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Averaging in general relativity is a complicated operation, due to the general covariance of the theory

and the nonlinearity of Einstein’s equations. The latter of these ensures that smoothing spacetime over

cosmological scales does not yield the same result as solving Einstein’s equations with a smooth matter

distribution, and that the smooth models we fit to observations need not be simply related to the actual

geometry of spacetime. One specific consequence of this is a decoupling of the geometrical spatial

curvature term in the metric from the dynamical spatial curvature in the Friedmann equation. Here we

investigate the consequences of this decoupling by fitting to a combination of Hubble Space Telescope

(HST), CMB, type Ia supernovae (SNIa), and baryon acoustic oscillation (BAO) data sets. We find that

only the geometrical spatial curvature is tightly constrained and that our ability to constrain dark energy

dynamics will be severely impaired until we gain a thorough understanding of the averaging problem in

cosmology.

DOI: 10.1103/PhysRevD.85.043506 PACS numbers: 98.80.Es

I. INTRODUCTION

The standard model of cosmology relies on the assump-
tion that the Universe is well described at all points in
space and time by a single linearly perturbed Friedmann-
Lemaı̂tre-Robertson-Walker (FLRW) geometry (except in
the vicinity of black holes and neutron stars), and that this
geometry obeys Einstein’s equations. However, in an in-
homogeneous universe this is almost certainly not true.
Even if the gravitational interaction behaves exactly as
Einstein predicted on small scales, this will not be true
for large-scale averages. A critical problem in cosmology
is therefore determining the form of deviations from
Einstein’s equations when considering geometry averaged
on large scales and what the effects of these deviations will
be on observations (for a review, see [1]). This has been the
subject of some controversy, with opinions ranging from
the suggestion that the effects of averaging could com-
pletely explain the recently observed accelerating expan-
sion of the Universe without the need for any dark energy
[2–9], to the claim that it is completely negligible [10–21].
Others suggest that while the effects of averaging may not
be responsible for the apparent acceleration, they may be
important for precision cosmology [22–32].

In this paper we take the solutions to the field equations
derived from using an exact and fully covariant averaging
procedure and compare them to observations. These solu-
tions have decoupled spatial curvature parameters in the
metric and the Friedmann equation, and reduce to the
FLRW solutions of Einstein’s equations when these pa-
rameters are equal. We find that the constraints available on
the spatial curvature parameter appearing in the Friedmann
equation are considerably weaker than those available on
the spatial curvature parameter appearing in the macro-

scopic metric. In particular, the constraints from the CMB
are considerably weakened and no longer signal a flat
universe. This allows for the possibility of averaging hav-
ing non-negligible dynamical consequences. We also find
that some data sets prefer models in which the two curva-
ture parameters are not equal.

II. SPACETIME AVERAGING AND
MACROSCOPIC GRAVITY

There are a number of averaging procedures that have
been introduced in order to study the large-scale evolution
of inhomogeneous spacetimes. An exact and covariant
approach that allows tensor quantities to be averaged, as
well as scalars, was provided by Zalaletdinov [33]. Here
the geometric objects that exist on the spacetime manifold
are averaged, and the field equations that these quantities
satisfy are constructed. This is achieved using bilocal
averaging operators over closed regions of spacetime, �,
that contain the supporting points x (see [33]). The result of
averaging X is then denoted by hXi.
By using this definition we can now consider the average

of various geometric objects. Following Zalaletdinov, we
denote the average of the connection as h��

��i, and define
a new macroscopic Riemann tensor

M�
��� ¼ @�h��

��i � @�h��
��i þ h��

��ih��
��i

� h��
��ih��

��i: (1)

Crucially, M�
��� � hR�

���i, where hR�
���i is the

average of the microscopic Riemann tensor. From these
quantities one can then construct the macroscopic field
equations [33]:
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where hT�
�i is the averaged energy-momentum tensor,

hg��i is the averaged metric, and Z�
��� ¼ 2Z�

�½����
� is

a correlation tensor defined by

Z�
�½�

�
��� ¼ h��

�½��
�
���i � h��

�½�ih��
���i; (3)

where underlined indices are not included in antisymmet-
rization. This quantity must obey the differential constraint
Z�

�½�
�
��;�� ¼ 0, where the covariant derivative here is

defined using the averaged connection h��
��i. The macro-

scopic field equations (2) replace Einstein’s equations on
large scales.

