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We consider the self-similar solutions associated with the critical behavior observed in the gravitational
collapse of spherically symmetric perfect fluids with the equation of gtate n. We identify for the first time
the global nature of these solutions and show that it is sensitive to the value bf particular, fora
>0.28, we show that the critical solution is associated with a new class of asymptotically Minkowski self-
similar spacetimes. We discuss some of the implications of this for critical phenomena.
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I. INTRODUCTION nature of the critical solution. Although the detailed deriva-
tion of these new solutions is given elsewhere, this is the first
One of the most exciting developments in general relativpublished announcement of their existence and the first at-
ity in recent years has been the discovery of critical phenomtempt to link them to critical phenomena. The purpose of this
ena in gravitational collapse. For a variety of sphericallypaper is therefore to highlight this result in advance of the
symmetric imploding matter fields, there is a self-similarmore extensive analysésince these are in a much broader
critical solution containing a naked singularity which sepa-contexj. In particular, we will show how the global features
rates models which collapse to black holes from those whichelate to the equation of state parameteand explain why
disperse[1-3|. Sometimes a discrete similarity is involved there is only one such solution for eaeh It should be
but, in other circumstances, the critical solution seems t0 bgmphasized that numerical studies of the critical solution are
represented by a continuously self-similar model. This is ongy\yays restricted to some finite range of the self-similar vari-

which has a homothetic Killing vector and contains no di-pi6; However, as the critical index is approached, the ex-
mensional constants. Perfect-fluid models of this kind necesg, .+ of the self-similar region grows and one could in prin-

sarily have an equation of state of the fopr ax and so ciple go to arbitrarily large values of. This paper can

only in this case could the critical solution be homothetic. . _
L . . . . therefore be regarded as predicting the characteristics of
Self-similar spherically symmetric perfect-fluid solutions these solutions

have been much studied in general relativisge[4] and The di ) i inlv be in t £ th ¢
references therejrand the attempt to understand critical phe- e discussion will mainly be in terms of the compac
state spacgll,12 but, to extract important physical fea-

nomena has led to several further studis9]. However, B
their precise relationship with the critical solution has re-tures, some of the quantities used by Carr and Coly

mained obscure. This is mainly because the full family ofWill be plotted. No equations will be used because the dis-
such solutions had not been identified when critical phenomcussion is intended to be purely qualitative and thereby ac-
ena were first discovered. However, recently Carr and Colegessible to the general reader. However, some technical
[10] have presented a complete asymptotic classification derms will be used in the next section, so here we give some
such solutions. Furthermore, by reformulating the field equabackground references. For an introduction to dynamical
tions for these models in terms of dynamical systems, Golisystems theory in general relativity, S€e]; for its particu-
ath et al[11,17 have obtained a compact three-dimensionalar application in the spherically symmetric context, see
state space representation of the solutions and this leads [tb1,12]; for more details of the other types of self-similar
another complete picture of the solution space. These invesolutions, see Caret al. [14]. At the end of the paper, we
tigations have resulted in the discovery of a new class oémphasize our key predictions, so that “critical” workers
“asymptotically Minkowski” self-similar spacetimes. can investigate these.

In this paper we shall discuss these new solutions and
show why they are intimately related to critical phenomena

[5]. We thereby demonstrate for the first time thbal Il. THE SOLUTION SPACE
We shall focus on spherically symmetric self-similar so-
*Email address: B.J.Carr@gmw.ac.uk lutions in which the spacetime admits a homothetic Killing
"Email address: aac@mscs.dal.ca vector. This means that all dimensionless variables depend
*Email address: goliath@physto.se only on the self-similar variable=r/t, wherer is the co-
8Email address: unilsson@mercator.math.uwaterloo.ca moving radial coordinate andis the time coordinate. In a
'Email address: uggla@physto.se dynamical systems approach these solutions correspond to
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TABLE I. Interpretation of solutions asymptotic to the given
equilibrium points.

