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Critical phenomena and a new class of self-similar spherically symmetric perfect-fluid solutions
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We consider the self-similar solutions associated with the critical behavior observed in the gravitational
collapse of spherically symmetric perfect fluids with the equation of statep5am. We identify for the first time
the global nature of these solutions and show that it is sensitive to the value ofa. In particular, fora
.0.28, we show that the critical solution is associated with a new class of asymptotically Minkowski self-
similar spacetimes. We discuss some of the implications of this for critical phenomena.

PACS number~s!: 04.20.Jb, 04.20.Cv, 04.40.Nr, 98.80.Hw
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I. INTRODUCTION

One of the most exciting developments in general rela
ity in recent years has been the discovery of critical pheno
ena in gravitational collapse. For a variety of spherica
symmetric imploding matter fields, there is a self-simi
critical solution containing a naked singularity which sep
rates models which collapse to black holes from those wh
disperse@1–3#. Sometimes a discrete similarity is involve
but, in other circumstances, the critical solution seems to
represented by a continuously self-similar model. This is o
which has a homothetic Killing vector and contains no
mensional constants. Perfect-fluid models of this kind nec
sarily have an equation of state of the formp5am and so
only in this case could the critical solution be homothetic

Self-similar spherically symmetric perfect-fluid solution
have been much studied in general relativity~see @4# and
references therein! and the attempt to understand critical ph
nomena has led to several further studies@5–9#. However,
their precise relationship with the critical solution has
mained obscure. This is mainly because the full family
such solutions had not been identified when critical pheno
ena were first discovered. However, recently Carr and Co
@10# have presented a complete asymptotic classification
such solutions. Furthermore, by reformulating the field eq
tions for these models in terms of dynamical systems, G
ath et al.@11,12# have obtained a compact three-dimensio
state space representation of the solutions and this lead
another complete picture of the solution space. These in
tigations have resulted in the discovery of a new class
‘‘asymptotically Minkowski’’ self-similar spacetimes.

In this paper we shall discuss these new solutions
show why they are intimately related to critical phenome
@5#. We thereby demonstrate for the first time theglobal
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nature of the critical solution. Although the detailed deriv
tion of these new solutions is given elsewhere, this is the fi
published announcement of their existence and the first
tempt to link them to critical phenomena. The purpose of t
paper is therefore to highlight this result in advance of
more extensive analyses~since these are in a much broad
context!. In particular, we will show how the global feature
relate to the equation of state parametera and explain why
there is only one such solution for eacha. It should be
emphasized that numerical studies of the critical solution
always restricted to some finite range of the self-similar va
ablez. However, as the critical index is approached, the
tent of the self-similar region grows and one could in pr
ciple go to arbitrarily large values ofz. This paper can
therefore be regarded as predicting the characteristics
these solutions.

The discussion will mainly be in terms of the compa
state space@11,12# but, to extract important physical fea
tures, some of the quantities used by Carr and Coley@10#
will be plotted. No equations will be used because the d
cussion is intended to be purely qualitative and thereby
cessible to the general reader. However, some techn
terms will be used in the next section, so here we give so
background references. For an introduction to dynam
systems theory in general relativity, see@13#; for its particu-
lar application in the spherically symmetric context, s
@11,12#; for more details of the other types of self-simila
solutions, see Carret al. @14#. At the end of the paper, we
emphasize our key predictions, so that ‘‘critical’’ worke
can investigate these.

II. THE SOLUTION SPACE

We shall focus on spherically symmetric self-similar s
lutions in which the spacetime admits a homothetic Killin
vector. This means that all dimensionless variables dep
only on the self-similar variablez[r /t, wherer is the co-
moving radial coordinate andt is the time coordinate. In a
dynamical systems approach these solutions correspon
©2000 The American Physical Society02-1
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orbits in a three-dimensional compact state space. The
space of self-similar spherically symmetric perfect-flu
models~for a.1/5) is presented in Fig. 1. A point in thi
space corresponds to a certain geometry and matter field
figuration on a homothetic~constantz) slice, while an orbit
in the state space represents an entire spacetime. All con
ous orbits are future and past asymptotic to one of a
solutions with higher symmetry. These appear as equilibr
points on the boundary of the state space and these point
labeled in Fig. 1. A physical description of the solutio
asymptotic to them is given in Table I.

