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We classify all spherically symmetric perfect fluid solutions of Einstein’s equations with an equation of state
p=ap which are self-similar in the sense that all dimensionless variables depend onlyzapdh This
extends a previous analysis of dust=f0) solutions. Our classification is “complete” subject to the restric-
tions thata lies in the range 0 to 1 and that the solutions are everywhere physical and shock-free. For a given
value ofe«, such solutions are described by two parameters and they can be classified in terms of their behavior
at large and small distances from the origin; this usually corresponds to large and small vdizjdsubfdue
to a coordinate anomalyt may also correspond to finite We base our analysis on the demonstratgimen
elsewhergthat all self-similar solutions must be asymptotic to solutions which depend on either powers of
at large and smallz| or powers of Iiig at finite z We show that there are only three self-similar solutions
which have anexact power-law dependence om the flat Friedmann solution, a static solution and a
Kantowski-Sachs solutiofalthough this is probably only physical far<—1/3). At large values ofz|, we
show that there is a 1l-parameter family of asymptotically Friedmann solutions, a 1l-parameter family of
asymptotically Kantowski-Sachs solutions and a 2-parameter family which we describe as asymptotically
“quasi-static.” For a>1/5, there are also two families of asymptotically Minkowski solutions at large dis-
tances from the origin, although these do not contain the Minkowski solution itself: the first is asymptotical to
the Minkowski solution agz|—« and is described by one parameter; the second is asymptotical to the
Minkowski solution at a finite value af and is described by two parameters. The possible behaviors at small
distances from the origin depend upon whether or not the solutions pass through a sonic point. If the solutions
remain supersonic everywhere, the origin corresponds to either a black hole singularity or a naked singularity
at finite z However, if the solutions pass into the subsonic region, their form is restricted by the requirement
that they be “regular” at the sonic point and any physical solutions must reach Asz— 0, there is again
a l-parameter family of asymptotic Friedmann solutions: this includes a continuum of underdense solutions
and discrete bands of overdense ones; the latter are all nearly static close to the sonic point and exhibit
oscillations. There is also a 1-parameter family of asymptotically Kantowski-Sachs solutions but no asymp-
totically static solutions besides the exact static solution itself. The full family of solutions can be found by
combining the possible large and small distance behaviors. We discuss the physical significance of these
solutions.

PACS numbgs): 04.20.Jb, 95.30.Sf, 98.80.Hw

[. INTRODUCTION only barotropic equation of state compatible with the simi-
larity assumptior1]. We will assumda|<1, as required by
Self-similar models have proved very useful in generalcausality, and usually take to be positive. We will also
relativity because the similarity assumption reduces the comassume thatv is the same everywhere. Note that “geomet-
plexity of the partial differential equations. Even greater sim-ric” self-similarity (a property of the metrjcand “physical”
plification is achieved if one has spherical symmeftty  self-similarity (a property of the fluiglcoincide for a perfect
since the governing equations then reduce to comparativeljuid but this need not be the case in gen¢gil
simple ordinary differential equations. In this case, the solu- What makes such solutions of more than mathematical
tions can be put into a form in which every dimensionlessinterest is the fact that they are often relevant to the real
variable is a function of some dimensionless combination ofvorld [3]. For example, an explosion in a homogeneous
the cosmic time coordinateand the comoving radial coor- background produces fluctuations which may be very com-
dinater. In the simplest situation, a self-similar solution is plicated initially but which tend to be described more and
invariant under the transformation-ar,t—at for any con-  more closely by a spherically symmetric self-similar solution
stanta and the similarity variable ig=r/t. Geometrically as time evolve$4]. This applies even if the explosion occurs
this corresponds to the existence of a homothetic Killingin an expanding cosmological backgroJmd. The evolution
vector and is sometimes termed self-similarity of the “first” of cosmic voids may also be described by a self-similar so-
kind. We confine attention to such solutions in this paperlution at late timeq6]. A gravitationally bound cloud col-
We shall also focus on the case in which the source of théapsing from an initially static configuration may evolve to
gravitational field is a perfect fluid with an equation of stateself-similar form[7] and recently it has become clear that
of the form p=au. Indeed, one can show that this is the spherically symmetric self-similar solutions play a crucial
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role in the context of “critical” phenomen&8—10]. Such analyze all possible behaviors at large and small distances
considerations led Cafrll] to propose the ‘“similarity hy- from the origin. In the simplest situation this just corre-
pothesis,” which postulates that under certain circumstancesponds to large and small values of the similarity variable
spherically symmetric solutions may naturally evolve to az=r/t but the analysis is complicated by the fact ttdhie to
self-similar form even if they start out more complicated. Ita coordinate anomalya finite value ofz may sometimes
is well known that self-similar solutions play a crucial correspond to zero or infinite distance from the origin. A
asymptotic role in the context of spatially homogenous mod+igorous demonstration that our asymptotic classification is
els[12], so this extends that result. complete is given elsewhef@0] and consists of two parts:
The possibility that self-similar models may be singled (1) an analysis of all solutions whose asymptotic behavior is
out in this way from more general spherically symmetricassociated with large or small values|zff and a demonstra-
solutions means that it is essential to understand the fulion that these always have a power-law dependence @)
family of such solutions. A complete classification of self- an analysis of solutions whose asymptotic behavior is asso-
similar dust @=0) solutions has already been providéd]  ciated with afinite value ofz and a demonstration that these
and the purpose of the present paper is to extend this classiave a power-law dependence ofgllnWe use this “power-
fication to a perfect fluid with pressurex¢0). We will law” property as the starting point of the analysis in the
show that some of the features of the dust solutions carrpresent paper. This shortens the discussion considerably and
over to the more general case but by no means all of thenallows us to focus on the nature and physical significance of
Indeed some of the solutions with pressure have no analogube solutions.
at all in the dust case. The extra complications arise because We will show that perfect fluid self-similar spherically
solutions with pressure generally have a shptkor sonic  symmetric solutions have four possible behaviors at large
point [14] and the nature of the discontinuity at this point distances from the origin. They are either asymptotically
plays a crucial role. However, a full understanding of thesd-riedmann, asymptotically “quasi-static,” asymptotically
effects has only come rather recently. In this paper we willKantowski-Sachs or asymptotically Minkowski, with the last
only consider solutions with sound-waves and we will focusfamily being subdivided into twgone of which is associated
exclusively on solutions which are “regular” at the sonic with a finite value ofz). The possible behaviors at small
point in the sense that they have a finite pressure gradiemtistances depend upon whether or not the solutions pass
and can be continued beyond there. Even some of these sitwough a sonic point. If the solutions remain supersonic ev-
lutions will turn out to be unphysical, in the sense that theyerywhere, the origin is at finite and corresponds to either a
encounter either anothéirregulay sonic point or a domain black hole singularity or a naked singularity; in either case,
where the mass is negative. the smallz| behavior is uniquely determined by the larigg-
Due to the existence of several preferred geometric strudsehavior. If the solutions pass through a sonic point, they
tures in self-similar spherically symmetric models, a numbemay be discontinuous there and the situation is more com-
of natural approache@.e. coordinate systemsnay be used plicated. However, in this paper we confine attention to so-
in studying then{15]. The three most common ones are thelutions which are regular at the sonic point and physically
“comoving,” “homothetic” and “Schwarzschild” ap- realistic throughout the subsonic regime. All such solutions
proaches. In the comoving approach, pioneered by Cahileachz=0 and have three possible behaviors at sl
and Taub[1] and employed by Carr and Henriksen and co-they are either asymptotically Friedmann, exactly static or
workers, the coordinates are adapted to the fluid 4-velocitpsymptotically Kantowski-Sachs. If the solutions are re-
vector. This probably affords the best physical insights and isjuired to be analytic at the sonic point, then they are still
the most convenient one with which to study the solutionsdetermined uniquely by the large-scale behavior. If they are
explicitly. In the homothetic approach, used by Bogoyavlen-merely required to b&€?, the small and largéz| behaviors
ski and co-workers, and adopted more recently by Bradynust be specified independently. Not all supersonic solutions
[16] and Goliath et al[17,18], the coordinates are adapted to can be attached te=0 via a sonic point; the ones which
the homothetic vector. In this case, the governing equationsannot either encounter a shock or become unphysical in
reduce to those of an autonomous system and so dynamicabme domain.
systems theory can be exploited to study the equations math- The complete family of solutions can be found by com-
ematically. The “Schwarzschild” approach, adopted by Oribining the four types of large-distance behaviors and the four
and Piran[19] and Maison[9], is useful if one wishes to types of small-distance behaviors. However, the Kantowski-
match a self-similar interior region to a non-self-similar as-Sachs solutions can only link to each other, so this yields ten
ymptotically flat exterior region. This is because one candifferent types of solution. It is useful to classify these solu-
analyze null geodesics most simply in these coordinates, ettions by their large-distance behavior. Since some of these
abling the causal structure of spacetime to be studied. Theolutions have been found befofsee[21-23 for recent
relationship between these different approaches is discusseeviews, our discussion will necessarily involve some over-
in more detail in Appendix A. All of them are complemen- view of previous work. However, this is the first time all the
tary and which is most suitable depends on what type ofolutions have been brought together, with the connection
problem one is studying. In this paper it is most convenienbetween them being made explicit. It should be stressed that
to use the comoving approach. this work complements the dynamical systems analysis of
The first step in providing a complete classification of Goliath et al.[17,18, which also delineates the different
perfect fluid spherically symmetric self-similar solutions is to types of solutions but in a different way and without making
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their physical significance clear. The precise relationship bel-parameter family of solutions asymptotic to this at large
tween our two approaches and a more detailed description eflues of|z|. However, we will show that there is also a
some of the solutions can be found elsewhil@]. Since  2-parameter family of solutions which are asymptotically
some of the discussion in this paper is rather technical, it wil‘quasi-static” in the sense that they have an isothermal den-
be useful to start off with a brief qualitative description of sity profile at large values df|. Such solutions exist even in
the various solutions and to relate them to the solutionshe dust case, although there is thenaxactstatic solution
found by earlier workers. [13]. A crucial feature of these solutions is that each one may
The first class of solutions is a 1-parameter familyspan both positive and negative valueszpfvhereas each
asymptotic to the flat Friedmann solution at large values ofg|ytion of the other types is confined to either positive or
|2|. The solutions withz>0 can be regarded as inhomoge- negativez. Such solutions can be regarded as inhomoge-
neous big bang models which expand from an initial singuy,e65 hig bang models in which the initial or final singular-
larity at z=<c and then either expand |ndef|r!|tely or .recol- ity occurs at a finitdrather than infinitevalue ofz. Some of
lapse to a black hole as decreases. Attention originally them expand or collapse monotonically; these necessarily

focussed on models containing black holes because theheave a sonic point and may be attached to an asymptotically

was interest in whether black holes could grow at the Sam%riedmann solutions in the subsonic regime. Others expand

rate as the particle horizon. Carr and Hawk|2g| showed dth I th . i h d
that such solutions exist for radiatioma € 1/3) and dust & and then reco’lapse, ese remain SUPErsonic Everywnere an
contain two singularities at finite, one of which may be

=0) but only if the universe is asymptotically rather than : . . .
exactly Friedmanti.e. there is no solution in which a black naked. Some asymptotically quasi-static solutions have been

hole interior is attached to an exact Friedmann exterior via Studied befor¢19,36. In particular, they may be associated
sound-wavg and this has the important implication that With the occurrence of naked singularitigg7] and the tran-
black holes formed through purely local processes canngtonic ones are also associated with critical phenomena for
grow as fast as the Universe. C4@5] and Bicknell and «<0.28[10]. However, the precise relationship of these so-
Henriksen[26] then extended this result to a generat & lutions to the more general quasi-static family has not been
<1 fluid, while Lin et al.[27] and Bicknell and Henriksen discussed before.

[28] considered the case of a stiff fluideE€1). The ever- The fourth class of solutions, which only exist far
expanding solutions can be interpreted as density fluctuations 1/5, are asymptotically Minkowski and have not been pre-
in a flat Friedmann model which grow at the same rate as theiously analyzed at all. They were originally found numeri-
Universe[29]. These solutions are asymptotical to the Fried-cally by Goliath et al[18] and this led us to “predict” them
mann solution at both large and small value$zbfand regu-  analytically. There are actually two such families and they
lar at the sonic point. Such transonic solutions can be eithesre described in more detail elsewhgté]. Members of the
underdense or overdense relative to the exact Friedmarmst fam||y are described by one parameter and are asymp-
model. There is a continuum of regular underdense solutiongytically Minkowski as|z]—; members of the second fam-
and these may be relevant to the existence of large-scalg are described by two parameters and are asymptotically
cosmic voids[30]. Regular overdense solutions may only \iinkowski asz tends to some finite valughough this cor-
occur in very narrow bands; these have the characteristic th%sponds to an infinite physical distance unless1). As

they are all approximately static near the sonic point, aI'with the asymptotically Friedmann and asymptotically quasi-

thqugh they depart from the stapg solution and exhibit OSCII'static solutions, these may be either supersonic everywhere
lations as they approach the origin.

