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The cosmological backreaction from perturbations is clearly gauge dependent, and obviously depends

on the choice of averaged Hubble rate. We consider two common choices of Hubble rate and advocate the

use of comoving volume-preserving gauges. We highlight two examples valid to an appropriate order in

perturbation theory—uniform curvature gauge, which is as close to volume-preserving as possible, and a

spatially-traceless uniform cold dark matter gauge, which preserves the volume to linear order. We

demonstrate the strong gauge and frame dependences in averaging. In traceless uniform cold dark matter

gauge the backreaction exhibits a strong ultraviolet divergence and can be tuned to an arbitrary magnitude

with an appropriate choice of smoothing scale. In uniform curvature gauge, we find that for a choice of

Hubble rate locked to the spatial surface, the backreaction vanishes identically, while for a Hubble rate

defined from a fluid’s expansion scalar, the effective energy density at the current epoch in an Einstein–

de Sitter universe is �eff � 5� 10�4, slightly bigger than, but in broad agreement with, previous results

in conformal Newtonian gauge.
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I. INTRODUCTION

The gravitational field equations on cosmological scales
are obtained by averaging the Einstein field equations of
general relativity. The effects of averaging (or backreac-
tion) can have a significant dynamical effect on the evolu-
tion of the Universe and consequently on cosmological
observations. The quantitative size of these effects, and
their potential qualitative effect on cosmological observa-
tions, are currently of great interest (see, for example, [1]).
However, in order for the results of cosmological averaging
to make any physical sense, it is absolutely crucial to have
a rigorous (fully covariant) definition of the spacetime
average of a tensor on a differential manifold.

Cosmological perturbation theory provides a well-
motivated paradigm inwhich to perform cosmological aver-
aging. In perturbation theorywe shall argue that a spacetime
average is only well defined when undertaken in so-called
volume-preserving coordinates (VPC) or in the closely
related comoving volume-preservinggauges (VPGs),which
we define below. In fact, a VPG is ideally suited to the study
of spatial averaging in perturbation theory.

We discuss two such gauges that are valid to an appro-
priate order in perturbation theory—the uniform curvature
gauge (which is uniquely well defined in this respect and is
as close to volume preserving as possible) and the
spatially-traceless uniform cold dark matter gauge (which
is adequate for calculations to second order in perturbation
theory). In fact, traceless gauges, including both of these,

simplify the problem considerably since they reduce to an
averaging of the product of linear perturbations and, at
most, a second-order velocity.
An important measure of the effect of backreaction is the

difference between the input Hubble rate and the averaged
Hubble rate. We demonstrate that the cosmological back-
reaction from perturbations is strongly gauge dependent
and clearly depends on the choice of frame for the averaged
Hubble rate (e.g., the gravitational or the projected fluid
frames).We shall show that in uniform curvature gauge, the
backreaction vanishes identically in the gravitational
frame. We consequently argue that the definition of the
Hubble rate should reference the fluid content of the uni-
verse and so it is necessary to use the projected fluid frame.
We show that the backreaction in traceless uniform CDM
gauge exhibits a strong dependence on choice of smoothing
scale. In the projected fluid frame, the ultraviolet catastro-
phes in traceless uniform CDM gauge are exacerbated.
We then turn to some quantitative numerical results. We

find that in uniform curvature gauge, the effective energy
density of backreaction at the current epoch in an Einstein–
de Sitter (EdS) universe is of order 10�4–10�3 and is
slightly larger (by a factor of 2–5) than, but in broad
agreement with, previous results obtained in conformal
Newtonian gauge. This slightly larger result perhaps sug-
gests that backreaction within perturbation theory can be
large enough to affect cosmological observations, but we
believe the more important result is that this value is now
on a significantly firmer basis than before. Of course, more
significant quantitative results are possible in more realistic
models in which the present-day universe is not well
described by perturbation theory.
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II. FORMALISM

Three approaches to spatial averaging in perturbation
theory and applicable in general coordinates have recently
been presented [2–6]. The relationships between these
have been explored in [2,6] and are shown to tend towards
agreement for extremely large domains. The explicitly
gauge-invariant approach of [4,5] has been further devel-
oped and applied to averages across the past light cone in
[7,8]. However, our ultimate aim is to select a gauge in
which the averaging procedure remains well defined and so
will focus on the formalisms of [2,3,6]. Likewise multi-
scale averaging models have been introduced (see, for
instance, [9–13]), but for simplicity we consider only
single-scale models.

A globally hyperbolic spacetime can be foliated with a
family of three-surfaces described by coordinates x� ¼
ðt; xaÞ. The four-vector normal to the surfaces is n� ¼
ð1=�Þð1;��iÞ with normalization n�n� ¼ �1 with the

lapse � and the shift �i. The projection tensor onto the
three-surfaces, induced three-metric and line element are
then

h�� ¼ g�� þ n�n�; hij ¼ g��h
�
i h

�
j ;

ds2 ¼ ð��2 þ �i�
iÞdt2 þ 2�idtdx

i þ hijdx
idxj;

(1)

where �i ¼ hij�
j. The embedding of the hypersurfaces is

described by the extrinsic curvatureKij ¼ �ð1=2ÞLnhij ¼
�ð1=2Þð@=@tÞhij � 2Dði�jÞ.Di is the covariant derivative

on the three-surface and brackets denote symmetrization
on the enclosed indices.

Let D be a finite domain lying on the inhomogeneous
three-surface, and let h be the determinant of the three-
metric. The volume of this domain (see, e.g., [14–18]) and
therefore the average over the volume of a scalar A can be
defined by

VD ¼
Z
D

ffiffiffi
h

p
d3x; hAi ¼ 1

VD

Z
D
A

ffiffiffi
h

p
d3x: (2)

An average Hubble rate can be defined by

3HD ¼ _VD

VD
¼ 1

VD

Z
D

�
1

2
hij _hij

� ffiffiffi
h

p
d3x

¼ h��K þDi�ii (3)

with Di ¼ hijDj. We dub this choice of Hubble rate the

‘‘gravitational frame’’—it describes the Hubble rate
defined with respect to observers comoving with the coor-
dinate grid.

It is possible instead to define an averaged Hubble rate
from the expansion scalar of an observer, projected onto
the spatial three-surface, � ¼ h��u�;�. We term this the

‘‘projected fluid frame,’’ and it was employed, for instance,
in [2,6]. The Hubble rate is defined by

3HD ¼ h�2�i: (4)

We should emphasize that this definition is not unique to
this study and was introduced in [2] and employed in [6] to
study the expansion scalar of a fluid tilted with respect
to the averaging three-surface—that is, the expansion of
the fluid as observed in the ‘‘gravitational rest-frame.’’ We
employ it in the same manner. Being defined from a
physically meaningful quantity, this definition of the
Hubble rate is perhaps to be preferred.

