2,2/3. Dashed curves and white arrows and circles
screened. Dotted orbits are in the interior of the state space.
6-2
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CLOSED COSMOLOGIES WITH A PERFECT FLUID AND . . . PHYSICAL REVIEW D62 043526
only whenk2,2 that there exist attractors that are inflatio
ary. Note also that, forQ0Þ0,

Q0852~12Q0
2!Q0

2qpf , ~20!

so thatQ08,0 wheneverqpf.0 in which caseQ0 is itself
monotonic. Whenqpf,0, that is in the inflationary region
Q0 need not be monotonic — for example, see the orb
close to 1F in Figs. 1 and 2.

The dynamical system Eqs.~17! is symmetric under the
transformation

~t,Q0 ,U,W!→~2t,2Q0 ,2U,W!. ~21!

Thus, it is sufficient to discuss the behavior in one part of
state space, the dynamics in the other part being obtaine
Eq. ~21!.

Furthermore, note that

M5
VD

12Q0
2

,

M 852~3g22!Q0M , ~22!

is a monotonic function in the regionsQ0,0 andQ0.0 for
VDÞ0. As there are no equilibrium points withQ050 when
g.2/3, M acts as a monotonic function in the interior of th
state space. Consequently there can be no periodic or re
rent orbits in the interior state space and global results ca

FIG. 2. The state space for closed FRW models with a sc
field when 2/3,k2,2. Dashed curves and white arrows and circ
are screened. Dotted orbits are in the interior of the state spac
04352
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deduced. In addition, from the expression for the monoto
function M we can see immediately that eitherQ0

2→1 or
VD→0 asymptotically.

Equilibrium points of the closed FRW dynamical system

A number of equilibrium points can be found for the d
namical system, Eqs.~17!. In what follows,e561 denotes
the sign ofQ0, whereasVf5U21W2 is a density paramete
associated with the scalar field. In Table I, the various eq
librium points are summarized. The subscripts on the lab
have the following significance: The left subscript gives t
sign ofQ0 and indicates whether the corresponding mode
expanding~1! or contracting (2). The right subscript gives
the sign ofU; i.e., the sign ofḟ.

The equilibrium points labeled6F correspond to the fla
Friedmann solution. For these points, the scalar field v
ishes (U505W). There is an orbit from1F to 2F and this
orbit represents the closed FRW solution with no scalar fie
starting from a Big Bang at1F and recollapsing to a ‘‘big
crunch’’ at 2F.

The K points represent exact solutions with a massl
scalar field (W50). As the fluid is negligible (VD50),
these solutions are dominated by the kinetic termU. They
correspond to Jacobs analogs of Kasner solutions in whicU
takes on the role of a shearing mode@10#.

ar

TABLE II. The physical quantitiesVD , Vf , and qpf for the
different equilibrium points of the closed FRW models.

VD Vf qpf

6F 1 0 1
2 (3g22)

6K6 0 1 2

6F 0 1 1
2 (k222)

6X 0 1 0

6FS
1

k2
~k223g!

3g

k2

1
2 (3g22)

S6
4

3~22g!
2

3g22

3~22g!

Not defined
TABLE I. Equilibrium points of the closed FRW models.

Interpretation Q0 U W Note

6F Flat Friedmann e 0 0

6K6 Kinetic dom. e 61 0

6F Scalar-field dom. e k

A6
e A12

k2

6

k2,6

6X Curvature scaling k

A2
e

e

A3

A 2
3

k2,2

6FS Flat matter scaling e A 3
2

g

k
e A 3

2

1

k
Ag~22g!

k2.3g

S6 Static 0
6A2

3g22

3~22g!

0 g,2/3
6-3
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TABLE III. Eigenvalues for the different equilibrium points of the closed FRW models.

Eigenvalues

6F (3g22)e 2
3
2 (22g)e 3g

2
e

6K6 4e 3(22g)e 3e2A 3
2 ksgn(U)

6F 2(3g2k2)e 2
1
2 (62k2)e 2(22k2)e

6X
2

k

A2
~3g22!e

1

A2
~2ke6A823k2!