The second class of models is associated with théln which case they contain a black hole or naked singular-

Kantowski-Sachs solution. This is a type of homogeneoug[y) or attache_d tz= 0_ via a sonic pointin Whl(_:h case they
model first studied by Kantowski and Sadigd] for the o  &r asymptotically Friedmann or exactly static at st}
—0 case and then by Collii82] for arbitrary . For eachy The transonic ones are associated with critical phenomena
there is a unique self-similar Kantowski-Sachs solution andor a>0.28[10]. ) ) )
there also exists a 1-parameter family of solutions The plan of this paper is as follows. In Sec. Il we will
asymptotic to this at both large and small value$zh33]. introduce the relevant equations and discuss the crucial role
Solutions W|th _1/3< a<l are probab|y unphysica' be_ of the sonic pOint. In Sec. Il we will analyze the pOSSible
cause the mass is negative and they are also tachyonic fehaviors at large and small distances from the origin, em-
0<a<1. Solutions with—1< @< —1/3 avoid these unsat- Phasizing the key role played by the power-law and log-
isfactory features. Although such equations of state violat¢power-law solutions. In Sec. IV we will describe the full
the strong energy condition, they could could well arise infamily of solutions, with special emphasis on those
the early Universe due to inflation or particle production ef-asymptotic to the Friedmann, Kantowski-Sachs and static so-
fects. Such models may be related to the growthpofO lutions. We will show that many of their features in the su-
bubbles formed at a phase transition ip&0 cosmological personic regime can be understood by using the insights
background34]. Note that this is the only context in which gained from the dust solutions, although some of the solu-
we will consider negative values of. tions have no analogue in the dust case. We make some final
The third class of models are related to the self-similaremarks in Sec. VI, qualifying the sense in which our clas-
static model. There is just one exactly static self-similar sosification is “complete.” Some technical issues are covered
lution for each (positivel value of a [35] and there is a in the Appendixes.
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Il. SPHERICALLY SYMMETRIC SIMILARITY R m
SOLUTIONS =T M=g, P=pR?>, W=uR? (2.9

In the spherically symmetric situation one can introduce a . . . .
time coordinate such that surfaces of constarare orthogo- '€ functions only of the dimensionless variabter/t. Then
nal to fluid flow lines and comoving coordinates, §,¢) e have
which are constant along each flow line. The metric can then P 2 d P

: X zd
be written in the form =TT 4 Frordz (2.9
ds?=e?"dt?— e dr’—R?dQ?, dQ%=d#?+sirfede? _ _ _ _ _
(2.1  so the field equations reduce to a set of ordinary differential
equations inz. Another important quantity is the function
wherev, N andR are functions of andt. For a perfect fluid

the Einstein equations are V(z)=€"""z, (2.10

G**=8m[(u+p)UrU"—p g“*] (2.20  which represents the velocity of the surfaces of constant
relative to the fluid. These surfaces have the equatient
where u(r,t) is the energy densityp(r,t) the pressure, and therefore represent a family of spheres moving through
U#=(e ",0,0,0) is the comoving fluid 4-velocity, and we the fluid. The spheres contract relative to the fluid Zer0
choose units in whiclt=G=1. The equations have a first and expand foz>0. This is to be distinguished from the

integral velocity of the spheres of constant R relative to the fluid:
IR\ 2 IR\ ? IR/ ot
1 —2v| | _a=2N AV
m(r,t)=3R| 1+e ( ﬁt) e ( ar) } (2.3 Vg=—¢€ (ﬂR/ar)' (2.11)

and this can be interpreted as the mass within comovinghis is positive if the fluid is collapsing and negative if it is
radiusr at timet: expanding. Special significance is attached to valuesfof
which |V|=1 and |Vg|=1. The first corresponds to a
Cauchy horizor(either a black hole event horizon or a cos-
mological particle horizop the second to a black hole or
cosmological apparent horizon. We show shortly that the ex-
Unlessp=0, this quantity decreases with increasinge- istence of an apparent horizon is also equivalent to the con-
cause of the work done by the pressure. One can also expredision M =1/2.
it as The only barotropic equation of state compatible with the
similarity ansatz is one of the form=au (—1l<a<1).
t iR As discussed by Carr and Yal#9], whose analysis we now
m(r,t) =477J1)pR Edt (29 follow, it is convenient to introduce a dimensionless function
X(z) defined by
and this is the more appropriate expression when there is no . (1t a
spatial origin(as in the Kantowski-Sachs solutiorEqg. (2.3) X(2)=(4arpur?)”ore), (2.12

can be written as an equation for the energy per unit mass 9ote that the factor of 4 is omitted in the definition ok
the shell with comoving coordinate given by Carr and Yahil but it is required for consistency
( R with eq. (2.3).] The conservation equations“”.,=0 can
=e " —]|.
)

r IR
m(r,t)=4wf wR?—dr’. (2.9
0 ar’

5—1U2 m
=5 —,

R (2.6) then be integrated to give

. _ o e’=pxz2/(ta) (2.13
This can be interpreted as the sum of the kinetic and poten-

tial energies per unit mass. Only in tipe=0 case i€ con- e M= yx Yag?, (2.14
served along fluid flow lines.

By a spherically symmetric self-similar solution we shall whereg andy are integration constants. The remaining field
mean one in which the spacetime admits a homothetic Killequations reduce to a set of ordinary differential equations in

ing vector ¢ that satisfies xandS
f,u;v—i_gv;,u:zg,uV' (27) " . S 1 X .

) o S+S+| —=——-|[S+(1+a)S]=0, (2.1H
This means that the solution is unchanged by a transforma- 1+aS ax
tion of the formt—at, r—ar for any constana. Solutions . .
of this sort were first investigated by Cahill and Tau, 2ay? sy i§X(2—2a)/az(2—2a)/(l+a)_ 264X V_2_1
who showed that by a suitable coordinate transformation 1+ & B2 S Y>3l e
they can be put into a form in which all dimensionless quan-
tities such aw, \, £ and =(1+ a)xt-ae (2.16
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corresponds to another 2-dimensional surface XpS,S)
: (217 space, this will intersect the surfat¥|=+/a on a line Q.
Only integral curves which hit the sonic surface on this line
2 are “regular” in the sense that they can be extended beyond
there. (All other solutions would have to contain shock-
waves) From each point on this line there will be regular
(2.18 integral curves with decreasing and increasmgone can
join any member of the first kind to any member of the
where the velocity function is given by second kind to obtain a complete self-similar solution.
V= (By) - x-@lag-250-a/(1+a) (2.19 Physically reasonable solutions cannot have an arbitrary

value ofx at|V|=\a. If we requirex to be finite there, then

and an overdot denotes/dz. The other velocity function is  the equations permit just two valuesoft each point of the
_ line Q and there will then be two corresponding valued/of
VS If these values are complex, corresponding toeal point,
:S+S' (220 then the solutions will spiral around the sonic point and be
unphysical. If they are real, at least one of the value¥ of

while the energy function is must be positive. If both values of are positive, corre-
sponding to anodal point, then the smaller “primary” one is
1 associated with a 1-parameter family of solutions, while the
) (2.2) larger “secondary” one is associated with an isolated solu-
tion. If one of the values o¥ is negative, corresponding to a
and this always exceeds1/2. Equation(2.18 can then be saddlepoint, then both values are associated with isolated
written in the form solutions. This behavior has been analyzed in detail by sev-
eral author§14,19,28,29
5 One can show that there is a 1-parameter family of regu-
(VR—1), (2.29 lar solutions(i.e. a nodg only on a restricted part of the line
Q and, in theV(z) diagram, this corresponds to two ranges
so the conditionM = 1/2 is equivalent to the conditiofys| ~ Of values for|z|. For positivez, one range®; <z<z,) lies to
=1 (corresponding to an apparent horizofihe special case the left of the Friedmann sonic poimt and includes the
£=—1/2 corresponds to the Kantowski-Sachs solution, foistatic sonic points; the other goes from some valag to
which Vg diverges andvl # 1/2. infinity and includeszg . There is a saddle point fa<z,
We can best envisage how these equations generate soff2d a focal point foz,<z<z3. These features are indicated

tions by working in the 3-dimensionak(S,5) space[29]. in Fig. 1(a). The values of;, z, andzz can be expressed in
At any point in this space, for a fixed value of Egs.(2.17) terms ofa but the expressions are complicated, so we do not

and(2.18 give the value of z; Eq2.16 then gives the value give them explicitly. The ranges far=1/3 are indicated in

. B . . Fig. 1(b); in this casez;=zr andz,=2zg. Generally one has
of x unless|V|=\a and Eq.(2.15 gives the value ofS. 2,<26< 25 andze> 7,

Thus the equations generate a vector fieldS(S) and this We will argue later that any solutions described by just
specifies an integral curve at each point of the 3-dimension@ne parameter asymptoticalignd this includes all the solu-

space. Each curve is parametrized bgnd represents one tions fromz=0) must hit the sonic line in the nodal ranges
particular similarity solution. This shows that, for a given gng these will be physical only for certain bands of param-

equation of state parametat there is a 2-parameter family eters. On each side of the nodemay have either of its two

of spherically symmetric self-similar solutions. : ] .
In (x.S,5) space the sonic conditiovi= Ja specifies a possible values. If one chooses different valuesMothere
T P @ Sp will be a discontinuity in the pressure gradient, so the solu-

2-dimensional surface because E(&17) to (2.19 allow tion will be C°. If one chooses the same value, there may

one to expressS in terms ofx and S The same surface stjl| pe a discontinuity in the second derivative\fin which
corresponds to the condition=— \/a. Where a curve inter- case the solution will b&%. Only the isolated solution and a
sects this surface, E¢R.16 does not uniquely determing  single member of the 1-parameter family of solutions at each
so there can be a number of different solutions passingode are analytic. Solutions described by two parameters at
through the same point. However, integral curves intersedarge |z may also hit the sonic line in the saddle range.

S
M=g?x~ (1 a)a 1+(1+a)g

M:E‘f' 1 X—222(1—a)/(1+a)'82_;,}/ZX—(Z/Q)SG

2 2/32

1+S
S

VR

2

1 S
_ T 2y (2a)cb e
& 2'yX S 1+S

5+1
2

M—1+
T2

|V|= Ve in a physically reasonable manner only if These would necessarily be analytic at the sonic point but
_ not generally physical in the subsonic region. In the case of a
2ay? 2S shockV would itself be discontinuous.
1+’}; S4+ — gx(272a)/az(272a)/(1+a):(1_’_0[))((17(1)/&,
B Ill. ASYMPTOTIC BEHAVIOR OF SELF-SIMILAR
(2.23 SOLUTIONS

since otherwise the value afand hence the pressure, den- The key step in providing a complete classification of
sity and velocity gradient diverge there. Since EB.23  spherically symmetric perfect fluid self-similar solutions is
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z lution, a Kantowski-Sachs solution and a static solution. We
will also show that, fora>1/5, there are solutions which
§ asymptote to the Minkowski solution at either infinite or fi-
F nite z. Finally there are solutions whose origin corresponds
to a singularity at finitez. The validity of these results is
(@) Vo confirmed by dynamical systems analy§&5,17,18. In par-
ticular, the existence of the monotone and Dulac functions
found in these analyses forbids the existence of periodic or-
0 v bits and limit cycles and thereby excludes other possible
Ks asymptotic behaviors.

A. Power-law similarity solutions

In order to find the asymptotically “power-law” solutions
explicitly, we look for solutions to the field equations of the

- form
Zy 2525 23Z¢
X=Xo2% S=S,2° (3.1)
15 2 wherex,, S,, a and b are constants. Note ti&6=b and
s x/x=a. Equation(2.15) is satisfied if
o T F T _ ba[3(b+1)+a(3b+1)] 2
1+ a@)[l+(1+a)b] 3.2
0.5+ M=0 T
/ The facto 1+ (1+ «)b] cannot be zero since this would be
o] v inconsistent with Eqs2.17) and(2.18. Equation(2.16) can
% then be written in the form
-0.5 S, o
i AZ’+BZ4+C=0 3.3
11 T where
1.5 i ! s A b[(a—1)+(1+a)(2a—1)b] Xg(lfa)/“SSA,
BA(1+a)[1+(1+a)b]
FIG. 1. This shows the form o¥(z) for the exact Friedmann — _(1+a)x(1—a)/asa4
(F), static(S) and Kantowski-Sach&S) solutions for(a) the gen- 0 '
eral < 1/3 case andb) the «=1/3 case. Also shown are the sonic 2
lines |V|=1/\Ja (dotted and the range of values af (bold) in Cc= ay (b+1)[2+3b(1+a)] 3.9
which one has a nodal sonic poim; £ z<z, andz>z;). Solutions (1+a)[1+(1+a)b] '
described by one parametén particular, all subsonic onggan
only be regular if they cross the sonic line in this range. The con-and the exponents are
dition M =0 corresponds to two curves in thM§z) diagram fora
=1/3 andM is negative in the shaded region between these lines. —a -« 1-a
p=2a| ——|—4b+2| ——|, q=a|——|—4b.
o 1+« 1o
an analysis of their possible asymptotic behaviors and we (3.5

now present this. For simplicity we will assume>0 ) ) .
throughout this section but the analysis can be trivially ex-Since B cannot be zero, there are three ways in which Eq.
tended to the<0 case. We will also assume>0 exceptin (3.3 can be satisfied to leading order as:0 or z— and

the Kantowski-Sachs case. The full technicalities of thewe discuss these in turn. The first two cases correspond to
asymptotic ana'ysis are presented e|sewhm§3 For present solutions which SatISfy the Qquatlo.m!i(actly but the third
purposes it suffices to note that all self-similar solutions de£ase only leads to asymptotic solutions.

pend on powers of at large and small values ¢f| or on p=d, A+B=0. Inthis case, the condition= g implies
powers of Iz at finite z The last possibility arises because
a finite value ofz may sometimes correspond to zero or a= 2a 3.6

infinite physical distance. In this section we will identify Clta
these asymptotic states explicitly. We will show that there

are threeexactpower-law solutions: the flat Friedmann so- and the conditiorA+B=0 implies
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1 (1+a)? From Egs.(2.17) and(2.18 we also require
X(l—a)/a:_ 2 ) (37)
0 2" |b(1+a)+1
2, —(1+a)la_ 2a
. : Spx = (3.1
Equation(3.2) then requires oo (1+ a)2—4a?

b=—1 or — 2 (3.9 Equation(3.17) shows that we cannot takg=S,=1 in this

B 3(1+a) ' case but botlx, andS, are determined in terms of and 3.