The state space is divided into two halves, one co
sponding to positivez, the other to negativez. This means
that the solutions in one half are the time reverse of soluti
in the other half, so all equilibrium points appear twice
Fig. 1. Thesonic surfacesare also depicted and solution
generally develop a shock wave here@15#. However, in two
of the sonic surfaces there is asonic lineand solutions which
pass through this line can be extended continuously thro
the sonic surface. Only these solutions will be considere
be physical and the number of such solutions is stron
restricted.

The state space has the advantage of giving a picto
representation of the relationship between different soluti
and the connection between the initial and final sta
thereby yielding insights into the global nature of the so
tions. However, it has the disadvantage that it is rather
stract. To better understand the physical aspects of the s
tions, it is useful to consider some of the physica
interesting quantities which arise in the comoving approa
The dependence of these quantities onz corresponds to two-
dimensional projections of orbits in the full state space. F
lowing @10#, we use:~1! the scale factorS, which fixes the
relation between the comoving radial coordinater and the
Schwarzschild radial coordinateR5Sr, thus indicating
when a solution expands infinitely (S→`) or encounters a
singularity (S→0) for finite values ofz; ~2! the velocityV of
the spheres of constantz relative to the fluid, which is im-
portant for the identification of event horizons (uVu51) and

FIG. 1. The three-dimensional state space of self-similar sph
cally symmetric perfect-fluid models fora.1/5, obtained by
matching a spatially self-similar region with two timelike se
similar regions along the lines H@14#. Labelled equilibrium points
act as asymptotic states for orbits. The triangular surfaces indic
by dashed lines are sonic surfaces. Two of these surfaces con
sonic line, indicated by a line of equilibrium points.
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naked singularities, see@16#; ~3! the density profilemt2,
which gives the matter distribution at a given comoving tim
t; and ~4! the mass function 2m/R, wherem(r ) is the mass
within radial coordinater, thus indicating the presence of a
apparent horizon (2m/R51), see@17#.

We shall first briefly review the previously known fam
lies of solutions. All of these solutions are discussed in m
detail in @14#, where the dependence of the above functio
on z are shown explicitly. We shall then consider the ne
asymptotically Minkowski solutions. This is the first discu
sion of their physical features and the first detailed analy
of their relevance to critical phenomena.

Asymptotically Friedmann solutions
There are two one-parameter sets of solutions that

asymptotic to the flat Friedmann solution, all of which a
connected with one of the Friedmann points F. One has p
tive z and the other has negativez. Two qualitatively differ-
ent families can be distinguished:~1! expanding-recollapsing
solutions ~F–K orbits!; and ~2! ever-expanding~or ever-
contracting! solutions~F–C orbits!, where C is to be inter-
preted as an infinitely dispersed state. The latter family c
tains the flat Friedmann solution itself. Thus the fl
Friedmann solution appears both as an equilibrium poin
and as an orbit in state space, corresponding to diffe
slicings.

Asymptotically quasi-static solutions
For each value ofa, there is a unique static solution

originally found by Tolman@18#. The corresponding~T–T!
orbit traverses the entire state space and spans both po
and negativez. Furthermore, there is a two-parameter set
solutions with behavior resembling the static solution
large uzu ~i.e., neart50). They are all associated with K
points, corresponding to nonisotropic singularities. As w
the asymptotically Friedmann solutions, there are two diff
ent families within this class:~1! expanding-recollapsing so
lutions ~K–K orbits!; and ~2! ever-expanding~or ever-
contracting! solutions ~K–C orbits!. The latter contain the
naked-singularity solutions discussed by Ori and Piran@16#
and Foglizzo and Henriksen@19#. Unlike the asymptotically
Friedmann solutions, the asymptotically quasi-static so
tions necessarily span both positive and negativez.

Asymptotically Minkowski solutions
When a.1/5, solutions exist that are ‘‘asymptoticall

Minkowski,’’ in the sense that the state-space orbits asym
tote to equilibrium points that correspond to Minkows
space. There are actually two subclasses of such solut

TABLE I. Interpretation of solutions asymptotic to the give
equilibrium points.