III. AVERAGING IN AN ARBITRARY GAUGE

The above equations are a rephrasing of the scalar 3þ 1
equations averaged across a three-dimensional domain and
as such provide no new information. To make progress,
either some behavior (as in [19]), or some underlying
model (as in, for instance, [6,20–27]), must be assumed.
Cosmological perturbation theory provides a well-
motivated toy case. This approach introduces a local scale
factor aðtÞ and Hubble rate governing the unperturbed
dynamics. One measure of the impact of ‘‘backreaction’’
is then to identify the backreaction as the difference
between the input Hubble rate and the averaged Hubble
rate. Of course, many other effects of backreaction will
occur in cosmology [1]. In this paper, it is this Hubble
‘‘backreaction’’ that we are interested in.
The perturbed flat Robertson-Walker line element can be

written

ds2 ¼ a2ð�Þð�ð1þ 2�Þd�2 þ 2Bid�dx
i

þ ð�ij þ 2CijÞdxidxjÞ; (5)

where Bi ¼ @iB� Si and Cij ¼ �c�ij þ @i@jEþ
@ðiFjÞ þ 1

2hij with @iSi ¼ @iFj ¼ @ihij ¼ �ijhij ¼ 0. The

fluid velocity is vi ¼ @ivþ vðVÞ
i . Perturbations are

expanded to second order with � ¼ �ð1Þ þ ð1=2Þ�ð2Þ and
similar. We neglect everywhere products that are cubic or
higher.1 Indices are raised and lowered with the Kronecker
delta. Derivatives with respect to conformal time will be
denoted with an overdot and H ¼ _a=a is the conformal
Hubble rate of the underlying model which obeys the
Friedmann equations,

H 2 ¼ 8	G

3
a2
X
f

�
ðfÞ þ 1

3
a2�;

_H ¼ � 4	G

3
a2
X
f

ð �
ðfÞ þ 3 �pðfÞÞ þ 1

3
a2�:

(6)

Linear tensor modes are extremely small and decay with
the expansion of the universe, while, unless supported by
an active source, vector modes rapidly decay. To a first

1Note that this implies that if, for instance, the linear and
second-order integrands are highly oscillatory, a dominant con-
tribution could naturally arise at higher orders in perturbation
theory. However, the study of such systems seems better suited to
fully nonlinear relativistic models.
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approximation, scalar modes therefore dominate the linear
perturbations [28]. At second order all three types should in
principle be considered, but it turns out that in the situ-
ations we study, the leading-order contribution from vec-
tors and tensors is quadratic, implying that to second order
in perturbations, they can be neglected.

The metric determinant of the perturbed model in a
general gauge is

ffiffiffi
h

p ¼ 1þ Cþ 1

2
C2 � CijCij: (7)

If WðxÞ is a window function defining the domain, and

VF ¼
Z

WðxÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
h0ðxÞ

q
d3x ¼ a3

Z
WðxÞd3x (8)

is the domain volume projected onto the Friedmann-
Lemaı̂tre-Robertson-Walker (FLRW) background, the
inhomogeneous domain volume is therefore

VD ¼ VF þ a3
Z

WðxÞCðxÞd3x

þ a3
Z

WðxÞ
�
1

2
C2ðxÞ � CijðxÞCijðxÞ

�
d3x

with the integration taken across all x. When required to
specify the window function we chooseWðyÞ ¼ expð�y2Þ.
Likewise, the average of a quantity AðxÞ ¼ A1ðxÞ þ
A2ðxÞ=2 is

hAðxÞi ¼ a3

VD

Z
WðxÞAðxÞð1þCðxÞÞd3x

¼ a3

VD

Z
WðxÞ

�
A1ðxÞ þ 1

2
A2ðxÞ þ A1ðxÞC1ðxÞ

�
d3x

(9)

while that of a product of linear perturbations
A1ðxÞB1ðxÞ is

hA1ðxÞB1ðxÞi ¼ a3

VD

Z
WðxÞA1ðxÞB1ðxÞd3x: (10)

It is usual to then Taylor-expand the domain volume

V�1
D ¼ V�1

F

�
1� a3

VF

Z
WðxÞCðxÞd3xþ � � �

�
; (11)

where we truncate the expansion at linear order since
corrections to averages of the type hAðxÞi would enter at
cubic order or above.

Cosmological perturbations can be represented in
Fourier space. Denoting an ensemble average with an
overbar, the power spectrum of two linear perturbations is

A1ðkÞB�
1ðk0Þ ¼ 2	2

k3
P ðkÞA1ðkÞB�

1ðkÞð2	Þ3�ðk� k0Þ
(12)

with primordial power spectrum

P ðkÞ ¼ A?

�
k

k?

�
ns�1

: (13)

The ensemble average of the domain volume is then

�VD ¼ VF þ a3
Z

WðxÞCðxÞd3x

þ VF

Z
P ðkÞ

�
jCðkÞj2 � 1

2
CijðkÞC�

ijðkÞ
�
dk

k
: (14)

Likewise the ensemble average of a spatially averaged
product of linear perturbations becomes

hA1ðxÞB1ðxÞi ¼ 1

2

Z
P ðkÞðA1ðkÞB�

1ðkÞ þ c:c:Þ dk
k
: (15)

The ensemble average of a linear perturbation is vanishing
by definition.
In the gravitational frame, the averaged Hubble rate (3)

then becomes

H D ¼ H þ 1

3
h _C� 2Cij _Ciji: (16)

This corresponds with the large-scale limit of the expan-
sion scalar of the coordinate grid defined with respect to
conformal time [29], �conf � 3ðH � _c � 2c _c Þ. The
perturbed Hubble rate in the backreaction is a simple
average of this quantity (denoted � in [6]).
Squaring this Hubble rate gives

H 2
D ¼ H 2 þ 2

3
H h _C� 2Cij _Ciji þ 1

9
h _Ci2; (17)

and so the effective energy density

H 2�eff ¼ 2

3
H h _C� 2Cij _Ciji þ 1

9
h _Ci2: (18)

It is important to note that in the gravitational frame the
entire backreaction then depends solely on the choice of
threading of the three-surface, defined by the choice of Cij.

The choice of slicing (i.e. of � and Bi) and the behavior of
any fluid content influences HD only indirectly through
dynamics.
In the projected fluid frame, the averaged Hubble rate is

instead

HD ¼ H þ 1

3
h@i@ivþ _Cþ 2HCi

þ 1

3

�
�@i@ivþ @iv@

iC� @iB@
i�

þ 3

2
H@aV@

aV þ 2Cij@i@jv� 2 _CijCij

�
(19)

and so depends both on the coordinates on the three-
surface, on the choice of slicing, and on the velocity of
the fluid with respect to the background, v. The covariant
velocity is V ¼ vþ B.
Both these forms of the Hubble rate are trivially gauge

dependent. This is not surprising. The choice of gauge has
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governed our choice of three-surface upon which to aver-
age and we should not expect gauge invariance. Rather, we
should attempt to find out in which gauges an average can
be properly defined.

IV. GAUGE CHOICES

Coordinate freedoms allow us to eliminate two scalar
degrees of freedom. Studies of backreaction have typi-
cally been in synchronous gauge with � ¼ B ¼ 0 (e.g.,
[14,16,30]) or conformal Newtonian gauge with B ¼ E ¼
0 (e.g., [6,24–27,31,32]). Uniform curvature gauge was
proposed in [27] but not examined in detail, although in a
different formalism [33] a volume-preserving system with
similarities to uniform curvature gauge was considered.

In order to carry out any cosmological averaging, it is
absolutely crucial to have a rigorous (fully covariant)
definition of the spacetime average of a tensor on a differ-
ential manifold in order for the results to make any physi-
cal sense. There have been a number of recent approaches
to this, including the exact macroscopic gravity (MG)
approach, which gives a prescription for the correlation
functions that emerge in an averaging of the Einstein field
equations [34–41]) (see also [1]).