. The constanty is not constrained at all. If we take and y
and both values lead ©=0 from Eq.(3.4). Since Eq(3.3)  to have the values given by E.10 for «<0 andi times
is satisfied exactly, there are no approximate solutions withhose values fore>0, so that we have the sanmmeand t

C#0. scaling as in the Friedmann solution, then E(16 and
The choiceb=—-2[3(1+«a)] corresponds to the flat (3.17 give
Friedmann model. In this case, Eq2.17) and (2.18 are

satisfied if oo 1 a/(1~a)
, |3l
B 2 B 9(1+ @)
NG L — A S . oe I (3.18
36%(1+ a) (1+3a) - ( )
(3.9 (1+3a)(1-a) | 3|«
and one can choose,=S,=1 providing one scales the [Carr and Koutrag33] do not incorporate thé factors for
andt coordinates such that a>0 but this is a less sensible normalization since it allows
the metric to be complekWe now have
V2 3(1+a)

,82 m, Y= m (31@ SZSozil, X:X0272a/(l+a) (319)

and the metric is

This gives , ) ,
dSZZ 2X dt2_ —2X a —4Z4a/(1+a)dr2_ tdeZ.
x=z 2a/(1+a) g ~2/[3(1+a)] (3.1 B™XG Y X0 S S (3.20
and the metric becomes Thet coordinate is spacelike and theoordinate is timelike
2 442 20— 431+ a)] o2 for a>0 because of thefactors ing andy. For —1/3< «
ds’=p%dt*~y %z dr <0, t andr have their usual interpretation but, from Eq.

— 2(1+3a)/[3(1+ a)] $AI3(1+ )] () 2. (3.12 _(3.18)_, the circumferential coordi_nqte is timelike_s_inﬁg: is
imaginary. One can put the metric in a more familiar form by

One can put it in a more familiar form by making the coor- Making the coordinate transformation

dinate transformation . A
t= BXot, r= 'y7 l(BXO)Za/(l+ a)xo l/aSEZ r (1+3a)/(1+ a)’

EZBL F:B—z/[3(1+a)]r(1+3a)/[3(1+a)], (3.13 (3.21

which gives which gives

d?= di2— (B [ g7 24 12d02]. (3.14) d?=dt?—t 4/ adr2— (5,/B8x0)?t2d0>. (3.22

This is just the flat Friedmann solution wifh= . We also This corresponds to a KS solution with=au. We also

have
have
) 1 1 (1+a)/(a—1)
= L Cov= 1+3a 1+30)/[3(1+ a)] mt :E(3|a|) ’
477t2
1— 1+3 2 3 2al(1-a)
M = 1 72(1+30)/[3(1+ a)] (319 V=-— (1~ a) ) (3la]) z(1+3a)/(A+a)
3 ) 2\/601
The solutions asymptotic to this are discussed in Sec. IV B. (3.23
The choice b=—1 corresponds to the self-similar 242
Kantowski-SachgKS) model. This is compatible with Eq. M=— =Muve.
KS
(3.7) providing (a=1)(3a+1)
5 V is negative for GZ <1 (corresponding to tachyonic solu-
B%=— _axgl—a)/a. (3.1  tions), while M is negative for—1/3<a<1 (corresponding
(1+a)? to negative mass solutionsPresumably only solutions with
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a<—1/3 are physical. Note that E¢R.4) does not apply in
this case because there is no well-defined origin; (Bd.9

implies thatR is independent of, so everything is on a shell.

PHYSICAL REVIEW D62 044023

ds?= g2zt )dt?— y~ x2S, *dr2 - r2sid02.
(3.26

Instead the value ah must be interpreted as the mass of the This can be put in an explicitly static form

whole Universe at time, as indicated by Eq(2.5. The
solutions asymptotic to KS are discussed in Sec. IV C.

g=0, B+C=0. In this case, Eq93.2) and (3.5 imply
that the only consistent solution far>0 andV>0 is

(3.29

i.e. x and S are constant[The conditionq=0 permits an-
other value ob but this leads to negative for «>0, so that
the conditionB+C=0 cannot be satisfiedEquation(3.24)
implies thatA is zero and hence E¢3.3) is satisfied identi-
cally, so there are no approximate solutions Wit 0. The
conditionB+ C=0 also requires

a=b=0,

1+ 3«
sg:—_wa XL~ a)f2a (3.29

solution, with the metric being given by

(143a)(1+6a+a?) |23

3(2&’)3/2

(0]

so there is only one static solution for each equation of state.

This has been discussed by several auth?9s35,38. Note

that Eq.(2.20 implies thatVg=0 in this case, as expected. It

should be stressed that there is no static solution irdtres
case, essentially because one cannot puktheterm in Eq.

ds?=r4/ta)qi2— o~ 22eg 6qr2—r2d0? (3.27

by introducing the variables

R n 1+«

r:rso, t= _1_a IBXOS‘;Za/(lJra)t(l—a)/(l+a).
(3.28

The other relevant functions are
/,L:Xg(l+a)/a(4’7Tr2)_l,

(3.29

V= \Bax(l- e (-allra) = 2a _

© 1+6a+a?

If B andy have the same values as in the Friedmann solu-
for a>0. This corresponds to the exact self-similar statiction, corresponding to the same coordinate scaling, then Egs.

(2.17, (2.189 and(3.25 imply thatx, and S, are given by

(2.195 to zero. The solutions asymptotic to the static one are

discussed in Sec. IV D.

Note that there is an interesting connection between the

static and KS solutions: if one interchanges thendt coor-

dinates in metric(3.26 and also changes the equation of This implies thatS—0 andur2—. One also has

state parameter to

R 3.3
=1z 330

one obtains the KS metri@.20. For a static solution with a

(1+ 6a+a2)(l—a)/2(a+ 1/3)1+a 1/(1+3a)
: (3.30
2a
|
B 4a(a’+6a+1) B (a?+6a+1)
(Ta+1)(1—a?)’ (7Ta+1)(1+ )
(3.32
providing
_ [(Ta+1)(1—a)
2__ (1-a)2a (
S0 XO 186\( ' (333
Vo~ 7z~ BatDZ[(Ta+1)(1+a)]
(3.39

M ~ 72(3a+ 1)(a?+6a+1)/[(Ta+1)(1-a?)] ,

so V—0 and M—o. This limiting behavior arises in the

normal equation of state (a>0), @’ must lie inthe range  iscussion of Sec. IV C.
—1/3 to 0, so some negative pressure KS solutions are re- p=0, A+C=0. The conditionp=0 implies
lated to positive pressure static ones. However, the physical ’

KS solutions with— 1< a’ < —1/3 correspond tpe|>1 and
so do not give physical static solutions. Note that o’

only for =0 or«= —1. The mass of both the static and KS

1

3

1-a 3.3
1+a (3:39

b_l l1-«a
=5\

solutions tends to 0 as—0, although the solutions do not and Eq.(2.19 then requires tha¥ tend to the finite value

exist in the limita=0 itself.

If one permitsV to be negative, witt? and y? reversing
their sign, as in the KS solution, then the conditiagps 0
andB+C=0 lead to another solution as—c with

V*:B—l,y—lxgl—a)/aSSZI (336)

The conditionA+C=0 now implies
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(1-a)(V2+a)

T 2a(lta)(Vi-1)
(3.3

VZ(1—a)+2a
a= ,
(V2-1)(1+a)

while Eq. (3.5) yields

_(1-a)V§

q a(l—vi) . (3.38
It should be emphasized that, sirBe 0 from Eq.(3.4), this
does not lead to aaxactsolution.

Equation(3.38 is only a consistent solution of E¢3.3)
for largez if V2>1 and for smallz if V2<1. In the latter
case, Eq(3.37) implies that botha andb are negative, so the

density goes to infinity and the scale factor goes to zero.

However, Eq.(2.17) gives negative values dfl (and hence
unphysical solutior‘bsunlessvi<a and this last condition

will also turn out to be inconsistent. We therefore focus on

thevi >1 case. EquatioB.34) then implies that botla and

b are positive, so the density goes to zero and the scale fact

goes to infinity. Equatiori2.17) gives

VZ— g
Vvi-1

M ~ Z—[Vi(l—a)+1+3a]/(Vi—l)(1+01) (3.39

and this necessarily tends to zerozas . [The coefficient

PHYSICAL REVIEW [B2 044023

Eqg. (3.40 tends to—1/2 asz—« merely determines the
second order terms in the expansionsX¥@ndS. The metric
has the asymptotic form

ds?~ szi/(vi ~1g2— 22/(vi ~1gr2— 222V ~ 102

(3.43

and this can be reduced to the Minkowski form with a suit-
able change of coordinat¢40]. The leading terms in the
components of the Ricci tensor are given by

Ri~R{~R{~R§~r~2/(Vi D), (3.44)
These always decrease at least as fast Assr — < and the
fall-off becomes arbitrarily fast agz— 1/5. AlthoughMS
-0 asz—, it does so slower tham !, so that the mass
itself (m=rMS) diverges. Since E(3.42 impliesV, —®
in the limit «— 1, Eq.(3.43 then reduces to the static metric
[cf. Eq.(3.26]. One can also see this from E.37), which
'rpplies a=b=0 in this limit, so the scale factor no longer
iverges and the density no longer goes to zero.

The forms ofV(z) for the Friedmann, static and KS so-
lutions are shown in Fig. (&) for the generala<1/3 case
and in Fig. 1b) for the «=1/3 case. Note that the exponent
of z is smaller for the Friedmann solution than the static
solution if «<1/3, so the Friedmann velocity is smaller as
z—o but larger asz—0. For «>1/3, the situation is re-

has been included to demonstrate that the mass is negativersed. The exponents are the same dor1/3 and the

for 1>V2>a.] On the other hand, Eq2.18 implies

M — %~Z[Vi (1-a)— a(1+3a)/(V2 ~1)a(1+a)

X[b%(V2—1)—2b—1]. (3.40

If the exponent ok in this expression is positivél —0 as

Friedmann velocity is always smaller. The asymptotically
Minkowski solutions fora>1/5 are not included since they
are notexact(viz. Minkowski has no matter Note also that
the Minkowski solution, although static, is distinct from the
exact self-similar static solution given by E@®.26).

A rather peculiar feature of the similarity solutions, which
arose in the context of the KS model, is that the mass can go
negative. This may seem unphysical but—in the context of

z—o only if the term in square brackets does and this rethe big bang model—Millef39] has given a possible inter-

quiresb=1/(V, —1). Equation(3.37) then gives a quadratic
equation forV, :

(1-a)V2—2a(1+a)V, —a(1+3a)=0 (3.41)
with the real positive solution
a(l+ )+ Va(a®—a?+3a+1
v, (1+a)+a( ). (3.42

11—«

Note that Eq.(3.41) implies that the exponent of in Eq.
(3.40 is indeed positive(as assumed Also V, decreases
from o to o as« decreases from 1 to 0, which precludes

pretation of this in terms of “lagging” cores. In the
=1/3 caseg(andonly this casg Carr and Koutra$33] show
that there is a curve in th€(z) diagrams wheré/l =0:

V3= — 312 224 V?-1/9) (3.45
and this is also shown in Fig.(). One sees that the curve
has asymptotes &= + 1/3. The upper pariwith V>1/3) is
relevant for asymptotically Friedmann solutions, while the
lower part(with V< — 1/3) is relevant for asymptotically KS
solutions.M is negative in between the two parts and this
region includes KS itselfas expected Note that Eq(3.45

is not asufficientcondition forM = 0; it implies that M has

V, <\a, so there are no subsonic solutions of this kind as, possible values, only one of which is zero

z—0. The value ofV, given by Eq.(3.42 exceeds 1(as
required only for a>1/5, so these solutions do not exist in
the dust case. In the special case 1/3, V, = (2+ /13)/3
=1.9.

Equations(3.36 and (3.42 impose a relationship be-

tweenx, andS,, so these solutions are described by just one
independent parameter. Requiring that the right-hand side of

04402

B. Logarithmic power-law similarity solutions

By analogy with Eq.(3.1) we now look for solutions in
which z tends to some finite valug, and in which
S=SIL |, (3.49

X=Xo|L|?, L=In(z/z,)

3-9
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for constantsxy, and Sy. (The modulus signs are required

PHYSICAL REVIEW D62 044023

so this is zero az=z, . [The coefficient demonstrates that

sinceL may be negative and may appear with fractional exthe mass would be negative far< 1/5.] One also requires
ponents. Clearly z=z, corresponds to an infinite distance to tend toz, from belowelseM would be negative. Equation

from the origin forb<O and zero distance fd>0. Equa-
tion (2.15 requires

3+a
1+«

1+
b[Sb—l—( al+

a
b— ;}LZO (3.47)

and the leading term is zero only for

oL
"3

1+«

+3a

(3.48

a.

It turns out that the last term in E¢B.47) is never zero, so

these are only asymptotic and not exact solutions. There are

now two possible situations, according to whetkigends to
infinity or some constant valu€, .

