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Closed, spatially homogeneous cosmological models with a perfect fluid and a scalar field with an expo-
nential potential are investigated, using dynamical systems methods. First, we consider the closed Friedmann-
Robertson-Walker models, discussing the global dynamics in detail. Next, we investigate Kantowski-Sachs
models, for which the future and past attractors are determined. The global asymptotic behavior of both the
Friedmann-Robertson-Walker and the Kantowski-Sachs models is that they either expand from an initial
singularity, reach a maximum expansion and thereafter recollapse to a final sing(itariyl values of the
potential parametek), or else they expand forever towards a flat power-law inflationary sol(itven «2
<2). As an illustration of the intermediate dynamical behavior of the Kantowski-Sachs models, we examine
the cases of no baryotropic fluid, and of a massless scalar field in detail. We also briefly discuss Bianchi type
IX models.

PACS numbd(s): 98.80.Hw

[. INTRODUCTION (FRW) models[8-11], Kantowski-Sachs modelgl2] and
Bianchi type IX model$3,10,13,14 have been studied using
Cosmological models with a scalar field and an exponengualitative methods, although rigorous analyzes using a new
tial potential are of fundamental importance in the study ofset of compact variables have not been carried out. The Bi-
the universe. These models are motivated by the fact tha&nchi type IX models are known to have very complicated
they arise naturally in alternative theories of gravity and oc-dynamics, exhibiting the characteristics of chgbg,15, and
cur as the low-energy limit in supergravity theorfds?]. By ~ are hence beyond the scope of the present study. Recently
using qualitative techniques, the well-known power-law in-[16] positive-curvature FRW models and Kantowski-Sachs
flationary solution has been shown to be an attractor for almodels with a perfect fluid and a cosmological constant have
initially expanding Bianchi modelgexcept for a subclass of been investigated using qualitative methods and utilizing
the Bianchi type 1X models which will recollapsén the  compactified variables.
class of spatially homogeneous Bianchi mod&gl. More The outline of this paper is as follows. We shall first
recently, cosmological models which contain both baryotro-comprehensively study the qualitative properties of the class
pic matter and a scalar field with an exponential potentiaPf positive-curvature FRW models with a baryotropic fluid
have been studiefb], partially motivated by the fact that and a non-interacting scalar field with an exponential poten-
there exist spatially flat isotropic scaling solutions in whichtial, extending and generalizing work by Turngr7], who
the energy density due to the scalar field is proportional tdised different basic variables. We shall then analyze the
the energy density of the perfect flUifl]. In [7] the stability — qualitative properties of the Kantowski-Sachs models.
of these cosmological scaling solutions within the class ofPositive-curvature FRW models and Kantowski-Sachs mod-
spatially homogeneous cosmological models with a perfecels belong to the class of spherically symmetric models, and
fluid subject to the equation of stape=(y—1)u (whereyis  hence the present work is a natural extension of recent work
a constant satisfying y<2) was studied and it was found [18,19. Indeed, it turns out that understanding the dynamics
that wheny>2/3, and particularly for realistic matter with of the Kantowski-Sachs models is crucial for understanding
y=1, the scaling solutions are unstable; essentially they arthe global dynamics of general spherically symmetric simi-
unstable to curvature perturbations, although they are stablarity models[20].
to shear perturbations. In addition, [i] homogeneous and
isotropic spacetimes with non-zero spatial curvature were Matter model

studied. The matter content of the models is taken to be a perfect

Itis clearly of interest to study more general cosmologicaly,iq and a scalar field with exponential potential. The corre-
models. One class of models of particular interest are th°5§ponding energy-momentum tensor is

with positive spatial curvatureThese models have attracted
less attention since they are more complicated mathemati- Tab=(Tptabt Tstan) D)
cally. Positive-curvature  Friedmann-Robertson-Walker

Tpfab:Muaub+p(uaub+gab)a (2
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V(¢)=Voe *?, 4 1-Q3
K=——. (14)
wherek is a non-negative constant, and the pressure is given Qo
by p=(y—1)u, with the equation-of-state parameter in the
range X y<2. The fluid energy density and the scalar
field ¢ are functions of a timelike coordinateA dot denotes
differentiation with respect tband throughout units are used QD:3_'“ —1—U2—W2.
in whichc=8#7G=1. The matter components are assumed D2
to be non-coupled, and thus they are separately conserved:

Defining a

The Friedmann equation becomes

(15

new independent variable,’=d/dr

Vo To=0=V,T% . (5)  =(3/D)d/dt, the evolution equation fob
For convenience, we define D’ = —3Q,| U2+ %QD D (16
1.
X= T(ﬁ- (6)  decouples. Thus, a reduced set of evolution equations is ob-
2 tained:

Il. CLOSED FRIEDMANN MODELS

3
P2
+\[2KW,

U2+ %QD)

Qs=<1—Q%>[1—3
We start our investigation of closed cosmological models
with a perfect fluid and a scalar field by looking at the closed

FRW models. The line element for these models can be writ- u’ =3Q0U[ —1+ ( U2+ %QD

ten
— _At2 24,2 2 o 2 3
ds2= — dt2+ S(t)2dr2+ S(t)2 sirfrd Q2. 7 W’=3QO(U2+ ;—YQD)W— \[EKUW_ an
The expansion of the fluid congruence is given By . N _ _
=3S/S, and the evolution equation for the curvatuge There is also an auxiliary evolution equation
=9/(6°S?) is ,
() 05=-3Q[(1-Qp)y-2U205,  (18)

L 2K
K——§(30+6). (8)

The conservation equations yield

p=—yu, 9
X=— X+ ——V (10)
5V
From the field equations we obtain
1

M:§[(1+K)62—3X2—3V], (11

6= ! 62+ 1D2+3 3X2-3V+3(y—1

=—3 5D+ [3X5~ (y=Dwul.

(12)

Assumingu=0, the Friedmann equation, E(L1), shows

that D= /(1+K)#? is a dominant quantity. Thus, compact

variables can be defined according to

% 3X
Q0:51 U:\/—T, W:T. (13

Note also that the curvature is given by

and it is straightforward to consider the set of variables
(Qp,U,Qp), rather than Qq,U,W) [17]. Note that by set-
ting k=0, U=0, and identifyingA =V,, Q ,=W?, the evo-
lution equations corresponding to closed FRW models with a
cosmological constant are obtainjld].

It is also useful to consider the deceleration parameter,
given by

a
UpiV aOpf

1
_—
'9pf QO

U2+ ;—YQD)

(19

for Qu# 0. From this expression, we can see that there is an
inflationary region §,<<0) in the state space whenever
Qp<(2/3y)(1—3U?). However, as will be seen below, it is

FIG. 1. The state space for closed FRW models with a scalar
field whenx?< 2/3. Dashed curves and white arrows and circles are
screened. Dotted orbits are in the interior of the state space.
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TABLE II. The physical quantities)p, ,, andqy for the
different equilibrium points of the closed FRW models.

Qp Q, Qpt
.F 1 0 3(3y-2)
K 0 1 2
LD 0 1 3(k%-2)
+X 0 1 0
~ FIG. 2. The sztate space for closed FRW models with a scalat, g E(Kz_sy) 3y 1(3y-2)
field when 2/3< k“<2. Dashed curves and white arrows and circles 2 2
are screened. Dotted orbits are in the interior of the state space. s 4 3y-2 Not defined
only whenx2<2 that there exist attractors that are inflation- 32-7 3(2-v
ary. Note also that, foQ,+#0,
Q)= _(l_Qg)ngpfa (200  deduced. In addition, from the expression for the monotonic

function M we can see immediately that eith€@2—1 or
so thatQy<<0 whenevergy,>0 in which caseQ, is itself ~ (Qp—0 asymptotically.
monotonic. Wherg<<0, that is in the inflationary region,
Qo need not be monotonic — for example, see the orbits  gqilibrium points of the closed FRW dynamical system
close to,® in Figs. 1 and 2. o ]
The dynamical system Eqél7) is symmetric under the A number of equilibrium points can be found for the dy-

transformation namical system, Eq417). In what follows,e= =1 denotes
the sign ofQ,, wheread) ,=U?+W? is a density parameter
(7,Q0,UW)—(—7,—Qq,—U,W). (21 associated with the scalar field. In Table I, the various equi-

librium points are summarized. The subscripts on the labels
Thus, it is sufficient to discuss the behavior in one part of thehgve the following significance: The left subscript gives the
state space, the dynamics in the other part being obtained lygn of Q, and indicates whether the corresponding model is
Eq. (20). expanding(+) or contracting ). The right subscript gives
Furthermore, note that the sign ofU; i.e., the sign of¢.
The equilibrium points labeled F correspond to the flat