A. Macroscopic FLRW solutions

The solutions to the macroscopic field equations (2),
with a FLRW ansatz for the macroscopic metric, have
recently been studied in [24,34–37], where it was found
that the extra terms involving the correlation tensor
Z�

�½�
�
��� take the same form in the macroscopic field

equations that a spatial curvature term takes in Einstein’s
equations. In fact, for a spatially flat macroscopic metric
with spatial correlations only, it can be shown that extra
terms in Eq. (2) can only take the form of spatial curvature.
Any other form would be incompatible with either the
conservation equations, their integrability conditions, or
the algebraic constraints that Z�

�½�
�
��� must satisfy for

consistency of the averaging scheme. Thus, the averaged
Einstein field equations for a spatially flat, homogeneous,
and isotropic macroscopic spacetime geometry take the
form of the Friedmann equations of general relativity for
a nonflat FLRW geometry. That is, the spatial curvature of
the macroscopic spacetime is decoupled from the spatial
curvature that appears in the macroscopic Friedmann equa-
tion. This is an important difference from the standard
approach to cosmology, where it is assumed that
Einstein’s field equations are valid whatever the smoothing
scale and that the spatial curvature in the Friedmann equa-
tion is therefore identical to the spatial curvature of the
macroscopic spacetime.

Using the results above we motivate the following
phenomenological cosmological model. We write the line
element of the macroscopic geometry as

ds2 ¼ hg��idx�dx� ¼ �dt2 þ a2ðtÞ
�

dr2

1� kgr
2
þ r2d�

�
;

(4)

where the geometrical curvature, kg, is, in general, a func-

tion of the scale of �. The scale factor aðtÞ is that of the
macroscopic spacetime. On scales larger than� the macro-
scopic field equations, (2), then become

H2 ¼ _a2

a2
¼ 8
G

3
�� kd

a2
þ�

3
; (5)

where the ‘‘dynamical curvature,’’ kd, is again a function
of scale, and we have included in kd here contributions
from both the spatial curvature in the metric, kg, and the

terms in Eq. (2) that involve the correlation tensor,
Z�

�½�
�
���. Only if the contribution from Z�

�½�
�
��� van-

ishes do we recover the usual result kg ¼ kd, and even in

this case we can still have a scale dependence. Generally,
in spacetimes that are inhomogeneous on small scales we
do not expect these two ‘‘spatial curvature’’ terms to be
equal. Defining �kg ¼ �kg=a

2
0H

2
0 and �kd ¼ �kd=a

2
0H

2
0

the macroscopic Friedmann equation then becomes 1 ¼
�m þ�kd þ��, where �m and �� are the usual ex-

pressions for the fraction of the energy content of the
Universe in matter and the cosmological constant, respec-
tively. Note that �� is a function of smoothing scale,
whereas � is not. The quantity �kg does not have to

satisfy a constraint of this kind as it is now decoupled
from the Friedmann equation. Thus, we arrive at a pa-
rametrized phenomenological model within which we can
analyze data in order to study the potential observational
effects of averaging.

B. Observables in the macroscopic universe

We will now consider distance-redshift relations in the
FLRW solutions of macroscopic gravity. These provide the
basis for many key observational tests of the cosmological
background.
First, we need to know the trajectories of photons in the

macroscopic geometry. We will take these as null trajecto-
ries with respect to the macroscopic metric that has been
constructed to approximate the distance between two
points in spacetime separated by scales above that of �.
We consider this to be a reasonable assumption for the
average of a large number of photon trajectories, but note
that it will not be true for each individual null curve of the
microscopic spacetime. If this assumption is wrong then it
could lead to profound differences with the results of
applying Einstein’s equations directly to nonlocal averaged
quantities [38,39]. Our approach should therefore be con-
sidered a conservative one.
Let us now derive the luminosity distance-redshift rela-

tion in the macroscopic geometry. Integrating a null tra-
jectory in the geometry (4), assuming �kg and �kd are

constant, and using the solutions to the macroscopic
Friedmann equation (5), gives

dLðzÞ ¼ ð1þ zÞ
H0

ffiffiffiffiffiffiffiffiffiffiffi
j�kg j

q fkg

0
@Z 1

ð1=1þzÞ

ffiffiffiffiffiffiffiffiffiffiffi
j�kg j

q
daffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�kda
2 þ��a

4 þ�ma
q

1
A;

(6)
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where fkgðxÞ ¼ sinhðxÞ, x or sinðxÞ when kg < 0, kg ¼ 0 or

kg > 0, respectively. This expression reduces to the usual

one when �kg ¼ �kd .

III. DATA ANALYSIS

We can now compare our averaged models to various
cosmological probes.

Hubble rate.—A vital tool for constraining dark energy
is the local Hubble rate. We use Hubble rate data from
HST measurements [40], which give H0 ¼ 74:2�
3:6 km s�1 Mpc�1, and we assume Gaussian errors.

