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Complete classification of spherically symmetric self-similar perfect fluid solutions
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We classify all spherically symmetric perfect fluid solutions of Einstein’s equations with an equation of state
p5am which are self-similar in the sense that all dimensionless variables depend only uponz[r /t. This
extends a previous analysis of dust (a50) solutions. Our classification is ‘‘complete’’ subject to the restric-
tions thata lies in the range 0 to 1 and that the solutions are everywhere physical and shock-free. For a given
value ofa, such solutions are described by two parameters and they can be classified in terms of their behavior
at large and small distances from the origin; this usually corresponds to large and small values ofuzu but ~due
to a coordinate anomaly! it may also correspond to finitez. We base our analysis on the demonstration~given
elsewhere! that all self-similar solutions must be asymptotic to solutions which depend on either powers ofz
at large and smalluzu or powers of lnuzu at finite z. We show that there are only three self-similar solutions
which have anexact power-law dependence onz: the flat Friedmann solution, a static solution and a
Kantowski-Sachs solution~although this is probably only physical fora,21/3). At large values ofuzu, we
show that there is a 1-parameter family of asymptotically Friedmann solutions, a 1-parameter family of
asymptotically Kantowski-Sachs solutions and a 2-parameter family which we describe as asymptotically
‘‘quasi-static.’’ For a.1/5, there are also two families of asymptotically Minkowski solutions at large dis-
tances from the origin, although these do not contain the Minkowski solution itself: the first is asymptotical to
the Minkowski solution asuzu→` and is described by one parameter; the second is asymptotical to the
Minkowski solution at a finite value ofz and is described by two parameters. The possible behaviors at small
distances from the origin depend upon whether or not the solutions pass through a sonic point. If the solutions
remain supersonic everywhere, the origin corresponds to either a black hole singularity or a naked singularity
at finite z. However, if the solutions pass into the subsonic region, their form is restricted by the requirement
that they be ‘‘regular’’ at the sonic point and any physical solutions must reachz50. As z→0, there is again
a 1-parameter family of asymptotic Friedmann solutions: this includes a continuum of underdense solutions
and discrete bands of overdense ones; the latter are all nearly static close to the sonic point and exhibit
oscillations. There is also a 1-parameter family of asymptotically Kantowski-Sachs solutions but no asymp-
totically static solutions besides the exact static solution itself. The full family of solutions can be found by
combining the possible large and small distance behaviors. We discuss the physical significance of these
solutions.

PACS number~s!: 04.20.Jb, 95.30.Sf, 98.80.Hw
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I. INTRODUCTION

Self-similar models have proved very useful in gene
relativity because the similarity assumption reduces the c
plexity of the partial differential equations. Even greater si
plification is achieved if one has spherical symmetry@1#
since the governing equations then reduce to comparati
simple ordinary differential equations. In this case, the so
tions can be put into a form in which every dimensionle
variable is a function of some dimensionless combination
the cosmic time coordinatet and the comoving radial coor
dinate r. In the simplest situation, a self-similar solution
invariant under the transformationr→ar,t→at for any con-
stanta and the similarity variable isz5r /t. Geometrically
this corresponds to the existence of a homothetic Kill
vector and is sometimes termed self-similarity of the ‘‘firs
kind. We confine attention to such solutions in this pap
We shall also focus on the case in which the source of
gravitational field is a perfect fluid with an equation of sta
of the form p5am. Indeed, one can show that this is th
0556-2821/2000/62~4!/044023~25!/$15.00 62 0440
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only barotropic equation of state compatible with the sim
larity assumption@1#. We will assumeuau<1, as required by
causality, and usually takea to be positive. We will also
assume thata is the same everywhere. Note that ‘‘geome
ric’’ self-similarity ~a property of the metric! and ‘‘physical’’
self-similarity ~a property of the fluid! coincide for a perfect
fluid but this need not be the case in general@2#.

What makes such solutions of more than mathemat
interest is the fact that they are often relevant to the r
world @3#. For example, an explosion in a homogeneo
background produces fluctuations which may be very co
plicated initially but which tend to be described more a
more closely by a spherically symmetric self-similar soluti
as time evolves@4#. This applies even if the explosion occu
in an expanding cosmological background@5#. The evolution
of cosmic voids may also be described by a self-similar
lution at late times@6#. A gravitationally bound cloud col-
lapsing from an initially static configuration may evolve
self-similar form @7# and recently it has become clear th
spherically symmetric self-similar solutions play a cruc
©2000 The American Physical Society23-1
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role in the context of ‘‘critical’’ phenomena@8–10#. Such
considerations led Carr@11# to propose the ‘‘similarity hy-
pothesis,’’ which postulates that under certain circumstan
spherically symmetric solutions may naturally evolve to
self-similar form even if they start out more complicated.
is well known that self-similar solutions play a cruci
asymptotic role in the context of spatially homogenous m
els @12#, so this extends that result.

The possibility that self-similar models may be singl
out in this way from more general spherically symmet
solutions means that it is essential to understand the
family of such solutions. A complete classification of se
similar dust (a50) solutions has already been provided@13#
and the purpose of the present paper is to extend this cl
fication to a perfect fluid with pressure (aÞ0). We will
show that some of the features of the dust solutions c
over to the more general case but by no means all of th
Indeed some of the solutions with pressure have no analo
at all in the dust case. The extra complications arise beca
solutions with pressure generally have a shock@1# or sonic
point @14# and the nature of the discontinuity at this poi
plays a crucial role. However, a full understanding of the
effects has only come rather recently. In this paper we w
only consider solutions with sound-waves and we will foc
exclusively on solutions which are ‘‘regular’’ at the son
point in the sense that they have a finite pressure grad
and can be continued beyond there. Even some of these
lutions will turn out to be unphysical, in the sense that th
encounter either another~irregular! sonic point or a domain
where the mass is negative.

Due to the existence of several preferred geometric st
tures in self-similar spherically symmetric models, a num
of natural approaches~i.e. coordinate systems! may be used
in studying them@15#. The three most common ones are t
‘‘comoving,’’ ‘‘homothetic’’ and ‘‘Schwarzschild’’ ap-
proaches. In the comoving approach, pioneered by Ca
and Taub@1# and employed by Carr and Henriksen and c
workers, the coordinates are adapted to the fluid 4-velo
vector. This probably affords the best physical insights an
the most convenient one with which to study the solutio
explicitly. In the homothetic approach, used by Bogoyavle
ski and co-workers, and adopted more recently by Bra
@16# and Goliath et al.@17,18#, the coordinates are adapted
the homothetic vector. In this case, the governing equat
reduce to those of an autonomous system and so dynam
systems theory can be exploited to study the equations m
ematically. The ‘‘Schwarzschild’’ approach, adopted by O
and Piran@19# and Maison@9#, is useful if one wishes to
match a self-similar interior region to a non-self-similar a
ymptotically flat exterior region. This is because one c
analyze null geodesics most simply in these coordinates,
abling the causal structure of spacetime to be studied.
relationship between these different approaches is discu
in more detail in Appendix A. All of them are complemen
tary and which is most suitable depends on what type
problem one is studying. In this paper it is most conveni
to use the comoving approach.

The first step in providing a complete classification
perfect fluid spherically symmetric self-similar solutions is
04402
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analyze all possible behaviors at large and small distan
from the origin. In the simplest situation this just corr
sponds to large and small values of the similarity varia
z5r /t but the analysis is complicated by the fact that~due to
a coordinate anomaly! a finite value ofz may sometimes
correspond to zero or infinite distance from the origin.
rigorous demonstration that our asymptotic classification
complete is given elsewhere@20# and consists of two parts
~1! an analysis of all solutions whose asymptotic behavio
associated with large or small values ofuzu and a demonstra
tion that these always have a power-law dependence onz; ~2!
an analysis of solutions whose asymptotic behavior is as
ciated with afinite value ofz and a demonstration that thes
have a power-law dependence on lnuzu. We use this ‘‘power-
law’’ property as the starting point of the analysis in th
present paper. This shortens the discussion considerably
allows us to focus on the nature and physical significance
the solutions.

We will show that perfect fluid self-similar sphericall
symmetric solutions have four possible behaviors at la
distances from the origin. They are either asymptotica
Friedmann, asymptotically ‘‘quasi-static,’’ asymptotical
Kantowski-Sachs or asymptotically Minkowski, with the la
family being subdivided into two~one of which is associated
with a finite value ofz). The possible behaviors at sma
distances depend upon whether or not the solutions p
through a sonic point. If the solutions remain supersonic
erywhere, the origin is at finitez and corresponds to either
black hole singularity or a naked singularity; in either ca
the small-uzu behavior is uniquely determined by the large-uzu
behavior. If the solutions pass through a sonic point, th
may be discontinuous there and the situation is more c
plicated. However, in this paper we confine attention to
lutions which are regular at the sonic point and physica
realistic throughout the subsonic regime. All such solutio
reachz50 and have three possible behaviors at smalluzu:
they are either asymptotically Friedmann, exactly static
asymptotically Kantowski-Sachs. If the solutions are
quired to be analytic at the sonic point, then they are s
determined uniquely by the large-scale behavior. If they
merely required to beC1, the small and largeuzu behaviors
must be specified independently. Not all supersonic soluti
can be attached toz50 via a sonic point; the ones whic
cannot either encounter a shock or become unphysica
some domain.

The complete family of solutions can be found by com
bining the four types of large-distance behaviors and the f
types of small-distance behaviors. However, the Kantows
Sachs solutions can only link to each other, so this yields
different types of solution. It is useful to classify these so
tions by their large-distance behavior. Since some of th
solutions have been found before~see @21–23# for recent
reviews!, our discussion will necessarily involve some ove
view of previous work. However, this is the first time all th
solutions have been brought together, with the connec
between them being made explicit. It should be stressed
this work complements the dynamical systems analysis
Goliath et al. @17,18#, which also delineates the differen
types of solutions but in a different way and without maki
3-2
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COMPLETE CLASSIFICATION OF SPHERICALLY . . . PHYSICAL REVIEW D62 044023
their physical significance clear. The precise relationship
tween our two approaches and a more detailed descriptio
some of the solutions can be found elsewhere@10#. Since
some of the discussion in this paper is rather technical, it
be useful to start off with a brief qualitative description
the various solutions and to relate them to the soluti
found by earlier workers.

The first class of solutions is a 1-parameter fam
asymptotic to the flat Friedmann solution at large values
uzu. The solutions withz.0 can be regarded as inhomog
neous big bang models which expand from an initial sin
larity at z5` and then either expand indefinitely or reco
lapse to a black hole asz decreases. Attention originall
focussed on models containing black holes because t
was interest in whether black holes could grow at the sa
rate as the particle horizon. Carr and Hawking@24# showed
that such solutions exist for radiation (a51/3) and dust (a
50) but only if the universe is asymptotically rather th
exactly Friedmann~i.e. there is no solution in which a blac
hole interior is attached to an exact Friedmann exterior v
sound-wave! and this has the important implication th
black holes formed through purely local processes can
grow as fast as the Universe. Carr@25# and Bicknell and
Henriksen@26# then extended this result to a general 0,a
,1 fluid, while Lin et al.@27# and Bicknell and Henriksen
@28# considered the case of a stiff fluid (a51). The ever-
expanding solutions can be interpreted as density fluctuat
in a flat Friedmann model which grow at the same rate as
Universe@29#. These solutions are asymptotical to the Frie
mann solution at both large and small values ofuzu and regu-
lar at the sonic point. Such transonic solutions can be ei
underdense or overdense relative to the exact Friedm
model. There is a continuum of regular underdense solut
and these may be relevant to the existence of large-s
cosmic voids@30#. Regular overdense solutions may on
occur in very narrow bands; these have the characteristic
they are all approximately static near the sonic point,
though they depart from the static solution and exhibit os
lations as they approach the origin.

The second class of models is associated with
Kantowski-Sachs solution. This is a type of homogene
model first studied by Kantowski and Sachs@31# for the a
50 case and then by Collins@32# for arbitrarya. For eacha
there is a unique self-similar Kantowski-Sachs solution a
there also exists a 1-parameter family of solutio
asymptotic to this at both large and small values ofuzu @33#.
Solutions with 21/3,a,1 are probably unphysical be
cause the mass is negative and they are also tachyoni
0,a,1. Solutions with21,a,21/3 avoid these unsat
isfactory features. Although such equations of state vio
the strong energy condition, they could could well arise
the early Universe due to inflation or particle production
fects. Such models may be related to the growth ofp.0
bubbles formed at a phase transition in ap,0 cosmological
background@34#. Note that this is the only context in whic
we will consider negative values ofa.

The third class of models are related to the self-sim
static model. There is just one exactly static self-similar
lution for each ~positive! value of a @35# and there is a
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1-parameter family of solutions asymptotic to this at lar
values of uzu. However, we will show that there is also
2-parameter family of solutions which are asymptotica
‘‘quasi-static’’ in the sense that they have an isothermal d
sity profile at large values ofuzu. Such solutions exist even in
the dust case, although there is then noexactstatic solution
@13#. A crucial feature of these solutions is that each one m
span both positive and negative values ofz, whereas each
solution of the other types is confined to either positive
negativez. Such solutions can be regarded as inhomo
neous big bang models in which the initial or final singula
ity occurs at a finite~rather than infinite! value ofz. Some of
them expand or collapse monotonically; these necessa
have a sonic point and may be attached to an asymptotic
Friedmann solutions in the subsonic regime. Others exp
and then recollapse; these remain supersonic everywhere
contain two singularities at finitez, one of which may be
naked. Some asymptotically quasi-static solutions have b
studied before@19,36#. In particular, they may be associate
with the occurrence of naked singularities@37# and the tran-
sonic ones are also associated with critical phenomena
a,0.28 @10#. However, the precise relationship of these s
lutions to the more general quasi-static family has not b
discussed before.