V—V, asz—z, . In this case, Eq(2.16 can be written
in the form

. 2V2ab 2a?
aL 1= 5 1y 5
(Ve—a) (1+a)(V, —a)
a(1+a) B2V] —2(1- @)/(1+a) ay(a—1)la
- 2 Z, (XO|L| )
Vi—a

(3.49

where the first term containg rather thanv, because the
factor (V2—V2)L~! may go to a constant as—z, . The
only consistent solution to this equation has the last ter
tending to zerdi.e. a<0) and this then implies

2V2 350
a= .
Vi ]
However, Eq(2.19 also implies
2a
a= —) b, (3.51
1-«a

SO we require\/i =1. Equationg3.48 and(3.51) determine
a andb and lead to

S%SO|L|(17a)/(175a), X%XO|L|2(1/(175(1). (352

Thus the scale factor diverges and the density goes to zero
providing @>1/5. [The scale factor goes to zero and the

density diverges forw<<1/5 but these solutions would have
negative massgsee beloy, so we neglect themhThe condi-
tionV, =1 gives a relationship between the constagtsS,

m

(2.18 can be written as

M

. 2 .
1 1 S 2S
T T2 -2lace! | Z 2_qy_ 2
5T 57X S[(s) (V?=1)— < 1}.
(3.54

Since x~ 225~ ||2CGa~DIGe~1) goes to infinity for a
<1/3 and zero fora>1/3, one requires the term in curly
brackets in Eq(3.54) to go to zero and infinity, respectively,
in these two cases. However, the last term in b4 can
also be written as

— | L|(a— 1)/(5a—1)

. (3.55

S(vz 1)-2 S
S S

Since the exponent dt| is negative, we need the term in
square brackets to go to zero for all and to scale as
|L|(2-@)/(5a=1) Therefore one always requires

S
=(V2—-1)—2 (3.56
S
and Eqs.(2.19 and(3.49 then imply
V 1-5a 0 a5
V 1-a <90 (3.57
where we have used the approximation
LA Y ( “|ve-1 35
Vet e Ed v (M Y] N A

However, the way in which conditio(8.56) is satisfied de-
pends on the value af and requires a higher order analysis.
In general, we can write

S~So|L|P(1+A|L|*+CL), x=~xo|L|3(1+B|L|*+DL)
35

wherea andb are given by Eq(3.52 and k,A,B,C,D) are
constants to be determined. Equati¢8$53 and(3.54) im-
pose a relationship of the form

O(| L|(1—a)/(5a—l)) =1+ O(|L|(a—1)/(5a—l))

X

(3.60

S(VZ 1)-2 S
S S

and matching the exponents [bf| implies k=(1—a)/(5a

andz, from Eq.(2.19, so these solutions are described by —1). For «>1/3, one hak<1 and so the leading term in

two independent parameters.
Equation(2.17) now implies

M- o

a
5a—1

)|L|(la)/(5al), (353

Eq. (3.59 goes likeL¥. For a<1/3, one ha&>1, so it goes
like L. In both cases, inserting the expressions $and x
given by Eq.(3.59 into Eq. (3.60 uniquely determines the
constants A,B,C,D) but does not impose any further rela-
tionship betweer,, Sy andz, .
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In order to understand the physical significance of these V. SELF-SIMILAR SOLUTIONS WITH PRESSURE

solutions, we note that the metric can be written as Having derived the possible asymptotic behaviors of self-

d52~|L|4“’(1‘5“)[dt2—dr2—r2|L|2(3“‘1)’(5“‘1)dQZ]. simil_ar solutions at Iargc_e and smgll distancgs, we can now
(3.61) obtaln the_ complete family of solutions by _taklng all p055|b_le
combinations. Apart from the asymptotically Kantowski-
achs solutions, which are confined¥e<0 for O<a<1
and therefore form a disjoint family, there are three possible
behaviors at large distancésssociated with the Friedmann,

t o 0 b =20 \—(1—a)/(5a—1 static and Minkowski solutionsand three possible behaviors
R~Ri=Ry=Ry~1 "(z=2z,) et . (362 at small distancessociated with the Frir:admann, static and
centrally singular solutions One might therefore expect
there to be nine types of solutionsV>0. However, six of
these would involve a sonic point, so one needs to check
which of them could be regular there. In this section we will

since Eq.(3.52 implies that the physical distance diverges first sketch the overall qualitative features of the solutions
q.{s. P phy Y€S. and then consider some of them in more detail. We will need

For 0‘:1/.3’ Eq.(3.61) implies that the metric is conformally_ to consider both signs of since some families necessarily
flat. In this case, one can understand these features as an&ggan both signs

because the metric resembles the open Friedmann model, S
that it can _be transform(_eq to Mi.nkowski. form a2s>z, with A. General characteristics of solutions

a new choice of time-slicingas in the Milne model These ) ) o )

solutions can therefore be regarded as asymptotically AN important step in classifying the full family of self-
Minkowski or, more precisely, asymptotically Schwarzschild similar solutions with pressure is a dgtermmauon of the num-
since Eqs(3.52 and (3.53 imply thatm=MSr tends to a ber of free parameters associated with each of the asymptotic
constant. They are discussed further elsewhé@. Note behaviors. Once this is known, one can deduce many of the
that Eq.(3.52 shows that the scale factor no longer divergesqua“t?‘t've features of the classification by s_lmple parameter-
at z, in the limit =1, although the density still goes to counting, so one of the purposes of the discussion later in

A calculation of the Ricci tensor then shows that the leadin
terms are given by

For 1/5< <1, the curvature goes to zero @s-z,, SO
these solutions are flat along the limiting similarity hypersur-
face; this hypersurface is null sintg. = 1. Althoughr tends

to a finite value for finitd, this is just a coordinate anomaly

zero. this section is to determine this. We will anticipate the results
Vs asz—z, . In this case, Eq2.16 can be written in of that discussion in our initial qualitative considerations.
the form The supersonic and subsonic regimes, which usually corre-
spond to large and small values |af respectively, will be
al l=2abL " 1—a(1+ a)Bzz—z(l— a)l(1+a) considered separately because they have very different char-
* acteristics. We will then discuss the asymptotically singular
X (Xo| L[2)te Dle (3.63  regime.
It is easy to show that the only consistent solution has Supersonic solutions
=al(1-a), so that all the terms scale as*, and Eq. In the supersonic regime one might expect the0 so-
(3.48 then impliesb=2/[3(1—-«)]. Since lutions to share some of the qualitative features of the
I 1 =0 ones. The arguments for this are partly physicai.
S~Sy|L[FET@) - x| L]/, (3.64  pressure effects should be unimportant on sufficiently large

scaleg and partly mathematicdlviz. the dust equations can
the scale factor goes to zero and the density goes to infinite obtained from the generalequations by taking the limit
at z, , so this corresponds to a singularity at the physicale—0). We will therefore start by recalling the behavior of

origin. Equation(2.17) also gives the dust solution$13].
As in the generalr case, the most general dust solution is
M~|L| 2301, (3.65  described by two parameters. The first di corresponds

to the energy, this being conservée. independent of) if
soM—« andMS tends to a constant at=z, . In order for ~ «=0; the second onéD) specifies the value of at the
the mass to be positive must also approach, from above  singularity which characterizes such models. The
Note that Eq.(3.63 yields the same relation between A, B 1-parameter family of solutions with>0 andD=0 are in-
andz, as Egs.(2.17 and(2.18, so these solutions are de- homogeneous cosmological models which expand from a big
scribed by two independent parameters. Equati@risd and  bang singularity az=<« and are asymptotically Friedmann

(2.14) imply that the metric tends to at largez models withE>0 are underdense and expand
faster than Friedmann, while those w0 recollapse to
ds?~|L |2/ a2 — ||~ 23 a)gr2— 2 431~ a)g2 black holes and contain another singularity. The 0 solu-

(3.66 tions with z<0 are just the time reverse of tlze>0 ones.
The 2-parameter solutions wilb>0 again represent inho-
corresponding to a Schwarzschild-type singularity in thatmogeneous models but they involve bati0 andz>0 re-
gu—0 andg,, — . gimes and, while there is no exact static solution in the dust
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case, they are asymptotically “quasi-stati@h a sense to be and a 1-parameter family of “primary” solutions. The same
defined later at large|z|. The solutions withE=0 either  considerations apply for the isolated solution as for the
expand monotonically from a big bang singularity =t saddle point solution but parameter-counting indicates that
—1/D or contract monotonically to a big crunch singularity the primary solutions could also contain a member of a fam-
at z=+1/D, whereas the ones witE<O recollapse to or ily described by one parameter asymptotically. Thus in this
expand from a second singularity. TBe<0 solutions con- situation therecould be a physical solution in the subsonic
tain a shell-crossing singularity and are probably unphysicalregime from each sonic point and this might also connect to
The behavior of the dust solutions suggests that therae supersonic solution which is asymptotically Friedmann,
should exist at least two classes of self-similar solutions withstatic or Minkowski agz| — <. However, one finds that such
pressure at largkz|: a 1-parameter family which are asymp- solutions only exist for bands of values for the asymptotic
totically Friedmann and a 2-parameter family which are asparameters, each band being characterized by the number of
ymptotically quasi-static. We will show that there are indeedyscillations in the fluid velocity in the subsonic regifri].
solutions of these kinds. However, we saw in Sec. lll thatgince the static solution always has a nodal sonic point, for
new possible behaviors arise at laigewhen there is pres-  o5ch value ofx one could also expect just one member of
sure. In particular, there is an exact static solution and ag_ 1-parameter family of supersonic solutions and a

t soluti totic o th We will £ that this i Sl—parameter subset of each 2-parameter family of such solu-
Ot SOIUTions asymptotic to these. Yve Wil contirm tat thiS 1S ;1o 15 match onto the static subsonic solution.

the case and demonstrate that each of the families is de- The nodal solutions would generally i@ at the sonic

scribed by one parameter at laigg We also saw in Sec. Il oint. However, the isolated secondary solution and one
that there is a 1-parameter and a 2-parameter family of adont ' . y
member of each band of primary solutions would also be

ymptotically Minkowski solutions for=1/5. analytic or at leas€”. Such solutions would generally have
to connect to a member of a 2-parameter family in the su-
personic regime and would not reach the origin. However, as
The inclusion of pressure obviously introduces qualita-in the case of a saddle point, one could still expect a discrete
tively new features in the subsonic regime, so there are imsubset of them to connect to a member of a 1-parameter
portant differences from the dust solutions at small values ofamily for a given value ofx. The only analytic solutions in
|z|. In particular, we have seen that the presence of a sonihe first band are the Friedmann modiis being primary
point at|V|=a allows solutions to be discontinous there, for «<1/3 or secondary foe>1/3) and the general relativ-
so one might anticipate a wide variety of transonic behavistic version of the Larson-Penston solutigh19] for suffi-
iors. However, the requirement that the solutiomrégularat  ciently low « (this always being secondaryin the KS case
the sonic pointi.e. intersecting the sonic surface on the lineyjth >0 there are only isolated solutions at the sonic point;
Q discussed in Sec. Il, so that it has finite pressure gradie@nce asymptotica”y KS solutions are described by one pa-
and no shockseverely restricts the behavior there. Further-rameter at both large and smid|, none of those hitting the
more, all physical subsonic solutions must reaa+0 and  gonic surface are likely to be regular there.
this will only be true for some subset of the regular ones. We = These considerations make it clear that most regular solu-
will show that the only possible solutions at smjall are the  tions emanating from a sonic point will not be physical in the
exact static model, a 1-parameter family of asymptoticallysubsonic regime: this is just a consequence of the fact that
Friedmann(or “regular center’) models and a 1-parameter the solutions passing through+ 0 are described by one less
family of asymptotically KS models. In order to determine parameter than those emanating from the line Q. Most sub-
which combination of supersonic and subsonic solutions arggnic solutions will either enter a negative mass redjinge
possible, we will use simple parameter-counting argumentsin the «=1/3 case they will cross the line given by Eq.
We saw in Sec. Il that from eactaddlesonic point €  (3.45] or they will hit the sonic surface again but off the line
<z;) there emanates just one transonic solution an@). For the same reason, not all the solutions f#D will
parameter-counting indicates that this is likely to be @ memreach the sonic surface on the line Q and even those that do
ber of a family described by two parameters asymptoticallymay not do so at a node. In this paper we will only focus on
This means that such a solution is unlikely to reash0  the physical solutions but it should be appreciated that the

(since solutions are described by at most one parameteyj|| solution space contains many other non-physical ones.
there and so unlikely to be physical in the subsonic regime.