6FS (3g22)e 2
3
4F~22g!6

1

k
A~22g!@24g22~9g22!k2#Ge

S6

2
k

A2
A2

3g22

22g
sgn~U !

6A2A2~3g22!
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There are equilibrium points with non-vanishing pote
tial, where the scalar field dominates (VD50). These points

6F are only physical whenk2,6. For k256, 1F coin-
cides with 1K1 , and 2F with 2K2 . For k2.6, they are
outside the physical part of the state space. The equilibr
point with e511 ~i.e., 1F) is a sink, and fork2,2 it
corresponds to the power-law inflationary attractor solut
~cf. the expression forqpf in Table II!.

There are also points6X for which the matter is unim-
portant, but the curvature is non-vanishing (Q0

2Þ1), and
tracks the scalar field. The corresponding solutions are ca
curvature scaling solutions@8#. These solutions only exis
when k2,2. For k252, 1X coincides with 1F, and 2X
with 2F. Above this value ofk, these equilibrium points
are outside the physical part of the state space.

Whenk2.3g, there is a flat matter scaling solution, fo
which both the fluid and the scalar field are dynamica
important. The corresponding equilibrium points are deno
6FS, and fork253g they coincide with6F.

Finally, there are equilibrium points S6 corresponding to
static solutions, analogous to the Einstein static unive
These are only physical wheng,2/3. Forg52/3, a set of
equilibrium points appears along the lineU505W, signal-
ing a change of stability when the points S6 leave the physi-
cal state space. In what follows, we will only consider equ
tions of state for which 1<g<2, hence we will not conside
these points further.
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Table II presents some physical quantities for the vario
equilibrium points, and Table III lists their eigenvalues. T
sources and sinks of the dynamical system wheng.2/3 are
listed in Table IV, and the global behavior for different va
ues of k can be summarized as follows: The state sp
when 0,k2,2/3 is depicted in Fig. 1, where the features
the rear part of the state space have been suppressed. D
and full curves represent orbits in the boundary subma
folds, while dotted curves represent orbits in the interi
Both 1K2 and 1K1 are past attractors, while2K1 and 1F
act as future attractors. There are also orbits from1K2 ,
whose future attractor is2K2 at the rear of the figure. Note
that orbits, future asymptotic to1F, correspond to solutions
that exhibit power-law inflation (21,qpf,0, see Table II!.
Observe that the outgoing eigenvector directions from
saddle point1F span a separatrix surface in the interior
the state space. Similarly,1X is a saddle for which the in-
going eigenvector directions span another separatrix surf
These separatices confine orbits in the interior state spac
specific regions. For example, there is one region where
orbits are past asymptotic to1K1 and future asymptotic to
2K1 .

Whenk2.2/3, the separatrix surface associated with1X
changes structure, see Fig. 2. This is easiest seen by co
ering the separatrix orbits in theVD50 submanifold, see
Fig. 3. Whenk2,2/3, there is one separatrix orbit from2F
to 1X, and one from2X to 1F. For k252/3, these two
TABLE IV. Summary of sources and sinks for the closed FRW models.

Past attractors
Expanding from a singularity (Q0.0) 1K2 Always

1K1 k2,6
Contracting from a dispersed state (Q0,0) 2F k2,2 ~andk2,3g)

Future attractors
Contracting to a singularity (Q0,0) 2K1 Always

2K2 k2,6
Expanding to a dispersed state (Q0.0) 1F k2,2 ~andk2,3g)
6-4
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FIG. 3. Separatrix orbits in theVD50 sub-
manifold of the closed FRW models whenk2 is
near 2/3.~a! k2,2/3; ~b! k252/3; ~c! k2.2/3.
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orbits coalesce into a single orbit from2X to 1X. This orbit
corresponds to a special ‘‘bouncing universe’’ solution, e
isting only for this particular value ofk. Whenk2.2/3, the
separatrix orbit to1X starts at1K2 , and the orbit from2X
goes to2K1 . Thus, there is a bifurcation fork252/3; how-
ever, we note that there is no stability change of equilibri
points involved. A similar behavior of separatrix surfaces h
been found for Bianchi type IX models@13#.