The fourth class of solutions, which only exist fora
.1/5, are asymptotically Minkowski and have not been p
viously analyzed at all. They were originally found nume
cally by Goliath et al.@18# and this led us to ‘‘predict’’ them
analytically. There are actually two such families and th
are described in more detail elsewhere@10#. Members of the
first family are described by one parameter and are asy
totically Minkowski asuzu→`; members of the second fam
ily are described by two parameters and are asymptotic
Minkowski asz tends to some finite value~though this cor-
responds to an infinite physical distance unlessa51). As
with the asymptotically Friedmann and asymptotically qua
static solutions, these may be either supersonic everyw
~in which case they contain a black hole or naked singu
ity! or attached toz50 via a sonic point~in which case they
are asymptotically Friedmann or exactly static at smalluzu).
The transonic ones are associated with critical phenom
for a.0.28 @10#.

The plan of this paper is as follows. In Sec. II we w
introduce the relevant equations and discuss the crucial
of the sonic point. In Sec. III we will analyze the possib
behaviors at large and small distances from the origin, e
phasizing the key role played by the power-law and lo
power-law solutions. In Sec. IV we will describe the fu
family of solutions, with special emphasis on tho
asymptotic to the Friedmann, Kantowski-Sachs and static
lutions. We will show that many of their features in the s
personic regime can be understood by using the insig
gained from the dust solutions, although some of the so
tions have no analogue in the dust case. We make some
remarks in Sec. VI, qualifying the sense in which our cla
sification is ‘‘complete.’’ Some technical issues are cover
in the Appendixes.
3-3
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II. SPHERICALLY SYMMETRIC SIMILARITY
SOLUTIONS

In the spherically symmetric situation one can introduc
time coordinatet such that surfaces of constantt are orthogo-
nal to fluid flow lines and comoving coordinates (r ,u,f)
which are constant along each flow line. The metric can t
be written in the form

ds25e2n dt22e2l dr22R2 dV2, dV2[du21sin2u df2

~2.1!

wheren, l andR are functions ofr andt. For a perfect fluid
the Einstein equations are

Gmn58p@~m1p!UmUn2p gmn# ~2.2!

where m(r ,t) is the energy density,p(r ,t) the pressure,
Um5(e2n,0,0,0) is the comoving fluid 4-velocity, and w
choose units in whichc5G51. The equations have a firs
integral

m~r ,t !5 1
2 RF11e22nS ]R

]t D 2

2e22lS ]R

]r D 2G ~2.3!

and this can be interpreted as the mass within comov
radiusr at time t:

m~r ,t !54pE
0

r

mR2
]R

]r 8
dr8. ~2.4!

Unlessp50, this quantity decreases with increasingt be-
cause of the work done by the pressure. One can also exp
it as

m~r ,t !54pE
0

t

pR2
]R

]t8
dt8 ~2.5!

and this is the more appropriate expression when there i
spatial origin~as in the Kantowski-Sachs solution!. Eq. ~2.3!
can be written as an equation for the energy per unit mas
the shell with comoving coordinater:

E[
1

2
U22

m

R
, U[e2nS ]R

]t D . ~2.6!

This can be interpreted as the sum of the kinetic and po
tial energies per unit mass. Only in thep50 case isE con-
served along fluid flow lines.

By a spherically symmetric self-similar solution we sh
mean one in which the spacetime admits a homothetic K
ing vectorj that satisfies

jm;n1jn;m52gmn . ~2.7!

This means that the solution is unchanged by a transfor
tion of the formt→at, r→ar for any constanta. Solutions
of this sort were first investigated by Cahill and Taub@1#,
who showed that by a suitable coordinate transforma
they can be put into a form in which all dimensionless qu
tities such asn, l, E and
04402
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R
, P[pR2, W[mR2 ~2.8!

are functions only of the dimensionless variablez[r /t. Then
we have

]

]t
52

z2

r

d

dz
,

]

]r
5

z

r

d

dz
, ~2.9!

so the field equations reduce to a set of ordinary differen
equations inz. Another important quantity is the function

V~z!5el2nz, ~2.10!

which represents the velocity of the surfaces of constanz
relative to the fluid. These surfaces have the equationr 5zt
and therefore represent a family of spheres moving thro
the fluid. The spheres contract relative to the fluid forz,0
and expand forz.0. This is to be distinguished from th
velocity of the spheres of constant R relative to the fluid:

VR52el2nS ]R/]t

]R/]r D . ~2.11!

This is positive if the fluid is collapsing and negative if it
expanding. Special significance is attached to values ofz for
which uVu51 and uVRu51. The first corresponds to
Cauchy horizon~either a black hole event horizon or a co
mological particle horizon!, the second to a black hole o
cosmological apparent horizon. We show shortly that the
istence of an apparent horizon is also equivalent to the c
dition M51/2.

The only barotropic equation of state compatible with t
similarity ansatz is one of the formp5am (21<a<1).
As discussed by Carr and Yahil@29#, whose analysis we now
follow, it is convenient to introduce a dimensionless functi
x(z) defined by

x~z![~4pmr 2!2a/(11a). ~2.12!

@Note that the factor of 4p is omitted in the definition ofx
given by Carr and Yahil but it is required for consisten
with eq. ~2.3!.# The conservation equationsTmn

;n50 can
then be integrated to give

en5bxz2a/(11a), ~2.13!

e2l5gx21/aS2, ~2.14!

whereb andg are integration constants. The remaining fie
equations reduce to a set of ordinary differential equation
x andS:

S̈1Ṡ1S 2

11a

Ṡ

S
2

1

a

ẋ

x
D @S1~11a!Ṡ#50, ~2.15!

S 2ag2

11a DS41
2

b2

Ṡ

S
x(222a)/az(222a)/(11a)2g2S4

ẋ

x S V2

a
21D

5~11a!x(12a)/a, ~2.16!
3-4
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M5S2x2(11a)/aF11~11a!
Ṡ

S
G , ~2.17!

M5
1

2
1

1

2b2
x22z2(12a)/(11a)Ṡ22

1

2
g2x2(2/a)S6S 11

Ṡ

S
D 2

,

~2.18!

where the velocity function is given by

V5~bg!21x(12a)/aS22z(12a)/(11a) ~2.19!

and an overdot denoteszd/dz. The other velocity function is

VR5
VṠ

S1Ṡ
, ~2.20!

while the energy function is

E5
1

2
g2x2(2/a)S6S 11

Ṡ

S
D 2

2
1

2
~2.21!

and this always exceeds21/2. Equation~2.18! can then be
written in the form

M5
1

2
1S E1

1

2D ~VR
221!, ~2.22!

so the conditionM51/2 is equivalent to the conditionuVRu
51 ~corresponding to an apparent horizon!. The special case
E521/2 corresponds to the Kantowski-Sachs solution,
which VR diverges andMÞ1/2.

We can best envisage how these equations generate
tions by working in the 3-dimensional (x,S,Ṡ) space@29#.
At any point in this space, for a fixed value ofa, Eqs.~2.17!
and~2.18! give the value of z; Eq.~2.16! then gives the value
of ẋ unlessuVu5Aa and Eq.~2.15! gives the value ofS̈.
Thus the equations generate a vector field (ẋ,Ṡ,S̈) and this
specifies an integral curve at each point of the 3-dimensio
space. Each curve is parametrized byz and represents on
particular similarity solution. This shows that, for a give
equation of state parametera, there is a 2-parameter famil
of spherically symmetric self-similar solutions.

In (x,S,Ṡ) space the sonic conditionV5Aa specifies a
2-dimensional surface because Eqs.~2.17! to ~2.19! allow
one to expressṠ in terms of x and S. The same surface
corresponds to the conditionV52Aa. Where a curve inter-
sects this surface, Eq.~2.16! does not uniquely determineẋ,
so there can be a number of different solutions pass
through the same point. However, integral curves inters
uVu5Aa in a physically reasonable manner only if

S 2ag2

11a DS41
2

b2

Ṡ

S
x(222a)/az(222a)/(11a)5~11a!x(12a)/a,

~2.23!

since otherwise the value ofẋ and hence the pressure, de
sity and velocity gradient diverge there. Since Eq.~2.23!
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corresponds to another 2-dimensional surface in (x,S,Ṡ)
space, this will intersect the surfaceuVu5Aa on a lineQ.
Only integral curves which hit the sonic surface on this li
are ‘‘regular’’ in the sense that they can be extended bey
there. ~All other solutions would have to contain shoc
waves.! From each point on this line there will be regul
integral curves with decreasing and increasingz. One can
join any member of the first kind to any member of th
second kind to obtain a complete self-similar solution.

Physically reasonable solutions cannot have an arbit
value ofẋ at uVu5Aa. If we requireẍ to be finite there, then
the equations permit just two values ofẋ at each point of the
line Q and there will then be two corresponding values ofV̇.
If these values are complex, corresponding to afocal point,
then the solutions will spiral around the sonic point and
unphysical. If they are real, at least one of the values oV̇
must be positive. If both values ofV̇ are positive, corre-
sponding to anodalpoint, then the smaller ‘‘primary’’ one is
associated with a 1-parameter family of solutions, while
larger ‘‘secondary’’ one is associated with an isolated so
tion. If one of the values ofV̇ is negative, corresponding to
saddlepoint, then both values are associated with isola
solutions. This behavior has been analyzed in detail by s
eral authors@14,19,28,29#.

One can show that there is a 1-parameter family of re
lar solutions~i.e. a node! only on a restricted part of the line
Q and, in theV(z) diagram, this corresponds to two rang
of values foruzu. For positivez, one range (z1,z,z2) lies to
the left of the Friedmann sonic pointzF and includes the
static sonic pointzS ; the other goes from some valuez3 to
infinity and includeszF . There is a saddle point forz,z1
and a focal point forz2,z,z3. These features are indicate
in Fig. 1~a!. The values ofz1 , z2 andz3 can be expressed in
terms ofa but the expressions are complicated, so we do
give them explicitly. The ranges fora51/3 are indicated in
Fig. 1~b!; in this case,z35zF andz25zS . Generally one has
z2,zS,z3 andzF.z3.

We will argue later that any solutions described by ju
one parameter asymptotically~and this includes all the solu
tions fromz50) must hit the sonic line in the nodal range
and these will be physical only for certain bands of para
eters. On each side of the node,V̇ may have either of its two
possible values. If one chooses different values forV̇, there
will be a discontinuity in the pressure gradient, so the so
tion will be C0. If one chooses the same value, there m
still be a discontinuity in the second derivative ofV, in which
case the solution will beC1. Only the isolated solution and
single member of the 1-parameter family of solutions at e
node are analytic. Solutions described by two parameter
large uzu may also hit the sonic line in the saddle rang
These would necessarily be analytic at the sonic point
not generally physical in the subsonic region. In the case
shockV would itself be discontinuous.

III. ASYMPTOTIC BEHAVIOR OF SELF-SIMILAR
SOLUTIONS

The key step in providing a complete classification
spherically symmetric perfect fluid self-similar solutions
3-5
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an analysis of their possible asymptotic behaviors and
now present this. For simplicity we will assumez.0
throughout this section but the analysis can be trivially
tended to thez,0 case. We will also assumea.0 except in
the Kantowski-Sachs case. The full technicalities of
asymptotic analysis are presented elsewhere@20#. For present
purposes it suffices to note that all self-similar solutions
pend on powers ofz at large and small values ofuzu or on
powers of lnuzu at finite z. The last possibility arises becaus
a finite value ofz may sometimes correspond to zero
infinite physical distance. In this section we will identif
these asymptotic states explicitly. We will show that the
are threeexactpower-law solutions: the flat Friedmann s

FIG. 1. This shows the form ofV(z) for the exact Friedmann
~F!, static~S! and Kantowski-Sachs~KS! solutions for~a! the gen-
erala,1/3 case and~b! thea51/3 case. Also shown are the son
lines uVu51/Aa ~dotted! and the range of values ofz ~bold! in
which one has a nodal sonic point (z1,z,z2 andz.z3). Solutions
described by one parameter~in particular, all subsonic ones! can
only be regular if they cross the sonic line in this range. The c
dition M50 corresponds to two curves in theV(z) diagram fora
51/3 andM is negative in the shaded region between these lin
04402
e
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e
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lution, a Kantowski-Sachs solution and a static solution. W
will also show that, fora.1/5, there are solutions which
asymptote to the Minkowski solution at either infinite or
nite z. Finally there are solutions whose origin correspon
to a singularity at finitez. The validity of these results is
confirmed by dynamical systems analyses@15,17,18#. In par-
ticular, the existence of the monotone and Dulac functio
found in these analyses forbids the existence of periodic
bits and limit cycles and thereby excludes other poss
asymptotic behaviors.

A. Power-law similarity solutions

In order to find the asymptotically ‘‘power-law’’ solution
explicitly, we look for solutions to the field equations of th
form

x5xoza, S5Sozb ~3.1!

wherexo , So , a and b are constants. Note thatṠ/S5b and
ẋ/x5a. Equation~2.15! is satisfied if

a5
ba@3~b11!1a~3b11!#

~11a!@11~11a!b#
. ~3.2!

The factor@11(11a)b# cannot be zero since this would b
inconsistent with Eqs.~2.17! and~2.18!. Equation~2.16! can
then be written in the form

Azp1Bzq1C50 ~3.3!

where

A[
b@~a21!1~11a!~2a21!b#

b2~11a!@11~11a!b#
x0

2(12a)/aS0
24 ,

B[2~11a!x0
(12a)/aS0

24 ,

C[
ag2~b11!@213b~11a!#

~11a!@11~11a!b#
~3.4!

and the exponents are

p[2aS 12a

a D24b12S 12a

11a D , q[aS 12a

a D24b.

~3.5!

Since B cannot be zero, there are three ways in which
~3.3! can be satisfied to leading order asz→0 or z→` and
we discuss these in turn. The first two cases correspon
solutions which satisfy the equationsexactly but the third
case only leads to asymptotic solutions.

p5q, A1B50. In this case, the conditionp5q implies

a52
2a

11a
~3.6!

and the conditionA1B50 implies

-

.
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xo
(12a)/a5

1

2
b2F ~11a!2

b~11a!11G . ~3.7!

