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We present the complete set of propagation and constraint equations for the kinematic and nonlocal
first order quantities which describe general linear inhomogeneous and anisotropic perturbations of a
flat Friedmann-Robertson-Walker braneworld with vanishing cosmological constant and decompose
them in the standard way into their scalar, vector and tensor contributions. A detailed analysis of the
perturbation dynamics is performed using dimensionless variables that are specially tailored for the
different regimes of interest; namely, the low energy general relativity regime, the high energy regime
and the dark energy regime. Tables are presented for the evolution of all the physical quantities, making
it easy to do a detailed comparison of the past asymptotic behavior of the perturbations of these models.
We find results that exactly match those obtained in the analysis of the spatially inhomogeneous G2

braneworld cosmologies presented recently; i.e., that isotropization towards the F b model occurs for
� > 4=3.
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I. INTRODUCTION

A well-known problem of cosmology is to explain the
very high degree of isotropy observed in the cosmic
microwave background (CMB). In a theory such as gen-
eral relativity, where isotropy is a special rather than
generic feature of cosmological models, we need a dy-
namical mechanism able to produce isotropy. Inflation
was proposed, among other reasons, as a way to isotrop-
ize the Universe. Inflation is effective in this sense, but it
needs homogeneous enough initial data in order for in-
flation to begin [1]. Although one could perhaps adopt the
view that one smooth enough patch in an otherwise
nonsmooth initial Universe is all that is needed to explain
observations, this may not be satisfactory [2]: the isotropy
problem remains open in standard cosmology.

Recently, a number of authors [3–12] have addressed
the issue of isotropization in the context of braneworld
cosmology based on a generalization of the Randall and
Sundrum model [13,14]. Here the bulk is five dimensional
and contains only a cosmological constant, assumed to be
negative (see [15] for a comprehensive review).

In all cases considered, an interesting result was found:
unlike general relativity, where in general the cosmologi-
cal singularity is anisotropic, the past attractor for spa-
tially homogeneous anisotropic models in the brane is a
simple Robertson-Walker (RW) model F b [7,16]. Since
this result was also found to hold for Bianchi IX models
[7,8] as well as for some inhomogeneous models, the
author suggested that the isotropic singularity could be
a generic feature of brane cosmological models.

In a recent paper [17], this conjecture was supported by
studying the dynamics of a class of spatially inhomoge-
neous G2 cosmological models in the braneworld sce-
04=70(12)=123517(14)$22.50 123517
nario. A numerical analysis of the governing system of
evolution equations led to the result that for � > 4=3
isotropization towards a simple RW model F b occurs as
� ! �1 for all initial conditions. In the case of radiation
(� � 4=3), the models were still found to isotropize as
� ! �1, albeit slowly. It can therefore be concluded that
an initial isotropic singularity occurs in all of these G2

spatially inhomogeneous brane cosmologies for a range
of parameter values which include the physically impor-
tant cases of radiation and a scalar field source. The
numerical results were confirmed by a qualitative dy-
namical analysis and a detailed calculation of the past
asymptotic decay rates [17].

A similar result is also obtained in a related perturba-
tive study where a careful analysis of generic linear in-
homogeneous and anisotropic perturbations of the F b

model [18] was conducted. Solutions were obtained for
the large-scale evolution of scalar, vector and tensor
perturbations showing that the F b model is stable in
the past (as � ! �1) with respect to generic inhomoge-
neous and anisotropic perturbations provided the matter
is described by a noninflationary perfect fluid with �-law
equation of state parameter satisfying � > 1. In particu-
lar, it was shown that the expansion normalized shear
vanishes as � ! �1, signaling isotropization.