Whenk increases, the equilibrium point1X approaches
1F. For k252 these two points coincide, and the sta
space fork2.2 is depicted in Fig. 4. Both1K2 and 1K1

still act as past attractors, while2K1 is a future attractor.
However, the stability of1F has changed; it has become
saddle. There is still a separatrix surface associated with1F.
Thus, orbits having1K1 as their past attractor all end a
2K1 .

For k2.3g, the equilibrium point1FS, corresponding to
the matter-scaling solution, appears from1F, see Fig. 5.
The point 1FS is a spiral sink with an out-going eigenvect
direction entering the interior state space. Note that this e
librium point thus is stable in the flat (Q051) submanifold,
but unstable to curvature perturbations~i.e., perturbations in
the Q0 direction!. The scalar-field dominated point1F still
is a saddle, and now there is a separatrix surface spanne
the out-going eigenvector directions there. Thus, there
two separatrix surfaces, both of which are spiraling arou
the out-going eigenvector direction of1FS.

When k increases, the1F equilibrium point comes
closer and closer to1K1 , and fork256 they coincide. The
state space whenk2.6 is given in Fig. 6. There is only on
past and one future attractor, namely1K2 and 2K1 , re-
spectively.

To summarize, when k2.2 all solutions start from and
recollapse to a singularity (K→K). Thus, in this case solu
tions can neither expand forever nor inflate. Whenk2,2,
there are also ever-expanding (K→F) ~and ever-collapsing

FIG. 4. The state space for closed FRW models with a sc
field when 2,k2,3g. Dashed curves and white arrows and circ
are screened. Dotted orbits are in the interior of the state spac
04352
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F→K) solutions in addition to the recollapsing solution
Inflation occurs whenS̈.0, i.e., 3u̇1u2.0, which leads to
the condition

2~3g22!23~22g!U213gW2.0. ~23!

This corresponds to a parabolic region along the ridge of
state spaces, Figs. 1, 2 and 4 – 6. The only equilibri
points within this region are6F for k2,2, corresponding
to power-law inflation. Consequently, in the casek2,2
there is a subclass of solutions that inflate.

III. KANTOWSKI-SACHS MODELS

We now turn our attention to the Kantowski-Sachs~KS!
models. The line element can be written

ds252dt21D1~ t !2dx21D2~ t !2dV2, ~24!

where

D15exp@b0~ t !22b1~ t !#, D25exp@b0~ t !1b1~ t !#.
~25!

The kinematic quantities of the fluid congruence are rela
to the Misner variables (b0, b1) by

u53ḃ0, s153ḃ1, ~26!

and the evolution equations for the metric functionsB1

[D1
21 andB2[D2

21 become

Ḃ152
1

3
~u1s1!B1 , Ḃ252

1

3
~u1s1!B2 . ~27!

The conservation equations give

ṁ52gum, ~28!

ar FIG. 5. The state space for closed FRW models with a sc
field when 3g,k2,6. Dashed curves and white arrows and circ
are screened. Dotted orbits are in the interior of the state spac
6-5
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Ẋ52uX1
k

A2
V, ~29!

and the field equations yield

m5
1

3
~u22s1

2 13B2
223X223V!, ~30!

u̇52
1

3 S u212s1
2 16X223V1

3

2
~3g22!m D , ~31!

ṡ15
1

3
~u22s1

2 23us123X223V23m!. ~32!

The Friedmann equation, Eq.~30!, together with the assump
tion m>0 shows thatD5Au213B2

2 is a dominant quantity.
Consequently, compact variables are introduced accordin

Q05
u

D
, Q15

s1

D
, U5

A3X

D
, W5

A3V

D
. ~33!

The curvature variableK53B2
2u225(12Q0

2)/Q0
2 shows

that the flat solutions correspond toQ0
251. The Friedmann

equation becomes

VD5
3m

D2
512Q1

2 2U22W2. ~34!