Equation~3.2! then requires

b521 or 2
2

3~11a!
~3.8!

and both values lead toC50 from Eq.~3.4!. Since Eq.~3.3!
is satisfied exactly, there are no approximate solutions w
CÞ0.

The choiceb522/@3(11a)# corresponds to the fla
Friedmann model. In this case, Eqs.~2.17! and ~2.18! are
satisfied if

xo
(a21)/a5

2

3b2~11a!2
, g2So

6xo
22/a5

9~11a!2

~113a!2
,

~3.9!

and one can choosexo5So51 providing one scales ther
and t coordinates such that

b5
A2

A3~11a!
, g5

3~11a!

~113a!
. ~3.10!

This gives

x5z22a/(11a), S5z22/[3(11a)] ~3.11!

and the metric becomes

ds25b2 dt22g22z24/[3(11a)] dr2

2r 2(113a)/[3(11a)] t4/[3(11a)]dV2. ~3.12!

One can put it in a more familiar form by making the coo
dinate transformation

t̂5bt, r̂ 5b22/[3(11a)]r (113a)/[3(11a)] , ~3.13!

which gives

ds25d t̂22 t̂4/[3(11a)]@dr̂21 r̂ 2dV2#. ~3.14!

This is just the flat Friedmann solution withp5am. We also
have

m5
1

4pt2
, V5S 113a

A6
D z(113a)/[3(11a)] ,

~3.15!
M5 1

3 z2(113a)/[3(11a)] .

The solutions asymptotic to this are discussed in Sec. IV
The choice b521 corresponds to the self-simila

Kantowski-Sachs~KS! model. This is compatible with Eq
~3.7! providing

b252
2a

~11a!2
xo

(12a)/a . ~3.16!
04402
th

.

From Eqs.~2.17! and ~2.18! we also require

So
2xo

2(11a)/a5
2a

~11a!224a2
. ~3.17!

Equation~3.17! shows that we cannot takexo5So51 in this
case but bothxo andSo are determined in terms ofa andb.
The constantg is not constrained at all. If we takeb andg
to have the values given by Eq.~3.10! for a,0 andi times
those values fora.0, so that we have the samer and t
scaling as in the Friedmann solution, then Eqs.~3.16! and
~3.17! give

x05S 1

3uau D
a/(12a)

,

~3.18!

S0
25

2a

~113a!~12a! S 1

3uau D
(11a)/(12a)

.

@Carr and Koutras@33# do not incorporate thei factors for
a.0 but this is a less sensible normalization since it allo
the metric to be complex.# We now have

S5S0z21, x5x0z22a/(11a) ~3.19!

and the metric is

ds25b2x0
2dt22g22x0

2/aS0
24z4a/(11a)dr22S0

2t2dV2.
~3.20!

The t coordinate is spacelike and ther coordinate is timelike
for a.0 because of thei factors inb andg. For 21/3,a
,0, t and r have their usual interpretation but, from E
~3.18!, the circumferential coordinate is timelike sinceSo is
imaginary. One can put the metric in a more familiar form
making the coordinate transformation

t̂5bx0t, r̂ 5g21~bx0!2a/(11a)x0
1/aS0

22 r (113a)/(11a),
~3.21!

which gives

ds25d t̂22 t̂24a/(11a)dr̂22~S0 /bx0!2 t̂2dV2. ~3.22!

This corresponds to a KS solution withp5am. We also
have

mt25
1

4p S 1

3uau D
(11a)/(a21)

,

V52
~12a!~113a!2~3uau!2a/(12a)

2A6a
z(113a)/(11a),

~3.23!

M5
2a2

~a21!~3a11!
[MKS .

V is negative for 0,a,1 ~corresponding to tachyonic solu
tions!, while M is negative for21/3,a,1 ~corresponding
to negative mass solutions!. Presumably only solutions with
3-7
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a,21/3 are physical. Note that Eq.~2.4! does not apply in
this case because there is no well-defined origin; Eq.~3.19!
implies thatR is independent ofr, so everything is on a shel
Instead the value ofm must be interpreted as the mass of t
whole Universe at timet, as indicated by Eq.~2.5!. The
solutions asymptotic to KS are discussed in Sec. IV C.

q50, B1C50. In this case, Eqs.~3.2! and ~3.5! imply
that the only consistent solution fora.0 andV.0 is

a5b50, ~3.24!

i.e. x and S are constant.@The conditionq50 permits an-
other value ofb but this leads to negativeC for a.0, so that
the conditionB1C50 cannot be satisfied.# Equation~3.24!
implies thatA is zero and hence Eq.~3.3! is satisfied identi-
cally, so there are no approximate solutions withAÞ0. The
conditionB1C50 also requires

So
25

113a

A18a
xo

(12a)/2a ~3.25!

for a.0. This corresponds to the exact self-similar sta
solution, with the metric being given by
at

It

ar

th

of

r
ic

S
t

04402
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ds25b2xo
2z4a/(11a)dt22g22xo

2/aSo
24dr22r 2So

2dV2.
~3.26!

This can be put in an explicitly static form

ds25 r̂ 4a/(11a)d t̂22g22xo
2/aSo

26dr̂22 r̂ 2dV2 ~3.27!

by introducing the variables

r̂ 5rSo , t̂5S 11a

12a DbxoSo
22a/(11a)t (12a)/(11a).

~3.28!

The other relevant functions are

m5xo
2(11a)/a~4pr 2!21,

~3.29!

V5A3axo
(12a)/2az(12a)/(11a), M5

2a

116a1a2
.

If b andg have the same values as in the Friedmann so
tion, corresponding to the same coordinate scaling, then E
~2.17!, ~2.18! and ~3.25! imply that xo andSo are given by
xo5F ~113a!~116a1a2!

3~2a!3/2 G 2a/(113a)

, So5F ~116a1a2!(12a)/2~a11/3!11a

2a G1/(113a)

, ~3.30!
so there is only one static solution for each equation of st
This has been discussed by several authors@29,35,38#. Note
that Eq.~2.20! implies thatVR50 in this case, as expected.
should be stressed that there is no static solution in thedust

case, essentially because one cannot put theẋ/a term in Eq.
~2.15! to zero. The solutions asymptotic to the static one
discussed in Sec. IV D.

Note that there is an interesting connection between
static and KS solutions: if one interchanges ther andt coor-
dinates in metric~3.26! and also changes the equation
state parameter to

a852
a

112a
, ~3.31!

one obtains the KS metric~3.20!. For a static solution with a
normal equation of state (1.a.0), a8 must lie in the range
21/3 to 0, so some negative pressure KS solutions are
lated to positive pressure static ones. However, the phys
KS solutions with21,a8,21/3 correspond touau.1 and
so do not give physical static solutions. Note thata5a8
only for a50 or a521. The mass of both the static and K
solutions tends to 0 asa→0, although the solutions do no
exist in the limita50 itself.

If one permitsV to be negative, withb2 andg2 reversing
their sign, as in the KS solution, then the conditionsq50
andB1C50 lead to another solution asz→` with
e.

e

e

e-
al

a52
4a~a216a11!

~7a11!~12a2!
, b52

~a216a11!

~7a11!~11a!

~3.32!

providing

So
25xo

(12a)/2aA~7a11!~12a!

18a
. ~3.33!

This implies thatS→0 andmr 2→`. One also has

V;z2(3a11)2/[(7a11)(11a)] ,
~3.34!

M;z2(3a11)(a216a11)/[(7a11)(12a2)] ,

so V→0 and M→`. This limiting behavior arises in the
discussion of Sec. IV C.

p50, A1C50. The conditionp50 implies

b5
1

2 S 12a

a Da1
1

2 S 12a

11a D ~3.35!

and Eq.~2.19! then requires thatV tend to the finite value

V* 5b21g21xo
(12a)/aS0

22 . ~3.36!

The conditionA1C50 now implies
3-8
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a5
V

*
2 ~12a!12a

~V
*
2 21!~11a!

, b5
~12a!~V

*
2 1a!

2a~11a!~V
*
2 21!

,

~3.37!

while Eq. ~3.5! yields

q5
~12a!V

*
2

a~12V
*
2 !

. ~3.38!

It should be emphasized that, sinceBÞ0 from Eq.~3.4!, this
does not lead to anexactsolution.

Equation~3.38! is only a consistent solution of Eq.~3.3!
for large z if V

*
2 .1 and for smallz if V

*
2 ,1. In the latter

case, Eq.~3.37! implies that botha andb are negative, so the
density goes to infinity and the scale factor goes to ze
However, Eq.~2.17! gives negative values ofM ~and hence
unphysical solutions! unlessV

*
2 ,a and this last condition

will also turn out to be inconsistent. We therefore focus
theV

*
2 .1 case. Equation~3.34! then implies that botha and

b are positive, so the density goes to zero and the scale fa
goes to infinity. Equation~2.17! gives

M;S V22a

V221
D z2[V

*
2 (12a)1113a]/(V

*
2

21)(11a) ~3.39!

and this necessarily tends to zero asz→`. @The coefficient
has been included to demonstrate that the mass is neg
for 1.V

*
2 .a.# On the other hand, Eq.~2.18! implies

M2
1

2
;z[V

*
2 (12a)2a(113a)]/(V

*
2

21)a(11a)

3@b2~V
*
2 21!22b21#. ~3.40!

If the exponent ofz in this expression is positive,M→0 as
z→` only if the term in square brackets does and this
quiresb51/(V* 21). Equation~3.37! then gives a quadratic
equation forV* :

~12a!V
*
2 22a~11a!V* 2a~113a!50 ~3.41!

with the real positive solution

V* 5
a~11a!1Aa~a32a213a11!

12a
. ~3.42!

Note that Eq.~3.41! implies that the exponent ofz in Eq.
~3.40! is indeed positive~as assumed!. Also V* decreases
from ` to Aa asa decreases from 1 to 0, which preclud
V* ,Aa, so there are no subsonic solutions of this kind
z→0. The value ofV* given by Eq.~3.42! exceeds 1~as
required! only for a.1/5, so these solutions do not exist
the dust case. In the special casea51/3, V* 5(21A13)/3
51.9.

Equations~3.36! and ~3.42! impose a relationship be
tweenx0 andS0, so these solutions are described by just o
independent parameter. Requiring that the right-hand sid
04402
o.

n

tor
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e
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Eq. ~3.40! tends to21/2 asz→` merely determines the
second order terms in the expansions forx andS. The metric
has the asymptotic form

ds2;z2V
*
2 /(V

*
2

21)dt22z2/(V
*
2

21)dr22r 2z2/(V
*

21)dV2

~3.43!

and this can be reduced to the Minkowski form with a su
able change of coordinates@10#. The leading terms in the
components of the Ricci tensor are given by

Rt
t;Rr

r;Ru
u;Rf

f;r 22V
*
2 /(V

*
2

21). ~3.44!

These always decrease at least as fast asr 22 asr→` and the
fall-off becomes arbitrarily fast asa→1/5. Although MS
→0 asz→`, it does so slower thanz21, so that the mass
itself (m5rMS) diverges. Since Eq.~3.42! implies V* →`
in the limit a→1, Eq.~3.43! then reduces to the static metr
@cf. Eq. ~3.26!#. One can also see this from Eq.~3.37!, which
implies a5b50 in this limit, so the scale factor no longe
diverges and the density no longer goes to zero.

The forms ofV(z) for the Friedmann, static and KS so
lutions are shown in Fig. 1~a! for the generala,1/3 case
and in Fig. 1~b! for the a51/3 case. Note that the expone
of z is smaller for the Friedmann solution than the sta
solution if a,1/3, so the Friedmann velocity is smaller a
z→` but larger asz→0. For a.1/3, the situation is re-
versed. The exponents are the same fora51/3 and the
Friedmann velocity is always smaller. The asymptotica
Minkowski solutions fora.1/5 are not included since the
are notexact~viz. Minkowski has no matter!. Note also that
the Minkowski solution, although static, is distinct from th
exact self-similar static solution given by Eq.~3.26!.

A rather peculiar feature of the similarity solutions, whic
arose in the context of the KS model, is that the mass can
negative. This may seem unphysical but—in the context
the big bang model—Miller@39# has given a possible inter
pretation of this in terms of ‘‘lagging’’ cores. In thea
51/3 case~andonly this case!, Carr and Koutras@33# show
that there is a curve in theV(z) diagrams whereM50:

V352A3/2 z3/2~V221/9! ~3.45!

and this is also shown in Fig. 1~b!. One sees that the curv
has asymptotes atV561/3. The upper part~with V.1/3) is
relevant for asymptotically Friedmann solutions, while t
lower part~with V,21/3) is relevant for asymptotically KS
solutions.M is negative in between the two parts and th
region includes KS itself~as expected!. Note that Eq.~3.45!
is not asufficientcondition forM50; it implies that M has
two possible values, only one of which is zero.

B. Logarithmic power-law similarity solutions

By analogy with Eq.~3.1! we now look for solutions in
which z tends to some finite valuez* and in which

x5x0uLua, S5S0uLub, L[ ln~z/z* ! ~3.46!
3-9
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for constantsx0 and S0. ~The modulus signs are require
sinceL may be negative and may appear with fractional
ponents.! Clearly z5z* corresponds to an infinite distanc
from the origin forb,0 and zero distance forb.0. Equa-
tion ~2.15! requires

bF3b212S 11a

a DaG1F S 31a

11a Db2
a

aGL50 ~3.47!

and the leading term is zero only for

b5
1

3
1S 11a

3a Da. ~3.48!

It turns out that the last term in Eq.~3.47! is never zero, so
these are only asymptotic and not exact solutions. There
now two possible situations, according to whetherV tends to
infinity or some constant valueV* .

V→V* asz→z* . In this case, Eq.~2.16! can be written
in the form

aL215
2V2ab

~V22a!
L211

2a2

~11a!~V
*
2 2a!