_ Op Friedmann solution. For these points, the scalar field van-
1—QO' ishes U=0=W). There is an orbit from F to _F and this
orbit represents the closed FRW solution with no scalar field,
M’'=—(3y—2)QoM, (22) starting from a Big Bang at. F and recollapsing to a “big
crunch” at _F.
is a monotonic function in the regiol§g,<0 andQy,>0 for The K points represent exact solutions with a massless

Qp#0. As there are no equilibrium points wi@y,=0 when  scalar field W=0). As the fluid is negligible Qp=0),
y>2/3, M acts as a monotonic function in the interior of the these solutions are dominated by the kinetic tédmThey
state space. Consequently there can be no periodic or recwerrespond to Jacobs analogs of Kasner solutions in which
rent orbits in the interior state space and global results can himakes on the role of a shearing mod].

TABLE I. Equilibrium points of the closed FRW models.

Interpretation Qo U w Note
-F Flat Friedmann € 0 0
Ko Kinetic dom. +1 0
P Scalar-field dom. € « Lk K’<6
—=€
\/é 6
+X Curvature scaling « c 2 K><2
A i
V2 V3
.FS Flat matter scaling € y 1 k?>3y
\/g P \/g NY(2=7)
S, Static 0 3y-2 0 y<2/3
V32
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TABLE lIl. Eigenvalues for the different equilibrium points of the closed FRW models.

Eigenvalues
.F (3y—2)e —3(2-)e 3y
76

Ko 4e 3(2—y)e 3e— \/nggn(U)
Y ~(By—«?)e _%(G—KZ)E —(2— ke
X K 3y-2) 1 B +W)

\/E( Y € \/E( ket K
=Fs (3y=2)e - (2—y>r%¢<2—y>[24y2—(9y—2>xz] e
St k [ 3y-2 +\2V=(3y-2)

——=\/~ 5=-s9ny)
V2V 2=y

There are equilibrium points with non-vanishing poten- Table Il presents some physical quantities for the various
tial, where the scalar field dominateQ f=0). These points equilibrium points, and Table Il lists their eigenvalues. The
. ® are only physical when?<6. For k>=6, . ® coin- sources and sinks of the dynamical system wher2/3 are
cides with , K, , and _® with _K_. For x>>6, they are listed in Table IV, and the global behavior for different val-
outside the physical part of the state space. The equilibriurnes of x can be summarized as follows: The state space
point with e=+1 (i.e., ,®) is a sink, and fork?<2 it  when 0<«?<2/3 is depicted in Fig. 1, where the features in
corresponds to the power-law inflationary attractor solutiorthe rear part of the state space have been suppressed. Dashed
(cf. the expression fog,; in Table ). and full curves represent orbits in the boundary submani-
There are also points X for which the matter is unim- folds, while dotted curves represent orbits in the interior.
portant, but the curvature is non-vanishin@g(;& 1), and Both ,K_ and K, are past attractors, whileK, and , ®
tracks the scalar field. The corresponding solutions are calledct as future attractors. There are also orbits freid_,
curvature scaling solution8]. These solutions only exist whose future attractor isK_ at the rear of the figure. Note
when k?<2. For k’>=2, . X coincides with ,®, and _X that orbits, future asymptotic to®, correspond to solutions
with _®. Above this value ofk, these equilibrium points that exhibit power-law inflation{ 1<q,<0, see Table )l
are outside the physical part of the state space. Observe that the outgoing eigenvector directions from the
When k2>3y, there is a flat matter scaling solution, for saddle point, F span a separatrix surface in the interior of
which both the fluid and the scalar field are dynamicallythe state space. Similarly, X is a saddle for which the in-
important. The corresponding equilibrium points are denotedjoing eigenvector directions span another separatrix surface.
. FS, and fork?=37y they coincide with. ®. These separatices confine orbits in the interior state space to
Finally, there are equilibrium points.Scorresponding to  specific regions. For example, there is one region where all
static solutions, analogous to the Einstein static universeorbits are past asymptotic toK, and future asymptotic to
These are only physical whep<2/3. Fory=2/3, a set of _K, .
equilibrium points appears along the litke=0=W, signal- When«?>2/3, the separatrix surface associated wjtk
ing a change of stability when the points &ave the physi- changes structure, see Fig. 2. This is easiest seen by consid-
cal state space. In what follows, we will only consider equa-ering the separatrix orbits in thB =0 submanifold, see
tions of state for which & y=<2, hence we will not consider Fig. 3. Whenx?<2/3, there is one separatrix orbit fromd
these points further. to . X, and one from_X to ,®. For x?=2/3, these two

TABLE IV. Summary of sources and sinks for the closed FRW models.