Label Interpretation

C Solutions with a regular center or

infinitely dispersed solutions

M, M̃ Asymptotically Minkowski solutions

K Nonisotropic singularity solutions

F Asymptotically Friedmann solutions

T Exact static solution

ri-

ed
n a
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associated with different equilibrium points in state spa
class A solutions are connected with the M points and
described by two parameters; class B solutions are conne
with the M̃ points and are described by one parameter. B
of these subclasses contain two different families of so
tions: ~1! singular solutions~K–M, K–M̃ orbits!; and ~2!

regular solutions~C–M, C–M̃orbits!. Only the latter contain
a sonic point. All of these types of solutions are illustrated
Figs. 2 and 3, where the arrows indicate whether soluti
are future asymptotic to M or M˜ .

Solutions in class A haveV→1, S→`, mt2→0, and
2m/R→0 at somefinite valuez5z* . Although this limit is
reached at finitez, it should be pointed out that most inve
tigations of the critical solution use the physical distanceR,
which is infinite. Examples of such solutions are illustrat
by the dotted curves in Figs. 2 and 3. Solutions in clas
haveV→V* .1, S→`, mt2→0, and 2m/R→0 asz→`.
Examples of these solutions are represented by the da
curves in Figs. 2 and 3. Both classes are asymptotically
persive and solutions asymptotic to K points also haveS
→0 at a finite value ofz, indicating the formation of a sin
gularity in the past~assuming the time direction indicated
the figures!. Even though 2m/R→0 for both classes, the
massm need not vanish.

It should be emphasized that these solutions are not
ymptotically flat in the usual global sense, in which there i
certain radial decay of the curvature towards spatial infin
see, e.g.,@20#. We are not considering an isolated syste
here but rather a fluid spacetime in which the Minkows
geometry is obtained asymptotically along certain coordin
lines. It can be shown that the curvature vanishes asymp
cally as the M (M̃) point is approached. Because the flu
becomes infinitely diluted, the situation is analogous to t
of the open Friedmann solution, in which the Milne soluti
is approached asymptotically along certain timelines at
times ~see, e.g.,@13#!.

III. THE CRITICAL SOLUTION

Critical phenomena in gravitational collapse were fi
studied by Choptuik@1# and remain an active field of re

FIG. 2. Asymptotically Minkowski solutions of class A~dotted!
and class B~dashed! as orbits in state space. Arrows go from C
K towards the infinitely dispersed state. Densely dotted and sh
dashed curves correspond to regular solutions, while sparsely d
and long-dashed curves correspond to singular solutions.
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search, see, e.g.,@21# and references therein. The solution
the threshold of black-hole formation in spherically symm
ric radiation fluid collapse, corresponding toa5 1

3 , was stud-
ied by Evans and Coleman@5#. They found it to be a self-
similar solution distinguished by the following criteria:

~1! It is everywhere analytic, or at leastC`. In particular
it has a regular center, and also crosses the sonic surfa
an analytic way and;

~2! It has a collapsing interior surrounded by an expan
ing exterior. This means that the radial fluid three-veloc
VR associated with a Schwarzschild foliation~which is dif-
ferent from the functionV) has exactly one zero.

Subsequently, other authors@7,8# have used these criteri
to investigate the critical solution for other values ofa. For
a recent review, see@21#.

The uniqueness of the critical solution can be underst
as follows: For each value of the equation-of-state param
a, there exists a one-parameter set of solutions with a re
lar center and a one-parameter set of solutions analytic a
sonic line~@4#!. Thus it is not surprising that the first cond
tion leads to a discrete set of solutions. There is only o
solution in this set that satisfies the second condition and
is the critical solution.

We now examine the critical solution in terms of both t
state space of the self-similar spherically symmetric perfe
fluid solutions and the behavior of the various physical qu
tities. The results are summarized in Figs. 4 and 5.