This is an absolute necessity for any results to be inter-
preted physically. For an explicit example, consider the

situation in MG. This approach rests on the definition of a
bivector with specific properties; when one examines
these, the only allowed coordinate systems are those that
are volume preserving [33,42]. This is a generic feature
of covariant averaging schemes. As a consequence, in the
context of this paper—averaging in perturbation theory—
in general a spacetime average is only meaningful
when undertaken in a volume-preserving coordinate
system (VPC).
In a VPC the volume of a domain is preserved as the

system evolves in time. Closely related are what we term
comoving volume-preserving gauges (VPGs) in which the
volume of a three-domain on an inhomogeneous surface
evolves purely as a3ð�Þ. In a VPG the time dependences
cancel out when one takes an average—for the purposes of
spatial averaging, a VPG is then effectively a VPC.2 VPCs
are employed in, for instance, macroscopic gravity [34–40]
and a VPC at linear order was applied to cosmological
averaging in [33]. VPCs are also explicitly utilized in an
approach to averaging within unimodular gravity [44]. It is
a central aim of this paper to study the significance of the
VPGs or whether it is adequate to average in another,
practically convenient gauge.
Written explicitly, the spatial average of a perturbation

AðxÞ in arbitrary coordinates is given by

hAðxÞi ¼
R
WðxÞAðxÞd3xþ R

WðxÞAðxÞCðxÞd3xR
WðxÞd3xþ R

WðxÞCðxÞd3xþ R
WðxÞð12C2ðxÞ � CijðxÞCijðxÞÞd3x

: (20)

This takes on the simplest form when Cij ¼ 0. Tensor
modes at linear order are gauge invariant and cannot be
removed, but the gauge that imposes Cij ¼ ð1=2Þhij at an
arbitrary order in perturbation theory is a uniform curva-
ture gauge. Neglecting tensor perturbations,

VD¼a3
Z
WðxÞd3x; hAðxÞi¼

R
WðxÞAðxÞd3xR
WðxÞd3x : (21)

This is then a VPG; the spatial surfaces align with the
FLRW background, and the three-volume expands only
with the background and the only time dependence in the

average is that of the perturbation itself. This gauge is
ideally suited to the study of spatial averaging in perturba-
tion theory. The tensor modes can be included. To second
order, tensor and scalar contributions do not couple to-
gether, and the results of [27] can be directly employed:
tensor modes from inflation will produce a baseline back-
reaction of order �eff � 10�14.
Uniform curvature gauge is the unique choice for a

comoving VPG, but a less stringent alternative valid to
second order when averaging perturbations can also be
found. If we assume that we can Taylor-expand V�1

D , we

can reduce the spatial average to

hAðxÞi ¼
ða3 RWðxÞAðxÞd3xþ a3

R
WðxÞAðxÞCðxÞd3xÞð1� a3

VF

R
CðxÞd3xÞ

VF
; (22)

where we have truncated to second order in perturba-
tions. From this it is clear that if we choose a (spatially)
traceless gauge, with CðxÞ ¼ 0, the corrections to the
volume are pushed to higher orders in perturbation
theory. Uniform curvature gauge is a trivial example of
a traceless gauge, but a convenient, less stringent gauge
can be found that is sufficiently close to a VPG and may

provide a simpler basis for calculations than uniform
curvature gauge.
A traceless gauge is defined by

CT ¼ 0 ) 3c T ¼ @a@aET: (23)

2A similar argument was employed in [43].
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The scalar transformation from an arbitrary gauge (written
with a tilde) into this gauge is given by a generating vector
�� ¼ ð�; @i�Þ with
�T ¼ ~�þ _�þH�; CT ¼ ~Cþ 3H�þ@a@a�¼ 0

BT ¼ ~B��þ _�; �T ¼ ~�� 3H ð1þwÞ�;
vT ¼ ~v� _�: (24)

A choice containing no arbitrary constant is a uniform
density gauge, where the spatial sections follow contours
of constant density of some fluid. Aligning to CDM gives
the generating vector

� ¼
~�c

3H
; @a@a� ¼ 3 ~c � ~�c þ @a@a ~E: (25)

In terms of Newtonian gauge quantities, the traceless
gauge perturbations are therefore

c T ¼ c N � �cN

3
; ET ¼ � 3

k2
c T;

�T ¼ �N þ 1

H

�
_c N þ 1

3
k2vcN � 1

3

_H
H

�cN þ �cN

�
;

BT ¼ vcN � 1

3H
�cN; �aT ¼ �aN � ð1þ wAÞ�cN;

vaT ¼ vaN � vcN (26)

where we have used that in Newtonian gauge, _�cN ¼
3 _c N þ k2vcN . Note importantly that this gauge is
therefore a uniform CDM density gauge comoving
with CDM.3

It is interesting to note that the use of these gauges
simplifies the evaluation of backreaction in an another
important, practical manner: it removes inconvenient
terms. Consider the averaged Hubble rate in the gravita-
tional frame. This then contains the average of _C. In an
arbitrary gauge this contains spatial averages of both linear
perturbations and second-order perturbations. While the
ensemble averages of linear perturbations vanish, this still
leaves an average across a second-order perturbation and
products of spatial averages h _C1ihC1i. However, we only
have a firm method for evaluating the averages of products
of linear perturbations. The second-order term is particu-
larly problematic. Approximations for the nonlinear
Bardeen potential in �CDM exist [6,26,45] and so, in
principle, this term can be calculated in all gauges. These
solutions are, however, valid only in matter-dominated
universes (with or without a cosmological constant), and

it would obviously be convenient to have a formalism that
can be readily applied to universes with arbitrary fluid
content. Choosing a traceless gauge immediately removes
this term identically, and the form of the Hubble rate
becomes significantly simpler.
Similarly, in the projected fluid frame we must average

across CðxÞ and @a@av, and a traceless comoving gauge
would appear to render the problem sufficiently straight-
forward. In uniform curvature gauge, we still require
knowledge of v2F. The desire, therefore, is that the
almost-volume-preserving traceless uniform CDM gauge
can provide an ‘‘accurate-enough’’ approximation to the
result in the genuinely volume-preserving uniform curva-
ture gauge.
In this manner one can motivate the choices of gauge we

wish to study. Averaging in uniform curvature gauge is
uniquely well defined, and we consider it in both the
gravitational and the projected fluid frames. However, the
traceless uniform CDM gauge is also well motivated and
preserves the comoving volume up to linear order and
averages up to second order. In the gravitational frame,
any traceless gauge—including both uniform curvature
and traceless uniform CDM—reduces the problem to aver-
aging the product of linear perturbations. In contrast, in the
projected fluid frame a traceless gauge comoving with the
fluid provides the most convenient choice. We will also
consider Newtonian gauge in the gravitational frame to
provide a direct comparison with previous results
[6,25,26,46].
As a final comment, we have been assuming that the

corrections to VD are small, and that we can take a Taylor
expansion of the inverse volume. Physically one would not
expect an integral across a gravitational potential to give a
large result, but the correction integrals in the volume are
frequently divergent in the infrared, and potentially also in
the ultraviolet (see, for instance, the power spectra in
[47–49]; calculations of the volume reduce to integrals
across such spectra). These divergences contribute to the
spatial averages and could render the Taylor series physi-
cally valid but mathematically suspicious. Since it is physi-
cally implausible that metric perturbations cause the
volume of a domain to become arbitrarily large, we follow
standard procedure and neglect this issue. Nevertheless, it
is worth noting that the only gauge in which this does not
arise is the uniform curvature gauge in which VD ¼ VF ,

neglecting tensor modes. Preserving the consistency of the
formalism may then demand that we work in this gauge.