Past attractors

Expanding from a singularity@,>0) +K- Always
+Ky K’<6
Contracting from a dispersed stat®<0) _d k?<2 (and k><3y)

Contracting to a singularity@,<0) K, Always
_K_ K’<6
Expanding to a dispersed stat®{>0) o) k?<2 (and k*<37y)
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FIG. 3. Separatrix orbits in th€ =0 sub-
manifold of the closed FRW models whe is
near 2/3.(a) k?<2/3; (b) k?=2/3; (c) xk*>>2/3.

+ Ky

(a) (b) ©

orbits coalesce into a single orbit fromX to , X. This orbit ~ ®—K) solutions in addition to the recollapsing solutions.

corresponds to a special “bouncing universe” solution, ex-nflation occurs whers>0, i.e., 39+ #2>0, which leads to

isting only for this particular value of. Whenx?>2/3, the  the condition

separatrix orbit to, X starts at, K_, and the orbit from_X

goes to_K, . Thus, there is a bifurcation for2= 2/3; how- —(3y—2)—3(2—y)U?+3yW?>0. (23

ever, we note that there is no stability change of equilibrium_ ) ) .

points involved. A similar behavior of separatrix surfaces hasl is corresponds to a parabolic region along the ridge of the

been found for Bianchi type IX mode[d.3]. state spaces, Figs. 1, 2 and 4 - 62 The only equn!brlum
When « increases, the equilibrium pointX approaches Points within this region are.® for «“<2, corresponding

.®. For x?=2 these two points coincide, and the state!0 Power-law inflation. Consequently, in the casé<2

space fork?>2 is depicted in Fig. 4. Both K_ and , K., there is a subclass of solutions that inflate.

still act as past attractors, whileK, is a future attractor.

However, the stability of, ® has changed; it has become a ll. KANTOWSKI-SACHS MODELS

saddle. There is still a separatrix surface associated with

Thus, orbits having, K, as their past attractor all end at

K, .
For k2> 3, the equilibrium point, FS, corresponding to ds?= —dt?+ D4(t)2dx2+ D,(1)2d0?, (24)

the matter-scaling solution, appears frond, see Fig. 5.

The point . FS is a spiral sink with an out-going eigenvector where

direction entering the interior state space. Note that this equi-

librium point thus is stable in the flatQy=1) submanifold, Di=exd B%t)—2B7(1)], Dr=exg Bo%t)+B"(1)].

but unstable to curvature perturbatioi®., perturbations in (29

Fhe Qo direction. The scalar-fleld domlnqted point® still The kinematic quantities of the fluid congruence are related

is a saddle, and now there is a separatrix surface spanned Y the Misner variablesg®, 8*) by

the out-going eigenvector directions there. Thus, there are '

two separatrix surfaces, both of which are spiraling around _an0 et

the out-going eigenvector direction ofFS. 6=38" 0.=36", (26)
When « increases, the. ® quUIllbI’Ium point COMes  and the evolution equations for the metric functioBs

closer and closer thf, a_nd fqu _=6 they 00|r_1C|de. The EDIl and BZEDz—l become

state space whekr?>6 is given in Fig. 6. There is only one

past and one future attractor, namel)X _ and _K, , re- ) 1 ) 1

spectively. Bi=—3(0+0,)By, By=—3(0+0,)B;. (27)
To summarizewhen «?>2 all solutions start from and

recollapse to a singularityk(—K). Thus, in this case solu- The conservation equations give

tions can neither expand forever nor inflate. Whet<2,

there are also ever-expanding-{kd) (and ever-collapsing w=—y0u, (28)

We now turn our attention to the Kantowski-SadKsS)
models. The line element can be written