Starting from the regular center C, a numerical investig
tion shows that for all equations of state, the orbit of t
critical solution passes through the sonic line and enters
spatially self-similar region~with uVu.1). It turns out that
for a in the range 0,a&0.28, it is of the asymptotically
quasi-static kind; it passes through the spatially self-sim
region and enters a second timelike self-similar region,
nally reaching another sonic point~indicated by ‘x’ in the
figures!, which is generally irregular. However, this does n
invalidate the solution as being the critical one, since

FIG. 3. Physical quantities for the asymptotically Minkows
solutions. The dash-dotted line in theV(z) diagram corresponds to
the sonic surface. Other designations are given in the captio
Fig. 2.
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solution describing the inner collapsing region is usua
matched to an asymptotically flat exterior geometry su
ciently far from the center. An example of a solution belon
ing to this class is given by the full curves in Figs. 4 and

We find that for the limiting casea'0.28, the critical
solution is an asymptotically Minkowski solution of class
whose orbit ends at an equilibrium point M˜ . In Figs. 4 and 5,
this solution corresponds to the dashed lines. For 0.28&a
,1, we find that the critical solution belongs to the asym
totically Minkowski solutions of class A, whose orbit ends
an equilibrium point M. A solution representing this class
indicated by the dotted curves in Figs. 4 and 5.

For a>a* '0.89, the investigations in@12,7,8# indicate
that the critical solution is already irregular at the first so
point. As the matching must be performed outside the so
point @16,19#, the solution would then be unphysical. How
ever, Neilsen and Choptuik@22# have recently demonstrate
the existence of a regular critical solution fora>a* as well.
Our present investigation supports their analysis.

To understand what happens fora5a* , we consider
equations of state near this value. It turns out that the beh
ior can be understood in terms of the stability near the so
line. In order for a solution to be regular at the sonic surfa
the corresponding orbit must approach the sonic line al
one of~at most! two possible directions. Each of these dire
tions is associated with an eigenvalue—the direction co
sponding to the smaller eigenvalue is calleddominantand is
associated with a one-parameter family of solutions~contain-
ing just oneC` solution!, the other is calledsecondaryand is
associated with an isolated solution. Fora,a* , the critical
solution corresponds to the secondary direction. Howe
whena gets close toa* , the eigenvalue associated with th
critical solution approaches that of the other direction. F
a5a* , the eigenvalues~and directions! are equal, corre-
sponding to adegenerate node, and fora.a* , the critical
solution is associated with the dominant direction. Thu

FIG. 4. Critical orbits in the state space. Arrows go from t
regular center towards the infinitely dispersed state. Note that
orbits correspond to different equations of state, i.e., different
ues ofa, and thus belong to different state spaces. The three o
exemplify the cases 0,a&0.28~full curve!, a'0.28~dashed!, and
0.28&a,1 ~dotted!.
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transition from the secondary direction to the dominant
rection occurs ata5a* . This transition results in sever
numerical difficulties, so very high numerical precision
required to investigate such solutions, as pointed out in@22#.

IV. CONCLUSIONS

Our key predictions can be summarized as follows:
~1! When one gets sufficiently close to the critical sol

tion that the large-z behavior can be studied, then this sol
tion should have the various asymptotic features we pre
for different values ofa.

~2! There should be a sudden transition in the nature
the critical solution asa passes through 0.28, with the sol
tion going from the asymptotically quasi-static form to a
ymptotically Minkowski form. However, it should be em
phasized that the solution is only flat null towards infinity;
one still needs to match to a non-self-similar region on
spacelike surface.

~3! Although the asymptotically flat limit is reached a
finite z, most critical workers use the physical distanc
which is infinite. However, it should be pointed out that
the stiff case (a51), the asymptotically flat state is reache
at finite physical distance, which should lead to some anom
lies, see@10#!.

~4! Although we have not explained why the critical s
lution is analytic at the sonic point~this presumably relates
to the usual stability criterion!, we have used the asymptot
features to explain why the analytic solution is unique
given a. The relationship to solutions which are regular b
not analytic at the sonic point is discussed in more detail
Carr and Henriksen@23#.

FIG. 5. Physical quantities for the critical solution. The das
dotted lines in theV(z) diagram correspond to the sonic surface
Other designations are given in the caption of Fig. 4. Note that
a*0.28 ~dotted!, the critical solution tends to a finite value ofz.
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