Brane cosmology thus has the very attractive feature of
having isotropy built in, and although inflation in this
context would still be the most likely way of producing
the fluctuations seen in the CMB, there would be no need
for special initial conditions for it to start. Also, the
Penrose conjecture [19] on gravitational entropy and an
initially vanishing measure of the Weyl tensor might be
satisfied, cf. [20].
-1  2004 The American Physical Society
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The aim of this paper is to give a more compressive
large-scale perturbative analysis of flat Friedmann-
Robertson-Walker (FRW) brane models with vanishing
cosmological constant by combining the high energy
results in [18] with an analysis of the other important
stages in the braneworld evolution, namely, the low en-
ergy general relativity and dark energy regimes. To make
this precise we define dimensionless variables that are
specially tailored for each regime of interest. In this way
we are able to clarify further the past asymptotic behav-
ior of these models and obtain results which match the
analysis of the spatially inhomogeneous G2 cosmologies
presented in [17]; i.e., that isotropization towards the F b
model occurs for � > 4=3.

The paper is organized as follows. In Sec. II we will
give a brief summary of the braneworld scenario and the
induced field equations on the brane. In Sec. III we
introduce dimensionless expansion normalized variables
and derive the complete set of propagation and constraint
equations for the kinematic, inhomogeneity and nonlocal
quantities. In Sec. IV we split these equations into scalar,
vector and tensor parts, which we then analyze and dis-
cuss in Secs.V,VI, and VII for the low energy, high energy
and dark radiation dominated regimes, respectively.
Finally, in Sec. VIII we present our conclusions. For the
most part we follow the notation and convention of
[15,18].
II. BRANE DYNAMICS

A. Geometric formulation

The implementation of the braneworld scenario con-
sidered in [14] assumes that the whole spacetime is 5D
and governed by the 5D field equations �A;B � 0; :::; 4�:

G�5�
AB � ���5�g

�5�
AB � �2

�5�
������gAB � TAB	: (1)

These represent a 4D brane at � � 0 embedded in a
vacuum bulk with metric g�5�AB and cosmological constant
��5�; �2

�5� is the 5D gravitational constant, � is the brane
tension, gAB and TAB are, respectively, the metric and the
energy-momentum on the brane. The 4D field equations
induced on the brane are derived geometrically from (1)
assuming a Z2 symmetry with the brane at the fixed
point, leading to modified Einstein equations with new
terms representing bulk effects:

Gab � ��gab � �2Ttot
ab; (2)

where

Ttot
ab � Tab �

6

�
Sab �

1

�2 E
�5�
ab : (3)

As usual �2 � 8�=M2
p, and �a; b � 0; :::; 3�. The various

physical constants and parameters appearing in the equa-
tions above are not independent, but related to each other
123517
by

� � 6
�2

�4
�5�

; � �
1

2
���5� � �2�	: (4)

The tensor Sab represents nonlinear matter corrections
given by

Sab �
1

12
Tc

cTab �
1

4
TacTc

b �
1

24
gab�3TcdTcd � �Tc

c�
2	:

(5)

E�5�
ab is the projection of the 5D Weyl tensor C�5�

ABCD on to
the brane: E�5�

ab � C�5�
ABCDn

CnDgAag
B
b , where nA is the nor-

mal to the hypersurface � � 0 (nAnA � �1).
Although the whole dynamics are 5D and given by (1),

from the 4D point of view E�5�
ab is a nonlocal source term

that carries bulk effects onto the brane.
The energy-momentum tensor Tab is assumed to be

conserved on the brane:

rbTab � 0; (6)

and on using the 4D contracted Bianchi identities
rbGab � 0 an additional constraint is obtained:

raE�5�
ab �

6�2

�
rbSab; (7)

which shows how the nonlocal bulk effects are sourced by
the evolution and spatial inhomogeneity of the brane
matter content.

B. Cosmological dynamics on the brane

In the following we describe the matter on the brane by
a perfect fluid with barotropic equation of state p � ���
1��. As usual, we require � � 0 to satisfy the dominant
energy condition and � � 2 to preserve causality and
therefore we restrict our analysis to values of 0< � �
2. The case � � 0 can be treated similarly to our analysis
below, but using different variables. We do not study this
special case here, but refer the reader to [21] for details on
how to treat this case.