2
a~11a!b2V

*
2

V
*
2 2a

z
*
22(12a)/(11a)~x0uLua!(a21)/a

~3.49!

where the first term containsV rather thanV* because the
factor (V22V

*
2 )L21 may go to a constant asz→z* . The

only consistent solution to this equation has the last te
tending to zero~i.e. a,0) and this then implies

a5S 2V
*
2 a

V
*
2 2a

D b. ~3.50!

However, Eq~2.19! also implies

a5S 2a

12a Db, ~3.51!

so we requireV
*
2 51. Equations~3.48! and~3.51! determine

a andb and lead to

S'S0uLu(12a)/(125a), x'x0uLu2a/(125a). ~3.52!

Thus the scale factor diverges and the density goes to
providing a.1/5. @The scale factor goes to zero and t
density diverges fora,1/5 but these solutions would hav
negative mass~see below!, so we neglect them.# The condi-
tion V* 51 gives a relationship between the constantsx0 , S0
andz* from Eq. ~2.19!, so these solutions are described
two independent parameters.

Equation~2.17! now implies

M;S 12a

5a21D uLu(12a)/(5a21), ~3.53!
04402
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so this is zero atz5z* . @The coefficient demonstrates th
the mass would be negative fora,1/5.# One also requiresz
to tend toz* from belowelseM would be negative. Equation
~2.18! can be written as

M5
1

2
1

1

2
g2x22/aS6H S Ṡ

S
D 2

~V221!2
2Ṡ

S
21J .

~3.54!

Since x22/aS6;uLu2(3a21)/(5a21) goes to infinity for a
,1/3 and zero fora.1/3, one requires the term in curl
brackets in Eq.~3.54! to go to zero and infinity, respectively
in these two cases. However, the last term in Eq.~3.54! can
also be written as

;uLu(a21)/(5a21)F Ṡ

S
~V221!222

S

Ṡ
G . ~3.55!

Since the exponent ofuLu is negative, we need the term i
square brackets to go to zero for alla and to scale as
uLu(12a)/(5a21). Therefore one always requires

Ṡ

S
~V221!→2 ~3.56!

and Eqs.~2.19! and ~3.49! then imply

V̇

V
→ 125a

12a
,0, ~3.57!

where we have used the approximation

V2

V22a
'

1

12a F12S a

12a D ~V221!G . ~3.58!

However, the way in which condition~3.56! is satisfied de-
pends on the value ofa and requires a higher order analys
In general, we can write

S'S0uLub~11AuLuk1CL!, x'x0uLua~11BuLuk1DL !
~3.59!

wherea andb are given by Eq.~3.52! and (k,A,B,C,D) are
constants to be determined. Equations~3.53! and ~3.54! im-
pose a relationship of the form

O~ uLu(12a)/(5a21)!511O~ uLu(a21)/(5a21)!

3F Ṡ

S
~V221!222

S

Ṡ
G ~3.60!

and matching the exponents ofuLu implies k5(12a)/(5a
21). For a.1/3, one hask,1 and so the leading term in
Eq. ~3.59! goes likeLk. For a,1/3, one hask.1, so it goes
like L. In both cases, inserting the expressions forS and x
given by Eq.~3.59! into Eq. ~3.60! uniquely determines the
constants (A,B,C,D) but does not impose any further rela
tionship betweenx0 , S0 andz* .
3-10



es

in

ur

y
s

ris
l,

al
ild

e
o

ni
ca

B
-

ha

elf-
ow
le
i-

ble
,
s
nd
t

eck
ill
ns
ed

ly

-
m-
totic
the

ter-
r in
lts
s.
rre-

har-
lar

rge
n

of

is

he

big
n
d

-

ust

COMPLETE CLASSIFICATION OF SPHERICALLY . . . PHYSICAL REVIEW D62 044023
In order to understand the physical significance of th
solutions, we note that the metric can be written as

ds2;uLu4a/(125a)@dt22dr22r 2uLu2(3a21)/(5a21)dV2#.
~3.61!

A calculation of the Ricci tensor then shows that the lead
terms are given by

Rt
t;Rr

r;Ru
u;Rf

f;r 22~z2z* !2(12a)/(5a21). ~3.62!

For 1/5,a,1, the curvature goes to zero asz→z* , so
these solutions are flat along the limiting similarity hypers
face; this hypersurface is null sinceV* 51. Althoughr tends
to a finite value for finitet, this is just a coordinate anomal
since Eq.~3.52! implies that the physical distance diverge
For a51/3, Eq.~3.61! implies that the metric is conformally
flat. In this case, one can understand these features as a
because the metric resembles the open Friedmann mode
that it can be transformed to Minkowski form asz→z* with
a new choice of time-slicing~as in the Milne model!. These
solutions can therefore be regarded as asymptotic
Minkowski or, more precisely, asymptotically Schwarzsch
since Eqs.~3.52! and ~3.53! imply that m5MSr tends to a
constant. They are discussed further elsewhere@10#. Note
that Eq.~3.52! shows that the scale factor no longer diverg
at z* in the limit a51, although the density still goes t
zero.

V→` asz→z* . In this case, Eq.~2.16! can be written in
the form

aL2152abL212a~11a!b2z
*
22(12a)/(11a)

3~x0uLua!(a21)/a. ~3.63!

It is easy to show that the only consistent solution hasa
5a/(12a), so that all the terms scale asL21, and Eq.
~3.48! then impliesb52/@3(12a)#. Since

S'S0uLu2/3(12a), x'x0uLua/(12a), ~3.64!

the scale factor goes to zero and the density goes to infi
at z* , so this corresponds to a singularity at the physi
origin. Equation~2.17! also gives

M;uLu22/3(12a), ~3.65!

so M→` andMS tends to a constant atz5z* . In order for
the mass to be positive,z must also approachz* from above.
Note that Eq.~3.63! yields the same relation between A,
andz* as Eqs.~2.17! and ~2.18!, so these solutions are de
scribed by two independent parameters. Equations~2.13! and
~2.14! imply that the metric tends to

ds2;uLu2a/(12a)dt22uLu22/3(12a)dr22r 2L4/3(12a)dV2,
~3.66!

corresponding to a Schwarzschild-type singularity in t
gtt→0 andgrr →`.
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IV. SELF-SIMILAR SOLUTIONS WITH PRESSURE

Having derived the possible asymptotic behaviors of s
similar solutions at large and small distances, we can n
obtain the complete family of solutions by taking all possib
combinations. Apart from the asymptotically Kantowsk
Sachs solutions, which are confined toV,0 for 0,a,1
and therefore form a disjoint family, there are three possi
behaviors at large distances~associated with the Friedmann
static and Minkowski solutions! and three possible behavior
at small distances~associated with the Friedmann, static a
centrally singular solutions!. One might therefore expec
there to be nine types of solutions inV.0. However, six of
these would involve a sonic point, so one needs to ch
which of them could be regular there. In this section we w
first sketch the overall qualitative features of the solutio
and then consider some of them in more detail. We will ne
to consider both signs ofz since some families necessari
span both signs.

A. General characteristics of solutions

An important step in classifying the full family of self
similar solutions with pressure is a determination of the nu
ber of free parameters associated with each of the asymp
behaviors. Once this is known, one can deduce many of
qualitative features of the classification by simple parame
counting, so one of the purposes of the discussion late
this section is to determine this. We will anticipate the resu
of that discussion in our initial qualitative consideration
The supersonic and subsonic regimes, which usually co
spond to large and small values ofuzu respectively, will be
considered separately because they have very different c
acteristics. We will then discuss the asymptotically singu
regime.

Supersonic solutions

In the supersonic regime one might expect thea.0 so-
lutions to share some of the qualitative features of thea
50 ones. The arguments for this are partly physical~viz.
pressure effects should be unimportant on sufficiently la
scales! and partly mathematical~viz. the dust equations ca
be obtained from the generala equations by taking the limit
a→0). We will therefore start by recalling the behavior
the dust solutions@13#.

As in the generala case, the most general dust solution
described by two parameters. The first one~E! corresponds
to the energy, this being conserved~i.e. independent ofz) if
a50; the second one~D! specifies the value ofz at the
singularity which characterizes such models. T
1-parameter family of solutions withz.0 andD50 are in-
homogeneous cosmological models which expand from a
bang singularity atz5` and are asymptotically Friedman
at largez; models withE.0 are underdense and expan
faster than Friedmann, while those withE,0 recollapse to
black holes and contain another singularity. TheD50 solu-
tions with z,0 are just the time reverse of thez.0 ones.
The 2-parameter solutions withD.0 again represent inho
mogeneous models but they involve bothz,0 andz.0 re-
gimes and, while there is no exact static solution in the d
3-11
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case, they are asymptotically ‘‘quasi-static’’~in a sense to be
defined later! at large uzu. The solutions withE>0 either
expand monotonically from a big bang singularity atz5
21/D or contract monotonically to a big crunch singulari
at z511/D, whereas the ones withE,0 recollapse to or
expand from a second singularity. TheD,0 solutions con-
tain a shell-crossing singularity and are probably unphysi

The behavior of the dust solutions suggests that th
should exist at least two classes of self-similar solutions w
pressure at largeuzu: a 1-parameter family which are asym
totically Friedmann and a 2-parameter family which are
ymptotically quasi-static. We will show that there are inde
solutions of these kinds. However, we saw in Sec. III th
new possible behaviors arise at largeuzu when there is pres
sure. In particular, there is an exact static solution and
exact KS solution, so one might expect there to be fami
of solutions asymptotic to these. We will confirm that this
the case and demonstrate that each of the families is
scribed by one parameter at largeuzu. We also saw in Sec. III
that there is a 1-parameter and a 2-parameter family of
ymptotically Minkowski solutions fora.1/5.

Subsonic solutions

The inclusion of pressure obviously introduces quali
tively new features in the subsonic regime, so there are
portant differences from the dust solutions at small value
uzu. In particular, we have seen that the presence of a s
point at uVu5Aa allows solutions to be discontinous ther
so one might anticipate a wide variety of transonic beh
iors. However, the requirement that the solution beregular at
the sonic point~i.e. intersecting the sonic surface on the li
Q discussed in Sec. II, so that it has finite pressure grad
and no shock! severely restricts the behavior there. Furth
more, all physicalsubsonic solutions must reachz50 and
this will only be true for some subset of the regular ones.
will show that the only possible solutions at smalluzu are the
exact static model, a 1-parameter family of asymptotica
Friedmann~or ‘‘regular center’’! models and a 1-paramete
family of asymptotically KS models. In order to determin
which combination of supersonic and subsonic solutions
possible, we will use simple parameter-counting argume

We saw in Sec. II that from eachsaddlesonic point (z
,z1) there emanates just one transonic solution a
parameter-counting indicates that this is likely to be a me
ber of a family described by two parameters asymptotica
This means that such a solution is unlikely to reachz50
~since solutions are described by at most one param
there! and so unlikely to be physical in the subsonic regim
However, for any particular value ofa, parameter-counting
indicates that one could still expect a discrete subse
saddle point subsonic solutions to be physical; these wo
need to be analytic at the sonic point and probably memb
of a 2-parameter family in the supersonic regime~i.e. asymp-
totically quasi-static or Minkowski at largeuzu!. For some
range ofa, this includes the solution which arises in th
context of critical phenomena@10#.

From eachnodal sonic point (z1,z,z2 , z.z3) we saw
that there emanate both an isolated ‘‘secondary’’ solut
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and a 1-parameter family of ‘‘primary’’ solutions. The sam
considerations apply for the isolated solution as for
saddle point solution but parameter-counting indicates
the primary solutions could also contain a member of a fa
ily described by one parameter asymptotically. Thus in t
situation therecould be a physical solution in the subson
regime from each sonic point and this might also connec
a supersonic solution which is asymptotically Friedman
static or Minkowski asuzu→`. However, one finds that suc
solutions only exist for bands of values for the asympto
parameters, each band being characterized by the numb
oscillations in the fluid velocity in the subsonic regime@19#.
Since the static solution always has a nodal sonic point,
each value ofa one could also expect just one member
each 1-parameter family of supersonic solutions and
1-parameter subset of each 2-parameter family of such s
tions to match onto the static subsonic solution.

The nodal solutions would generally beC1 at the sonic
point. However, the isolated secondary solution and o
member of each band of primary solutions would also
analytic or at leastC`. Such solutions would generally hav
to connect to a member of a 2-parameter family in the
personic regime and would not reach the origin. However
in the case of a saddle point, one could still expect a disc
subset of them to connect to a member of a 1-param
family for a given value ofa. The only analytic solutions in
the first band are the Friedmann model~this being primary
for a,1/3 or secondary fora.1/3) and the general relativ
istic version of the Larson-Penston solution@7,19# for suffi-
ciently low a ~this always being secondary!. In the KS case
with a.0 there are only isolated solutions at the sonic po
since asymptotically KS solutions are described by one
rameter at both large and smalluzu, none of those hitting the
sonic surface are likely to be regular there.

These considerations make it clear that most regular s
tions emanating from a sonic point will not be physical in t
subsonic regime: this is just a consequence of the fact
the solutions passing throughz50 are described by one les
parameter than those emanating from the line Q. Most s
sonic solutions will either enter a negative mass regime@i.e.
in the a51/3 case they will cross the line given by E
~3.45!# or they will hit the sonic surface again but off the lin
Q. For the same reason, not all the solutions fromz50 will
reach the sonic surface on the line Q and even those tha
may not do so at a node. In this paper we will only focus
the physical solutions but it should be appreciated that
full solution space contains many other non-physical one

Singular solutions

Many of the self-similar solutions exhibit a central curv
ture singularity and this will then correspond to the physi
origin ~even though the value ofz may be non-zero!. Some
of the solutions containtwo singularities~with different signs
of z), one giving the origin fort,0 and the other fort.0.
As in the dust case, these singularities are generally cha
terized by the fact that the velocity functionV(z) goes infi-
nite and, sinceV tends either to infinity asuzu→` or to a
3-12
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COMPLETE CLASSIFICATION OF SPHERICALLY . . . PHYSICAL REVIEW D62 044023
supersonic valueV* asuzu→z* , this suggests that solution
containing them are likely to be supersoniceverywhere. For
if such a solution had a subsonic regime, it would need
cross the sonic surfacetwice, including once at a saddle poin
~whereV̇ may be negative and there are only isolated so
tions!, so parameter-counting makes it unlikely that such
solution could exist. The form of the dust solutions sugge
that the asymptotically singular solutions should be
scribed by two parameters, one being the value ofz at the
singularity itself (zS), and this was confirmed by the analys
in Sec. III. For each value ofzS , one could therefore expec
at most one of the solutions to be a member of a fam
described by one parameter at large distance; the rest w
have to be members of a family described by two para
eters. An interesting feature of the singular self-similar so
tions is that the singularity can be naked@19#. Note that there
are also solutions with ‘‘mild’’ singularities, in whichV does
not diverge. For example, the static solution contains a~na-
ked! central singularity atz50, even thoughV50 there.