By introducing a new independent variable,t, where 8
5d/dt5(3/D)d/dt, the evolution equation forD,

D852FQ1~12Q0
2!13Q0S Q1

2 1U21
g

2
VDD GD,

~35!

decouples, and a reduced set of evolution equations is
tained:

Q085~12Q0
2!F11Q0Q123S Q1

2 1U21
g

2
VDD G ,

Q18 52~12Q0
2!~12Q1

2 !

13Q0Q1F211S Q1
2 1U21

g

2
VDD G ,

FIG. 6. The state space for closed FRW models with a sc
field whenk2.6. Dashed curves and white arrows and circles
screened. Dotted orbits are in the interior of the state space.
04352
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U85UH ~12Q0
2!Q113Q0F211S Q1

2 1U21
g

2
VDD G J

1A3

2
kW2,

W85WH ~12Q0
2!Q113Q0S Q1

2 1U21
g

2
VDD J

2A3

2
kUW. ~36!

There is also an auxiliary evolution equation:

VD8 52VDH 3gQ022FQ1~12Q0
2!

13Q0S Q1
2 1U21

g

2
VDD G J . ~37!

Note that by settingk50,U50, and identifyingL5V0 ,
VL5W2, the evolution equation corresponding
Kantowski-Sachs models with a cosmological constant
obtained@16#. The deceleration parameter is given by

qpf52
1

Q0
2 F123S Q1

2 1U21
g

2
VDD G . ~38!

Note that the dynamical system Eqs.~36! is symmetric
under the transformation

~t,Q0 ,Q1 ,U,W!→~2t,2Q0 ,2Q1 ,2U,W!. ~39!

Thus, it is sufficient to discuss the behavior in one part of
state space, the dynamics in the other part being obtaine
Eq. ~39!.

The function

M5Q1
22(3g22)~12Q0

2!23(22g)VD
4 , ~40!

M 852Q1
21@~3g22!~12Q0

2!13~22g!Q1
2 #M

~41!

is monotonic in the regionsQ1.0 andQ1,0, since 2/3
,g,2. Noting that

Q18 uQ15052~12Q0
2!,0, ~42!

we conclude that the submanifoldQ150 is not invariant,
but acts as a membrane. Thus, the existence ofM rules out
any periodic or recurrent orbits in the interior of the sta
space and again global results are possible. From the exp
sion for the monotonic functionM we can immediately see
that asymptoticallyQ1→0, Q0

2→1 or VD→0.

A. Equilibrium points of the KS dynamical system

The dynamical system, Eqs.~36!, has several equilibrium
points, which are displayed in Table V. As before,e561
denotes the sign ofQ0, while Vf[U21W2. Again, the left

ar
e
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TABLE V. Equilibrium points of the KS models.

Interpretation Q0 Q1 U W Note

6F Flat Friedmann e 0 0 0

6K Kinetic dom. e 6A12U0
2 U0 0 Ring

6F Scalar-field dom. e 0
k

A6
e

1

A6
A62k2 k2,6

~whenk2,2)

6J Curvature scaling 2
11k2

41k2
e 2

22k2

41k2
e

A6k

41k2
e

A6

41k2
A21k2 k2,2

6FS Flat matter scaling e 0 A 3
2

g

k
e A 3

2

1

k
Ag~22g! k2.3g

6SSKS Self-similar KS
2

3g24
e

3g22

3g24
e 0 0 g,2/3
r-
s
e
in
d
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subscript gives the sign ofQ0 and indicates whether the co
responding model is expanding or contracting. The value
VD , Vf , and qpf for each of the equilibrium points ar
given in Table VI while the eigenvalues are displayed
Table VII. Note that all of the equilibrium points correspon
to exact self-similar cosmological models@5,10#.

As for the closed FRW models,6F denotes the flat Fried
mann solution. Note that the closed FRW solution withou
scalar field does not appear as a submanifold of
Kantowski-Sachs models without a scalar field. Con
quently, there is no orbit connecting1F with 2F.