However, for any particular value af, parameter-counting
indicates that one could still expect a discrete subset of
saddle point subsonic solutions to be physical; these would Many of the self-similar solutions exhibit a central curva-
need to be analytic at the sonic point and probably membersire singularity and this will then correspond to the physical
of a 2-parameter family in the supersonic regithe. asymp-  origin (even though the value & may be non-zemo Some
totically quasi-static or Minkowski at largg). For some  of the solutions contaitwo singularities(with different signs
range of @, this includes the solution which arises in the of z), one giving the origin fot<<O and the other fot>0.
context of critical phenomend.0]. As in the dust case, these singularities are generally charac-
From eachnodal sonic point ¢;,<z<z,, z>z3) we saw terized by the fact that the velocity functidn(z) goes infi-
that there emanate both an isolated “secondary” solutiomite and, sinceV tends either to infinity asz|— or to a

Subsonic solutions

Singular solutions
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supersonic valu®¥, as|z|—z, , this suggests that solutions [6a |3t/ (1+3a)
containing them are likely to be supersomieerywhereFor Zg= 17 3a (4.2

if such a solution had a subsonic regime, it would need to

Cross the sonic surfadwice, including once at a saddle point g, comparison the static solution passes through Q at
(whereV may be negative and there are only isolated solu-
tions), so parameter-counting makes it unlikely that such a
solution could exist. The form of the dust solutions suggests Zs=
that the asymptotically singular solutions should be de-
scribed by two parameters, one being the value af the

singularity itself ¢s), and this was confirmed by the analysis only physical subsonic solution which passes throaglis

in Sec. Ill. For each value dfs, one could therefore expect he"Friedmann solution itself. All the other solutions are un-

at most one of the solutions to be a_memb(.er of a family ysical because, aslecreases/ either reaches a minimum
described by one parameter at large distance; the rest woulg, 4 then hits the sonic surface again but off the @ner the

have to be members of a family described by two paramy,aqq withinr goes negative. This was first demonstrated by
eters. An interesting feature of the singular self-

LETS: ; : similar solugjcynell and Henrikseri26] but it is also a consequence of
tions Is that th_e smg_ularlty_ can _be nal{_é_d)]. Note t_hat there e general considerations given in Sec. IV A. For since there
are a!so solutions with “mild” smgu_lantles,_ in wh|cbr.does should only be one physical subsonic solution from each
not diverge. For example, the static solution contaiie® 44| point, this must be the Friedmann solution itself if the
ked) cer_ltral singularity az_=0, even though/_zo_ there. . pointiszg. Since the only physical solution which is exactly

_The important conclusion of these qualitative considerjeqmann outside the sonic point is the Friedmann solution
ations is that the large-distance behavior of solutions “a"everywhere we henceforth confine attention to solutions
most” uniquely specifies their small-distance behavior. Thiswhich are asymptotically Friedmann.

is necessarily the case for solutions which contain no sonic \yea first consider the solutions which are asymptotically
point and, even if there is a sonic point, one can only eXten‘lT'riedmann ag— (i.e. asr— for fixedt or ast—0 for
a sut[))ers?nlc SO.LUt'On”'mIO.thi su?somc regime mda SMalived r). The ordinary differential equations farand S be-
number o W"‘.‘ys' at all). Itis therefore convenient tolas- e ordinary differential equations férandB. If we lin-
sify the solutions according to their behavior at large dis-

tances alone. This gives four classes of solution and in thgalriz_e these equationszm A anZB to f'nlg the 1st order
rest of this section we will consider these in turn. We will SOlution asz—c, Egs.(2.19 and(2.16 yie

(Za,)3/23(5a*1)/2(a/71) (1+a)/(1+3a)

4.3

(1+3a)(1+6a+a?)

and one can show that this is always less thanin fact, the

start by discussing the characteristics of the asymptotically 1 1+ 3a
Friedmann and asymptotically KS solutions. In this context B:(—)A— B, (4.4
we will be mainly reviewing the work of Carr and Yalf29] 3a 1ta

and Carr and Koutrag33] but we will extend these earlier

studies somewhat, explain some of their features in terms of B:(i) A (a—1) A 4.5
the results obtained in Sec. lll and make the connection with 2a 3a(l+a) '
the dust solutions more explicit. We will then discuss the .
asymptotically quasi-static solutions. The discussion her®ifferentiating the second equation and eliminatBigndB
will be mainly original, although some examples of this typethen leads to the following differential equation far

of solution have been considered beffit8,36. The asymp-

totically Minkowski solutions are entirely new but will only . (9a—1). 2(1+3a)(a—1)

be discussed briefly; they are treated in more detail else- 3(1+a) 3(1+a) A=0. (4.6
where[10]. In each case we will present the form of the

functionsS(z) andV(z) since these have an obvious physi- This has two solutions,

cal significance. The form of the functiof(z) for all these

solutions is brought together in Fig. 6 for the=1/3 case. A~z 21+30)B(1+a) o A~ 1l-a)1ta) (47

_ _ _ but the second one can be rejected since the exponent is
B. Asymptotically Friedmann solutions positive for a<1 (so thatA diverges asz—o). The first

Carr and Yahil[29] consider solutions which are either solution gives
exactly or asymptotically Friedmann for large and small val-

ues ofz. They therefore introduce functioms(z) andB(z) __o(1+43a) k7 2(1+3)/3(1+ a)
defined by (1+a) ’
oal _ (4.8
x=z 2« (1+a)eA, S=7"2B(1ta)gB (4.1 B:Bw_kz—2(1+3a)/3(l+a)

whereB..=B(«) andk are integration constants. Note that
(They assumez>0, as we do here; otherwise must be A—0 asz—x because Eq92.12 and(4.1) show that the
replaced by|z| in what follows) The Friedmann solution asymptotic value ofA has physical significancéviz., the
itself (A=B=0) passes through the sonic line Q at asymptotic density perturbatipbut there is no physical re-
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FIG. 2. This shows the form of the functiof(z)? for the asymptotically Friedmann solutions with a radiation equation of state (
=1/3), with particular emphasis on the behavior at the sonic point. Solutions which are régelgulan at the sonic point are shown by
solid (short-brokenlines, while black hole solution@vith no sonic point are shown by long-broken lines. Only the first band of overdense
solutions are shown. The curves are labele®hyn the supersonic regim@vith a spacing of 0.01 or 0.0%nd byA, in the subsonic regime
(with a spacing of 0.1 There is a 1-parameter continuum of regular underdense solutions but the overdense solutions lie in discrete bands
and are characterized by the number of oscillations they exhibit; just one solution in the first band is shown.

striction onB., (the asymptotic value d8). The constants in (z=zg). The form of the solution neazg is given by Eq.

Eq. (4.8) are related since Eg§2.17) and(2.18 imply (3.64. There is a 1-parameter family of solutions for a given
os um value of zg but presumably only one of these could be as-
_ 3(1+a)(e =—e™) 4.9 ymptotically Friedmann. Such solutions are supersonic ev-
2(1+3a)(5+3a) ' erywhere and contain black holes which grow as fast as the

) ) _ ~Universe. There is an event horizon and particle horizon pro-
Thus there_ls a 1—par_ameter family of asymptotically Fr'ed‘viding V<1 and this will apply ifB.. is more than some
mann solut}ons[Desplte the presence of the paramdier, . iiicq) negative valud¥ ; otherwise the whole Universe is
these solutions are really asymptotic to theactFriedmann inside the black hole. However, since E¢.15 and (2.17)
model, since one could formally gau@e to zero at infinite imolv that M=0 at é_o and E (2.18 th-en im Iie;sM
(but not finite z by taking a different spatial hypersurfate. <f/z e infer thatM_always ha?é el bltaalow o

From Eq.(2.21, the energy function is Thus there is always aapparenthorizon; this generalizes
1 the result found in the dust case. For this reason, it is conve-
E=E+0O(z 41301 +ta)y  E= E(eGBx—l) nient to regard the apparent horizon rather than the event
4.10 horizon as defining the boundary of the black hole. The mass
of the hole can then be taken to begy=(MS2gut,

where the asymptotic ener@yis equivalent to the parameter Whereas the mass of the singularityns=(MS2)st. Both
E which arose in the dust case. Equati@12 shows that Masses are initially zero and then growtas
the solutions are overdense or underdense relative to the As B.. increasegi.e. as the asymptotic overdensity de-
Friedmann solution according to wheth®x0 or A>0, re-  creasep the values oV, andz, decrease. Eventually it
spectively. From Egs(4.9) and (4.10), this corresponds to reaches another critical negative valBg" at which Vi,
(k>0,B.,<0,E<0) or (k<0,B..>0,E>0), respectively. In =+/a and, forB..>BJ", the solutions must reach the sonic
the Friedmann case itseK=B.=E=0. surface. AsB,, continues to increase, the valuezit which
The form ofV(z) in these solutions is shown in the upper the solution goes transoniazd) increases, passing through
part of Fig. 2, where the curves are labeled by the value othe value indicated by Eq4.2) whenB.,=0 and tending to
B... The figure assumes=1/3 but retains the same quali- infinity asB.. goes to infinity(corresponding to increasingly
tative features for other values af. If B, is sufficiently  underdense solutionsAll the solutions withB,.>BS"" reach
negative,V reaches a minimum valu¥,,,, abovea asz  the sonic surface but only the ones which cut it on the Gne
decreases and then rises again to infinity at the singularitgre regular. This applies #; lies within the rangeg; to z,
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or abovez3 [indicated in F|g 1 A diverges at the sonic Ing number of oscillations, although this is not shown in Flg
point for values ofB,, corresponding t@,<z,<zs. 2. One can group these solutions into families according to

We next consider the condition that the solution be asthe number of oscillations they exhibit. Each family contains
ymptotically Friedmann ag—0 (i.e. ast— for fixedr or  just a narrow band of solutions which are regul@rty at the
asr—0 for fixedt). Goliath et al[17] describe these solu- sonic point and only one of these will be analytic there. This
tions as having a “regular center.” Since we reque> band structure also arises in the Newtonian situgtéd). It
andV—0 in the limitt—o, we needA andB to be finite, is possible that the non-analytic solutions are all unstable to
which implies what is termed the “kink” instability and form shocKg1].

. , Note that all the overdense solutions are nearly static close to

A(0)=B(0)=0. (411 the sonic point ¢,=zg if a=1/3), although they deviate
from the static solution as they go towards the origin. As the
number of oscillations increases, the static solution remains a
good approximation ever closer to the origin.

Provided there are points d@ which are intersected by
solutions which are asymptotically Friedmann at both large

A(0)=3aB(0), (4.12  and smallz, one can construct a solution with a sound-wave
which represents a density perturbation growing at the same
which shows that there is a 1-parameter family of solutiongate as the Universe. As discussed in Sec. IV A, one would
which are asymptotically Friedmann at=0. We will take  expect this to be possible providing there is a 1-parameter
this parameter to bé,=A(0). This is a measure of the family of solutions at the sonic point, i.e. providiaglies in
overdensity(either at the origin for fixed or at late times for  the range of values betwean andz, and abovez;. For in

Also m/r=MS must be finite in the limir—0, so we re-
quireM (0)=0. (This condition distinguishes these solutions
from the static one, which has/r—« asr—0.) Equation
(2.18 then implies

fixed r) since, from Eqgs(2.12 and (4.1), this case, for each point d@, one would expect at least one
supersonic solution to be asymptotically Friedmann and at
A — @ log :U’F(O)} 4.13 least one subsonic solution to be regular at the origin. Fur-
" 1l+a w(0) ' thermore, one would expect the valuefofcorresponding to

h is the densitv in th ied wuti h the density gradient or velocity gradignt be continuous at
where ug is the density in the Friedmann solution. ThUS o gonic point in such solutions, since only one value cor-

Ao>0 gndA0<O solutions are underdense and Overdens‘?responds to the 1-parameter family. Numerical calculations
respectively. In contrast to the dust case, where the_densnpég] for the a=1/3 case show that transonic solutions do
goes to zero ar=0 for the E>0) asymptotically Fried- jyjeeq exist and have the features anticipated, although they
mann solutions, one always has a umform density core fofy ot span the entire range of valuss< z.< z,. Note that,
smallz. Note that Eqs(2.2)) and(4.12) imply thatf—0 as ¢4 aacha, there is one asymptotically Friedmann supersonic
z—0. ) , solution which can be attached to the exact static solution

For some range of values @, the subsonic solutions jnqjge the sonic point; this is just the solution for whizh
must hit the sonic surface ix(S,S) space, since the solu- equals the valueg given by Eq.(4.3). Likewise there is one
tion with A;=0 does, and regular solutions must hit it on the asymptotically Friedmann subsonic solution which can be
line Q. However, the behavior of the subsonic solutions isattached to the exact static solution outside the sonic point.
more complicated than that of the supersonic ones. This is The form of S(z) for these solutions is indicated in Fig.
illustrated by the lower part of Fig. 2, where the curves are3(a), the directions of the arrows corresponding to inceasing
labeled by the value of\,. As the parameteA, decreases time, and is very similar qualitatively to the dust cdsé
from positive values to some critical negative va§", z;  Fig. 1(a) of Ref.[13]]. The curves are labeled by the value
decreases continuously @. In this parameter range the of the asymptotic energl, where the specighegative val-
solutions withzg>z5 are regular at the sonic point, while uesg, andE,,; are related tB., andB,,;; by Eqg. (4.10.
those withz;<zs<<z3 are all irregular(The figure assumes Thez>0 solutions correspond to models which start from an
a=1/3, in which casez; =z, so one has a continuous fam- initial big bang singularity az=% (t=0) and then either
ily of underdense solutions but no overdense solutions withirexpand to infinity ag— 0 (t— ) for E>E,,;; or recollapse
this range; for other values of, some of the overdense to a black hole at some non-zero valued®br E<E.,;;. The
solutions are also in the continuous rangss A, decreases ever-expanding solutions may be either underdeffisie E
below A5, the V(z) curves develop an inflexion aref ~ >0) or overdenséfor E.;;<E<O0). The underdense ones
increases again to the valze. The subsonic solutions thus and (for a# 1/3) some of the overdense ones form a con-
cross over each other W(z) space. Although one does not tinuum, while the rest of the overdense family correspond to
reach every value df; betweerz, andz,, there is a band of E lying in narrow bands betweeBE,;; and 0. The figure
solutions within z;<z<z, which are regular ¢!) at the indicates that the analysis is trivially extended to #0
sonic point. This corresponds to the first band of overdenseegime. For since is always taken to be positive, tlze<0
solutions and is associated with just a small rangeAgf solutions are just the time-reverse of the O ones, so the
values. solutions are symmetric in Thus theE>E_,;; models col-

As A, decreases further, moves back and forth between lapse from an infinitely dispersed initial state to a big crunch
the valuesz; andz, and theV(z) curves exhibit an increas- singularity asz decreases from 0 te-« (i.e., ast increases

044023-15



B. J. CARR AND A. A. COLEY

from —oo to 0), while the E<E_,;;; models emerge from a
white hole and are never infinitely dispersed.