V. DYNAMICS

Up to this point our treatment has been applicable to any
perturbed flat FLRW universe. For simplicity4 we choose
henceforward to work in a pure dust Einstein–de Sitter
universe with �m ¼ 1, �� ¼ 0 and H ¼ 2=�, unless

3It can be motivated as such; setting vcT ¼ �cT ¼ 0 one
recovers the above gauge with an arbitrary function of x appear-
ing in ET . Since this constant only influences the coordinates on
the three-surface and not the choice of slicing it can be fixed to
ensure CðxÞ ¼ 0. 4And to ease direct comparison with previous work.
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stated otherwise. When necessary we choose �b ¼ 0:05
and h ¼ 0:704. The amplitude of primordial perturbations
will be A2

? ¼ 2:42� 10�9, and we employ a Harrison-
Zel’dovich spectrum with ns ¼ 1 for simplicity. A small
spectral tilt will not significantly change our answers.

This model serves as a reasonable approximation up
until recent redshifts. Analytic solutions for the
Newtonian potentials in a dust-dominated universe (with
or without a cosmological constant) at both linear and
second order were derived in [45] and applied to the
averaging problem in [6,26], and we quote the results
directly here.

In Newtonian gauge the linear potentials, fluid density
contrast and velocity are given by

�1N ¼ c 1N ¼ gð�Þ�0ðxÞ;
�1N ¼ �2�1N þ 1

6
�2@a@a�1N � � _�1N;

v1N ¼ � 1

3
��1N � 1

6
�2 _�1N;

(27)

where gð�Þ is the growth function and �0 the value of the
Newtonian potential at the present epoch. At second order,

the potentials are given by

c 2N ¼ A1ð�Þ�2
0 þ A2ð�Þ�2ð�0Þ þ A3ð�Þ�3ð�0Þ

þ A4ð�Þ@i�0@i�0; (28)

�2N ¼ ~A1ð�Þ�2
0 þ ~A2ð�Þ�2ð�0Þ þ ~A3ð�Þ�3ð�0Þ

þ ~A4ð�Þ@i�0@i�0 (29)

with �2N � c 2N due to an effective anisotropic stress
arising from products of linear perturbations. Here Anð�Þ
and ~Anð�Þ are functions of time related to the expansion of
the background which can be found in [45], while �nð�Þ
are second-order products of gradients and inverse
Laplacians of �0,

�2ð�0Þ ¼ @�2ð@i�0@i�0Þ � 3@�4@i@
jð@i�0@j�0Þ;

�3ð�0Þ ¼ @�2@i@
jð@i�0@j�0Þ:

(30)

To find the velocity in uniform curvature gauge, we also
require the Laplacian of the scalar velocity, which can be
found from the momentum constraint [50],

4	Ga2ð
þ pÞ@i@iv2N ¼ �@i@i _c 2N �H@i@i�2N þ 8	Ga2ð
þ pÞ@ið�1N@iv1NÞ þ 16	Ga2@iðc 1N@iv1NÞ
� 8	Ga2@i½ð�
1N þ �p1NÞ@iv1N� � 4@iðc 1Nc 1NÞ� þ 2@i½@i�1Nð _c 1N þ 4H�1NÞ�
þ 4@ið�1N@i _c 1NÞ: (31)

In EdS gð�Þ ¼ 1 and the solutions reduce to

c 1N ¼ �1N ¼ �0; �1N ¼ �2�2
0 þ

1

6
�2@a@a�0; v1N ¼ � 1

3
��0; (32)

c 2N ¼ �2�2
0 � 4

3�2ð�0Þ þ B3ð�Þ
�
�3ð�0Þ � 3

10 @
i�0@i�0

�
�2N ¼ 2�2

0 þ 3
2�2ð�0Þ þ B3ð�Þ

�
�3ð�0Þ � 3

10 @
i�0@i�0

�
9>=
>; ) _c 2N ¼ _�2N (33)

with

B3ð�Þ¼2

3
�2

�
5

14
�1

2

�
�m

�

�
2þ1

7

�
�m

�

�
7
�
� 5

21
�2: (34)

Here �m is an early time deep in matter domination at
which the Newtonian potentials are initialized and we
focus on the regime � � �m. �0 can be readily recovered
from a Boltzmann code. The divergence of the velocity
potential is then

1

�
@a@av2N ¼ 1

21
�2@i@ið@a�0@a�0Þ

� 10

63
�2@i@jð@i�0@

j�0Þ � 8

3
@i�0@i�0

þ 1

9
�2@ið@i�0@

a@a�0Þ þ 2�3ð�0Þ:
(35)

The linear gauge transformation from Newtonian to
uniform curvature gauge is generated by the four-vector

�
�
1 ¼ ð�; @i�Þ ¼

�
c 1N

H
; 0

�
¼

�
1

2
��0; 0

�
: (36)
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With this transformation vector, the linear uniform curva-
ture quantities are readily found to be

�1F ¼ 5

2
�0; B1F ¼ � 1

2
��0;

�1F ¼ �
�
5þ 1

6
k2�2

�
�0; v1F ¼ � 1

3
��0;

V1F ¼ � 5

6
��0:

(37)

The gauge transformation for the second-order velocity
potential can be written [29] as

@a@av2F ¼ @a@av2N � @a@a _�2 þ @k�v
k (38)

with

�v
i ¼ �2�1@ið _v1N þHv1NÞ ¼ ��0@i�0;

�2 ¼ � 3

4
@�4@i@j�

ij þ 1

4
@�2�k

k;
(39)

and the gauge function �ij is

�ij ¼ � 2

H
c 1Nð _c 1N þ 2H c 1NÞ�ij

� 2

H 2
@ic 1N@jc 1N

¼ �4c 2
1N�ij � 1

2
�2@ic 1N@jc 1N: (40)

After some manipulation this gives the uniform curvature
gauge velocity in a pure dust universe as

@a@av2F ¼ 1

21
�3@i@ið@a�0@a�0Þ

� 10

63
�3@i@jð@i�0@

j�0Þ

þ 1

9
�3@ið@i�0@

a@a�0Þ þ 5

4
��3ð�0Þ

þ ��0@
a@a�0 � 17

12
�@i�0@i�0: (41)

Finally, we need the curvature perturbation, lapse and
shift in traceless uniform CDM gauge. From Eq. (26) these
are

c 1T ¼ 5

3
�0 � 1

18
�2@a@a�0; �1T ¼ 5

36
�2@a@a�0;

B1T ¼ � 1

36
�3@a@a�0: (42)

VI. THE GRAVITATIONAL FRAME

A. Uniform curvature gauge

A first step towards the use of uniform curvature gauge
in this frame was presented in [3]. However, in that study
the authors only presented general forms and did not
interpret the results. From Eq. (16), the averaged Hubble

rate and effective energy density in uniform curvature
gauge are then

H D ¼ H ; H 2�eff ¼ 0: (43)