If ua is the matter 4-velocity and hab � gab � uaub
projects into the comoving rest space of a fundamental
observer, the brane energy-momentum tensor is given
by

Tab � �uaub � phab: (8)

One can also decompose E�5�
ab in such a way that it is

equivalent to a traceless energy-momentum tensor with
energy density �
, energy flux q
a and anisotropic pressure
�

ab (see [15] for details):

�
1

�2 E
�5�
ab � �


�
uaub �

1

3
hab

�
� q
aub � q
bua � �


ab:

(9)
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Since there is no evolution equation for the nonlocal
anisotropic pressure �


ab we restrict our analysis to the
case �


ab � 0. This is dynamically justified in early time
regimes [15,17,22]. Note, in particular, that using (3) the
total energy density is given by

�tot � ��
1

2�
�2 � �
: (10)

In this way we can see that there are three essentially
different energy regimes: when � � �2

� ; �

 we recover

general relativity (GR). When �2

� � �; �
 we obtain the

high energy limit, and when �
 � �; �
2

� we obtain the
dark radiation dominated regime.

Equation (6) gives the usual energy and momentum
conservation equations:

_�� 3�H� � 0; (11)

��� 1�Da�� ��Aa � 0; (12)

where a dot denotes ubrb, H � 3Daua is the Hubble
parameter of the background, Ab � _ub is the 4-
acceleration, and Da denotes the spatially projected co-
variant derivative.

Using Eqs. (6) and (7) we can obtain conservation
equations for the nonlocal quantities �
 and q
a.
Restricting to linear perturbations of Robertson-Walker
models [21,23,25,26], we obtain1:

_� 
 � 4H�
 � Daq
a � 0; (13)

_q 

a � 4Hq
a �

1

3
Da�


 �
4

3
�
Aa � �

�
�
�Da�: (14)

Finally we note that the generalized Friedmann equa-
tion on the brane for a flat, homogeneous isotropic back-
ground with vanishing 4D cosmological constant � is

H2 �
�2�
3

�
�2�2

6�
�
�2�


3
: (15)
III. COSMOLOGICAL PERTURBATIONS

In the following sections we will present a complete
description of general large-scale inhomogeneous pertur-
bations for several different flat (K � 0) homogeneous
isotropic background models with vanishing cosmologi-
cal constant on the brane (� � 0). Because we have no
1Strictly speaking, the variables defined in [23,24] and those
defined in the same way in the brane context [15,27,28] are 4D,
however they can easily be generalized to 5D. Indeed Bardeen-
like variables [29,30] have been defined in 5D in order to carry
out a brane-bulk analysis (e.g., see [31]), however their relation
to the covariant quantities used here has not yet been estab-
lished (see [25,26] for this relation in 4D general relativity).
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evolution equation for Weyl stress on the brane, we set it
to zero.2

Following the dynamical systems approach developed
in [32–34] and extended to the braneworld scenario in
[4,6] we define the dimensionless density parameter

�� �
�2�

3H2 (16)

as in general relativity, and

�� �
�2�2

6�H2 ; ��
 �
�2�


3H2 (17)

corresponding to the non-GR contributions to the
Friedmann equation. In this way we can classify the
various background solutions by their coordinates
���;��;��
 � in the phase space of FRW models.

The point �1; 0; 0� corresponds to the flat GR
Friedmann model with ��1 � �
 � 0 and a�t� � t2=3�.
The point �0; 1; 0� corresponds to the high energy model
F b with �
 � 0 and � � �2=�; the scale factor is given
by a�t� � t1=3�, which can be found by a limiting process
[7,16]. Finally the point �0; 0; 1� corresponds to a model
(R) with scale factor evolution a�t� � t1=2, satisfying
� � ��1 � 0.

In what follows, we develop the perturbation equations
for a general background model ���;��;��
 � and de-
compose the propagation and constraint equations into
their respective scalar, vector and tensor contributions in
the usual way. We then evaluate these equations for the
three backgrounds described above and interpret the
results.