FIG. 4. The state space for closed FRW models with a scalar FIG. 5. The state space for closed FRW models with a scalar
field when 2< x?<3vy. Dashed curves and white arrows and circlesfield when 3y< «?<6. Dashed curves and white arrows and circles
are screened. Dotted orbits are in the interior of the state space. are screened. Dotted orbits are in the interior of the state space.
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|

U’=U[(1—Q5)Q++3Qo[—1+(Qi+U2+ %QD)
—+ \EKWZ,

W’=W|(1—Q§)Q++3Qo

Qi +U?+ %QD”

FIG. 6. The state space for closed FRW models with a scalar 3
field whenx?>6. Dashed curves and white arrows and circles are 2KUW (36)
screened. Dotted orbits are in the interior of the state space.
There is also an auxiliary evolution equation:
. K
X=—60X+—=V, (29 , 5
V2 04=-0{3yQ—2/ Q. (1-Q})
and the field equations yield y
+3Q| Q% +U?+ EQD) ] (37)

1 2 2 2
,u=§(6 — 0% +3B5—3X"—3V), (30
Note that by settingc=0,U=0, and identifyingA =V,
Q,=W? the evolution equation corresponding to
: 1 3 . . .
6= 0%+ 20++6X2 3V+ — (37 2)pl|, (3D Kantowski-Sachs models with a cosmological constant are
3 obtained[16]. The deceleration parameter is given by

1
0'+=g(ﬂz—ai—300+—3xz—3v—3,u). (32 1-3 (39)

_ 2 2. Y
pr__Q_g Q++U +§QD) .
The Friedmann equation, E(RO), together with the assump- Note that the dynamical system Eq86) is symmetric

. 2 . . .
tion u=0 shows thaD= /6 -&-3822 is a dominant quantity. under the transformation
Consequently, compact variables are introduced according to

0 o \/§x \/3_V (TvQOIQJr1U1W)_>(_71_Q01_Q+=_U1W)- (39)

QO:E‘ Q+ "D D ~ D (33 Thus, it is sufficient to discuss the behavior in one part of the
state space, the dynamics in the other part being obtained by
The curvature variableK = 3820 2=(1- Qo)/Q0 shows  Eq.(39).
that the flat solutions correspond @=1. The Friedmann The function
equation becomes

M=Q;*®"2(1-Q§) 2t a0}, (40
o=ty —W2 34 /=20~ (3y—2)(1— 02 )02
> Qi - . (34 M'=2Q [(3y—2)(1-Qp) +3(2—y)Q3 M

D (41

By introducing a new independent variable, where * js monotonic in the region®, >0 andQ. <0, since 2/3
=d/d7=(3/D)d/dt, the evolution equation fob, < y<2. Noting that

’ _ YA
- Q.+ (1-Q3)+3Qq Qi+u2+%ﬂo) D Qilo,—0=~(1-Qo)<0, (42)

(35  we conclude that the submanifol@d, =0 is not invariant,

q | q duced | but acts as a membrane. Thus, the existendel ofiles out
ecouples, and a reduced set of evolution equations is Oy heriodic or recurrent orbits in the interior of the state

tained: space and again global results are possible. From the expres-
y sion for the monotonic functioM we can immediately see
Qéz(l—Q%) 1+QuQ,.—3 Qi+U2+ EQD) , that asymptoticallyQ, —0, Q3—>1 or Qp—0.
Q.= —(1—Q2)(1— Q2 ) A. Equilibrium points of the KS dynamical system
+ 0 +

The dynamical system, Eq&6), has several equilibrium
points, which are displayed in Table V. As befoees =1
denotes the sign @, while O ,=U?+W?. Again, the left

+3Q0Q+ —1+(Qi+u2+ %QD) :
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TABLE V. Equilibrium points of the KS models.

Interpretation Qo Q. U w Note
F Flat Friedmann € 0 0 0
+K Kinetic dom. € i\/l—Uo2 Ug 0 Ring
) Scalar-field dom. € 0 K * [6— 2 k?<6
V6 V6
(Wwhen k?<2)
_ . 1442 22 Vi G ,
= Curvature scaling 2 € — € € 2+ K2 K°<2
4+ 12 4+ 2 A+ K2 4+ K2
.FS Flat matter scaling € 0 3 Y \/g 1 (2= ) k?>3y
K K
.SSKS  Self-similar KS 2 S22 0 0 y<2/3
3y—4 3y—4

subscript gives the sign @, and indicates whether the cor- which are physical wher?<2. They are also inflationary,
responding model is expanding or contracting. The values dput in other respects they resemble the point$ of the
Qp, Q,4, andqy for each of the equilibrium points are closed FRW models. o .
given in Table VI while the eigenvalues are displayed in As for the closed FRW models, the equilibrium points
Table VII. Note that all of the equilibrium points correspond =FS, corresponding to the flat matter-scaling solution, enter
to exact self-similar cosmological modés,10]. the physical part of the state space whén>37y.