There are two sets6K of vacuum (VD50) equilibrium
points, parametrized by the constantU0, corresponding to
kinetic dominated solutions. These sets are analogs of
‘‘Kasner rings’’ that are present for various Bianchi mode

The flat scalar-field dominated points6F, already en-
countered for the closed FRW models, appear in
Kantowski-Sachs case as well. As for the closed FRW m
els, they are physical whenk2,6 and inflationary whenk2

,2.
There are also equilibrium points6J, corresponding to

curvature scaling solutions~i.e. they haveVD50, Q0
2,1)

TABLE VI. The physical quantitiesVD , Vf , andqpf for the
different equilibrium points of the KS models.

VD Vf qpf

6F 1 0 1
2 (3g22)

6K 0 U0
2 2

6F 0 1 1
2 (k222)

6J 0 12
11k2

~41k2!2
1
2

k222

11k2

6FS
k223g

k2

3g

k2

1
2 (3g22)

6SSKS 212
g21

~3g24!2
0 1

2 (3g22)
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which are physical whenk2,2. They are also inflationary
but in other respects they resemble the points6X of the
closed FRW models.

As for the closed FRW models, the equilibrium poin
6FS, corresponding to the flat matter-scaling solution, en
the physical part of the state space whenk2.3g.

Finally, there are also equilibrium points corresponding
the self-similar Kantowski-Sachs solution. This solution
only physical wheng,2/3, and so we will not conside
them further.

The eigenvalues for each of the equilibrium points a
given in Table VII. The sources and sinks of the dynami
system wheng.2/3 are listed in Table VIII~all of the other
equilibrium points are saddles!. Thus, there is always two
segments of the equilibrium set1K that act as sources fo
orbits. Similarly there are two segments on2K that are
sinks. Whenk2.2, these are the only attractors, and
solutions start from and recollapse to a singularityK
→K).

When k2,2, which then implies thatk2,3g for g
.2/3, the equilibrium points6F are attractors. Thus, fo
k2,2, there are also ever-expanding (1K→1F) and ever-
collapsing (2F→2K) solutions.

From the expression for the monotonic functionM we
deduce thatall orbits asymptotically haveQ1→0, Q0

2→1 or
VD→0. Indeed, the existence of the monotonic function e
sures that there are no periodic orbits and that generic
orbits asymptote towards the local attractors~sinks and
sources!. Therefore, we can determine the global dynam
of the models.

To summarize, when k2.2 all solutions start from and
recollapse to a singularity (K→K). Thus, in this case solu
tions can neither isotropize nor inflate. Whenk2,2, there
are also ever-expanding (K→F) ~and ever-collapsingF
→K) solutions in addition to the recollapsing solution
Again, theF points correspond to power-law inflation whe
k2,2. Consequently, in this case there is a subclass of
lutions that isotropize and inflate.

The global asymptotic dynamics is similar to that in t
case of positive-curvature FRW models. However, due to
6-7
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TABLE VII. Eigenvalues for the different equilibrium points of the KS models.

Eigenvalues

6F (3g22)e 2
3
2 (22g)e 2

3
2 (22g)e

3g

2
e

6K 4e22Q1 3(22g)e 0 3e2A 3
2 kU0

6F 2
1
2 (62k2)e 2

1
2 (62k2)e 2(22k2)e 2(3g2k2)e

6J 23
21k2

41k2
e 26

g1~g21!k2

41k2
e 2

3
2

21k26A~21k2!~1827k2!

41k2
e

6FS 2
3
2 (22g)e (3g22)e 2

3

4k
@~22g!k6A~22g!~24g22~9g22!k2!#e

6SSKS 23
22g

3g24
e

3g

3g24
e

2
3
2

22g6A~22g!~24g2241g118!

3g24
e

c
ta
ha

e
i

,
o
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o
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ls.
presence of shear, the intermediate or transient dynamics
be quite different. In the Kantowski-Sachs case the s
space is four-dimensional and so we cannot display the p
portraits graphically~as in the FRW case!. However, as an
illustration we shall present the phase portraits in the thr
dimensional fluid vacuum and the massless scalar field
variant sets in order to compare intermediate behaviors.

B. Fluid vacuum

The fluid vacuum (VD50) is an invariant submanifold
as seen from Eq.~37!. Using the Friedmann equation t
eliminateW, we obtain a three-dimensional dynamical sy
tem in (Q0 ,Q1 ,U):

Q085~12Q0
2!@11Q0Q123~Q1

2 1U2!#, ~43!