Label Interpretation

C Solutions with a regular center or
infinitely dispersed solutions
M, M Asymptotically Minkowski solutions
Nonisotropic singularity solutions
Asymptotically Friedmann solutions
Exact static solution

= X

FIG. 1. The three-dimensional state space of self-similar spherihaked singularities, sefl6]; (3) the density profile,utz

cally symmetric perfect-fuid models forr>1/5, obtained by —\hich gives the matter distribution at a given comoving time
matching a spatially self-similar region with two timelike self- . o4 4y the mass function @/R, wherem(r) is the mass
similar regions along the lines H4]. Labelled equilibrium points S . . T
act as asymptotic states for orbits. The triangular surfaces indicate\gIthln radial (.:oordmate' thus indicating the presence of an
by dashed lines are sonic surfaces. Two of these surfaces containagparent ho”.zon @/R: 1)_’ seef17]. . .
sonic line, indicated by a line of equilibrium points. _ We shall_ first briefly review the_ prewous_ly known_faml-
lies of solutions. All of these solutions are discussed in more
orbits in a three-dimensional compact state space. The statketail in[14], where the dependence of the above functions
space of self-similar spherically symmetric perfect-fluid on z are shown explicitly. We shall then consider the new
models(for a>1/5) is presented in Fig. 1. A point in this asymptotically Minkowski solutions. This is the first discus-
space corresponds to a certain geometry and matter field cosion of their physical features and the first detailed analysis
figuration on a homotheticonstantz) slice, while an orbit  of their relevance to critical phenomena.
in the state space represents an entire spacetime. All continu- Asymptotically Friedmann solutions
ous orhits are future and past asymptotic to one of a few There are two one-parameter sets of solutions that are
solutions with higher symmetry. These appear as equilibriunasymptotic to the flat Friedmann solution, all of which are
points on the boundary of the state space and these points arennected with one of the Friedmann points F. One has posi-
labeled in Fig. 1. A physical description of the solutionstive z and the other has negatizeTwo qualitatively differ-
asymptotic to them is given in Table I. ent families can be distinguished:) expanding-recollapsing
The state space is divided into two halves, one corresolutions (F—K orbitg; and (2) ever-expanding(or ever-
sponding to positivez, the other to negative. This means contracting solutions(F—C orbit3, where C is to be inter-
that the solutions in one half are the time reverse of solutiongreted as an infinitely dispersed state. The latter family con-
in the other half, so all equilibrium points appear twice intains the flat Friedmann solution itself. Thus the flat
Fig. 1. Thesonic surfacesare also depicted and solutions Friedmann solution appears both as an equilibrium point F
generally develop a shock wave h¢flé]. However, in two and as an orbit in state space, corresponding to different
of the sonic surfaces there isanic lineand solutions which  slicings.
pass through this line can be extended continuously through Asymptotically quasi-static solutions
the sonic surface. Only these solutions will be considered to For each value ok, there is a unique static solution,
be physical and the number of such solutions is stronglhoriginally found by Tolman18]. The correspondingT—T)
restricted. orbit traverses the entire state space and spans both positive
The state space has the advantage of giving a pictorignd negativee. Furthermore, there is a two-parameter set of
representation of the relationship between different solutionsolutions with behavior resembling the static solution at
and the connection between the initial and final stateslarge|z| (i.e., neart=0). They are all associated with K
thereby yielding insights into the global nature of the solu-points, corresponding to nonisotropic singularities. As with
tions. However, it has the disadvantage that it is rather abthe asymptotically Friedmann solutions, there are two differ-
stract. To better understand the physical aspects of the solent families within this clasg1) expanding-recollapsing so-
tions, it is useful to consider some of the physicallylutions (K—K orbits); and (2) ever-expanding(or ever-
interesting quantities which arise in the comoving approachcontracting solutions (K—C orbitg. The latter contain the
The dependence of these quantitieszaorresponds to two- naked-singularity solutions discussed by Ori and P[rE6]
dimensional projections of orbits in the full state space. Fol-and Foglizzo and Henriksdri9]. Unlike the asymptotically
lowing [10], we use:(1) the scale factof§ which fixes the Friedmann solutions, the asymptotically quasi-static solu-
relation between the comoving radial coordinatand the tions necessarily span both positive and negative
Schwarzschild radial coordinat®=Sr, thus indicating Asymptotically Minkowski solutions
when a solution expands infinitey\5{«) or encounters a When a>1/5, solutions exist that are “asymptotically
singularity (5—0) for finite values ofz; (2) the velocityV of ~ Minkowski,” in the sense that the state-space orbits asymp-
the spheres of constaatrelative to the fluid, which is im- tote to equilibrium points that correspond to Minkowski
portant for the identification of event horizond/(=1) and  space. There are actually two subclasses of such solutions,
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FIG. 2. Asymptotically Minkowski solutions of class @otted /’ R ’/ L
and class Bdashegl as orbits in state space. Arrows go from C or S i
K towards the infinitely dispersed state. Densely dotted and short- 0+— S 0 ey k
dashed curves correspond to regular solutions, while sparsely dotted -0-1 z 0 -0.1 z 0