The important conclusion of these qualitative consid
ations is that the large-distance behavior of solutions ‘
most’’ uniquely specifies their small-distance behavior. T
is necessarily the case for solutions which contain no so
point and, even if there is a sonic point, one can only ext
a supersonic solution into the subsonic regime in a sm
number of ways~if at all!. It is therefore convenient toclas-
sify the solutions according to their behavior at large d
tances alone. This gives four classes of solution and in
rest of this section we will consider these in turn. We w
start by discussing the characteristics of the asymptotic
Friedmann and asymptotically KS solutions. In this cont
we will be mainly reviewing the work of Carr and Yahil@29#
and Carr and Koutras@33# but we will extend these earlie
studies somewhat, explain some of their features in term
the results obtained in Sec. III and make the connection w
the dust solutions more explicit. We will then discuss t
asymptotically quasi-static solutions. The discussion h
will be mainly original, although some examples of this ty
of solution have been considered before@19,36#. The asymp-
totically Minkowski solutions are entirely new but will onl
be discussed briefly; they are treated in more detail e
where @10#. In each case we will present the form of th
functionsS(z) andV(z) since these have an obvious phy
cal significance. The form of the functionV(z) for all these
solutions is brought together in Fig. 6 for thea51/3 case.

B. Asymptotically Friedmann solutions

Carr and Yahil@29# consider solutions which are eithe
exactly or asymptotically Friedmann for large and small v
ues ofz. They therefore introduce functionsA(z) andB(z)
defined by

x[z22a/(11a)eA, S[z22/3(11a)eB. ~4.1!

~They assumez.0, as we do here; otherwisez must be
replaced byuzu in what follows.! The Friedmann solution
itself (A5B50) passes through the sonic line Q at
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zF5F A6a

113aG3(11a)/(113a)

. ~4.2!

For comparison the static solution passes through Q at

zS5F ~2a!3/23(5a21)/2(a21)

~113a!~116a1a2!
G (11a)/(113a)

~4.3!

and one can show that this is always less thanzF . In fact, the
only physical subsonic solution which passes throughzF is
the Friedmann solution itself. All the other solutions are u
physical because, asz decreases,V either reaches a minimum
and then hits the sonic surface again but off the lineQ or the
mass withinr goes negative. This was first demonstrated
Bicknell and Henriksen@26# but it is also a consequence o
the general considerations given in Sec. IV A. For since th
should only be one physical subsonic solution from ea
nodal point, this must be the Friedmann solution itself if t
point iszF . Since the only physical solution which is exact
Friedmann outside the sonic point is the Friedmann solu
everywhere, we henceforth confine attention to solution
which are asymptotically Friedmann.

We first consider the solutions which are asymptotica
Friedmann asz→` ~i.e. asr→` for fixed t or ast→0 for
fixed r ). The ordinary differential equations forx andS be-
come ordinary differential equations forA andB. If we lin-
earize these equations inA, Ȧ and Ḃ to find the 1st order
solution asz→`, Eqs.~2.15! and ~2.16! yield

B̈5S 1

3a D Ȧ2S 113a

11a D Ḃ, ~4.4!

Ḃ5S 1

2a D Ȧ2
~a21!

3a~11a!
A. ~4.5!

Differentiating the second equation and eliminatingḂ andB̈
then leads to the following differential equation forA:

Ä1
~9a21!

3~11a!
Ȧ1

2~113a!~a21!

3~11a!2
A50. ~4.6!

This has two solutions,

A;z22(113a)/3(11a) or A;z(12a)/(11a), ~4.7!

but the second one can be rejected since the expone
positive for a,1 ~so thatA diverges asz→`). The first
solution gives

A52
a~113a!

~11a!
kz22(113a)/3(11a),

~4.8!
B5B`2kz22(113a)/3(11a)

whereB`[B(`) and k are integration constants. Note th
A→0 asz→` because Eqs.~2.12! and ~4.1! show that the
asymptotic value ofA has physical significance~viz., the
asymptotic density perturbation! but there is no physical re
3-13
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FIG. 2. This shows the form of the functionV(z)2 for the asymptotically Friedmann solutions with a radiation equation of statea
51/3), with particular emphasis on the behavior at the sonic point. Solutions which are regular~irregular! at the sonic point are shown b
solid ~short-broken! lines, while black hole solutions~with no sonic point! are shown by long-broken lines. Only the first band of overde
solutions are shown. The curves are labeled byB` in the supersonic regime~with a spacing of 0.01 or 0.05! and byA0 in the subsonic regime
~with a spacing of 0.1!. There is a 1-parameter continuum of regular underdense solutions but the overdense solutions lie in discre
and are characterized by the number of oscillations they exhibit; just one solution in the first band is shown.
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striction onB` ~the asymptotic value ofB). The constants in
Eq. ~4.8! are related since Eqs.~2.17! and ~2.18! imply

k5
3~11a!~e22B`2e4B`!

2~113a!~513a!
. ~4.9!

Thus there is a 1-parameter family of asymptotically Frie
mann solutions.@Despite the presence of the parameterB` ,
these solutions are really asymptotic to theexactFriedmann
model, since one could formally gaugeB` to zero at infinite
~but not finite! z by taking a different spatial hypersurface#
From Eq.~2.21!, the energy function is

E5E1O~z24(113a)/3(11a)!, E5
1

2
~e6B`21!

~4.10!

where the asymptotic energyE is equivalent to the paramete
E which arose in the dust case. Equation~2.12! shows that
the solutions are overdense or underdense relative to
Friedmann solution according to whetherA,0 or A.0, re-
spectively. From Eqs.~4.9! and ~4.10!, this corresponds to
(k.0,B`,0,E,0) or (k,0,B`.0,E.0), respectively. In
the Friedmann case itself,k5B`5E50.

The form ofV(z) in these solutions is shown in the upp
part of Fig. 2, where the curves are labeled by the value
B` . The figure assumesa51/3 but retains the same qual
tative features for other values ofa. If B` is sufficiently
negative,V reaches a minimum valueVmin aboveAa as z
decreases and then rises again to infinity at the singula
04402
-

he

f

ty

(z5zS). The form of the solution nearzS is given by Eq.
~3.64!. There is a 1-parameter family of solutions for a giv
value of zS but presumably only one of these could be a
ymptotically Friedmann. Such solutions are supersonic
erywhere and contain black holes which grow as fast as
Universe. There is an event horizon and particle horizon p
viding Vmin,1 and this will apply ifB` is more than some
critical negative valueB*̀ ; otherwise the whole Universe i
inside the black hole. However, since Eqs.~2.15! and~2.17!
imply that Ṁ50 at Ṡ50 and Eq.~2.18! then impliesM
,1/2, we infer thatM always has a minimum below 1/2
Thus there is always anapparenthorizon; this generalizes
the result found in the dust case. For this reason, it is con
nient to regard the apparent horizon rather than the ev
horizon as defining the boundary of the black hole. The m
of the hole can then be taken to bemBH5(MSz)BHt,
whereas the mass of the singularity ismS5(MSz)St. Both
masses are initially zero and then grow ast.

As B` increases~i.e. as the asymptotic overdensity d
creases!, the values ofVmin andzmin decrease. Eventually i
reaches another critical negative valueB`

crit at which Vmin

5Aa and, forB`.B`
crit , the solutions must reach the son

surface. AsB` continues to increase, the value ofz at which
the solution goes transonic (zs) increases, passing throug
the value indicated by Eq.~4.2! whenB`50 and tending to
infinity asB` goes to infinity~corresponding to increasingl
underdense solutions!. All the solutions withB`.B`

crit reach
the sonic surface but only the ones which cut it on the lineQ
are regular. This applies ifzs lies within the rangesz1 to z2
3-14
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COMPLETE CLASSIFICATION OF SPHERICALLY . . . PHYSICAL REVIEW D62 044023
or abovez3 @indicated in Fig. 1#. Ȧ diverges at the sonic
point for values ofB` corresponding toz2,zs,z3.

We next consider the condition that the solution be
ymptotically Friedmann asz→0 ~i.e. ast→` for fixed r or
as r→0 for fixed t). Goliath et al.@17# describe these solu
tions as having a ‘‘regular center.’’ Since we requireS→`
and V→0 in the limit t→`, we needA and B to be finite,
which implies

Ȧ~0!5Ḃ~0!50. ~4.11!

Also m/r 5MS must be finite in the limitr→0, so we re-
quireM (0)50. ~This condition distinguishes these solutio
from the static one, which hasm/r→` as r→0.! Equation
~2.18! then implies

A~0!53aB~0!, ~4.12!

which shows that there is a 1-parameter family of solutio
which are asymptotically Friedmann atz50. We will take
this parameter to beA0[A(0). This is a measure of the
overdensity~either at the origin for fixedt or at late times for
fixed r ) since, from Eqs.~2.12! and ~4.1!,

A05F a

11aG logFmF~0!

m~0! G ~4.13!

where mF is the density in the Friedmann solution. Th
A0.0 andA0,0 solutions are underdense and overden
respectively. In contrast to the dust case, where the den
goes to zero atz50 for the (E.0) asymptotically Fried-
mann solutions, one always has a uniform density core
small z. Note that Eqs.~2.21! and~4.12! imply thatE→0 as
z→0.

For some range of values ofA0 the subsonic solutions
must hit the sonic surface in (x,S,Ṡ) space, since the solu
tion with A050 does, and regular solutions must hit it on t
line Q. However, the behavior of the subsonic solutions
more complicated than that of the supersonic ones. Thi
illustrated by the lower part of Fig. 2, where the curves
labeled by the value ofA0. As the parameterA0 decreases
from positive values to some critical negative valueA0

crit , zs

decreases continuously toz1. In this parameter range th
solutions withzs.z3 are regular at the sonic point, whil
those withz1,zs,z3 are all irregular.~The figure assume
a51/3, in which casez35zF , so one has a continuous fam
ily of underdense solutions but no overdense solutions wi
this range; for other values ofa, some of the overdens
solutions are also in the continuous range.! As A0 decreases
below A0

crit , the V(z) curves develop an inflexion andzs

increases again to the valuez2. The subsonic solutions thu
cross over each other inV(z) space. Although one does no
reach every value ofzs betweenz1 andz2, there is a band of
solutions within z1,z,z2 which are regular (C1) at the
sonic point. This corresponds to the first band of overde
solutions and is associated with just a small range ofA0
values.

As A0 decreases further,zs moves back and forth betwee
the valuesz1 andz2 and theV(z) curves exhibit an increas
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ing number of oscillations, although this is not shown in F
2. One can group these solutions into families according
the number of oscillations they exhibit. Each family contai
just a narrow band of solutions which are regular (C1) at the
sonic point and only one of these will be analytic there. T
band structure also arises in the Newtonian situation@40#. It
is possible that the non-analytic solutions are all unstable
what is termed the ‘‘kink’’ instability and form shocks@41#.
Note that all the overdense solutions are nearly static clos
the sonic point (z25zS if a51/3), although they deviate
from the static solution as they go towards the origin. As
number of oscillations increases, the static solution remai
good approximation ever closer to the origin.

Provided there are points onQ which are intersected by
solutions which are asymptotically Friedmann at both la
and smallz, one can construct a solution with a sound-wa
which represents a density perturbation growing at the sa
rate as the Universe. As discussed in Sec. IV A, one wo
expect this to be possible providing there is a 1-param
family of solutions at the sonic point, i.e. providingzs lies in
the range of values betweenz1 andz2 and abovez3. For in
this case, for each point onQ, one would expect at least on
supersonic solution to be asymptotically Friedmann and
least one subsonic solution to be regular at the origin. F
thermore, one would expect the value ofȦ ~corresponding to
the density gradient or velocity gradient! to be continuous at
the sonic point in such solutions, since only one value c
responds to the 1-parameter family. Numerical calculatio
@29# for the a51/3 case show that transonic solutions
indeed exist and have the features anticipated, although
do not span the entire range of valuesz1,zs,z2. Note that,
for eacha, there is one asymptotically Friedmann superso
solution which can be attached to the exact static solu
inside the sonic point; this is just the solution for whichzs
equals the valuezS given by Eq.~4.3!. Likewise there is one
asymptotically Friedmann subsonic solution which can
attached to the exact static solution outside the sonic po

The form of S(z) for these solutions is indicated in Fig
3~a!, the directions of the arrows corresponding to inceas
time, and is very similar qualitatively to the dust case@cf.
Fig. 1~a! of Ref. @13# #. The curves are labeled by the valu
of the asymptotic energyE, where the special~negative! val-
uesE* and Ecrit are related toB` and Bcrit by Eq. ~4.10!.
Thez.0 solutions correspond to models which start from
initial big bang singularity atz5` (t50) and then either
expand to infinity asz→0 (t→`) for E.Ecrit or recollapse
to a black hole at some non-zero value ofz for E,Ecrit . The
ever-expanding solutions may be either underdense~for E
.0) or overdense~for Ecrit,E,0). The underdense one
and ~for aÞ1/3) some of the overdense ones form a co
tinuum, while the rest of the overdense family correspond
E lying in narrow bands betweenEcrit and 0. The figure
indicates that the analysis is trivially extended to thez,0
regime. For sincer is always taken to be positive, thez,0
solutions are just the time-reverse of thez.0 ones, so the
solutions are symmetric inz. Thus theE.Ecrit models col-
lapse from an infinitely dispersed initial state to a big crun
singularity asz decreases from 0 to2` ~i.e., ast increases
3-15
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from 2` to 0!, while the E,Ecrit models emerge from a
white hole and are never infinitely dispersed.