A. Dimensionless variables

The projected 4D field Eq. (2) can be covariantly split
using the Ricci identities and the Bianchi identities [15].
In the previous section we have already given the conser-
vation equations for energy and momentum (11) and (12)
and for the nonlocal energy density �
 and flux q
a (13)
and (14). The remaining equations correspond to propa-
gation and constraint equations for the kinematic quan-
tities, i.e., the acceleration Ab, the vorticity !b and the
shear 'ab, together with the electric and magnetic parts
of theWeyl tensor Eab, Hab corresponding to the nonlocal
gravitational field on the brane.

Instead of using the standard quantities we define
dimensionless expansion normalized variables by

Wa �
!a

H
; �ab �

'ab

H
;

Eab �
Eab

H2 ; H ab �
Hab

H2 :
(18)
2Note that in the case of scalar perturbations an anisotropic
Weyl stress could be included, since in the long wavelength
limit its dynamical contribution is negligible.
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We emphasize that Eab and the expansion normalized
quantity Eab must not be confused with the 5D Weyl
tensor E�5�

ab . It turns out that using the dimensionless
vorticity variable

W

a � aHWa (19)

simplifies the calculations below; however, it should be
noted that Wa and not W


a is the physically relevant
quantity. We also use the dimensionless logarithmic
time derivative �, defined by

fg0 �
d
d�

�
d

d ln�a�
�

1

H
d
dt
: (20)

Density perturbations are physically characterized by
the comoving fractional density gradient defined by [23]:

�a �
a
�
Da�: (21)

In addition, it is convenient to define the following di-
mensionless gradients describing inhomogeneity in the
expansion rate H and in the nonlocal energy density �


and flux q
a

Z

a �

3a
H

DaH; U

a �

�2a

H2 Da�
; Q

a �

�2a
H

q
a:

(22)

Note that although �a is not defined for the exact dark
radiation background (R) where � � 0, it is well-defined
in a neighborhood of (R) and since (R) is a saddle point in
the phase space of the background homogeneous models
[4], this solution can never be exactly attained. It is there-
fore sufficient to study arbitrarily small but nonzero in-
homogeneous perturbations of this model. In other words
we may evaluate the perturbation equations arbitrarily
close to the background (R), but not on the exact back-
ground itself.

The above discussion suggests that it makes more sense
to define specially tailored inhomogeneity variables by
normalizing them with respect to the dominant energy
density term in the Friedmann equation.

For the low energy limit we use the usual dimension-
less perturbation quantities:

��LE�
a �

a
�
Da�; U�LE�

a �
a
�
Da�


; Q�LE�
a �

1

�
q
a;

(23)

however since �
 is the dominant term in the dark ra-
diation dominated regime, the appropriate inhomogene-
ity variables are

��DE�
a �

a
�


Da�; U�DE�
a �

a
�


Da�
;

Q�DE�
a �

1

�

q
a:

(24)
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Finally in the high energy limit we define

��HE�
a �

�a

�2 Da�; U�HE�
a �

�a

�2 Da�
;

Q�HE�
a �

�

�2 q


a;

(25)

since the leading energy density term is proportional to
�2=�, which becomes our normalization factor in this
case.

When decomposing the equations into harmonics we
will have to deal with the curls of some of the variables.
One approach would be to eliminate the curls by deriving
second and higher order equations, or alternatively intro-
duce new spatial harmonics corresponding to the curls of
the original harmonics. Instead, we find it more conve-
nient to define new variables corresponding to the curls of
the original quantities and derive propagation and con-
straint equations for them. In this way we obtain a com-
plete closed set of linear differential equations which can
be easily solved. Note that all of the additional propaga-
tion and constraint equations have to be satisfied, since
these equations are necessary to close the system.

We denote the curl of a quantity with an overbar and
the key variables of this type are:

�W

a �

1

H
curlW


a; ��ab �
1

H
curl�ab;

�Eab �
1

H
curlEab;

�H ab �
1

H
curlH ab

(26)

and

�Q 

a �

1

H
curlQ


a: (27)
B. Dimensionless linearized propagation and con-
straint equations

The complete set of propagation and constraint equa-
tions for the kinematic and nonlocal quantities on the
brane were developed in [15]. Here we extend this work
by presenting the complete set of evolution and constraint
equations for the dimensionless variables defined by (18),
(19), and (26).