Cosmic microwave background.—The CMB is well
known to tightly constrain spatial curvature in the standard
cosmology. When �kg ¼ �kd constraints from the WMAP

7yr data release [41], combinedwithHST [40] andBAOdata
[42], gives �0:0133<�k < 0:0084 (95% confidence
limit). Principally, this constraint arises from the tight bounds
on the area distance to the surface of last scattering, which
must be ð1þ z�ÞdAðz�Þ ¼ 14150� 150 Mpc. We fit three
parameters which are predicted by the model: The decou-
pling epoch (z�), the acoustic scale (lA), and the shift pa-
rameter (R), which are sufficient to capture the constraints
from the CMB [41]. To obtain likelihoods, we also use
the inverse covariance matrix for the WMAP distance priors
for these parameters, as given in Table 10 from [41].

Supernovae.—Another key probe of the large-scale ex-
pansion of the Universe is the observation of SNIa. These
events are considered to be ‘‘standardizable candles,’’ in
that their absolute magnitude can be approximated when
‘‘stretch’’ and ‘‘color’’ parameters have been extracted
from fits to light-curve templates. They allow the expan-
sion history of the Universe to be mapped and are widely
considered to be one of the most compelling sources of
evidence for the existence of dark energy. Therefore, we
consider them here in the context of the FLRW solutions to
macroscopic gravity in order to determine the consequen-
ces of allowing �kg � �kd . The supernova data used in

obtaining these constraints are the Union2 data sets [43]
and the Sloan Digital Sky Survey (SDSS) data sets [44].

Baryon acoustic oscillations.—Observations of BAOs
provide a direct measurement of the Hubble rate at nonzero
redshifts and are therefore a powerful tool for constraining
dark energy. However, the interpretation of BAOs relies on
assumptions about the evolution of structure in the
Universe that may not be valid if averaging is important.
Therefore, we choose to use BAO data only sparingly. We
use the fraction of the comoving sound horizon to volume
distance for the two points at redshifts z ¼ 0:2 and 0:35.
The inverse covariance matrix is given by Eq. 5 from [42].

A. Parameter constraints

We use the Monte Carlo Markov Chain (MCMC)
method to obtain the marginalized errors on the model

parameters from the likelihood function by using the pub-
licly available package COSMOMC [45].
First, consider CMBþH0 constraints, as these lead to

extremely tight constraints on spatial curvature in the
standard model. It can be seen from Fig. 1 that when
�kg � �kd the CMBþH0 no longer constrains spatial

curvature significantly, principally due to a degeneracy
between the effects of �kg and �kd in Eq. (6). In fact,

even with� ¼ 0 there exist values of kg and kd that satisfy

the observations. These results significantly weaken a key
part of the evidence for both a spatially flat universe and a
nonzero value of �.
In Fig. 2 we show the combined constraints that can be

imposed on �kg and �kd using data from the HST, the

WMAP 7 yr data of the temperature-temperature correla-
tions in the CMB, the Union 2 and SDSS SNIa data sets,
and the constraints on the ‘‘volume distance’’ from the
BAOs. Figure 3 shows the constraints available on �m

and �� from the same data sets.
It is clear that the effect of allowing �kg and �kd to be

independent has considerable consequences for these
probability distributions. The marginalized posterior val-
ues of each parameter in the various cases are given in
Table I. These values differ considerably from the case
where �kg ¼ �kd , which are shown in the same table for

comparison. It can be seen that the additional freedom
gained by allowing �kg � �kd is considerable, with con-

straints on �� and the two �k being significantly weaker
than in the standard approach. The combination of all of
these observables, however, still appears to provide strong
evidence for the existence of dark energy and is still
consistent with a spatially flat universe. Nevertheless, it
is striking that constraints on�kg are an order of magnitude

tighter than those on �kd .

FIG. 1 (color online). Constraints on �kg and �kd from the
CMB for H0 ¼ 50, 70 and 90 km s�1 Mpc�1, with the other
parameters marginalized over. Shaded areas are 68% and 95%
confidence regions.
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B. Constraints on dark energy dynamics

Decoupling the geometrical and dynamical spatial cur-
vature parameters does not appear to allow enough free-
dom to entirely account for the dark energy component
(which is now signaled almost entirely by supernova
observations rather than by both CMBþH0 and SNIa
observations as in the standard model). Nonetheless, con-
sidering averaged spacetimes considerably weakens our
ability to constrain dark energy in a meaningful way. For
example, if we parametrize the equation of state for dark
energy as wðzÞ ¼ w0 þ wað1� aÞ ¼ w0 þ waz=ð1þ zÞ
then CMBþ HSTþ BAOþ SNIaðunion2Þ gives only
the weak constraint w0 ¼ �1:612þ0:511

�0:524, with almost no

meaningful constraints on wa at all. This can be compared
with w0 ¼ �1:066þ0:202

�0:197 and wa ¼ �0:130þ1:141
�1:135 when

kg ¼ kd, as in Fig. 4. Clearly, the uncertainty arising

from the averaging problem is hugely amplified when we
try to constrain the dynamical properties of dark energy.