The backreaction in uniform curvature gauge is identically
zero, to an arbitrary order in perturbation theory! This
result is contrary to the claim in [3] that a gauge cannot
be found that removes the backreaction.5 This result was
previously shown in [51] in the context of cosmological
inflation and assuming a long-wavelength limit;6 our treat-
ment here is valid on all scales addressable with perturba-
tion theory.
Presented in this manner, this result is trivial: the impact

of scalar and vector perturbations on a Hubble rate in the
gravitational frame vanishes identically, because we are
working in a gauge with vanishing spatial scalar and vector
perturbations. It is straightforward to interpret this result:
the averaged Hubble rate in the gravitational frame is
defined by the change in the volume of the domain.
Since we are in a comoving volume-preserving gauge,
the volume expands only with a3, and so the averaged
Hubble rate is given purely by the input Hubble rate.
This vanishing answer contradicts expectation—while

certainly one might argue the backreaction (that is, the
‘‘Hubble backreaction’’) from perturbations should be
small, it cannot be expected to be identically zero at second
or higher orders in perturbation theory. Given that the
uniform curvature gauge provides the best-motivated sys-
tem in which to average, this suggests that the gravitational
frame is ill suited to studies of backreaction. Certainly it is
difficult to connect the Hubble rate averaged in this frame
with any physical quantity.

B. Traceless uniform CDM gauge

The above conclusions follow trivially from the defini-
tion of the Hubble rate in uniform curvature gauge, but as
argued earlier we can relax the gauge constraint slightly
and employ a traceless gauge. In the traceless uniform
CDM gauge, the averaged Hubble rate and effective energy
density become

�HD ¼ H � 2

3
hCij _Ciji;

H 2�eff ¼ � 4

3
H hCij _Ciji:

(44)

5In that study the authors did not address the effective energy
density and instead demanded that each individual backreaction
term in the ‘‘Buchert’’ approach vanish, and a gauge cannot be
found in which that is the case. A gauge can, however, be found
in which the combination of the backreaction terms vanishes,
which we explicitly demonstrate in Appendix A.

6We are grateful to an anonymous referee for drawing this
result to our attention.
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Since Cij ¼ �c T�ij þ @i@jET and 3c T ¼ @a@aET , the

ensemble averages can be rewritten using Eq. (15) to
become

�H D ¼ H � 20

27
�
Z

k2P ðkÞj�0ðkÞj2 dkk
� 2

81
�3

Z
k4P ðkÞj�0ðkÞj2 dkk ; (45)

H 2�eff ¼ � 80

27

Z
k2P ðkÞj�0ðkÞj2 dkk

� 8

81
�2

Z
k4P ðkÞj�0ðkÞj2 dkk : (46)

We have written the curvature perturbation in this gauge in
terms of the Newtonian gauge quantities using the gauge
transform (42).

We recover �0 from a modified version of the CMBFAST

code [52], itself based on COSMICS [53], but we can gain
insight examining the zero baryon transfer function found
in [54],

T0 ¼ L0

L0 þ C0q
2
; q ¼ kMpc h�1�2

2:7=�;

� ¼ �0h ¼ h; L0 ¼ lnð2eþ 1:8qÞ;
C0 ¼ 14:2þ 731

1þ 62:5q
:

(47)

This provides a good approximation to the numeric �0;
with �b ¼ 0:05 the baryon oscillations and small-scale
damping from the baryons is relatively minor. The analytic
form shows that there is an ultraviolet divergence in the

term proportional to k4; on large scales the integrand scales
as �ðlnkÞ2=k, which produces a logarithmic divergence
�ðlnkÞ3=3. We control this as in [26], smoothing the
gravitational potential in real space with the window
function Wðx=RSÞ. The smoothing scale RS is arbitrary.
A well-motivated choice would be the Silk scale, RS ¼
ðkSilkÞ�1 � 6 Mpc, where the numerical value is for an
Einstein–de Sitter universe.
Figure 1 shows the integrands, generated by combina-

tions of the Newtonian gauge gravitational potential, which
dominates on large scales, and the Newtonian gauge den-
sity contrast, which dominates on smaller scales. It is clear
that the integral does not contain an infrared divergence,
and the integrand with and without the small-scale smooth-
ing is plotted, taking RS ¼ 6 Mpc.
We solve the integrals numerically. For RS ¼ RSilk,

we have

�HD �H
H

¼ �0:409; �eff ¼ �0:818: (48)

(Due to the additional small-scale damping in the baryon
case, the results found from the Eisenstein and Hu zero-

baryon transfer function (47) are slightly larger: ð �HD �
H Þ=H ¼ �0:511, �eff ¼ �1:02.) The unphysically
large size of these results strongly suggests that in this
gauge the perturbations must be controlled on a larger scale.
The left panel of Fig. 2 shows the fractional shift

ð �HD �H Þ=H as a function of smoothing scale RS for
the test Einstein–de Sitter universe. The dependence is
extremely strong. For RS & 4 Mpc the fractional change
to the Hubble rate is significantly larger than unity. The
magnitude of the correction decays monotonically as
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FIG. 1. Integrands for HD-H (left) and H 2�eff (right). Gray lines are negative.
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RS ! 1; since the entire integral is smoothed there is no
asymptote. It is important to note that while there is a
dependence on the smoothing scale RS, there is no depen-
dence on the averaging scale RD.

In the right panel of Fig. 2 we plot instead �eff ¼
ð �H 2

D �H 2Þ=H 2. Qualitatively the behavior with RS is

the same as that for the Hubble rate. Both ð �HD �
H Þ=H and �eff are negative in this gauge and frame.
To obtain �eff & 10�2 would require RS * 24 Mpc.

The arbitrariness of the results is extremely unsatisfying
and stems from the strong ultraviolet divergences. The
automatic conclusion is that contrary to expectation, this
gauge in the gravitational frame is not well suited to
calculations of backreaction. Moreover, since �eff 	 0 in
the uniform curvature gauge, traceless uniform CDM
gauge certainly cannot be used to approximate the more
well-defined choice of gauge. However, it is interesting to
note that were we to take an infrared divergence that
appears in the domain volume seriously, and smooth the
ultraviolet divergence in the integrals above, then the
effective energy density would be driven to zero.

C. Conformal Newtonian gauge

The final gauge we consider in the gravitational frame is
conformal Newtonian gauge. With Cij ¼ �c N�ij, the

average Hubble rate and effective energy density are

�H D ¼ H þ 1

3

�
_c 1N þ 1

2
_c 2N � 6c 1N

_c 1N

�

¼ 1

6
h _c 2Ni; (49)

H 2�eff ¼2

3
H

�
_c 1Nþ1

2
_c 2N�6c 1N

_c 1N

�
þ1

9
h _c 1Ni2

¼1

3
H h _c 2Ni; (50)

where we have used that _c 1N ¼ 0 to simplify the forms
considerably. Using the analytic expression for c 2N in
Eq. (33) reduces this to

h _c 2Ni ¼ 7

30
_B3ð�Þ

Z
k2P ðkÞj�0ðkÞj2 dkk

� 1

9
�
Z

k2P ðkÞj�0ðkÞj2 dkk ; (51)

where we have used _B3 � ð10=21Þ�. We therefore have
the average Hubble rate and effective energy density

�HD ¼ H þ 1

54
�
Z

k2P ðkÞj�0ðkÞj2 dkk ;

H 2�eff ¼ 2

27

Z
k2P ðkÞj�0ðkÞj2 dkk :

(52)

These integrands are plotted in Fig. 1 and contain neither
infrared nor ultraviolet divergences. Since the term of the

form h�ih�i is vanishing in matter domination, there is no
dependence on the averaging domain; in a �CDM uni-
verse, however, this term would be nonvanishing and there
would be a weak dependence on RD.7

1 10 100 1000

Rs (Mpc)

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

10
6

10
8

Ω
ef

f

1 10 100 1000

Rs (Mpc)

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

10
6

10
8

(H
D

-H
)/

H
Gravitational Frame, Newtonian Gauge
Fluid Frame, Uniform Curvature Gauge
Gravitational Frame, Traceless Gauge
Fluid Frame, Traceless Gauge

FIG. 2. Modification to Hubble rate (left) and effective energy density (right) at the current epoch as a function of smoothing scale
RS . The domain radius is RD ¼ �0=2.