Figure 3b) shows the form of Vz) in these solutions but
without giving any of the oscillations or fine structure in the
subsonic sonic regioficf. Fig. 2]. In the z>0 regime,V
either decreases monotonically towards Ozatecreases or
reaches a minimum and then increases to infinity at the sin
gularity. The recollapsing solutions contain a black hole

PHYSICAL REVIEW D62 044023

S

E>0

E=
event horizon and a cosmological particle horizon for values %\ Eggffo
of E exceeding the critical valug, . Note that the last black BsE~ *Z
hole solution(i.e. the one with the smallegt) is the one for
which the minimum value o¥/ reaches N« and this must v
touch the sonic surface at the valuezodissociated with the (b) E=E.
saddle/node transitionz{). Figure 3b) is similar to the 14+ g;ggg<o

equivalent figure in the dust capef. Fig. 1(b) of Ref.[13]],
except that there are then no sonic points and no overdens
ever-expanding solution@ssentially becausg,;;=0 if «
=0).

E>0

C. Asymptotically Kantowski-Sachs solutions

If we wish to consider solutions which are asymptotic to
the self-similar KS model, then E¢3.19 suggests that we
introduce functionA(z) andB(z) defined by

N

X:X0272a/(1+a)eA, S= SozfleB,

(4.19

wherex, andS; are given by Eq(3.18 andzis taken to be
positive. Following the analysis of Carr and Koutf&8], we
linearize the equations iA, A andB to find the 1st order
solution agV|— . (Recall thatv can be negative for the KS
solution) Equations(2.15 and(2.16) then yield

FIG. 3. This shows the form of the scale fac®z) and the
velocity functionV(z) for the asymptotically Friedmann solutions
with different values ofE. The z>0 solutions expand from an
initial singularity at z=« and then either expand forever
>E,,; or recollapse to another singularityBEf<E_,;; . In the first
case, the solutions necessarily pass through a sonic [ghiotvn
bold in (b)] and reach the origin. In the second case, they contain a

.. . 1+3a). : ) . ;
B=—-A+ B, (4.15 black hole and a central singularity; there is an event horizon and
1ta particle horizon fole, <E<E,,;; . Thez<0 solutions are the time
reverse of the>0 ones.
B (1 A (l_a A (4.16
=l 5o |AT T |A . 1 -«
2a 1+« - -
A=A,z P B=A,-——|—|—|z P (41
20 \1+a/p; (4.19

If we differentiate the second equation and then substitute for

B using the first, one obtains the following differential equa-\yherea  is an integration constant. Although the expression
tion for A: for B could contain another integration constant, Egs17)
and(2.18 show that this must be zero. Ferl<a<—1/3,
Cla=1|. 2a(1+3a)(1-a) the KS solution ha$V|—« asz—0, so we must choose a
A+ A—
atl (1+a)?
This has two solutionsAccz™P1 and Axz™ P2 where

negative root in Eq4.18). Only p, is negative for this range
of a, so this gives a solution like Eq4.19 but with p,
replacingp;. In both cases there is thus a 1-parameter family
of asymptotically KS solutions. For 1/3<a<0, one again
has|V|—« asz— but bothp;, and p, are negative, so
there is no solution az— . Since Eq(3.31) shows that KS
solutions with —1/3<a<<0 correspond to static solutions
with 0<a<1 if r andt are interchange¢so thatz goes to
1/2), this is related to the fact that there are no asymptotically
For a>0, the KS solution hap/|— = asz—, so we must static solutions ag—0 for 0<a<1. In all cases, Eq2.21)
choose the positive roqt;. The general solution then has the implies thaté— —1/2 asz—, so these are in some sense
form “minimal energy” solutions.

A=0. (4.17)

—1+a*(1-a)(24a’+T7a+1)
2(1+a) '

(4.18

P12~
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At small values of V|, corresponding to small values of  of these solutions is described by E¢3.32 to (3.34). The
for >0, Egs.(2.17) and(2.18 imply that theA andB must  underdense solutions hayg positive and hit the sonic line
tend to constants which are related by to the left of KS.

-1

1
2l o240
2)e '

D. Asymptotically quasi-static solutions

QZBO:% MKSefAO(1+a)/a_ MKS_

If we wish to considerZ>0) solutions which are asymp-
(4.20 totically static, we introduce function&(z) and B(z) de-

) ] ) ) fined by
where Mg is defined by Eq(3.23. This derives from the

condition A=B=0 at z=0. There is thus a 1-parameter x=x.e" S=S5.e" (4.21
family of solutions and we can take this parameter toAge

which is a measure of the underdensity or overdensity at th
origin relative to the exact KS solution. One can show ther
are only isolated solutions at a sonic point ter 0 [33], so

the parameter-counting argument given in Sec. IV A implie
that any asymptotically KS solution which hits the sonic sur-

}Q/herex0 andS, are given by Eq(3.30. We initially assume

>0, although we will eventually need to extend the solu-
tions into thez<0 regime. Equation§.15 and(2.16 then
Sbecome

face is unlikely to be regular there. ForQr>— 1/3, there is |'_5,+3B2_é+ at3), (1te AB=0 (4.22

a 2-parameter family of solutions as—0, related to the a latl

2-parameter family of asymptotically quasi-static solutions . .

with 1>a>0 asz—». For —1<a<-1/3, V-0 asz V2 B—i :_é+ a [e~4B+AG-wla_ 1]

—oo and there is again a 1-parameter family of solutions. 2 2 \1+a '
Henceforth we will focus on thex>0 solutions. The (4.23

physical significance of these solutions is unclear, so we do . i i
not present theéS(z) plot. However, Carr and Koutras have 10 find the first order solution a¢— (i.e. asz—x), we
integrated the equations in te=1/3 case and Fig. 6 repro- linearize these equations to obtain

duces theV(z) curves corresponding to different values of

the asymptotic parameters, and Ay. Note that Eq.(3.3) 5 é_ 23 : (4.24
shows that these solutions are related to asymptotically static a \a+l '
ones witha=—1/5 but these solutions are also unphysical o

since they have negative mass from Eg.29. Although B=A/(2a), (4.25

they did not attempt to explain any features of these solu-
tions, we can now do so by invoking the results of Sec. Ill.where the second equation is required since both sides of Eg.
Let us first consider theupersonicsolutions withV< (4.23 must be finite a%/— . Eliminating A gives

—+/a. The underdense ones hakg positive. Asz decreases
from infinity, they all crossV=—1 at some point to the left
of the exact KS solution. However, they do not hit the sonic
point but reach a maximum betwesh= — o andV=—1 ) _
asz decreases. They then hit te= —1 surface agairfall ~ @nd this leads to the general solution

with V=1 and the same value aj, with M and u tending

to zero and the scale fact® diverging. This behavior is A=A, +Cz -@/(1+a) B—p_+
analogous to that which arises for the solutions which are

asymptotically Minkowski at finitez. The overdense super- (4.27)

sonic solutions havA,, negative and, asdecreases, they all whereA,,, B, and C are integration constants. Equations

hit the sonic line to the right of the exact KS solution.As (219 and (2.18 give another relationship between these
decreases, the point at which they hit the sonic line moves tgynstants:

infinity. All the supersonic solutions hawd <0 everywhere

|'3+1a|'3—o 4.2
1+al (4.26

Ca-anara
2a '

and so never cross tHd =0 curve in Fig. 1b). As z— o, 2B~ (1+ a)A, fa 1+6a+a?
both A andB go to 0, soV tends to the exact KS form. C~le™ T T)
Let us now consider theubsonicsolutions with 0>V>
—Ja. The overdense ones ha#g negative. None of them 1+ o oa ™ a s
hit the sonic surface since they reach a minimune ate- T & T e (4.28

creases and then asymptotically appro&ch0. The inter-

esting feature of these solutions is that the functgrwhich ~ where we have omitted a coefficient which dependseon

is negative at the origin, goes through zero and becomeshis shows that the asymptotically static solutions are de-
positive asz increases. This is because these solutions crosscribed by two parameters for a given equation of state.
the curve given by Eq.3.49 in V(z) space; they eventually gives the asymptotic density perturbation relative to the ex-
cross this curve again but without the signMfreversingM  act static solution, this being positiveegative for under-
and ur? tend to infinity asz—o. The asymptotic behavior dense(overdensgsolutions;B., gives the asymptotic value
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of the scale factor relative to its value in the exact static 20
solution. Since the square root in Eg.28 can have either E=EBstarr — — - (4.32
sign, there will be two solutions for a given value Bf, , 1+6ata

with different signs forB.

It should be stressed that the description “asymptoticall
static” in this context is rather misleading. This is becaus
Egs.(2.20 and(4.27) imply

This can also be seen directly from E4.31). However, one
yrequires an infinite value fdD in the exact static solution, so
€hat the central singularity is at=0. From Eq.(4.31) there

is also a l-parameter family of solutions which have this

energy asymptotically and they must satisfy the condition

SO Sl S 42
R 2a(l+a) 4.29 B.=A./3a¢ (E=Egyay. (4.33

at largez, so in general solutions will be either expanding For comparison, Eq4.31) shows that the 1-parameter fam-
(for C>0) or collapsing(for C<0). Only the 1-parameter ily of solutions with zero asymptotic energy must have
family of solutions withC=0 are asymptotically static in the

sense that the fluid is not moving with respect to the spheres 1 1

of constantR. This agrees with the description of Foglizzo Bx—3_aAw+ g'”
and Henrikseri36], who term such solutions “symmetric.”

The exactstatic solution hag\.,=B.,=C=0. We will de-  1\q more interesting 1-parameter families can be defined.

scribe the more general 2-parameter solutions With as  Equations(2.19 and (4.21) imply that the asymptotic veloc-
asymptotically “quasi-static:” Eq(4.27) implies that these i is the same as in the exact static case for solutions with
solutions have botllSdz andzdSdz going to zero at in-

finity, as in the dust case, batdSdz scales ag?¥/(**) 2a
and therefore diverges rather than tending to a finite value. B.= 1a A,
These solutions also exhibit an isothermal density profile at

largez in the sense thaer? is constant. ~ For a=1/3, this happens to coincide with conditi¢#.33.
The behavior of the asymptotically quasi-static solutionsprom Eq. (4.29 the conditionC=0 defines another more
at largez is analogous to that found in the dust case, whergomplicated relationship:

the solutions are also described by two parameters. The first

1+6a+a?

T (E=0). (4.39

(4.39

one relates to the asymptotic enefgyAt large values of, 1—a 1 J1 1+3a
Eq. (2.20 implies that the energy function is B.=|——|A,+5Insinh zsinh™ "k ex A || t+ks
4o 2 3 2a
4.3
- _(1+a)2 6B —2A. Ia (439
2(1+6a+a?) where k; and k, are a-dependent constants. This corre-
sponds to the subset symmetricsolutions and is also asso-
lio C(3—a) ,-(-af(ia) | _ 1 430 ciated with aD-dependent asymptotic energy, (D). For
a(l+a) 2’ ' large positive values ok, andB.., Eq.(4.36 reduces to the
conditionE=0 given by Eq.(4.34). For large negative val-
where we have used E¢.27), so we infer ues ofA,, andB.., it reduces to
2 1+a 1 [1+6a+a?
= &eeBx_ZAw/a_ l (431) BOO: 2— Am+zln 4— (437)
2(1+6a+a?) 2 « @

(guation (4.36 also specifies a lower limit oi.., and
enceS, , since Eq(4.28 would not give a real value fa€
if it was less than this.

In the dust case, the second parameter corresponds to t
value ofz associated with the big bang or big crunch singu-
larity (viz. |z|=1/D) and we will use a similar characteriza- : . . .
tion in the generakx case. However, it should be stressed To find asympt_otlcally static solu_tpns at small values of
that this value can only be determined numerically if there i One seeks so_lutlons W'.MZ.O and finite vaIues_oA andB
pressure and so cannot be expressed in terns, gindB.,, at z=0. [Equation(2.20 implies that such sqlutlons neces-
explicitly. It is therefore convenient to also associate the secsarily haveVg=0.] However, this require&=B=0, which
ond parameter with the asymptotic value \6f, given in  from Eq.(4.23 implies

terms ofC by Eq.(4.29. This has the advantage théke E) 1

it can be expressed explicitly in_ terms Af, a_nd B, from 4Bo:< _a)Ao- 439

Eq. (4.28, although the expression is complicated. The pa-

rameterC is only implicitly related to the parameté. ) ) o ) )

One of the differences from the dust case is that there i4 is easy to see that this condition is incompatible with Egs.
now anexactstatic solution withA,,=B..=0. In this casef ~ (2.17 and(2.18 unlessA,=B,=0, so there are no asymp-
is just —M from Eq.(2.22, whereM is given by Eq(3.29, totically static solutions az=0 (only the exact static solu-
and so tion itself). If instead we seek solutions in whidh=0 andA
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andB are finite and non-zero &=0, so thatA and B di-

s
verge logarithmically, then Eq4.23 implies
Am—| 22 4.3
-\ 1+a) (4.39
Substituting this into Eq(4.22) gives
3(1+a)B?+(5+3a)B+2=0, (4.40
which has the two roots
E=Esym
E=E.
. 2 . E<Eert
B=-— m or B=-1. (4.4]) Naa /::/ Ejg<E<0
However, these roots just correspond to solutions which ar Vo 4

asymptotically Friedmann or asymptotically Kantowski-
Sachs ar=0 and we analyzed such solutions in the previous
sections.