TABLE I. Constraints on curvature and � with decoupled curvature parameters and in the standard model.

Data sets �kd �kg �� �kd ¼ �kg ��

CMB �0:053þ0:152
�0:153 �0:036þ0:562

�0:572 þ0:525þ0:417
�0:524 �0:069þ0:109

�0:112 þ0:548þ0:331
�0:303

CMBþ HST þ0:036þ0:062
�0:064 þ0:185þ0:396

�0:415 þ0:564þ0:415
�0:401 þ0:006þ0:007

�0:007 þ0:746þ0:023
�0:023

SNIa (Union2) þ0:012þ0:513
�0:485 �0:369þ0:398

�0:410 þ0:902þ0:189
�0:187 �0:205þ0:285

�0:282 þ0:858þ0:192
�0:194

SNIa (SDSS) þ0:233þ0:466
�0:451 �0:173þ0:492

�0:507 þ0:641þ0:230
�0:225 þ0:073þ0:301

�0:298 þ0:547þ0:203
�0:204

CMBþ HSTþ SNIaðunion2Þ þ0:014þ0:017
�0:017 þ0:055þ0:092

�0:092 þ0:695þ0:080
�0:082 þ0:005þ0:007

�0:007 þ0:739þ0:020
�0:021

CMBþ HSTþ SNIaðSDSSÞ þ0:054þ0:020
�0:020 þ0:311þ0:100

�0:101 þ0:436þ0:087
�0:089 �0:004þ0:009

�0:009 þ0:685þ0:024
�0:024

CMBþ HSTþ SNIaðunion2Þ þ BAO �0:004þ0:011
�0:011 �0:033þ0:070

�0:069 þ0:755þ0:068
�0:070 þ0:000þ0:006

�0:006 þ0:723þ0:016
�0:016

CMBþ HSTþ SNIaðSDSSÞ þ BAO þ0:026þ0:012
�0:012 þ0:183þ0:072

�0:070 þ0:522þ0:070
�0:073 þ0:001þ0:007

�0:006 þ0:698þ0:017
�0:017

FIG. 3 (color online). Constraints on �m and �� for the same
data set combinations as in Fig. 2. The constraints from the CMB
and SNIa separately are again much weaker here than in the
standard case. In particular, � ¼ 0 is consistent with the CMB
data for any �m. Union2 SNIa data, however, still clearly give
� � 0. (For a discussion of bias see Ref. [56].)

FIG. 2 (color online). Constraints on the two curvature parameters from different data sets. In the left panel we show the constraints
from the CMB (the filled, thin, central contours) and SNIa (the filled, wide contours at the bottom of the plot for Union2, and unfilled and
dashed for SDSS) separately, aswell as the combined constraints includingHST. In the right panelwe show the combined constraints,with
the smaller lightly shaded regions in the foreground now including the BAO. The constraints from the CMB and SNIa are extremely weak
individually, but tighten when combined with HST data. Note that only the geometrical curvature is tightly constrained and not the
dynamical one. The SDSS SNIa data can also be seen as inconsistent with �kg ¼ 0 at greater than 95% confidence.
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C. Scale dependent curvature parameters

As well as kg and kd being allowed to be different, a

second consequence of using an averaged geometry is
that these parameters could become scale dependent.
This possibility introduces a considerable amount of extra
freedom and hence we consider it separately here from the
more restricted case we have considered so far (where kg
and kd are different, but scale independent).

The cosmological probes we have discussed all make
observations over different scales. The scale of BAOs at
the present time is about 150 Mpc. High redshift SNIa
(out to z� 1) cover a range of scales out to several Gpc
while the CMB involves making observations on the
scale of the horizon (� 14 Gpc). By introducing a scale
dependence into kg and kd we can therefore potentially

reintroduce the effects of spatial curvature on the scales
of SNIa and BAOs, while still satisfying the stringent
constraints available on the largest scales from the CMB.
The question then becomes whether or not it is possible
for observations to effectively constrain spatial curvature
on different scales in the Universe. A positive detection
of conflicting measurements of spatial curvature on dif-
ferent length scales would be a sure sign of nontrivial
averaging effects [9,26].