Figure 3~b! shows the form of V~z! in these solutions bu
without giving any of the oscillations or fine structure in th
subsonic sonic region@cf. Fig. 2#. In the z.0 regime,V
either decreases monotonically towards 0 asz decreases o
reaches a minimum and then increases to infinity at the
gularity. The recollapsing solutions contain a black ho
event horizon and a cosmological particle horizon for valu
of E exceeding the critical valueE* . Note that the last black
hole solution~i.e. the one with the smallestzS) is the one for
which the minimum value ofV reaches 1/Aa and this must
touch the sonic surface at the value ofz associated with the
saddle/node transition (z1). Figure 3~b! is similar to the
equivalent figure in the dust case@cf. Fig. 1~b! of Ref. @13# #,
except that there are then no sonic points and no overd
ever-expanding solutions~essentially becauseEcrit50 if a
50).

C. Asymptotically Kantowski-Sachs solutions

If we wish to consider solutions which are asymptotic
the self-similar KS model, then Eq.~3.19! suggests that we
introduce functionsA(z) andB(z) defined by

x5x0z22a/(11a)eA, S5S0z21eB, ~4.14!

wherex0 andS0 are given by Eq.~3.18! andz is taken to be
positive. Following the analysis of Carr and Koutras@33#, we
linearize the equations inA, Ȧ and Ḃ to find the 1st order
solution asuVu→`. ~Recall thatV can be negative for the KS
solution.! Equations~2.15! and ~2.16! then yield

B̈52Ȧ1S 113a

11a D Ḃ, ~4.15!

Ḃ5S 1

2a D Ȧ1S 12a

11a DA. ~4.16!

If we differentiate the second equation and then substitute
Ḃ using the first, one obtains the following differential equ
tion for A:

Ä1S a21

a11D Ȧ2
2a~113a!~12a!

~11a!2
A50. ~4.17!

This has two solutions:A}z2p1 andA}z2p2 where

p1,25
211a6A~12a!~24a217a11!

2~11a!
. ~4.18!

For a.0, the KS solution hasuVu→` asz→`, so we must
choose the positive rootp1. The general solution then has th
form
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A5A`z2p1, B5A`F 1

2a
2S 12a

11a D 1

p1
Gz2p1 ~4.19!

whereA` is an integration constant. Although the express
for B could contain another integration constant, Eqs.~2.17!
and ~2.18! show that this must be zero. For21,a,21/3,
the KS solution hasuVu→` as z→0, so we must choose
negative root in Eq.~4.18!. Only p2 is negative for this range
of a, so this gives a solution like Eq.~4.19! but with p2
replacingp1. In both cases there is thus a 1-parameter fam
of asymptotically KS solutions. For21/3,a,0, one again
has uVu→` as z→` but both p1 and p2 are negative, so
there is no solution asz→`. Since Eq.~3.31! shows that KS
solutions with 21/3,a,0 correspond to static solution
with 0,a,1 if r and t are interchanged~so thatz goes to
1/z), this is related to the fact that there are no asymptotica
static solutions asz→0 for 0,a,1. In all cases, Eq.~2.21!
implies thatE→21/2 asz→`, so these are in some sen
‘‘minimal energy’’ solutions.

FIG. 3. This shows the form of the scale factorS(z) and the
velocity functionV(z) for the asymptotically Friedmann solution
with different values ofE. The z.0 solutions expand from an
initial singularity at z5` and then either expand forever ifE
.Ecrit or recollapse to another singularity ifE,Ecrit . In the first
case, the solutions necessarily pass through a sonic point@shown
bold in ~b!# and reach the origin. In the second case, they conta
black hole and a central singularity; there is an event horizon
particle horizon forE* ,E,Ecrit . Thez,0 solutions are the time
reverse of thez.0 ones.
3-16
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At small values ofuVu, corresponding to small values ofz
for a.0, Eqs.~2.17! and~2.18! imply that theA andB must
tend to constants which are related by

e2B05
1

2 FMKSe2A0(11a)/a2S MKS2
1

2De22A0G21

,

~4.20!

whereMKS is defined by Eq.~3.23!. This derives from the
condition Ȧ5Ḃ50 at z50. There is thus a 1-paramete
family of solutions and we can take this parameter to beA0,
which is a measure of the underdensity or overdensity at
origin relative to the exact KS solution. One can show th
are only isolated solutions at a sonic point fora.0 @33#, so
the parameter-counting argument given in Sec. IV A impl
that any asymptotically KS solution which hits the sonic s
face is unlikely to be regular there. For 0.a.21/3, there is
a 2-parameter family of solutions asz→0, related to the
2-parameter family of asymptotically quasi-static solutio
with 1.a.0 as z→`. For 21,a,21/3, V→0 as z
→` and there is again a 1-parameter family of solutions

Henceforth we will focus on thea.0 solutions. The
physical significance of these solutions is unclear, so we
not present theS(z) plot. However, Carr and Koutras hav
integrated the equations in thea51/3 case and Fig. 6 repro
duces theV(z) curves corresponding to different values
the asymptotic parametersA` and A0. Note that Eq.~3.31!
shows that these solutions are related to asymptotically s
ones witha521/5 but these solutions are also unphysi
since they have negative mass from Eq.~3.29!. Although
they did not attempt to explain any features of these so
tions, we can now do so by invoking the results of Sec.

Let us first consider thesupersonicsolutions withV,
2Aa. The underdense ones haveA` positive. Asz decreases
from infinity, they all crossV521 at some point to the lef
of the exact KS solution. However, they do not hit the so
point but reach a maximum betweenV52Aa andV521
as z decreases. They then hit theV521 surface again~all
with V̇51 and the same value ofz), with M andm tending
to zero and the scale factorS diverging. This behavior is
analogous to that which arises for the solutions which
asymptotically Minkowski at finitez. The overdense super
sonic solutions haveA` negative and, asz decreases, they a
hit the sonic line to the right of the exact KS solution. AsA`

decreases, the point at which they hit the sonic line move
infinity. All the supersonic solutions haveM,0 everywhere
and so never cross theM50 curve in Fig. 1~b!. As z→`,
both A andB go to 0, soV tends to the exact KS form.

Let us now consider thesubsonicsolutions with 0.V.
2Aa. The overdense ones haveA0 negative. None of them
hit the sonic surface since they reach a minimum asz de-
creases and then asymptotically approachV50. The inter-
esting feature of these solutions is that the functionM, which
is negative at the origin, goes through zero and beco
positive asz increases. This is because these solutions c
the curve given by Eq.~3.45! in V(z) space; they eventually
cross this curve again but without the sign ofM reversing.M
and mr 2 tend to infinity asz→`. The asymptotic behavio
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of these solutions is described by Eqs.~3.32! to ~3.34!. The
underdense solutions haveA0 positive and hit the sonic line
to the left of KS.

D. Asymptotically quasi-static solutions

If we wish to consider (z.0) solutions which are asymp
totically static, we introduce functionsA(z) and B(z) de-
fined by

x5xoeA, S5SoeB ~4.21!

wherexo andSo are given by Eq.~3.30!. We initially assume
z.0, although we will eventually need to extend the so
tions into thez,0 regime. Equations~2.15! and~2.16! then
become

B̈13Ḃ22
Ȧ

a
1S a13

a11D Ḃ2S 11a

a D ȦḂ50 ~4.22!

V2S Ḃ2
Ȧ

2a
D 52

Ȧ

2
1S a

11a D @e24B1A(12a)/a21#.

~4.23!

To find the first order solution asV→` ~i.e. asz→`), we
linearize these equations to obtain

B̈5
Ȧ

a
2S a13

a11D Ḃ ~4.24!

Ḃ5Ȧ/~2a!, ~4.25!

where the second equation is required since both sides o
~4.23! must be finite asV→`. Eliminating Ȧ gives

B̈1S 12a

11a D Ḃ50 ~4.26!

and this leads to the general solution

A5A`1Cz2(12a)/(11a), B5B`1S C

2a D z2(12a)/(11a),

~4.27!

where A` , B` and C are integration constants. Equatio
~2.17! and ~2.18! give another relationship between the
constants:

C;Fe2B`2(11a)A` /a2S 116a1a2

4a D
1

~11a!2

4a
e6B`22A` /aG1/2

eA`2B` ~4.28!

where we have omitted a coefficient which depends ona.
This shows that the asymptotically static solutions are
scribed by two parameters for a given equation of state.A`

gives the asymptotic density perturbation relative to the
act static solution, this being positive~negative! for under-
dense~overdense! solutions;B` gives the asymptotic value
3-17
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of the scale factor relative to its value in the exact sta
solution. Since the square root in Eq.~4.28! can have either
sign, there will be two solutions for a given value ofB` ,
with different signs forḂ.

It should be stressed that the description ‘‘asymptotica
static’’ in this context is rather misleading. This is becau
Eqs.~2.20! and ~4.27! imply

VR'2
~12a!

2a~11a!
C ~4.29!

at largez, so in general solutions will be either expandin
~for C.0) or collapsing~for C,0). Only the 1-paramete
family of solutions withC50 are asymptotically static in th
sense that the fluid is not moving with respect to the sphe
of constantR. This agrees with the description of Foglizz
and Henriksen@36#, who term such solutions ‘‘symmetric.’
The exactstatic solution hasA`5B`5C50. We will de-
scribe the more general 2-parameter solutions withCÞ0 as
asymptotically ‘‘quasi-static:’’ Eq.~4.27! implies that these
solutions have bothdS/dz and zdS/dz going to zero at in-
finity, as in the dust case, butz2dS/dz scales asz2a/(11a)

and therefore diverges rather than tending to a finite va
These solutions also exhibit an isothermal density profile
largez in the sense thatmr 2 is constant.

The behavior of the asymptotically quasi-static solutio
at largez is analogous to that found in the dust case, wh
the solutions are also described by two parameters. The
one relates to the asymptotic energyE. At large values ofz,
Eq. ~2.20! implies that the energy function is

E5
~11a!2

2~116a1a2!
e6B`22A` /a

3F12
C~32a!

a~11a!
z2(12a)/(11a)G2

1

2
, ~4.30!

where we have used Eq.~4.27!, so we infer

E5
~11a!2

2~116a1a2!
e6B`22A`/a2

1

2
. ~4.31!

In the dust case, the second parameter corresponds to
value ofz associated with the big bang or big crunch sing
larity ~viz. uzu51/D) and we will use a similar characteriza
tion in the generala case. However, it should be stress
that this value can only be determined numerically if there
pressure and so cannot be expressed in terms ofA` andB`

explicitly. It is therefore convenient to also associate the s
ond parameter with the asymptotic value ofVR , given in
terms ofC by Eq.~4.29!. This has the advantage that~like E)
it can be expressed explicitly in terms ofA` and B` from
Eq. ~4.28!, although the expression is complicated. The
rameterC is only implicitly related to the parameterD.

One of the differences from the dust case is that ther
now anexactstatic solution withA`5B`50. In this case,E
is just2M from Eq.~2.22!, whereM is given by Eq.~3.29!,
and so
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E5Estat[2
2a

116a1a2
. ~4.32!

This can also be seen directly from Eq.~4.31!. However, one
requires an infinite value forD in the exact static solution, so
that the central singularity is atz50. From Eq.~4.31! there
is also a 1-parameter family of solutions which have t
energy asymptotically and they must satisfy the condition

B`5A`/3a ~E5Estat!. ~4.33!

For comparison, Eq.~4.31! shows that the 1-parameter fam
ily of solutions with zero asymptotic energy must have

B`5
1

3a
A`1

1

6
lnF116a1a2

~11a!2 G ~E50!. ~4.34!

Two more interesting 1-parameter families can be defin
Equations~2.19! and~4.21! imply that the asymptotic veloc
ity is the same as in the exact static case for solutions w

B`5S 2a

12a DA` . ~4.35!

For a51/3, this happens to coincide with condition~4.33!.
From Eq. ~4.28! the conditionC50 defines another more
complicated relationship:

B`5S 12a

4a DA`1
1

2
ln sinhF1

3
sinh21k1expS 113a

2a
A`D G1k2

~4.36!

where k1 and k2 are a-dependent constants. This corr
sponds to the subset ofsymmetricsolutions and is also asso
ciated with aD-dependent asymptotic energyEsym(D). For
large positive values ofA` andB` , Eq.~4.36! reduces to the
conditionE50 given by Eq.~4.34!. For large negative val-
ues ofA` andB` , it reduces to

B`5S 11a

2a DA`1
1

2
lnF116a1a2

4a G . ~4.37!

Equation ~4.36! also specifies a lower limit onB` , and
henceS` , since Eq.~4.28! would not give a real value forC
if it was less than this.

To find asymptotically static solutions at small values
z, one seeks solutions withV50 and finite values ofA andB
at z50. @Equation~2.20! implies that such solutions nece
sarily haveVR50.# However, this requiresȦ5Ḃ50, which
from Eq. ~4.23! implies

4Bo5S 12a

a DAo . ~4.38!

It is easy to see that this condition is incompatible with E
~2.17! and ~2.18! unlessAo5Bo50, so there are no asymp
totically static solutions atz50 ~only the exact static solu
tion itself!. If instead we seek solutions in whichV50 andȦ
3-18
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and Ḃ are finite and non-zero atz50, so thatA and B di-
verge logarithmically, then Eq.~4.23! implies

Ȧ52S 2a

11a D . ~4.39!

Substituting this into Eq.~4.22! gives

3~11a!Ḃ21~513a!Ḃ1250, ~4.40!

which has the two roots

Ḃ52
2

3~11a!
or Ḃ521. ~4.41!