As for the closed FRW models,F denotes the flat Fried-  Finally, there are also equilibrium points corresponding to
mann solution. Note that the closed FRW solution without alh€ self-similar Kantowski-Sachs solution. This solution is
scalar field does not appear as a submanifold of th@nly physical wheny<2/3, and so we will not consider
Kantowski-Sachs models without a scalar field. Consethem further. o _
quently, there is no orbit connectingF with _F. ~The eigenvalues for each of the equilibrium points are

There are two sets K of vacuum Qp=0) equilibrium  9iven in Table VII. The sources and sinks of the dynamical
points, parametrized by the constdn, corresponding to SYyStem wheny>2/3 are listed in Table Viilall of the other
kinetic dominated solutions. These sets are analogs of tHgduilibrium points are saddiesThus, there is always two
“Kasner rings” that are present for various Bianchi models,S€gments of the equilibrium setK that act as sources for

The flat scalar-field dominated points®, already en- Obits. Similarly there are two segments orK that are
countered for the closed FRW models, appear in théinks. Whenx“>2, these are the only attractors, and all
Kantowski-Sachs case as well. As for the closed FRW mogdsolutions start from and recollapse to a singularity (
els, they are physical whex?<6 and inflationary whem? —K). _ o
<2 When «?<2, which then implies that?<3y for y

There are also equilibrium pointsE, corresponding to  2/3, the equilibrium points. @ are attractors. Thus, for

2 .
curvature scaling solutioné.e. they haveQp=0, Q3<1) Kk <2, there are also ever-expanding— . ®) and ever-
collapsing (®— _K) solutions.

From the expression for the monotonic functibh we
deduce thaall orbits asymptotically hav® , —0, QS—>1 or
Qp—0. Indeed, the existence of the monotonic function en-
sures that there are no periodic orbits and that generically

TABLE VI. The physical quantitie€)p, (1,, anddy for the
different equilibrium points of the KS models.

fo 2o At orbits asymptote towards the local attractdsinks and
-F 1 0 3(3y—2) sources Therefore, we can determine the global dynamics
LK 0 uj3 2 of the models.
+® 0 1 1(k2-2) To summarizewhen «?>2 all solutions start from and
14 K2 2 recollapse to a singularityk(— K). Thus, in this case solu-
+5 0 2 : tions can neither isotropize nor inflate. WheA<2, there
(4+K?)? 1+ &2 are also ever-expanding (K®) (and ever-collapsingb
K®—3y 3y 1 —K) solutions in addition to the recollapsing solutions.
ks 2 2 2(37=2) Again, thed points correspond to power-law inflation when
“ k?><2. Consequently, in this case there is a subclass of so-
.SSKS 12 y—1 0 1(3y—2) lutions that isotropize and inflate_. o _
(3y—4)? The global asymptotic dynamics is similar to that in the

case of positive-curvature FRW models. However, due to the
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TABLE VII. Eigenvalues for the different equilibrium points of the KS models.

Eigenvalues
3 3 37

+F (3y—2)e —5(2-7v)e ~3(2—y)e 7
=" 4e2Q. 3(2=7)e 0 36_\/§KUO
- E6-)e —3(6- ke ~(2-Kk%)e ~(3y-x?)e
= - 2+Kze Ey+(y_1),<2 _32+K2t (2+K2)(18—7K2)E
7 s A © ’ 4+ K?