As we have shown, the CMB may no longer imply
spatial flatness or a nonzero �� at all (see Fig. 1). If
spatial curvature on the scale of SNIa observations is
allowed to be independent from the constraints imposed
by other observables, then the evidence available for the
existence of a nonzero �� is again severely weakened
(see Fig. 3). Also, if �kg and �kd vary with sufficient

rapidity on scales of interest for SNIa observations then
we can no longer treat them as being simple constants
when analyzing the data. Instead, since we average these

observables over the sky, what we are doing is effectively
averaging the geometry out to some redshift. This should
be expected to result in redshift dependent effective cur-
vature parameters, and in this case one could end up with
curvature parameters that are effectively functions of
radial distance, k ¼ kðrÞ.
This picture is somewhat similar to Lemaı̂tre-Tolman-

Bondi void models of the Universe, where the Earth is at
the center of a large spherically symmetric inhomogene-
ity. It is well known that such models are able to explain
the supernova data without evoking the existence of dark
energy [46], but at the expense of strongly violating the
Copernican principle. In the present interpretation no
such violation need occur, as all observers will experi-
ence a universe with k ¼ kðrÞ, with themselves at the
center of symmetry. This would relieve the key philo-
sophical problem associated with these models as an
explanation of the data. It would also relieve the strong
constraints on these models that are available from the
kinematic Sunyaev-Zeldovich effect [47–49], as every
cluster would experience (approximately) isotropic
CMB radiation, just as we do on Earth. However, such
a departure from the usual interpretation of Lemaı̂tre-
Tolman-Bondi models would also undoubtedly require
revisiting the problem, as the field equations would be
modified by additional terms due to averaging and can-
not just be considered as the normal Einstein field equa-
tions as has been the case so far. In particular, the
relation between averaging observables on the sky and
averaging the field equations spatially is nontrivial, and
extending our ansatz given by Eqs. (4) and (5) to the
spherically symmetric case may not be obvious.

IV. CONCLUSIONS

We have presented and constrained models of the large-
scale Universe that result from averaging the geometry of
spacetime. These models have decoupled spatial curvature
parameters in the macroscopic line element (�kg) and the

Friedmann equation (�kd), and provide a qualitative alter-

native to the standard model of cosmology. Therefore, they
can be used to analyze the statistical significance of the
standard model in a larger space of models that allows for
some of the nontrivial consequences of averaging.
By using HST, CMB, BAO, and SNIa data it is clear that

the effect of allowing �kg and �kd to be independent has

considerable consequences for parameter estimation.
Analysis of the available data shows that the size of the
68% and 95% confidence regions of ��,�kg , and�kd are

all much larger than in the standard model. There are even
tantalizing hints that the data may favor �kg � �kd (the

combination of HST, CMB, and SDSS SNIa data excludes
�kg ¼ �kd at the 95% confidence level). However, while

the evidence for�� � 0 available from individual observ-
ables can be considerably reduced, the combination of SN,

FIG. 4 (color online). Marginalized constraints on the dark
energy parameters, with (the small, filled region at the top right)
and without (the large, filled region that occupies most of the
plot) assuming kg ¼ kd. Allowing for effects due to averaging

removes our ability to constrain the possible evolution of the
dark energy equation of state.
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CMB, HST, and BAO data still provides strong evidence
for the existence of dark energy, as long as�kg and�kd are

scale independent universal constants. Relaxing this last
assumption makes combining observables on different
scales a much more complicated problem, and it is highly
probable that such additional freedom will significantly
weaken the evidence for �� � 0.

The way that this situation should be modeled and con-
strained with data is still an open problem. Relating ob-
servables to spatial averages is known to be nontrivial, and
is sometimes described as ‘‘dressing’’ the cosmological
parameters [50–52]. Although our ansatz given by
Eqs. (4) and (5) is well motivated by macroscopic gravity,
other averaging schemes can be used to motivate other
phenomenological models, such as in [9] where
Buchert’s scheme was used to motivate a time-dependent
curvature parameter. Other ways of relating average
quantities to observables also exist [53–55], and different
observational constraints arise depending on the method

used. It remains an open problem to decide on the
‘‘correct’’ way to go about this.
Finally, we have shown that introducing uncertainty due

to averaging into our models of the Universe dramatically
weakens the constraints that can be imposed on the equa-
tion of state of dark energy, and we expect this result to be
robust to the averaging scheme used. As a consequence, it
is therefore necessary to understand and incorporate the
effects of averaging in general relativity into our models if
we are to begin attempting precision cosmology.
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