7Strictly speaking this contradicts a statement in [6] that the
backreaction in gravitational frame does not depend on the
choice of averaging domain. However, even in a �CDM uni-
verse, _c 
 c and the contribution will be entirely negligible,
and for all practical purposes the conclusions of that paper are
unchanged.
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It is also clear that in matter domination the effective
energy density of the backreaction becomes a constant, in
qualitative agreement with [6,25,26].

From the form of the integrands, the modifications to
the Hubble rate in Newtonian gauge will be both signifi-
cantly smaller than, and of an opposite sign to, those in
uniform traceless CDM gauge. For the test EdS cosmology,
we find

�HD �H
H

¼ 3:44� 10�7; �eff � 6:87� 10�7:

(53)

Using the zero-baryon transfer functions yields the slightly

larger ð �HD�H Þ=H¼4:4�10�7 and�eff � 9� 10�7.

VII. THE PROJECTED FLUID FRAME

Averaging in the projected fluid frame tangles together
fluid and metric quantities, and it is not possible to sig-
nificantly simplify expressions employing the dynamical
constraints. In particular, the termHD;1 ¼ h@a@avþ _Cþ
2HCi is present at both linear and second order in per-
turbations and does not readily simplify. For instance, at
linear order the Laplacian of the velocity can be replaced
with a combination of the lapse, shift and curvature using

the momentum constraint _c þH� ¼ �4	Ga2ðvþ BÞ;
removing the velocity then results in the average of a
combination of �, B, c and E, which will not cancel.
The situation at second order is significantly more
complicated.
Uniform curvature gauge remains the uniquely well-

defined gauge in which to perform a spatial average. It
can then be argued that a calculation of the backreaction in
this frame and gauge is the best we can hope for within the
confines of cosmological perturbation theory.
In the gravitational frame, we found that the traceless

uniform CDM gauge is not a good approximator for the
uniform curvature gauge, despite being almost volume
preserving. In the fluid frame there is an extra motivation
for studying this gauge: we can calculate the backreaction
true to second order using only linear perturbations since
vT ¼ CT ¼ 0. If the uniform traceless CDM gauge is a
reasonable approximation to the uniform curvature gauge,
it is then significantly more straightforward to find results
in this gauge.

A. Uniform curvature gauge

In uniform curvature gauge, the averaged Hubble rate
(19) simplifies slightly to become

H D ¼ H þ 1

3
h@a@av1Fi þ 1

6
h@a@av1Fi þ 1

3

�
�1F@

a@av1F � @a�1F@
aB1F þ 3

2
H@aV1F@aV1F

�
: (54)

The ensemble average of the Hubble rate and the effective energy density are therefore

�H D ¼ H þ 1

3

�
@a@av1F þ 1

2
@a@av2F

�
þ 1

3

�
�1F@

a@av1F � @a�1F@
aB1F þ 3

2
H@aV1F@aV1F

�
; (55)

H 2�eff ¼ 2

3
H

�
@a@av1F þ 1

2
@a@av2F

�
þ 2

3
H

�
�1F@

a@av1F � @a�1F@
aB1F þ 3

2
H@aV1F@aV1F

�
þ 1

9
h@a@av1Fi2:

(56)

We consider these averages term by term. Since the ensemble average of a linear perturbation vanishes, h@a@av1Fi ¼ 0.
From Eq. (41) we can also see that

h@a@av2Fi ¼
�
� 10

63
�3@i@jð@i�0@

j�0Þ þ 1

21
�3@i@ið@a�0@a�0Þ þ 1

9
�3@ið@i�0@

a@a�0Þ
�

(57)

þ
�
5

4
��3ð�0Þ � ��0@

a@a�0 � 17

12
�@a�0@a�0

�
: (58)

The first of these terms is

�
�
10

63
�3@i@jð@i�0@

j�0Þ
�
¼ � 10

63
�3h2@i@i@j�0@

j�0 þ @i@j�0@
i@j�0 þ @i@i�0@

j@j�0i: (59)

Transferring this to Fourier space reveals that this term vanishes on ensemble averaging. The second term is

�
1

21
�3@i@ið@a�0@a�0Þ

�
¼ 1

21
�3h@i@i@j�0@

j�0 þ 2@i@j�0@
i@j�0 þ @i@i�0@

j@j�0i; (60)

which is readily seen to also vanish on ensemble averaging. The third term,
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�
1

9
�3@ið@i�0@

a@a�0Þ
�

¼ 1

9
�3h@i@i�0@

a@a�0 þ @i�0@
i@a@a�0i; (61)

also vanishes. In [26] it is shown that

h�3ð�0Þi ¼ 1

3
h@a�0@a�0i (62)

and since

h@a�0@a�0i ¼ �h�0@
a@a�0i ¼

Z
k2P ðkÞj�0ðkÞj2 dkk ;

(63)

we can see that

h@a@av2Fi ¼ 0: (64)

The ensemble averaged Hubble rate then reduces to

�H D ¼ H þ 25

18
�
Z

k2P ðkÞj�0ðkÞj2 dkk : (65)

In [26] it was additionally shown that

h@a@aAi2 ¼
Z

k4jAðkÞj2W2ðkRDÞ dk
k
; (66)

where RD is a length scale characterizing the averaging
domain. Using this we can see that the effective energy
density in uniform curvature gauge and the projected fluid
frame is

H 2�eff ¼ 50

9

Z
k2P ðkÞj�0ðkÞj2 dkk

þ 1

18
�2

Z
k4P ðkÞj�0ðkÞj2W2ðkRDÞ dk

k
:

(67)

The only scale dependence in the solution enters in this
final term—for a large enough volume, the integral is
driven to zero and the effective energy density is governed
by the first term.

The right panel of Fig. 1 shows the integrands of �HD
and of �eff . We can see that the impacts on the Hubble
rate and its square are both positive, are cleanly under
control, and will be smaller than those in traceless uniform
CDM gauge. Setting the domain scale to the Hubble
scale gives

�HD �H
H

¼ 1:8� 10�4; �eff ¼ 3:61� 10�4:

(68)

Using the zero-baryon transfer function yields the

slightly larger ð �HD �H Þ=H ¼ 2:3� 10�4, �eff ¼
4:6� 10�4. This result is directly comparable with that
in [6], which performed the equivalent calculation in

conformal Newtonian gauge, with the result �eff �
4� 10�4, ð �HD �H Þ=H � 2� 10�4 for an Einstein–
de Sitter cosmology. It is also approximately in line with
earlier calculations such as those in [24,25,43].
Figure 3 shows the dependence of the effective energy

density on the averaging domain scale. At RD ¼ 16 Mpc
the effective energy density is �eff ¼ 8� 10�3, decaying
to �eff ¼ 4:4� 10�4 at RD ¼ 64 Mpc. In this gauge it is
then possible to identify a loose ‘‘homogeneity scale’’ at
RD � 150–250 Mpc, above which the backreaction
becomes scale-independent. This agrees well with the
calculation in [6,26], which identified a similar scale in
conformal Newtonian gauge.