3
+FS —-3(2—v)e (3y—2)e 7@[(2*’}/)Ki\/(27')/)(24727(9,),72)’(2)]6

— _ 7
SSKs 3277 3y _g? ye2= )24 41y +18)
) T73y-a¢ 3y-4° 3y-4

presence of shear, the intermediate or transient dynamics can
be quite different. In the Kantowski-Sachs case the state 7=0Q —EQ +\/—€U (46)
space is four-dimensional and so we cannot display the phase o270 2k
portraits graphically(as in the FRW cage However, as an
illustration we shall present the phase portraits in the threeis an invariant submanifold, and that bothP and .= are
dimensional fluid vacuum and the massless scalar field ineontained in this submanifold.
variant sets in order to compare intermediate behaviors.
C. Massless case

B. Fluid vacuum The massless case corresponds to the invariant submani-

The fluid vacuum p=0) is an invariant submanifold, fold W=0, which leads to a three-dimensional system in
as seen from Eq(37). Using the Friedmann equation to (Qq,Q . ,U):
eliminate W, we obtain a three-dimensional dynamical sys- 3
Y

tem in Qo.Q-,U): Q%= —(1—QS>[ 20 §<2—y>(Qi+UZ>}

Qo=(1-QQI1+QuQ, ~3(Q1+U?], (43 o 5. 3
Qi =—(1-Qp(1-Q%)~ 5(2_ ¥)QoQ+p,

Q,=—(1-Q3)(1-Q2%)—3QuQ:(1-Q%2-U?),
@ iy

3
(1-Q9)Q+ ~ 5(2= 1) Qoo . (47)

U'=(1-Q§)Q.U+

\/;K—3QOU)(1—Q3—U2). From Table V, it is immediately seen that the equilibrium
points that are contained in this submanifold at¢ and -.F.
(45 The state space is depicted in Fig. 10.

From Table VI, it is immediately seen that the equilibrium
points that are contained in this submanifold arg, .®,
and . 2. The state space is depicted in Figs. 7, 8 and 9. Note

thatZ=0, whereZ is defined by U
TABLE VIII. Summary of sources and sinks for the KS models.
Q+
Past attractors Q
Expanding from a singularity@,>0) LK kUg< 6
Contracting from a dispersed stat®4<0) _P K?<2

Future attractors FIG. 7. The state space for Kantowski-Sachs models with no

Contrac-ting toa §ingularityQ0<O) K kUp<\6  fiuid (Q,=0), with x?<2. Dashed curves and white arrows and
Expanding to a dispersed stal®{>0) +@ k<2 circles are screened. Dotted orbits lie in the0 invariant sub-
manifold.
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FIG. 8. The state space for Kantowski-Sachs models with no FIG. 10. The state space for Kantowski-Sachs models with fluid
fluid (Qp=0), with 2<«?<6. Dashed curves and white arrows and massless scalar fieM/=0. Dashed curves and white arrows
and circles are screened. Dotted orbits lie in B0 invariant  and circles are screened. The horizontal plane idtkd invariant
submanifold. submanifold(compare with[21]).

and a positive cosmological constant have been investigated
recently using qualitative methods and utilizing compactified

We have studied closed cosmological models with a pervariables(16] _ _
fect fluid satisfying a linear equation of state with 2/3 In the case %f the Kantowski-Sachs models we again
<2 and a scalar field with an exponential potential. We havdound thatl when*>-2 all solutions start frorr; and rﬁco]lapse
utilized a new set of normalized variables which lead to the!® @ Singularity K—K) and can consequently neither isotro-

- . 2 -
compactification of state space, enabling us to apply thgze nor inflate. When~<2, there are also ever-expanding

IV. DISCUSSION

theory of dynamical systems to determine the qualitativ K;;Dr)eéiﬂg es\i/ner'gg:ﬁ?;'ggbw—hﬁé zol:}unor&qs 'giggd(':tgort'
properties of the models. In all cases we have been able trg psing ’ 9 @

find monotonic functions which, together with a local analy-
sis of the equilibrium points, enable us to determine the gloisotropize and inflate.
bal properties of the models.

. ) . The investigation of Kantowski-Sachs models comple-
We first studied the closed FRW cosmological modelsnants the study of Bianchi mode5] and completes the

We found that wherk®>2, in general, all solutions start analysis of spatially homogeneous models. Coll2& stud-
from and recollapse to a singularit)K(~K). In this case jed perfect fluid Kantowski-Sachs models qualitatively using
solutions generically do not inflate. Wherf<2, solutions  expansion-normalized variablégor which the state space
can either recollapseK(—K) or expand forever (k-®)  was non-compagtand showed that all models start at a Big
towards power-law inflationary solutiotter collapse forever Bang and recollapse to a final “big crunch” singularity. This
®—K); consequently, in this case there is a subclass of sowork was generalized recently by Goliath and E[li$] in
lutions that inflate. A number of phase portraits were dis-which Kantowski-Sachs models with a perfect fluid and a
played. cosmological constant were investigated using qualitative