However, these roots just correspond to solutions which
asymptotically Friedmann or asymptotically Kantowsk
Sachs atz50 and we analyzed such solutions in the previo
sections.

To understand the physical interpretation of the asym
totically quasi-static solutions, one must extend the ab
analysis to thez,0 regime and consider the form of th
function S(z). As illustrated in Fig. 4~a!, this form is very
similar to the dust case@cf. Fig. 3~a! of Ref. @13# #, with the
solutions necessarily spanning both positive and nega
values ofz. All the solid curves correspond to cosmologic
models which start off expanding from a big bang singular
at z521/D, then tend to the asymptotically quasi-sta
form asz→2` and then cross over toz51`. They then
either expand forever~upper two curves! if E exceeds some
negative critical valueEcrit(D) or recollapse~lower two
curves! if E is less thanEcrit(D). In the latter case the solu
tion contains a black hole and a second singularity az
5zS . The singularity forms with zero mass att50 but its
massmS5(MSz)St then grows ast. As in the dust case, th
value of z at the second singularity is necessarily less th
1/D and S always has a maximum inz.0. The broken
curves are the time reverse of the solid ones and corresp
to cosmological models which all collapse to a big crun
singularity atz511/D but may start off either expandin
from a white hole or collapsing from infinity. For the sym
metric solutions withE5Esym, zS51/D and the solid and
broken curves coincide.

Note that thez,0 solutions can be obtained from thez
.0 ones by reflection, so either side of Fig. 4~a! gives com-
plete information about the solutions. However, one ne
both sides to track a particular solution. The fact that th
are two curves for each asymptotic value ofS is a conse-
quence of Eq.~4.28! giving two values fordS/dz: as in the
dust case, the solid one has a negative gradient, while
dotted one has a positive gradient, and a given solution m
preserve its gradient as it goes fromz52` to z51`. The
form of the solution near eitheruzu51/D or uzu5zS is given
by Eq.~3.64! but ~unlike the asymptotic Friedmann case! one
now needs the full 1-parameter family of solutions for giv
zS since the asymptotically quasi-static solutions are
scribed by two parameters.
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The form of V(z) in these solutions is indicated in Fig
4~b! and is also similar to the dust case except that there
now sonic points. The ever-collapsing solutions start w
V50 at z50 and then, asz decreases, pass through a son
point ~whereV52Aa) and then a Cauchy horizon~where
V521) before tending to the quasi-static form atz52`.
They then jump toz51` and enter thez.0 regime. Asz
further decreases,V first reaches a minimum and then d
verges when it encounters the big crunch singularity az
51/D. As in the dust case, the minimum ofV will be above
or below 1 according to whetherE is more or less than some
valueE1(D) and one necessarily has a naked singularity
the latter case@see Fig. 16 in Ref.@19# #. If the minimum of
V were less thanAa, the collapsing solutions would need t

FIG. 4. This shows the form of the scale factorS(z) and the
velocity functionV(z) for the asymptotically quasi-static solution
with different values ofE but fixed D. The solutions necessarily
span both positive and negativez. The solid curves show solutions
which expand from an initial singularity atz521/D and then ei-
ther expand forever ifE.Ecrit(D), in which case they pass throug
a sonic point@shown bold in~b!#, or recollapse to another singular
ity if E,Ecrit(D). There is an event horizon and particle horizo
for E* (D),E,Ecrit(D). The last recollapsing solution is the sym
metric one for whichE5Esym. The broken curves are the tim
reverse of the solid ones. These all collapse to a final singularit
z51/D and this is naked forE less than some valueE1(D), which
may be negative or positive but necessarily exceeds the v
Ecrit(D).
3-19
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have two sonic points in thez.0 regime. However, it is
unlikely that such solutions would be regular at the seco
sonic point, so one would expect collapsing solutions to e
only for values of the parameters such that the minimum oV
exceedsAa. This applies providingE is less another critica
value which is necessarily less thanE1(D). The ever-
expanding solutions are just the time reverse of the e
collapsing ones.

The form of V(z) for the expanding-recollapsing solu
tions, which arise ifE,Ecrit(D), is also indicated in Fig.
4~b!. There are two solutions of this kind. In one~solid! V
starts off at2` whenz521/D, rises to a maximum, then
falls off asymptotically quasi-statically asz→2`, then
jumps toz51` and then falls to a minimum before risin
to 1` at z5zS . @For the reasons indicated above, it is like
that the maximum is less than2Aa and that the minimum is
more than1Aa, in which case these solutions have no so
points.# The minimum will be less than 1 ifE exceeds the
valueE* (D) and the maximum will exceed21 if E is less
than the valueE1(D). In the first case, one has a black ho
event horizon and a cosmological particle horizon. The ot
kind of expanding-recollapsing solution~broken! is the time
reverse of this and goes fromz52zS to z51/D. In this case
one has a naked singularity atz51/D if E,E1(D).

Since the minimum of the solid curve in Fig. 4~b! is al-
ways below the minimum of the broken curve for a giv
value of S` , we infer that there are recollapsing solutio
which have an event horizon inz.0 without having a naked
singularity inz,0. Likewise there are solutions with 0.E
.Ecrit(D) which have a sonic point inz.0 without having
one in z,0. However, if E is sufficiently larger than
Ecrit(D), there might also be solutions in whichboth the
solid and broken curves have a sonic point. This would c
respond to bouncing solutions~with two sonic points but no
singularities!, in which S starts off decreasing and ends u
increasing. In these solutionsV would decrease monoton
cally from z502 to z52` and then fromz51` to z
501. However, we have seen that it is unlikely that su
solutions could exist since they would require two regu
sonic points.

We note that although the introduction of the parameteD
has a crucial effect in the large-uzu regime, changing the so
lution from the asymptotically Friedmann to asymptotica
quasi-static form, it has relatively little effect in the subson
regime. One can therefore still use the results of the asy
totically Friedmann analysis here~at least qualitatively!. In
particular, one still has oscillations — though none of the
are shown in Fig. 4~b!—and the model can only collaps
from infinity if E is positive or lies in discrete bands if neg
tive. The main difference is that the sonic point may now
a saddle rather than a node. However, in this case, we sa
Sec. IV A that the subsonic solution is unlikely to reachz
50.

Some of the asymptotically quasi-static similarity so
tions with pressure have already been studied numericall
Foglizzo and Henriksen@36#, although they only focus on
the collapsing solutions.~The relationship between the
variables and ours is given in Appendix B.! They confirm
04402
d
st

r-

c

r

r-

r

p-

e

e
in

y

many of the qualitative features described above. In part
lar, they show that the solutions are described by two par
eters at largeuzu and by one parameter at smalluzu and they
find the expected behavior at the sonic point. In their ph
space analysis, the orbits corresponding to the overdens
lutions converge on and then spiral around the static solu
for a while before heading to the origin. This corresponds
the oscillations discussed in Sec. IV B, with the number
oscillations identifying the overdensity band. Foglizzo a
Henriksen confirm that the solutions withVmin,1 exhibit
naked singularities. Indeed, the static attractor is closely
lated to the self-similar solutions which arise in critical ph
nomena@8#. This is discussed in more detail by Carr an
Henriksen@42#.

E. Asymptotically Minkowski solutions

The asymptotically Minkowski solutions cannot be an
lyzed in the same way as the other solutions discussed a
since the limiting solution is not itself self-similar. Thus i
seeking the various asymptotic forms, one cannot pert
about an exact background self-similar solution. Also o
cannot analyze these solutions in terms of the parametE
since the energy function asymptotically diverges, E
~2.21!, ~3.37! and ~3.52! implying

E;u lnuz/z* uu4a/(125a), E;z2V
*

/(V
*
2

21) ~4.42!

for the two families.~We use double modulus signs in th
first expression since we now allowz to be negative and the
logarithm may also be negative.! Nevertheless one can sti
use the considerations of Sec. III to derive the forms ofS(z)
andV(z) for these solutions and these are indicated in Fi
5~a! and 5~b!. For the solutions which asymptote to infinit
uzu and are described by one parameter, Eqs.~3.37! and
~3.42! apply; for the ones which asymptote toz* and are
described by two parameters, Eqs.~3.52! and ~3.57! apply.
Figure 5~a! shows that all thez.0 solutions start off collaps-
ing at large distances~be this at infinite or finitez) and then
either collapse to a singularity atzS or bounce into an expan
sion phase. Thez,0 solutions are just the time reverse
these. In deriving the form ofV(z) shown in Fig. 5~b!, we
use Eq.~3.57!. Although these solutions represent a lar
fraction of the complete solution space, many of their fe
tures are still unexplored.

F. Complete solution space

The form of the functionV(z) for all thez.0 solutions is
brought together in Fig. 6 for thea51/3 case. Similar fig-
ures could be presented fora.1/3 anda,1/3 but these are
not shown explicitly. The equations simplify in thea51/3
case, so this is the one which has been most studied num
cally. Also this is the case likely to apply in the early un
verse. Although theV(z) diagram does not give complet
information about the solution space, since this
3-20
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3-dimensional, it does convey many important physical f
tures of the solutions~in particular, the occurrence of singu
larities and event horizons!. Other interesting physical quan
tities, such as the densitym and the mass functionM, are
discussed in Ref.@10#.

It should be emphasized that Fig. 6 is only qualitative a
does not include fine details, such as the oscillations in
subsonic regime. In order to avoid the figure being too c
tered, only a few members of each family are shown and
do not include solutions which are non-physical in the s
sonic regime. However, we do include some solutions wh
terminate at the sonic point and these are shown by da
lines. The figure only shows the positivez regime but this
still gives complete information. The solutions are labeled
their asymptotic energyE whenever this is well defined.

The form ofV(z) for the asymptotically Friedmann solu
tions ~with D50) comes directly from Fig. 3~b!, with the
significance of the energiesE* andEcrit being described in
Sec. IV B. Two recollapsing solutions are shown~one of
which contains an event horizon and a particle horizon!, one
regular and one irregular overdense solution, and two reg
underdense solutions. For a general value ofa, it should be

FIG. 5. This shows the form of the scale factorS(z) and the
velocity functionV(z) for the asymptotically Minkowski solutions
which exist only fora.1/5. One family~solid lines! asymptotes to
the finite valuez* with V→1; the other family~broken lines! as-
ymptotes to infinitez with V→V* .1. In both cases, there ar
solutions which collapse monotonically to a central singularity (zS)
and solutions which collapse and then bounce into an expan
phase; the latter necessarily have a sonic point@shown bold in~b!#.
The z,0 solutions are the time reverse of these.
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noted that Eqs.~2.19!, ~4.1!, ~4.8! and ~4.12! give the
asymptotic velocity as

V'e(123a)Ao /aVF ~z!1!, V'e22B`VF ~z@1!
~4.43!

whereVF is the exact Friedmann velocity. Fora.1/3, V is
more~less! thanVF for the overdense~underdense! solutions
at all values ofz. However, for a,1/3, V starts below
~above! VF at smallz and ends up above~below! it at largez

on

FIG. 6. This shows the form of the velocity functionV(z) for
the full family of spherically symmetric similarity solutions with
a51/3. The exact Friedmann, Kantowski-Sachs and static solutio
are indicated by the bold lines. Also shown are the asymptotica
Friedmann solutions~for different values ofE), the asymptotically
quasi-static solutions~for different values ofE and fixedD) and the
solutions which are asymptotically Minkowski at finite or infinitez.
The broken curves give the extrapolation of the asymptotica
quasi-static solutions into thez,0 regime and all asymptote to
infinity at z51/D. Solutions shown by dashed lines are irregular
the sonic point~shown bold! and cannot be extended beyond ther
All the other solutions are either supersonic everywhere orC1 at the
sonic point. Solutions which are analytic at the sonic point form ju
a small subset of the latter. The negativeV region is occupied by the
asymptotically Kankowski-Sachs solutions, although these may
be physical since the mass is negative. For a full description
these solutions, see the discussion in Sec. IV F.
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for the overdense~underdense! solutions. In this case, th
solutions cross over each other, which makes theV(z) dia-
gram rather complicated. Fora51/3, the dependence ofV
uponAo at smallz only appears at second order and so su
criss-crossing is avoided.

The form of V(z) for the asymptotically quasi-static so
lutions is taken from Fig. 4~b!, except that both quadrants a
now folded intoz.0. The solid curves come from the upp
right quadrant in Fig. 4~b! and the broken ones from th
lower left quadrant. Thus the latter can be regarded as
extrapolation into thez,0 regime of the former. All the
solutions have the same value ofD, so all the broken lines
asymptote to infinity atz51/D, but they have different val-
ues ofE. It should be stressed that the values ofE* andEcrit

depend onD and therefore differ from the correspondin
values for the asymptotically Friedmann solution. Equat
~4.32! implies that the value ofE for the exact static solution
~which can be regarded as the limit of the symmetric solut
asD→`) is Estat523/14 fora51/3. From Eqs.~4.33! and
~4.35! the velocity for all solutions with this energy asym
totes to the exact static form ifa51/3 but this feature doe
not apply for other values ofa. Besides the exact static so
lution, four recollapsing solutions are shown~one of which
has an event horizon and particle horizon!. There is one
regular and one irregular solution which is overdense rela
to Friedmann and one regular solution which is underden

The form ofV(z) for the asymptotically Kantowski-Sach
solutions is taken from Fig. 2 of Ref.@33#. Although the
physical significance of these solutions is unclear since,
a51/3, the Kantowski-Sachs solution is tachyonic and h
negative mass, their mathematical characteristics were
plained in Sec. IV C. All the solutions which reach a son
point are irregular there, as indicated by the dashed curv

The form of V(z) for the asymptotically Minkowski so-
lutions is taken from Fig. 5~b!, except that all the solution
are here represented by solid lines. Note that these solu
cannot be labeled by their asymptotic energy since, as i
cated by Eq.~4.42!, this diverges. Five of them are asym
totically Minkowski as z→`, with V going to the value
V* 5(21A13)/3 indicated by Eq.~3.42!. Two of these col-
lapse monotonically~one containing an event horizon and
particle horizon!; the other three start off collapsing but the
bounce into an expansion phase~one being overdense an
the others underdense at the origin relative to Friedma!.
The remaining solutions are asymptotically Minkowski a
finite valuez* andV→1 there. The upper parts of the curv
correspond to solutions which collapse monotonically, wh
the lower parts correspond to solutions which collapse
then bounce. Examples of such solutions extend to hig
values ofz* than indicated but are not shown to avoid clu
tering.