B. Traceless uniform CDM gauge

The traceless uniform CDM gauge comoves with the
CDM and is volume preserving to first order in perturba-
tions. Selecting this gauge, the averaged Hubble rate is

HD ¼ H þ 1

3

�
3

2
H@aB@aB� @a�@aB

�

� 2

3
h _CabCabi; (69)

and we can therefore calculate the result up to second order
in perturbation theory, employing only linear perturba-
tions. The second term is identical to that in the gravita-
tional frame, and so
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FIG. 3. Effective energy density of the backreaction in the
projected fluid frame and uniform curvature gauge, as a function
of domain radius RD from accurate numerical calculations
(black) and the zero-baryon approximation (dotted line).

BACKREACTION: GAUGE AND FRAME DEPENDENCES PHYSICAL REVIEW D 87, 043518 (2013)

043518-11



H D ¼ H þH Grav þ 1

3

�
3

2
H@aB@aB� @a�@aB

�
:

(70)

Using the perturbations given in (42) we find that

�
3

2
H@aB@aB� @a�@aB

�
¼ �5

162

Z
k6j�0j2 dkk : (71)

This contains a severe ultraviolet divergence, which we
control with a smoothing scale RS . The severity of the
divergence suggests we must smooth on much larger scales
to control otherwise divergent results.

The averaged Hubble rate and effective energy density
are then

�H D�H ¼ 1

486
�5

Z
k6P ðkÞj�0j2W2ðkRSÞdkk �H Grav;

(72)

H 2�eff ¼ 2

243
�4

Z
k6P ðkÞj�0j2W2ðkRSÞ dkk

�H 2�eff;Grav: (73)

The integrands are plotted in Fig. 1. On superhorizon
scales, these agree with the traceless uniform CDM results
in the gravitational frame, but on subhorizon scales the
ultraviolet divergence is extremely notable. Even
smoothed at RS ¼ 6 Mpc, it is clear that the results in
the projected fluid frame will be orders of magnitude larger
than those in the gravitational frame. There is also a sign
change, suggesting that the sign of the backreaction, at
least, will be in agreement with the more controlled calcu-
lations in uniform curvature and conformal Newtonian
gauges. Evaluating the present-day backreaction at
RS ¼ 6 Mpc,

�HD�H
H

¼3:9�104; �eff¼7:82�104! (74)

The solutions as a function of RS , for RD ¼ �0=2,
are presented in Fig. 2. As might be expected, for a
sufficiently large RS—a smoothing scale approaching
that of the Hubble scale itself, RS * 2000 Mpc—the
results in the two frames coincide with one another.
On smaller scales the effective energy density is indeed
positive, but we require a smoothing scale RS * 60 Mpc
if we want �eff & 1—to ensure �eff & 0:01, we need
RS * 130 Mpc! The extreme divergence, and the
smoothing scales required to control it to recover mean-
ingful results, suggest that the three-surface and its
perturbations in this gauge are badly suited to the study
of backreaction. It is certainly possible to argue that a
comoving uniform density gauge is not well adapted to
the recent universe; the recent universe contains both
large velocities and high densities, implying that the

hypersurface and its embedding grow increasingly con-
torted. In any event it is certain that we cannot use the
traceless uniform CDM gauge as a convenient substitute
for the uniform curvature gauge. While in an EdS uni-
verse a choice of RS � 243 Mpc recovers equivalent
results, we cannot expect the same to hold true in
more realistic universes—the smoothing scale required
for consistency will not remain the same.

VIII. DISCUSSION

In this paper we have shown that the cosmological back-
reaction is both highly gauge dependent and highly frame
dependent. We have advocated the use of a (comoving)
volume-preserving coordinate system as the system in
which a spacetime average is well defined and argued
that given the smallness of the tensor perturbations, uni-
form curvature gauge provides a surface to average across
which preserves the comoving volume and in which the
time dependences in the averages cancel.
We then motivated an alternative choice of a comoving

VPG, a gauge chosen to comove with surfaces of uniform
cold dark matter density, with the spatial coordinates
chosen such that the trace of the spatial metric vanishes.
While this gauge does not preserve the comoving volume
at second order in perturbation theory, it does preserve it at
linear order, which is adequate for calculations to second
order in perturbation theory. A convenient feature of this
gauge is that one can solve the backreaction to second
order employing only linear perturbation theory.8

We compare both of these gauges against the conformal
Newtonian gauge, employed in [6,25,26,31,32]. In the
gravitational frame, the backreaction in uniform curvature
gauge vanishes identically. Since it is in the uniform cur-
vature gauge that the backreaction should be defined, this
suggests that the definition of the Hubble rate from the
expansion of a three-volume is too restrictive; with no
reference to the fluid content of the universe it is also
hard to recover meaning from the results. Further, while
the backreaction in traceless uniform CDM gauge exhibits
a strong dependence on the choice of smoothing scale RS ,
results in the gravitational frame do not exhibit any depen-
dence on the choice of averaging scale RD, which, as
pointed out in [6,26], is rather unnatural. The effective
energy densities in the traceless uniform CDM and con-
formal Newtonian gauges possess different signs, and to
ensure they are of equivalent size we must use a smoothing
of the order of hundreds of megaparsecs. It is clear that it is
not possible to use the traceless uniform CDM gauge as a
simple alternative to uniform curvature.
In the projected fluid frame, the ultraviolet catastrophes

in traceless uniform CDM gauge are exacerbated. To

8Note, however, that this relies on it being possible to fix the
gauge at second order in the same manner as we have at first
order. While this seems likely, it has not been demonstrated.
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ensure �eff < 1, as seems reasonable, we must smooth
perturbations on scales smaller than RS ¼ 64 Mpc! In
contrast, in uniform curvature gauge we do not need to
smooth perturbations on small scales, and we find �eff �
4� 10�4. This is in line with the results of [6,26] in
conformal Newtonian gauge and also agrees with previous
order-of-magnitude estimates such as in [25]. The use of
uniform curvature gauge does, however, require knowl-
edge of fluid velocities at second order in perturbation
theory, which is in general nontrivial.

The effective energy density in the projected fluid frame
also exhibits the expected dependence on the averaging
scale RD, with the impact decaying and asymptoting to a
constant as RD ! H�1

0 . This is in agreement with the

behavior noted in [6,26]. In these papers it was also stated
that the two frames should agree when the averaging scale
is on the order of the Hubble scale. We confirm this for
traceless uniform CDM gauge, but only if the ultraviolet
smoothing scale is itself approaching the order of the
Hubble scale.

In uniform curvature gauge, however, we find that the
effective energy density tends towards a constant, finite
value in the projected fluid frame as the averaging radius
grows to infinity, which contrasts with the identically
vanishing result in the gravitational frame. In the gauge
in which the averaging is properly defined, the results in
the two gauges will never coincide no matter how large the
averaging domain. This forces us to choose a frame in
which to work; since it is defined from physical quantities
that have meaning for an observer, we advocate the use of
the projected fluid frame.