These results generalize previous qualitative work ormethods and utilizing the compactified variables of Uggla
positive-curvature FRW models with a scalar fiétahly) [9]  and Zur-Muhlen[13]; particular attention was focused upon
and with a scalar field plus a baryotropic perfect filgdin ~ whether the models isotropize, thereby explaining the pres-
which compactified variables were not utilized, and rigorousently observed near-isotropy of the universe. More impor-
analyzes of perfect fluidonly) models using compactified tantly, Kantowski-Sachs models with a scalar field and an
variableq10,11], and completes and generalizes more recenexponential potential, but without baryotropic matter, have
work using different compactified variabl¢47]. We also  been studied qualitativelyl2], although compactified vari-
note that positive-curvature FRW models with a perfect fluidables were not utilized.

To conclude an analysis of positive-curvature spatially
homogeneous cosmological models with a perfect fluid and a
scalar field with an exponential potential, Bianchi type IX
models would need to be studied. However, such a study is
beyond the scope of the current paper. For example, Bianchi
type IX models are known to have very complicated dynam-
ics, exhibiting the characteristics of chdd®,15. However,
partial results are known. Bianchi type IX models with a
scalar field(only) have been studied qualitatively, with an
emphasis on whether these models can isotropiz8.
Scalar-field models with matter have also been stuiBid
For example, it has been shown that the power-law inflation-

FIG. 9. The state space for Kantowski-Sachs models with n@ry solution is an attractor for all initially expanding Bianchi
fluid (Qp=0), with x2>6. Dashed curves and white arrows and type IX models except for a subclass of the models which
circles are screened. recollapsd 3,4]. However, compact variables have not been

espond to the flat FRW power-law inflationary solution.
Consequently, in this case there is a subclass of solutions that

043526-9



ALAN COLEY AND MARTIN GOLIATH PHYSICAL REVIEW D 62 043526

utilized and the analyses were not rigorous. for k>>2 all initially expanding models reach a maximum

A more rigorous treatment of the class of Bianchi type IX expansion and thereafter recollapse, whereagfer2 mod-
models with a non-tilted perfect fluitbnly) using compac- els generically recollapse or expand forever towards a flat
tified variables has been possifjE0]. Although an appro- isotropic power-law inflationary solution. The Bianchi type
priately defined normalized Hubble variable is found to belX models share these qualitative properties. However, the
monotonic, enabling some results to be obtained, severahtermediate behavior of the Kantowski-Sachs models can be
problems remain open. More rigorous global results are posguite different from that of the FRW models. In order to
sible. For example, Bianchi type IX models with matter haveillustrate the possible intermediate dynamics of the
been shown to obey the “closed universe recollapse” conKantowski-Sachs models, we studied the special cases of no
jecture[23], whereby initially expanding models enter a con- baryotropic fluid, and of a massless scalar field in Secs. Il B
tracting phase and recollapse to a future “big crunch.” Inand Ill C, respectively(see Figs. 7—10
addition, Ringstrom has proven that a curvature invariant is  Finally, we remark that the dynamics of the Kantowski-
unbounded in the incomplete directions of inextendible nullSachs models obtained here will be crucial for understanding
geodesics for generic vacuum Bianchi mod@4], and rig-  the global dynamics of general self-similar spherically sym-
orously shown that the Mixmaster attractor is the past attracmetric modeld20].
tor of Bianchi type IX models with an orthogonal perfect
fluid [25]. A complete qualitative analysis of the special
class of locally rotationally symmetric Bianchi type IX per-
fect fluid models, which do not exhibit oscillatory or chaotic ~ We would like to thank Peter Turner for his help with the
behavior near to the initial or final singularities, has beenanalysis of the positive-curvature FRW mod¢ls]. A.C.
given in [13], based upon an appropriately defined set ofwould like to acknowledge financial support from NSERC of
bounded variables. Canada. M.G. would like to thank the Department of Math-

The Kantowski-Sachs models exhibit similar global prop-ematics and Statistics at Dalhousie University for hospitality
erties to the positive-curvature FRW maodels; in particular,while this work was carried out.
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