Q18 52~12Q0
2!~12Q1

2 !23Q0Q1~12Q1
2 2U2!,

~44!

U85~12Q0
2!Q1U1SA3

2
k23Q0U D ~12Q1

2 2U2!.

~45!

From Table VI, it is immediately seen that the equilibriu
points that are contained in this submanifold are6K, 6F,
and 6J. The state space is depicted in Figs. 7, 8 and 9. N
that Z50, whereZ is defined by

TABLE VIII. Summary of sources and sinks for the KS mode

Past attractors

Expanding from a singularity (Q0.0) 1K kU0,A6

Contracting from a dispersed state (Q0,0) 2F k2,2

Future attractors

Contracting to a singularity (Q0,0) 2K kU0,A6

Expanding to a dispersed state (Q0.0) 1F k2,2
04352
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Z5Q12
1

2
Q01

A6

2k
U, ~46!

is an invariant submanifold, and that both6F and 6J are
contained in this submanifold.

C. Massless case

The massless case corresponds to the invariant subm
fold W50, which leads to a three-dimensional system
(Q0 ,Q1 ,U):

Q0852~12Q0
2!F3g22

2
2Q0Q11

3

2
~22g!~Q1

2 1U2!G ,
Q18 52~12Q0

2!~12Q1
2 !2

3

2
~22g!Q0Q1VD ,

U85UF ~12Q0
2!Q12

3

2
~22g!Q0VDG . ~47!

From Table V, it is immediately seen that the equilibriu
points that are contained in this submanifold are6K and 6F.
The state space is depicted in Fig. 10.

FIG. 7. The state space for Kantowski-Sachs models with
fluid (VD50), with k2,2. Dashed curves and white arrows an
circles are screened. Dotted orbits lie in theZ50 invariant sub-
manifold.
6-8
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CLOSED COSMOLOGIES WITH A PERFECT FLUID AND . . . PHYSICAL REVIEW D62 043526
IV. DISCUSSION

We have studied closed cosmological models with a p
fect fluid satisfying a linear equation of state with 2/3,g
,2 and a scalar field with an exponential potential. We ha
utilized a new set of normalized variables which lead to
compactification of state space, enabling us to apply
theory of dynamical systems to determine the qualitat
properties of the models. In all cases we have been ab
find monotonic functions which, together with a local ana
sis of the equilibrium points, enable us to determine the g
bal properties of the models.

We first studied the closed FRW cosmological mode
We found that whenk2.2, in general, all solutions star
from and recollapse to a singularity (K→K). In this case
solutions generically do not inflate. Whenk2,2, solutions
can either recollapse (K→K) or expand forever (K→F)
towards power-law inflationary solutions~or collapse forever
F→K); consequently, in this case there is a subclass of
lutions that inflate. A number of phase portraits were d
played.

These results generalize previous qualitative work
positive-curvature FRW models with a scalar field~only! @9#
and with a scalar field plus a baryotropic perfect fluid@8# in
which compactified variables were not utilized, and rigoro
analyzes of perfect fluid~only! models using compactified
variables@10,11#, and completes and generalizes more rec
work using different compactified variables@17#. We also
note that positive-curvature FRW models with a perfect fl

FIG. 8. The state space for Kantowski-Sachs models with
fluid (VD50), with 2,k2,6. Dashed curves and white arrow
and circles are screened. Dotted orbits lie in theZ50 invariant
submanifold.

FIG. 9. The state space for Kantowski-Sachs models with
fluid (VD50), with k2.6. Dashed curves and white arrows a
circles are screened.
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and a positive cosmological constant have been investig
recently using qualitative methods and utilizing compactifi
variables@16#.

In the case of the Kantowski-Sachs models we ag
found that whenk2.2 all solutions start from and recollaps
to a singularity (K→K) and can consequently neither isotr
pize nor inflate. Whenk2,2, there are also ever-expandin
(K→F) ~and ever-collapsingF→K) solutions in addition
to the recollapsing solutions, where again theF points cor-
respond to the flat FRW power-law inflationary solutio
Consequently, in this case there is a subclass of solutions
isotropize and inflate.