We have presented a calculation of the cosmological
backreaction in pure matter universes in the uniform cur-
vature gauge, in which averaging is well defined. The
effective energy density of backreaction in this gauge
agrees well with previous calculations in conformal
Newtonian gauge. An alternative, which is well defined
to second order in perturbations, does not provide consis-
tent results. This gauge also ensures that corrections to the
three-volume remain formally small and that Taylor expan-
sions remain valid, which is not the case in either of the
alternative gauges. While the backreaction remains of
order 10�4–10�3, as in previous calculations, this value
is now on a significantly firmer basis than before. The
result is also slightly larger than the estimates in, for
instance, [24,25] and the calculations in [6,26,46]. While
the direct impact from perturbation theory is still relatively
minor, it is not so clear that it can simply be neglected.
The present-day universe is not well described by second-
order perturbation theory. If perturbations induce backre-
actions at the order of 10�4–10�3, larger inhomogeneous
structures could be expected to have a larger impact—
conceivably of the order of * 10�2 and equivalent to the
energy density of baryons themselves (see, for instance,
[22,46,55,56]).

The result in a � or �CDM universe will be somewhat
less due to the washing out of structure from dark energy.
Our result is then an upper limit on the present-day impact
of second-order perturbations on the background. A more
comprehensive study would require examination of the
deceleration parameter or on other measures (such as the
variance of the Hubble rate, considered, for instance, in
[6,57,58]). Further progress, valid in the present universe,
will then likely require the study of fully nonlinear solu-
tions to GR.
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APPENDIX A: THE BACKREACTION IN THE
BUCHERTAPPROACH

In this appendix we prove in the context of the standard
‘‘Buchert’’ approach that the gravitational frame backreac-
tion vanishes identically in uniform curvature gauge. It is
standard to connect the averaged Hubble rate to the fluid
content of the Universe. Applying the averaging procedure
to the Hamiltonian constraint and evolution of the extrinsic
curvature produces Friedmann-like (so-called ‘‘Buchert’’)
equations in the domain ([3]),

H 2
D ¼ 8	G

3

X
f

h�2
ðfÞi þ 1

3
h�2i�

� 1

6

�
RD þQT

D � 6
X
f

F ðfÞ
D

�
; (A1)

€aD
aD

¼ � 4	G

3

X
f

h�2ð
ðfÞ þ 3pðfÞÞi þ 1

3
h�2i�

þ 1

3

�
P T

D þQT
D � 3

X
f

F ðfÞ
D

�
: (A2)

QT
D, P T

D, RD and FD are, respectively, the kinematic

backreaction, dynamic backreaction, averaged curvature
and fluid tilt, which corrects the fluid quantities between
the surface orthogonal to n� and the rest frame of a fluid
with four-velocity u�ðfÞ, and are given in [3]. 
ðfÞ is the rest-
frame density of a fluid and pðfÞ its rest-frame pressure.

The effective energy density is then

H 2�eff ¼ 1

6

�
6
X
f

F ðfÞ
D �RD �QT

D

�
: (A3)

Using Bi ¼ @iB, vi
ðaÞ ¼ @ivðaÞ, the correction terms

become
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RD ¼ 0; QD ¼ �4H h@i@iBi þ hð@i@iBÞð@j@jBÞ � ð@i@jBÞð@i@jBÞi;

T ðfÞ
D ¼ 8	G

3
a2 �
ðfÞh�ðfÞ þ 2�i þ 8	G

3
a2 �
ðfÞh2��ðfÞ þ @iB@

iBþ ð1þ wðfÞÞ@iVðfÞ@iVðfÞi

LD ¼ 2

3
a2�h�i þ 1

3
a2�h@iB@iBi:

(A4)

Expanding the perturbations into first- and second-order components, the effective energy density (A3) becomes

8	G

3
a2 �
eff ¼

�
8	G

3
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X
f
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3
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X
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3
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ðð@i@iBð1ÞÞð@j@jBð1ÞÞ � ð@i@jBð1ÞÞð@i@jBð1ÞÞÞ

�
: (A5)

The second-order perturbed Hamiltonian constraint in uniform curvature gauge [50] is

2H@i@iBð2Þ þ 6H 2�ð2Þ þ 8	Ga2
X
f

�
ðfÞ�ðf;2Þ ¼ �16	Ga2
X
f

�
ðfÞð1þ wðfÞÞ@iVðf;1Þ@ivðf;1Þ þ 4H@iBð1Þ@i�ð1Þ

þ ð@i@iBð1ÞÞð@j@jBð1ÞÞ � ð@i@jBð1ÞÞð@i@jBð1ÞÞ þ 6H 2ð4�2
ð1Þ

� @iBð1Þ@iBð1ÞÞ þ 8H�ð1Þ@i@iBð1Þ: (A6)

Employing this to eliminate @i@iBð2Þ in the effective energy density, and using the Friedmann equation to absorb terms
proportional to �, leads ultimately to

H 2�eff ¼
�
8	G

3
a2
X
f

�
ðfÞ�ðf;1Þ þ 2H 2�ð1Þ þ 2

3
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8	G
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X
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ð1Þ þ

4
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3
H@i�ð1Þ@iBð1Þ

�
: (A7)

The above form of the effective energy density contains only first-order perturbations, for which we have a complete and
straightforward theory. In particular, we have the Hamiltonian and momentum constraints

3H 2�ð1Þ þH@i@iBð1Þ ¼ �4	Ga2
X
f

�
ðfÞ�ðf;1Þ; H� ¼ �4	Ga2
X
f

ð1þ wðfÞÞ �
ðfÞVðf;1Þ; (A8)

which can be used to easily eliminate the fluid quantities in terms of metric quantities. Use of the Hamiltonian constraint
removes the average of first-order perturbations that appears in H 2�eff , which becomes

H 2�eff ¼
�
8	G

3
a2
X
f

�
ðfÞð2�ð1Þ�ðf;1Þ þ ð1þ wðfÞÞ@iBð1Þ@iVðf;1ÞÞ þ 4H 2�2
ð1Þ þ

4

3
H�ð1Þ@i@iBð1Þ þ 2

3
H@i�ð1Þ@iBð1Þ

�
:

(A9)

The Hamiltonian and momentum constraints give

2�ð1Þ
8	G

3
a2
X
f

�
ðfÞ�ðf;1Þ þ 4H 2�2
ð1Þ þ

4

3
H�ð1Þ@i@iBð1Þ ¼ 0;

@iBð1Þ
8	G

3
a2
X
f

ð1þ wfÞ �
ðfÞ@iVðf;1Þ þ 2

3
H@iBð1Þ@i�ð1Þ ¼ 0:

(A10)

A quick examination of the effective energy density of the backreaction quickly confirms that
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H 2�eff ¼ 0: (A11)

We have verified, within the full Buchert approach, that the
gravitational-frame backreaction up to second order in
perturbation theory in uniform curvature gauge vanishes

identically! Note that in forming this conclusion, we have
not transferred the system into Fourier space nor have we
taken an ensemble average—the conclusion follows inevi-
tably, in real space, for scales on which second-order
perturbation theory is valid and for any admixture of fluids.
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