To understand the physical interpretation of the asymp
totically quasi-static solutions, one must extend the abowi
analysis to thez<0 regime and consider the form of the
function S(z). As illustrated in Fig. 4a), this form is very
similar to the dust caskef. Fig. @) of Ref.[13]], with the
solutions necessarily spanning both positive and negativ
values ofz. All the solid curves correspond to cosmological
models which start off expanding from a big bang singularity
at z=—1/D, then tend to the asymptotically quasi-static
form asz— — and then cross over to= +. They then
either expand foreveupper two curvesif E exceeds some
negative critical valueE,,;;(D) or recollapse(lower two

FIG. 4. This shows the form of the scale fac®(z) and the
velocity functionV(z) for the asymptotically quasi-static solutions

i Eis | harE D). In the | h | with different values ofE but fixed D. The solutions necessarily
curves i Is less thark,;;(D). In the latter case the solu- span both positive and negatizeThe solid curves show solutions

tion contains a black hole and a second singularityzat \ich expand from an initial singularity at= —1/D and then ei-
=2s. The singularity forms with zero mass &t 0 but itS  ther expand forever > E.;;(D), in which case they pass through
massms=(MS2)st then grows as. As in the dust case, the 4 sonic poin{shown bold in(b)], or recollapse to another singular-
value ofz at the second singularity is necessarily less thanty if E<E,, (D). There is an event horizon and particle horizon
1/ and S always has a maximum iz>0. The broken for E, (D)<E<E;(D). The last recollapsing solution is the sym-
curves are the time reverse of the solid ones and correspomaktric one for whichE=Egy,,. The broken curves are the time
to cosmological models which all collapse to a big crunchreverse of the solid ones. These all collapse to a final singularity at
singularity atz=+1/D but may start off either expanding z=1/D and this is naked foE less than some value, (D), which
from a white hole or collapsing from infinity. For the sym- may be negative or positive but necessarily exceeds the value
metric solutions withE=Es,,, zs=1/D and the solid and Ecrit(D).

broken curves coincide.

Note that thez<0 solutions can be obtained from the The form of V(z) in these solutions is indicated in Fig.
>0 ones by reflection, so either side of Figagives com-  4(b) and is also similar to the dust case except that there are
plete information about the solutions. However, one need§0W sonic points. The ever-collapsing solutions start with
both sides to track a particular solution. The fact that therd/=0 atz=0 and then, ag decreases, pass through a sonic
are two curves for each asymptotic value ®fs a conse- point (whereV=—/a) and then a Cauchy horizowhere
quence of Eq(4.28 giving two values fordS/dz as in the V=—1) before tending to the quasi-static formzt — .
dust case, the solid one has a negative gradient, while thEhey then jump taz=+ and enter the>0 regime. Asz
dotted one has a positive gradient, and a given solution mugtrther decreasesy first reaches a minimum and then di-
preserve its gradient as it goes fram — < to z=+0. The  verges when it encounters the big crunch singularity at
form of the solution near eithée|=1/D or |z|=zgis given =~ =1/D. As in the dust case, the minimum Wfwill be above
by Eq.(3.64) but (unlike the asymptotic Friedmann casme  or below 1 according to wheth& is more or less than some
now needs the full 1-parameter family of solutions for givenvalueE_ (D) and one necessarily has a naked singularity in
zs since the asymptotically quasi-static solutions are dethe latter cas¢see Fig. 16 in Ref{19]]. If the minimum of
scribed by two parameters. V were less than/a, the collapsing solutions would need to
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have two sonic points in the>0 regime. However, it is many of the qualitative features described above. In particu-
unlikely that such solutions would be regular at the secondar, they show that the solutions are described by two param-
sonic point, so one would expect collapsing solutions to exiseters at largéz| and by one parameter at smg| and they
only for values of the parameters such that the minimui of find the expected behavior at the sonic point. In their phase
exceeds/a. This applies providing is less another critical space analysis, the orbits corresponding to the overdense so-
value which is necessarily less thdh, (D). The ever- lutions converge on and then spiral around the static solution
expanding solutions are just the time reverse of the everfor a while before heading to the origin. This corresponds to
collapsing ones. the oscillations discussed in Sec. IV B, with the number of
The form of V(z) for the expanding-recollapsing solu- oscillations identifying the overdensity band. Foglizzo and
tions, which arise ifE<E,;(D), is also indicated in Fig. Henriksen confirm that the solutions witf,;,<1 exhibit
4(b). There are two solutions of this kind. In onfsolid) V  naked singularities. Indeed, the static attractor is closely re-
starts off at—o~ whenz=—1/D, rises to a maximum, then lated to the self-similar solutions which arise in critical phe-
falls off asymptotically quasi-statically ag— —o, then  nomena[8]. This is discussed in more detail by Carr and
jumps toz= + and then falls to a minimum before rising Henriksen[42].
to + atz=zg. [For the reasons indicated above, it is likely
that the maximum is less than/« and that the minimum is
more than+ /e, in which case these solutions have no sonic
points] The minimum will be less than 1 iE exceeds the The asymptotically Minkowski solutions cannot be ana-
valueE, (D) and the maximum will exceeet 1 if Eis less lyzed in the same way as the other solutions discussed above
than the value€e_ (D). In the first case, one has a black hole since the limiting solution is not itself self-similar. Thus in
event horizon and a cosmological particle horizon. The otheseeking the various asymptotic forms, one cannot perturb
kind of expanding-recollapsing solutidbroken is the time  about an exact background self-similar solution. Also one
reverse of this and goes fromx —zgto z=1/D. In this case cannot analyze these solutions in terms of the paranteter
one has a naked singularity 2+ 1/D if E<E_ (D). since the energy function asymptotically diverges, Egs.
Since the minimum of the solid curve in Fig(b} is al-  (2.21), (3.37) and(3.52 implying
ways below the minimum of the broken curve for a given
value of S, we infer that there are recollapsing solutions
which have an event horizon &0 without having a naked
singularity inz<<0. Likewise there are solutions with>0E
>Eit(D) which have a sonic point in>0 without having

E. Asymptotically Minkowski solutions

&~in|z/z, | |4a/(1—5a)' £~ 72V (V2 -1) (4.42)

one in z<0. However, if E is sufficiently larger than f_or the two f_amlll_es.(We use double modulus signs in the
first expression since we now allamto be negative and the

Ecrit(D), there might also be solutions in whidjoth the logarithm may also be negatiyeNevertheless one can still
solid and broken curves have a sonic point. This would cor- 9 Y 9 .

respond to bouncing solutiori®/ith two sonic points but no usz\t/he c;)nsﬁeratlonls (.)f Sec. (lj” LO derive t.hz.formf(.aop
singularitie$, in which S starts off decreasing and ends up an (Zg obr t Fese rs;o utl?ns an th_eze are indicate .'r]!. 19S.
increasing. In these solutions would decrease monotoni- 5(a) and 5b). For t. e solutions which asymptote to infinite
cally from z=0" to z=— and then fromz=+ to |z| and are described by one parameter, E@s37 and

P L . (3.42 apply; for the ones which asymptote my and are
0™. However, we have seen that it is unlikely that SUChdescribed by two parameters, Eq8.52 and (3.57 apply.

solutions could exist since they would require two regular . ;
y q g Figure 5a) shows that all the> 0 solutions start off collaps-

sonic points. . ) . L -
We note that although the introduction of the paramBter Ing at large dlstance(s_be th's. at infinite or f|n|_tez) and then
either collapse to a singularity at or bounce into an expan-

has a crucial effect in the lardef regime, changing the so- sion phase. The<0 solutions are just the time reverse of
lution from the asymptotically Friedmann to asymptoticall T P
yrmp y ymp ythese. In deriving the form o (z) shown in Fig. %b), we

quasi-static form, it has relatively little effect in the subsonic Ea.(3.57. Although th luti |
regime. One can therefore still use the results of the asym iS€ | g.(3.57. Although t ese solutions represent a large
raction of the complete solution space, many of their fea-

totically Friedmann analysis hefat least qualitatively In :
particular, one still has oscillations — though none of thesdUres are still unexplored.
are shown in Fig. é)—and the model can only collapse
from infinity if E is positive or lies in discrete bands if nega-
tive. The main difference is that the sonic point may now be
a saddle rather than a node. However, in this case, we saw in The form of the functiorV/(z) for all thez>0 solutions is
Sec. IV A that the subsonic solution is unlikely to reach brought together in Fig. 6 for the=1/3 case. Similar fig-
=0. ures could be presented far>1/3 anda<1/3 but these are
Some of the asymptotically quasi-static similarity solu-not shown explicitly. The equations simplify in the=1/3
tions with pressure have already been studied numerically bgase, so this is the one which has been most studied numeri-
Foglizzo and Henrikse36], although they only focus on cally. Also this is the case likely to apply in the early uni-
the collapsing solutions(The relationship between their verse. Although the/(z) diagram does not give complete
variables and ours is given in Appendix)Blhey confirm information about the solution space, since this is

F. Complete solution space
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FIG. 5. This shows the form of the scale fac®(z) and the
velocity functionV(z) for the asymptotically Minkowski solutions,
which exist only fora>1/5. One family(solid lineg asymptotes to
the finite valuez, with V—1; the other family(broken line$ as- FIG. 6. This shows the form of the velocity functiaf(z) for
ymptotes to infinitez with V—V,>1. In both cases, there are the full family of spherically symmetric similarity solutions with
solutions which collapse monotonically to a central singulary) (  «=1/3. The exact Friedmann, Kantowski-Sachs and static solutions
and solutions which collapse and then bounce into an expansioare indicated by the bold lines. Also shown are the asymptotically
phase; the latter necessarily have a sonic gaindbwn bold in(b)]. Friedmann solutiongfor different values oE), the asymptotically
The z<0 solutions are the time reverse of these. guasi-static solutionfor different values o and fixedD) and the

solutions which are asymptotically Minkowski at finite or infinite
3-dimensional, it does convey many important physical feaThe broken curves give the extrapolation of the asymptotically
tures of the solutiongin particular, the occurrence of singu- quasi-static solutions into the<0 regime and all asymptote to
larities and event horizonsOther interesting physical quan- infinity at z=1/D. Solutions shown by dashed lines are irregular at
tities, such as the density and the mass functioM, are  the sonic poin{shown bold and cannot be extended beyond there.
discussed in Ref.10]. Al the other solutions are either supersonic everywhei@'oat the

It should be emphasized that Fig. 6 is only qualitative andsonic point. Solutions which are analytic at the sonic point form just
does not include fine details, such as the oscillations in th@ small subset of the latter. The negafiveegion is occupied by the
subsonic regime. In order to avoid the figure being too clutasymptotically Kankowski-Sachs solutions, although these may not
tered, only a few members of each family are shown and wee physnca_l since the mass is peggtlve. For a full description of
do not include solutions which are non-physical in the subhese solutions, see the discussion in Sec. IVF.
sonic regime. However, we do include some solutions which
terminate at the sonic point and these are shown by dashéwted that Egs.(2.19, (4.1), (4.8 and (4.12 give the
lines. The figure only shows the positizeregime but this asymptotic velocity as
still gives complete information. The solutions are labeled by
their asymptotic energig whenever this is well defined. Ve~ell=30Ac/ay  (z<1), V~e B2y (z>1)

The form ofV(z) for the asymptotically Friedmann solu- (4.43
tions (with D=0) comes directly from Fig. ®), with the
significance of the energids, andE,,;; being described in
Sec. IVB. Two recollapsing solutions are showsne of  whereV¢ is the exact Friedmann velocity. Far>1/3, V is
which contains an event horizon and a particle horizone  more(less thanV¢ for the overdens@underdensesolutions
regular and one irregular overdense solution, and two regulaat all values ofz. However, for <1/3, V starts below
underdense solutions. For a general valuexpit should be (above V¢ at smallzand ends up abovdelow) it at largez
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for the overdensdunderdensesolutions. In this case, the a saddle(i.e. atz=z;). However, the value ofg for the
solutions cross over each other, which makes\M(ig) dia- 2-parameter solutions can be arbitrarily small.

gram rather complicated. Far=1/3, the dependence &f

uponA, at smallz only appears at second order and so such

criss-crossing is avoided. V. DISCUSSION

The form of V(z) for the asymptotically quasi-static so- hi h | h lete familv of
lutions is taken from Fig. @), except that both quadrants are In this paper we have analyzed the complete family o
spherically symmetric self-similar solutions for a perfect

now folded intoz>0. The solid curves come from the upper % ™" ) .
fluid with equation of stat@p= a«. The key steps underlying

right quadrant in Fig. @) and the broken ones from the . . . . )
lower left quadrant. Thus the latter can be regarded as th@Ur analysis aretl) a delineation of the possible asymptotic

extrapolation into thez<0 regime of the former. All the forms a.t large a“‘?' small distances from the ong@); an.
solutions have the same value Bf so all the broken lines €lucidation of the link between tre>0 andz<0 solutions;

asymptote to infinity az=1/D, but they have different val- (3) an explicit use of the dust solutior(_which can _be ex-
ues ofE. It should be stressed that the value€gfandE. pressed analyticaljyto understand heuristically various fea-

depend onD and therefore differ from the corresponding tures_ of the sqluuons |n.the Supersonic regime, M)da. .
. i . .~ detailed analysis of solutions which are regular at the origin

values for the asymptotically Friedmann solution. Equation;. . . .

(4.32 implies that the value oE for the exact static solution e. asymptotlcal_ly Frl_edmann as-0 ortﬁoo) In order to

e - . . understand solutions in the subsonic regime.