and long-dashed curves correspond to singular solutions.

iated with diff ilibri . . . FIG. 3. Physical quantities for the asymptotically Minkowski
associated with different equilibrium points In state SPaCeyq| tions. The dash-dotted line in tN€z) diagram corresponds to

class ,A solutions are connected with the M points and e sonic surface. Other designations are given in the caption of
described by two parameters; class B solutions are connecte;;qlg. 2

with the M points and are described by one parameter. Both

of these subclasses contain two diffe~rent families of SO'“‘search, see, e.g21] and references therein. The solution at
tions: (1) singular solutionsK-M, K—M orbits); and (2)  the threshold of black-hole formation in spherically symmet-
regular solution§C—M, C—M orbits). Only the latter contain  ric radiation fluid collapse, correspondingde- 5, was stud-

a sonic point. All of these types of solutions are illustrated inied by Evans and Colemdid]. They found it to be a self-
Figs. 2 and 3, where the arrows indicate whether solutionsimilar solution distinguished by the following criteria:

are future asymptotic to M or M _ (1) It is everywhere analytic, or at leaSt". In particular .

Solutions in class A hav&/—1, S—«, ut?>-0, and 't has a rt_egular center, and also crosses the sonic surface in
2m/R—0 at somdinite valuez=z, . Although this limitis ~ @n analytic way and;
reached at finite, it should be pointed out that most inves- . (2) It has a collapsing interior surrounded by an expand-
tigations of the critical solution use the physical distafce N9 exterior. This means that the radial fluid three-velocity
which is infinite. Examples of such solutions are illustratedYr @ssociated with a Schwarzschild foliationhich is dif-
by the dotted curves in Figs. 2 and 3. Solutions in class Berent from the functionV) has exactly one zero. o
haveV—V, >1, S—o, ut2—-0, and 2W/R—0 asz—. Subsequently, other authc[rTs,S] have used these criteria
Examples of these solutions are represented by the dash&yinvestigate the critical solution for other valuesaf For
curves in Figs. 2 and 3. Both classes are asymptotically dis? ecent review, segl]. _
persive and solutions asymptotic to K points also h&ve The uniqueness of the critical solution can be understood
—0 at a finite value of, indicating the formation of a sin- S follows: For each value of the equation-of-state parameter
gularity in the pastassuming the time direction indicated in @ there exists a one-parameter set of solutions with a regu-
the figures. Even though B0/R—0 for both classes, the lar center and a one-parameter set of solutions analytic at the
massm need not vanish. sonic line([4]). Thus it is not surprising that the first condi-

It should be emphasized that these solutions are not adon 1eads to a discrete set of solutions. There is only one
ymptotically flat in the usual global sense, in which there is gSolution in this set that satisfies the second condition and this
certain radial decay of the curvature towards spatial infinity|S the critical solution. o
see, e.g.[20]. We are not considering an isolated system W& now examine the critical solution in terms of both the
here but rather a fluid spacetime in which the MinkowskiState space of the self-similar spherically symmetric perfect-
geometry is obtained asymptotically along certain coordinatduid solutions and the behavior of the various physical quan-
lines. It can be shown that the curvature vanishes asymptothties. The results are summarized in Figs. 4 and 5.

cally as the M (M point is approached. Because the fluid . Starting from the regular C(_anter C, a numerical |r}vestlga
S : DAY ion shows that for all equations of state, the orbit of the
becomes infinitely diluted, the situation is analogous to that_... . S
. = ) X . —critical solution passes through the sonic line and enters the
of the open Friedmann solution, in which the Milne solution