The investigation of Kantowski-Sachs models comp
ments the study of Bianchi models@5# and completes the
analysis of spatially homogeneous models. Collins@22# stud-
ied perfect fluid Kantowski-Sachs models qualitatively usi
expansion-normalized variables~for which the state space
was non-compact! and showed that all models start at a B
Bang and recollapse to a final ‘‘big crunch’’ singularity. Th
work was generalized recently by Goliath and Ellis@16# in
which Kantowski-Sachs models with a perfect fluid and
cosmological constant were investigated using qualita
methods and utilizing the compactified variables of Ugg
and Zur-Muhlen@13#; particular attention was focused upo
whether the models isotropize, thereby explaining the pr
ently observed near-isotropy of the universe. More imp
tantly, Kantowski-Sachs models with a scalar field and
exponential potential, but without baryotropic matter, ha
been studied qualitatively@12#, although compactified vari-
ables were not utilized.

To conclude an analysis of positive-curvature spatia
homogeneous cosmological models with a perfect fluid an
scalar field with an exponential potential, Bianchi type
models would need to be studied. However, such a stud
beyond the scope of the current paper. For example, Bia
type IX models are known to have very complicated dyna
ics, exhibiting the characteristics of chaos@10,15#. However,
partial results are known. Bianchi type IX models with
scalar field~only! have been studied qualitatively, with a
emphasis on whether these models can isotropize@14#.
Scalar-field models with matter have also been studied@3#.
For example, it has been shown that the power-law inflati
ary solution is an attractor for all initially expanding Bianc
type IX models except for a subclass of the models wh
recollapse@3,4#. However, compact variables have not be

o

o

FIG. 10. The state space for Kantowski-Sachs models with fl
and massless scalar field,W50. Dashed curves and white arrow
and circles are screened. The horizontal plane is theU50 invariant
submanifold~compare with@21#!.
6-9
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ALAN COLEY AND MARTIN GOLIATH PHYSICAL REVIEW D 62 043526
utilized and the analyses were not rigorous.
A more rigorous treatment of the class of Bianchi type

models with a non-tilted perfect fluid~only! using compac-
tified variables has been possible@10#. Although an appro-
priately defined normalized Hubble variable is found to
monotonic, enabling some results to be obtained, sev
problems remain open. More rigorous global results are p
sible. For example, Bianchi type IX models with matter ha
been shown to obey the ‘‘closed universe recollapse’’ c
jecture@23#, whereby initially expanding models enter a co
tracting phase and recollapse to a future ‘‘big crunch.’’
addition, Ringstro¨m has proven that a curvature invariant
unbounded in the incomplete directions of inextendible n
geodesics for generic vacuum Bianchi models@24#, and rig-
orously shown that the Mixmaster attractor is the past att
tor of Bianchi type IX models with an orthogonal perfe
fluid @25#. A complete qualitative analysis of the spec
class of locally rotationally symmetric Bianchi type IX pe
fect fluid models, which do not exhibit oscillatory or chaot
behavior near to the initial or final singularities, has be
given in @13#, based upon an appropriately defined set
bounded variables.

The Kantowski-Sachs models exhibit similar global pro
erties to the positive-curvature FRW models; in particul
th.

s

ss

-

i-
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for k2.2 all initially expanding models reach a maximu
expansion and thereafter recollapse, whereas fork2,2 mod-
els generically recollapse or expand forever towards a
isotropic power-law inflationary solution. The Bianchi typ
IX models share these qualitative properties. However,
intermediate behavior of the Kantowski-Sachs models can
quite different from that of the FRW models. In order
illustrate the possible intermediate dynamics of t
Kantowski-Sachs models, we studied the special cases o
baryotropic fluid, and of a massless scalar field in Secs. II
and III C, respectively~see Figs. 7–10!.

Finally, we remark that the dynamics of the Kantowsk
Sachs models obtained here will be crucial for understand
the global dynamics of general self-similar spherically sy
metric models@20#.
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