(which can be regarded as the limit of the symmetric solution In claiming that our classification is “complete,” it
asD — ) is Egja= —3/14 fora=1/3. From Eqs(4.33 and  g,51d be emphasized that our considerations have been re-
(4.39 the velocity for all solutions with this energy asymp- gyicted in a number of ways. We plan to extend our analysis
totes to the exact static form i =1/3 but this feature does g avoid these restrictions in future work but for present pur-
not apply for other values of. Besides the exact static so- poses it will be useful to list them explicitly. Some of the
lution, four recollapsing solutions are showane of which  restrictions could be regarded as geometrical and others as
has an event horizon and particle horixoifhere is one physical.

regular and one irregular solution which is overdense relative The firstgeometricalrestriction is that we have confined

to Friedmann and one regular solution which is underdensettention to self-similar solutions of the “first” kindi.e.,

The form ofV(z) for the asymptotically Kantowski-Sachs homothetic solutions in which the similarity variable is
solutions is taken from Fig. 2 of Ref33]. Although the =r/t). However, it may be possible to extend this work to
physical significance of these solutions is unclear since, fofhe classification of self-similar solutions of the “second”
a=1/3, the Kantowski-Sachs solution is tachyonic and hakind. For example, in spherically symmetric perfect fluid so-
negative mass, their mathematical characteristics were eXations which possess kinematic self-similarity, the similarity
pIained in Sec. IV C. All the solutions which reach a SOﬂiCVariab|e is of the forrnzzr/ta' where the exponem de-
point are irregular there, as indicated by the dashed curvespends on some dimensional constant which contains a scale

The form ofV(z) for the asymptotically Minkowski so- [43]. There is evidence that such solutions asymptote to-
lutions is taken from Fig. @), except that all the solutions \wards exact solutions that admit a homothetic veptdt, so
are here represented by solid lines. Note that these solutiorle asymptotic analysis in this paper may be of rather more
cannot be labeled by their asymptotic energy since, as indigeneral application than is at first apparent; i.e., the
cated by Eq(4.42, this diverges. Five of them are asymp- asymptotic behavior o&ll self-similar solutions(not only
totically Minkowski asz—o, with V going to the value those of the first kindmay be determined by the solutions
V, =(2+13)/3 indicated by Eq(3.42. Two of these col-  described in this paper. Of course, the behavidinite val-
lapse monotonicallyone containing an event horizon and a ues of the similarity variable, including for example the be-
particle horizom; the other three start off collapsing but then havior at sonic points and horizons, may be quite different.
bounce into an expansion pha&me being overdense and  The second geometrical restriction is that we have as-
the others underdense at the origin relative to Friedmannsumed that the homothetic vector is neither parallel nor or-
The remaining solutions are asymptotically Minkowski at athogonal to the fluid velocity. Although solutions with these
finite valuez, andV—1 there. The upper parts of the curves properties do exist, they are not covered by the analysis of
correspond to solutions which collapse monotonically, whileSec. Il. However, it can be shown that all perfect fluid space-
the lower parts correspond to solutions which collapse anéimes (not only spherically symmetric oneadmitting a ho-
then bounce. Examples of such solutions extend to highemothetic vector parallel to the velocity vector are necessarily
values ofz, than indicated but are not shown to avoid clut- Friedmann[45]. In addition, it has claimed that all spheri-
tering. cally symmetric spacetimes which admit a homothetic vector

It is interesting that the collapsing solutions which areorthogonal to the velocity vector have a singular meig].
asymptotic to either the Friedmann or Minkowski solutions  The main physical restriction is that we have confined
asz—« have a minimum value dafg (the value ofz at the  attention to perfect fluids with a barotropic equation of state
singularity) and this is the same in each case. This is be{necessarily of the fornp=au) and so our analysis does
cause, for any 1-parameter solution, the last black hole soluaot cover more general perfect fluids or anisotropic fluids,
tion is the one for which the minimum &f reaches/a and  even though these may be of physical interest. In particular,
this must occur where the sonic point changes from a node ta two-perfect-fluid model, in which each component is nec-
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essarily comoving and has an equation of state of the fornics and Statistics at Dalhousie University and the Yukawa
pi=a;ui (i=1,2), is formally equivalent to a single perfect Institute for Theoretical Physics at Kyoto University for hos-
fluid that does not have an equation of state. It is thereforgitality received during this work. A.A.C. is supported by the
plausible that perfect fluid models for whigiu is asymp- NSERC.

totically constant may have the same asymptotic behavior as

the self-similar solutions studied in this paper. This is indeed

the case for two-fluid models in which each component sepa- APPENDIX A
rately satisfies the conservation equations. This is discussed
further in Appendix C. In this paper we have used ‘“comoving” coordinates,

Even within the context of fluids witlp=au, we have since this approach is best suited to studying the solutions
not covered every possible value ®f In particular, we have explicitly. However, it should be stressed that our work is
not considered the stiff caser€ 1), in which the speed of complemented by the analysis of Bogoyavlengkb] and
sound is equal to the speed of light. Sinee-1 is a bifur-  Goliath et al.[17,18§ using “homothetic” coordinates and
cation value, there can be significant changes in the qualitahat of Ori and Piraf19] and Maison[9] using Schwarzs-
tive behavior from thex<<1 case. Therefore a discussion of child coordinates. In this appendix, we discuss these other
stiff perfect fluid solutions may be important in understand-approaches in more detalil.
ing the dynamics of the complete class of self-similar solu- ~ |n the homothetic approach, the coordinates are adapted
tions. A partial analysis of the=1 case has been made by to the homothetic vector and this yields results which
Lin et al.[27] and Bicknell and Henriksef28]. However, if  complement and, in some cases, provide more rigorous dem-
a=1, Eq.(2.19 implies thatV has no explicit dependence onstrations of the conclusions reached in this paper. How-
onzand, whenv+#1, Egs.(2.19 and(2.16 yield a single, ever, in the homothetic approach, spacetime must be covered
second-order autonomous ordinary differential equation fopy several coordinate patches, one in which the homothetic
S This equation can be better studied using different mathyector is spacelike and one in which it is timelike. These
ematical techniques to those employed in this paper. In thigegions must then be joined by a surface in which the homo-
context, it should be emphasized that our analysis does n@etic vector is null and this surface is associated with im-
cover the case in which the source is a massless scalar fieffbrtant physics. Bogoyavlenskil5] studied the spacelike
since(if there is no scalar potentiathis is formally equiva- and timelike cases simultaneousiwith the metric being
lent to a stiff fluid whenever the gradient of the scalar field isyritten in “conformally static” form) and continuously
timelike. The relevance of self-similar solutions to the occur-matched the two regions to obtain the behavior of solutions
rence of critical phenomena in scalar field collapse has beegrossing the null surface. However, it should be noted that

studied by many autho{8-10,42,47. Bogoyavlenski changed comoving coordinates explicitly to
We have not considered solutions with< 0, even though  describe the physics of the associated solutions.

these may be physically interesting in some cont¢Rt. Recently Goliath et al[17,18 have reinvestigated both

Indeed the Kantowski-Sachs solutions maly be appli- the spatially and temporally self-similar cases. The timelike

cable in this context. In fact, the asymptotic analysis can b$egion contains the more interesting phydgies. shocks and
extended to ther<<O case[20]. Whena=—1, the perfect sound-waves They introduce dimensionless variables, so
fluid source is equivalent to a cosmological constant. In thighat the number of equations in the coupled system of au-
case, a scale is introduced and so there are no self-similanomous differential equations is reduced, with the resulting
solutions of the first kind. However, spherically symmetric reduced phase space being compact and regular. In this way
self-similar solutions of the more generaecond kind are  the similarities with the equations governing hypersurface
still possible[48]. orthogonal models, and in particular spatially homogeneous
Finally it should be stressed that we have not considere¢hodels[12,49, can be exploited. In their approach, all equi-
solutions with shockscf. [1]). However, these may certainly librium points are hyperbolic, in contrast to the earlier work
be of physical interest, especially since transonic solution§15] in which non-compact variables were used, resulting in
which areC? rather thanC* at the sonic point may evolve parts of phase space being “crushed.”
into shocks due to the “kink” instability41]. Nor have we The Schwarzschild approach is better suited to studying
considered “patched” solutions which are only self-similar the causal structure of the self-similar solutions. This is be-
for some range of coordinates or in which the valuexak  cause, in order to obtain physically reasonable models,
different in different regions. spacetimes are often required to be asymptotically flat. Since
asymptotically flat spacetimes are not self-similar, one there-
fore needs to match a self-similar interior region to an non-
self-similar exterior region and this is usually taken to be
We thank Martin Goliath, Dick Henriksen, UIf Nilsson Schwarzschild. In particular, Schwarzschild coordinates are
and Claes Uggla for useful discussions and Andrew Whinimost suitable for solving the equations of motion fadial)
nett for help with some numerical work. An earlier version null geodesics, as required in studying the global structure of
of this paper omitted the asymptotically Minkowski solutions the solution. Consequently it was used by Ori and Plid8}
and we extended our analyis to cover these only after theisince one of their primary goals was to study naked singu-
existence was ascertained by Goliath, Nilsson and Uggla ndarities and test the cosmic censorship hypothesis. However,
merically. B.J.C. is grateful to the Department of Mathemat-the Schwarzschild coordinates break dowrn=a0.
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APPENDIX B due to a coordinate problem &t 0). FH then introduce new

The precise transformations between the various Coordif_unctions and coordinates so that solutions are completely
P regular at {=0,>0). However, the resulting ODEs are no

nate systems used to study self-similar spherically symmetnﬁm er autonomous after this transformation
perfect fluid models are given explictly in Bogoyavlenski 9 '

([15]; see Sec. 3 of Chap. W The coordinate transforma-

tions between the comoving and Schwarzschild systems, APPENDIX C

both of which are employed by Ori and Pirei®], are given The expansion of the comoving fluid velocity congruence,

explicitly in their paper. The transformations between they— a g given by

homothetic and Schwarzschild coordinates and between the @

homothetic and comoving coordinates are given explicitly in ro=ze 'O (C1

Appendix B of Ref.[17], where the relationship between

their variables and those of Ori and Pirgkf], Maison[9]  where

and Foglizzo and Henriksef86] are also given. The rela- q

tionsip between their variables and those used by — (n4+

Bogoyavensk[15] are given in Appendix B of Ref.18]. 0(2) dz()\ 25) (€2
Here we explicitly demonstrate the relationship between o )

the variables used in this paper and those used in Foglizzahd\ is given by Eq.(2.1). Whenp=aw, the conservation

and HenrikserfFH) [36]. The main functions used in FH are equations then yield

the three quantitiesN, u, V?), defined by Eqs(FH3)— dw

(FH5), which depend on the similarity variable=z~ . The —=—(1+a)WO, (C3

remaining self-similar functions can then be written in terms dz

of these[see Eqs(FHE)—~(FHB)]. Their functionV is identi- whereW is defined by Eq(2.9). If we consider two comov-

cal to ours. Using Eqd2.12) and(FH3), we find that ing perfect fluids as the source of the gravitational field, each
N(z)=a x(@~ Dlag2a-1i(1+a), (B1) of which satisfies

wherea, is a constant. Using Eq$2.8), (2.12), (2.17 and pi=aini, Wi=pR® (a=12) (C4

(FH4), we obtain (e.g., a mixture of dust and radiation withy =1/3 and«,

=0), then the source is equivalent to a single perfect fluid
: (B2)  with

S
1+(1+ a)g

w(z)=3

=ut+uy, =p1tpPr=ajurtasps, C5
Conversely,x and S can be defined explicitly in terms of RZpT 2, PEPITP2T s a2k €3

(N, ,V?) through Eq.(FH8), although this does not admit an equation of state.
Suppose the two perfect fluids are non-interacting, with
S=a,z(* VT IN|V|] 7, (B3)  each separately satisfying the conservation equaii®).
and Eq.(B1), wherea, is another constant. Then
The differential equations governing the evolution of dw,
(N, %, V2) are given by Eqs(FH12—(FH14); these consti- gz - (1T a)Wo. (CH)

tute an autonomous system of ODEs in terms of the variable

Iné=—Inz Eqgs.(FH12 and (FH13 are equivalent to our We define a new variable

Egs. (2.15 and (2.16. The first integral of the governing

ODEs is given by Eq(FH10 and is equivalent to our Egs. B M1 ur Wi—W,
(2.17) and(2.18. Equation(FH14), which governs the evo- X=x(2)= w1ty Wi+W,’
lution of V2, is obtained by differentiatiny’?, defined by Eq.

(2.19, and using the first integral. Consequently, the evoluwhere —1<y=<1. From Eq.(C6) we derive the evolution

(C7)

tion equation(FH14) replaces Eqs(2.17) and(2.18. equation fory:
FH then regularize their system of equations by introduc- q 1
ing a new independent variable, defined by Eq(FH15), 9 _ -+ 2
which is equivalent to gr - 2(mma2)(1=X) (Cy)
dinz ,2 where is defined by
=—1+aV ™" (B4)
dr
dr B
This divides phase-space into two disconnected components. dz -0 (€9

Although the resulting system of ODEs is autonomous, the
system is not regular &t=0 despite the fact that this point for regions in which® (and hence the expansi@) is non-
does not correspond to a physical singulafite., it arises  zero.
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Equation(C8) is a decoupled autonomous equation for asymptote towards the exact asymptotes of the single perfect
It has equilibrium points ag=*1, and hence all solutions fluid solutions. Asymptoticallyp/u— «; and which value of
asymptote toy==*1 in regions for which the expansion «; is picked out(i.e., which of the two single fluids govern
does not become zerq.=+1 corresponds ta,=0 andy  the dynamics asymptotica)lydepends on the signs ofr(
=—1 to u,=0; i.e., these self-similar two-fluid solutions —a,) and® and on whethefz| -0 or |z|—c°.
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