. : T spatially self-similar regior{with |V|>1). It turns out that
is approached asymptotically along certain timelines at Iat<=f§0r « in the range & @=0.28, it is of the asymptotically
times(see, e.g.[13]). e

quasi-static kind; it passes through the spatially self-similar
region and enters a second timelike self-similar region, fi-
nally reaching another sonic poifindicated by X’ in the
Critical phenomena in gravitational collapse were firstfigures, which is generally irregular. However, this does not
studied by Choptui1] and remain an active field of re- invalidate the solution as being the critical one, since the

Ill. THE CRITICAL SOLUTION
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FIG. 4. Critical orbits in the state space. Arrows go from the

regular center towards the infinitely dispersed state. Note that theut2 ZR—m o

orbits correspond to different equations of state, i.e., different val- E

ues ofa, and thus belong to different state spaces. The three orbits __"__'4/‘}

exemplify the cases€© a=<0.28(full curve), a~0.28(dashegl and 0 < o B e

0.28<sa<1 (dotted.

solution describing the inner collapsing region is usually FIG. 5. Physical quantities for the critical solution. The dash-
matched to an asymptotically flat exterior geometry suffi-dotted lines in theV(z) diagram correspond to the sonic surfaces.
ing to this class is given by the full curves in Figs. 4 and 5. a=0.28 (dotted, the critical solution tends to a finite value nf

We find that for the limiting case~0.28, the critical transition from the secondary direction to the dominant di-
solution is an asymptotically Minkowski solution of class B, ) "y " X
rection occurs atv=«, . This transition results in severe

whose orbit ends at an equilibrium point M Figs. 4and 5, merical difficulties, so very high numerical precision is

this solution corresponq_s to the _dashed lines. For 828 required to investigate such solutions, as pointed of@2.
<1, we find that the critical solution belongs to the asymp-

totically Minkowski solutions of class A, whose orbit ends at
an equilibrium point M. A solution representing this class is
indicated by the dotted curves in Figs. 4 and 5. Our key predictions can be summarized as follows:

For a=a, ~0.89, the investigations ifl2,7,§ indicate (1) When one gets sufficiently close to the critical solu-
that the critical solution is already irregular at the first soniction that the largez behavior can be studied, then this solu-
point. As the matching must be performed outside the sonition should have the various asymptotic features we predict
point [16,19, the solution would then be unphysical. How- for different values ofx.
ever, Neilsen and Choptu{R2] have recently demonstrated  (2) There should be a sudden transition in the nature of
the existence of a regular critical solution @& a, as well.  the critical solution asy passes through 0.28, with the solu-
Our present investigation supports their analysis. tion going from the asymptotically quasi-static form to as-

To understand what happens far=«a, , we consider ymptotically Minkowski form. However, it should be em-
equations of state near this value. It turns out that the behayhasized that the solution is only flat null towards infinity; so
ior can be understood in terms of the stability near the sonione still needs to match to a non-self-similar region on a
line. In order for a solution to be regular at the sonic surfacespacelike surface.
the corresponding orbit must approach the sonic line along (3) Although the asymptotically flat limit is reached at
one of(at mosj two possible directions. Each of these direc-finite z, most critical workers use the physical distance,
tions is associated with an eigenvalue—the direction correwhich is infinite. However, it should be pointed out that in
sponding to the smaller eigenvalue is caltlaminantand is  the stiff case &=1), the asymptotically flat state is reached
associated with a one-parameter family of soluti@mntain-  atfinite physical distance, which should lead to some anoma-
ing just oneC™ solution), the other is calledecondaryand is  lies, seq10]).
associated with an isolated solution. Fox «,, , the critical (4) Although we have not explained why the critical so-
solution corresponds to the secondary direction. Howevelution is analytic at the sonic poirithis presumably relates
whena gets close tar, , the eigenvalue associated with the to the usual stability criteriopwe have used the asymptotic
critical solution approaches that of the other direction. Foifeatures to explain why the analytic solution is unique for
a=a, , the eigenvaluegand directions are equal, corre- given «. The relationship to solutions which are regular but
sponding to adegenerate nodeand fora>«, , the critical  not analytic at the sonic point is discussed in more detail by
solution is associated with the dominant direction. Thus &arr and Henrikseh23].

IV. CONCLUSIONS
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