We begin with the generalized Raychaudhuri equation

�
H0

H
� �1� q� �

�� 1

�
1

3aH2 D
a�a; (28)

where

q �
3

2
��� � 3��� � 2��
 � 1

is the usual deceleration parameter.
-4
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The remaining propagation equations are given by

W
0
a � �3�� 4�W


a;

�0
ab � �q� 1��ab � Eab �

�� 1

�
�aH��2Dha�bi;

E0
ab � �2q� 1�Eab � �q� 1��ab �

1

2aH2 DhaQ

bi

� �H ab;

H 0
ab � �2q� 1�H ab � �Eab; (29)

which are subject to following dimensionless constraints:

aDbW

b � 0; aDb�ab � �W


a �
2

3
Z

a �Q


a;

H ��ab � �
1

aH
DhaW


bi �HH ab;

aDbEab � ��� � 2����a �
1

3
U

a �Q


a;

aDbH ab � 2�q� 1�W

a �

1

2
�Q

a;

(30)

where the angle bracket is defined by

DhaW

bi � D�aW


b� �
1

3
DcW


chab: (31)

Equations for the inhomogeneity variables �a, Z

a, Q


a
and Q


a. are given by

�0
a � �3�� 3��a � �Z


a;

Z
0
a � �q� 1�Z


a �
3

2

�
�� � �6�� 2���

�
4�� 4

�
��


�
�a �U


a � 6��� 1� �Wa

�
�� 1

�
1

H2 D
2�a;

Q
0
a � �q� 2�Q


a �
1

3
U

a �

�
4
�� 1

�
��
 � 6���

�
�a;

U
0
a � �2q� 2�U


a � 4��
Z

a �

12�� 12

�
��
�a

�
1

H2 Da�D
bQ


b�:

(32)

Finally, using the definitions (26) and (27), we obtain
equations for the curls of the original quantities:
123517
�W
0
a � �q� 3�� 4� �W


a;
��0
ab � �2q� 1� ��ab � �Eab;

�E0
ab � �3q� 1� �Eab � �q� 1� ��ab �

3

2H2 DhaD
cH bic

�
1

4aH2 Dha
�Q

bi �

1

H2 D
2H ab;

�H
0
ab � �3q� 1� �H ab �

3

2H2 DhaD
cEbic �

1

H2 D
2Eab;

�Q
0
a � �2q� 2� �Q


a � 4��6�� 8���
 � 9�2��	W


a;

(33)

which are subject to the following constraints [obtained
by taking the curls of (30)]:

aDb �W

b � 0;

aDb ��ab � 2�q� 1�W

a �

1

2
�Q

a �

1

2H2 D
2W


a;

�H ab �
1

2aH
Dha

�W

bi �

1

H2 D
2�ab �

3

2H2 DhaD
c�bic;

aDb �Eab � 2�q� 1�W

a �

1

2
�Q

a;

aDb �H ab � �q� 1� �W

a �

1

4H2 �D
2Q


a � Da�D
bQ


b�	;

aDa �Q

a � 0:

(34)
IV. HARMONIC DECOMPOSITION

In order to solve these equations we employ the stan-
dard approach of expanding the variables in these equa-
tions in terms of scalar (S), vector (V) and tensor (T)
harmonics Q.3 These harmonics are eigenfunctions of the
covariantly defined Laplace-Beltrami operator [25]:

D 2Q � DaD
aQ � �

k2

a2
Q; (35)

where k is the wave number corresponding to a comoving
scale � � 2�a=k. This yields a covariant and gauge in-
variant splitting into three sets of evolution and con-
straint equations for scalar, vector and tensor modes.