It is interesting that the collapsing solutions which a
asymptotic to either the Friedmann or Minkowski solutio
asz→` have a minimum value ofzS ~the value ofz at the
singularity! and this is the same in each case. This is
cause, for any 1-parameter solution, the last black hole s
tion is the one for which the minimum ofV reachesAa and
this must occur where the sonic point changes from a nod
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a saddle~i.e. at z5z1). However, the value ofzS for the
2-parameter solutions can be arbitrarily small.

V. DISCUSSION

In this paper we have analyzed the complete family
spherically symmetric self-similar solutions for a perfe
fluid with equation of statep5am. The key steps underlying
our analysis are:~1! a delineation of the possible asymptot
forms at large and small distances from the origin;~2! an
elucidation of the link between thez.0 andz,0 solutions;
~3! an explicit use of the dust solutions~which can be ex-
pressed analytically! to understand heuristically various fea
tures of the solutions in the supersonic regime; and~4! a
detailed analysis of solutions which are regular at the ori
~i.e. asymptotically Friedmann asr→0 or t→`) in order to
understand solutions in the subsonic regime.

In claiming that our classification is ‘‘complete,’’ i
should be emphasized that our considerations have bee
stricted in a number of ways. We plan to extend our analy
to avoid these restrictions in future work but for present p
poses it will be useful to list them explicitly. Some of th
restrictions could be regarded as geometrical and other
physical.

The firstgeometricalrestriction is that we have confine
attention to self-similar solutions of the ‘‘first’’ kind~i.e.,
homothetic solutions in which the similarity variable isz
[r /t). However, it may be possible to extend this work
the classification of self-similar solutions of the ‘‘second
kind. For example, in spherically symmetric perfect fluid s
lutions which possess kinematic self-similarity, the similar
variable is of the formz5r /ta, where the exponenta de-
pends on some dimensional constant which contains a s
@43#. There is evidence that such solutions asymptote
wards exact solutions that admit a homothetic vector@44#, so
the asymptotic analysis in this paper may be of rather m
general application than is at first apparent; i.e.,
asymptotic behavior ofall self-similar solutions~not only
those of the first kind! may be determined by the solution
described in this paper. Of course, the behavior atfinite val-
ues of the similarity variable, including for example the b
havior at sonic points and horizons, may be quite differe

The second geometrical restriction is that we have
sumed that the homothetic vector is neither parallel nor
thogonal to the fluid velocity. Although solutions with thes
properties do exist, they are not covered by the analysis
Sec. II. However, it can be shown that all perfect fluid spa
times ~not only spherically symmetric ones! admitting a ho-
mothetic vector parallel to the velocity vector are necessa
Friedmann@45#. In addition, it has claimed that all spher
cally symmetric spacetimes which admit a homothetic vec
orthogonal to the velocity vector have a singular metric@46#.

The mainphysical restriction is that we have confine
attention to perfect fluids with a barotropic equation of st
~necessarily of the formp5am) and so our analysis doe
not cover more general perfect fluids or anisotropic flui
even though these may be of physical interest. In particu
a two-perfect-fluid model, in which each component is ne
3-22
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essarily comoving and has an equation of state of the f
pi5a im i ( i 51,2), is formally equivalent to a single perfe
fluid that does not have an equation of state. It is theref
plausible that perfect fluid models for whichp/m is asymp-
totically constant may have the same asymptotic behavio
the self-similar solutions studied in this paper. This is inde
the case for two-fluid models in which each component se
rately satisfies the conservation equations. This is discu
further in Appendix C.

Even within the context of fluids withp5am, we have
not covered every possible value ofa. In particular, we have
not considered the stiff case (a51), in which the speed o
sound is equal to the speed of light. Sincea51 is a bifur-
cation value, there can be significant changes in the qua
tive behavior from thea,1 case. Therefore a discussion
stiff perfect fluid solutions may be important in understan
ing the dynamics of the complete class of self-similar so
tions. A partial analysis of thea51 case has been made b
Lin et al. @27# and Bicknell and Henriksen@28#. However, if
a51, Eq. ~2.19! implies thatV has no explicit dependenc
on z and, whenVÞ1, Eqs.~2.15! and ~2.16! yield a single,
second-order autonomous ordinary differential equation
S. This equation can be better studied using different ma
ematical techniques to those employed in this paper. In
context, it should be emphasized that our analysis does
cover the case in which the source is a massless scalar
since~if there is no scalar potential! this is formally equiva-
lent to a stiff fluid whenever the gradient of the scalar field
timelike. The relevance of self-similar solutions to the occ
rence of critical phenomena in scalar field collapse has b
studied by many authors@8–10,42,47#.

We have not considered solutions witha,0, even though
these may be physically interesting in some contexts@34#.
Indeed the Kantowski-Sachs solutions mayonly be appli-
cable in this context. In fact, the asymptotic analysis can
extended to thea,0 case@20#. Whena521, the perfect
fluid source is equivalent to a cosmological constant. In t
case, a scale is introduced and so there are no self-sim
solutions of the first kind. However, spherically symmet
self-similar solutions of the more general~second! kind are
still possible@48#.

Finally it should be stressed that we have not conside
solutions with shocks~cf. @1#!. However, these may certainl
be of physical interest, especially since transonic soluti
which areC1 rather thanC` at the sonic point may evolve
into shocks due to the ‘‘kink’’ instability@41#. Nor have we
considered ‘‘patched’’ solutions which are only self-simil
for some range of coordinates or in which the value ofa is
different in different regions.

ACKNOWLEDGMENTS

We thank Martin Goliath, Dick Henriksen, Ulf Nilsso
and Claes Uggla for useful discussions and Andrew Wh
nett for help with some numerical work. An earlier versio
of this paper omitted the asymptotically Minkowski solutio
and we extended our analyis to cover these only after t
existence was ascertained by Goliath, Nilsson and Uggla
merically. B.J.C. is grateful to the Department of Mathem
04402
m

re

as
d
a-
ed

a-

-
-

r
-

is
ot

eld

-
en

e

is
lar

d

s

-

ir
u-
-

ics and Statistics at Dalhousie University and the Yuka
Institute for Theoretical Physics at Kyoto University for ho
pitality received during this work. A.A.C. is supported by th
NSERC.

APPENDIX A

In this paper we have used ‘‘comoving’’ coordinate
since this approach is best suited to studying the soluti
explicitly. However, it should be stressed that our work
complemented by the analysis of Bogoyavlenski@15# and
Goliath et al.@17,18# using ‘‘homothetic’’ coordinates and
that of Ori and Piran@19# and Maison@9# using Schwarzs-
child coordinates. In this appendix, we discuss these o
approaches in more detail.

In the homothetic approach, the coordinates are ada
to the homothetic vector and this yields results whi
complement and, in some cases, provide more rigorous d
onstrations of the conclusions reached in this paper. H
ever, in the homothetic approach, spacetime must be cov
by several coordinate patches, one in which the homoth
vector is spacelike and one in which it is timelike. The
regions must then be joined by a surface in which the hom
thetic vector is null and this surface is associated with i
portant physics. Bogoyavlenski@15# studied the spacelike
and timelike cases simultaneously~with the metric being
written in ‘‘conformally static’’ form! and continuously
matched the two regions to obtain the behavior of solutio
crossing the null surface. However, it should be noted t
Bogoyavlenski changed comoving coordinates explicitly
describe the physics of the associated solutions.

Recently Goliath et al.@17,18# have reinvestigated both
the spatially and temporally self-similar cases. The timel
region contains the more interesting physics~e.g. shocks and
sound-waves!. They introduce dimensionless variables,
that the number of equations in the coupled system of
tonomous differential equations is reduced, with the result
reduced phase space being compact and regular. In this
the similarities with the equations governing hypersurfa
orthogonal models, and in particular spatially homogene
models@12,49#, can be exploited. In their approach, all equ
librium points are hyperbolic, in contrast to the earlier wo
@15# in which non-compact variables were used, resulting
parts of phase space being ‘‘crushed.’’

The Schwarzschild approach is better suited to study
the causal structure of the self-similar solutions. This is
cause, in order to obtain physically reasonable mod
spacetimes are often required to be asymptotically flat. Si
asymptotically flat spacetimes are not self-similar, one the
fore needs to match a self-similar interior region to an no
self-similar exterior region and this is usually taken to
Schwarzschild. In particular, Schwarzschild coordinates
most suitable for solving the equations of motion for~radial!
null geodesics, as required in studying the global structure
the solution. Consequently it was used by Ori and Piran@19#
since one of their primary goals was to study naked sin
larities and test the cosmic censorship hypothesis. Howe
the Schwarzschild coordinates break down att50.
3-23
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APPENDIX B

The precise transformations between the various coo
nate systems used to study self-similar spherically symme
perfect fluid models are given explictly in Bogoyavlens
~@15#; see Sec. 3 of Chap. IV!. The coordinate transforma
tions between the comoving and Schwarzschild syste
both of which are employed by Ori and Piran@19#, are given
explicitly in their paper. The transformations between t
homothetic and Schwarzschild coordinates and between
homothetic and comoving coordinates are given explicitly
Appendix B of Ref. @17#, where the relationship betwee
their variables and those of Ori and Piran@19#, Maison @9#
and Foglizzo and Henriksen@36# are also given. The rela
tionsip between their variables and those used
Bogoyavenski@15# are given in Appendix B of Ref.@18#.

Here we explicitly demonstrate the relationship betwe
the variables used in this paper and those used in Fogl
and Henriksen~FH! @36#. The main functions used in FH ar
the three quantities (N, m̄, V2), defined by Eqs.~FH3!–
~FH5!, which depend on the similarity variablej[z21. The
remaining self-similar functions can then be written in ter
of these@see Eqs.~FH6!–~FH8!#. Their functionV is identi-
cal to ours. Using Eqs.~2.12! and ~FH3!, we find that

N~z!5a1x(a21)/az2(a21)/(11a), ~B1!

wherea1 is a constant. Using Eqs.~2.8!, ~2.12!, ~2.17! and
~FH4!, we obtain

m̄~z!53F11~11a!
Ṡ

S
G . ~B2!

Conversely,x and S can be defined explicitly in terms o
(N,m̄,V2) through Eq.~FH8!,

S25a2z(a21)/(11a)@NuVu#21, ~B3!

and Eq.~B1!, wherea2 is another constant.
The differential equations governing the evolution

(N,m̄, V2) are given by Eqs.~FH12!–~FH14!; these consti-
tute an autonomous system of ODEs in terms of the varia
ln j52ln z. Eqs. ~FH12! and ~FH13! are equivalent to our
Eqs. ~2.15! and ~2.16!. The first integral of the governing
ODEs is given by Eq.~FH10! and is equivalent to our Eqs
~2.17! and ~2.18!. Equation~FH14!, which governs the evo
lution of V2, is obtained by differentiatingV2, defined by Eq.
~2.19!, and using the first integral. Consequently, the evo
tion equation~FH14! replaces Eqs.~2.17! and ~2.18!.

FH then regularize their system of equations by introd
ing a new independent variable,t, defined by Eq.~FH15!,
which is equivalent to

d ln z

dt
5211aV22. ~B4!

This divides phase-space into two disconnected compone
Although the resulting system of ODEs is autonomous,
system is not regular atj50 despite the fact that this poin
does not correspond to a physical singularity~i.e., it arises
04402
i-
ic

s,

e
he

y

n
zo

s

le

-

-

ts.
e

due to a coordinate problem atj50). FH then introduce new
functions and coordinates so that solutions are comple
regular at (t50,r .0). However, the resulting ODEs are n
longer autonomous after this transformation.

APPENDIX C

The expansion of the comoving fluid velocity congruenc
u[ua

;a , is given by

ru5ze2nQ ~C1!

where

Q~z![2
d

dz
~l12S! ~C2!

andl is given by Eq.~2.1!. Whenp5am, the conservation
equations then yield

dW

dz
52~11a!WQ, ~C3!

whereW is defined by Eq.~2.8!. If we consider two comov-
ing perfect fluids as the source of the gravitational field, ea
of which satisfies

pi5a im i , Wi5m iR
2 ~a51,2! ~C4!

~e.g., a mixture of dust and radiation witha151/3 anda2
50), then the source is equivalent to a single perfect fl
with

m5m11m2 , p5p11p25a1m11a2m2 , ~C5!

although this does not admit an equation of state.
Suppose the two perfect fluids are non-interacting, w

each separately satisfying the conservation equation~C3!.
Then

dWi

dz
52~11a i !WiQ. ~C6!

We define a new variable

x5x~z![
m12m2

m11m2
5

W12W2

W11W2
, ~C7!

where 21<x<1. From Eq.~C6! we derive the evolution
equation forx:

dx

dt
5

1

2
~a12a2!~12x2! ~C8!

wheret is defined by

dt

dz
52Q ~C9!

for regions in whichQ ~and hence the expansionu) is non-
zero.
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Equation~C8! is a decoupled autonomous equation forx.
It has equilibrium points atx561, and hence all solution
asymptote tox561 in regions for which the expansio
does not become zero.x511 corresponds tom250 andx
521 to m150; i.e., these self-similar two-fluid solution
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asymptote towards the exact asymptotes of the single pe
fluid solutions. Asymptoticallyp/m→a i and which value of
a i is picked out~i.e., which of the two single fluids govern
the dynamics asymptotically! depends on the signs of (a1
2a2) andQ and on whetheruzu→0 or uzu→`.
.
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