Thus a scalar X, vector Xa (orthogonal to ua) and
tensor Xab (orthogonal to ua) can be expanded as follows

X � XSQS; Xa � k�1XSQS
a � XVQV

a ;

Xab � k�2XSQS
ab � k�1XVQV

ab � XTQT
ab:

(36)

In what follows we drop the subscripts S, V, T and also
restrict our analysis to the long wavelength limit defined
by k2

a2H2 � 1.
-5
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A. Scalar perturbations

In the long wavelength limit the scalar evolution equa-
tions for the kinematics [which follow after expanding
(29) in terms of scalar harmonics] are given by

�0 � �q� 1��� E; E0 � �2q� 1�E � �q� 1��;

(37)

and these are subject to the following constraints [which
follow from (30)]:

W � �W � H � �H � �� � �E � �Q � 0;

2Z
 � 2�� 3Q
;

3��� � 2���� � 2E � 3Q
 �U
:

(38)

In addition, we have scalar evolution equations for the
inhomogeneity variables [which follow from (32) after
harmonic analysis]:

�0 � �3�� 3��� �Z
;

Z0

 � �q� 1�Z
 �

�
3

2
�� � �9�� 3���

� 6
�� 1

�
��


�
��U
;

(39)
Q0

 � �q� 2�Q
 �

1

3
U
 �

�
4
�� 1

�
��
 � 6���

�
�;

U0

 � �2q� 2�U
 � 4��
Z
 � 12

�� 1

�
��
�:

(40)
B. Vector perturbations

Expanding Eqs. (29) and (33) in terms of vector har-
monics, we obtain the following evolution equations for
the kinematic and nonlocal quantities together with their
curls:

W0

 � �3�� 4�W
;

�0 � �q� 1��� E � 2��� 1� �W
;

E0 � �2q� 1�E � �q� 1��� �H ;

H 0 � �2q� 1�H � �E; �W0

 � �3�� 4� q� �W
;

��0 � �2q� 1� ��� �E; �E0 � �3q� 1� �E � �q� 1� ��;

�H
0
� �3q� 1� �H ;

�Q0

 � �2q� 2� �Q
 � 4��6�� 8���
 � 9�2��	W
:

These equations are subject to the following constraints,
which are obtained from (30) and (34):
123517
4Z
 � 3�� 6Q
 � 6 �W
;

6��� � 2���� � 3E � 6Q
 � 2U
; �� � H ;

H � 4�q� 1�W
 � �Q
;
�H � 2�q� 1� �W
 � 0;

�� � 4�q� 1�W
 � �Q
; �E � 4�q� 1�W
 � �Q
:

(41)

Equations for the vector parts of the inhomogeneity
variables follow from (32) and are given by

�0 � �3�� 3��� �Z
;

Z0

 � �q� 1�Z
 �

�
3

2
�� � 3�3�� 1���

� 6
�� 1

�
��


�
��U
 � 6��� 1� �W
;

Q0

 � �q� 2�Q
 �

1

3
U
 �

�
4
�� 1

�
��
 � 6���

�
�;

U0

 � �2q� 2�U
 � 4��
Z
 � 12

�� 1

�
��
�:

(42)

C. Tensor perturbations

Finally the long wavelength behavior of tensor pertur-
bations is obtained by expanding (29) and (33) in terms of
tensor harmonics:

�0 � �q� 1��� E; E0 � �2q� 1�E � �q� 1��;

H 0 � �2q� 1�H � �E; ��0 � �2q� 1� ��� �E;
�E0 � �3q� 1� �E � �q� 1� ��; (43)

subject to the following constraints

�H � 0; �� � H : (44)

V. LOW ENERGY LIMIT: THE GR BACKGROUND

We begin with perturbations in the low - energy limit,
defined by � � �2=� and � � �
 or �� � �� and
�� � ��
 . We therefore evaluate the perturbation
Eqs. (38)–(43) in the limit ���;��;��
 � ! �1; 0; 0�.
Using the energy conservation Eq. (11), the Friedmann
Eq. (15) can be solved to give the background scale factor
a and the Hubble parameter H:

a�t� � �t=t0�2=3�; H � H0a�3�=2; (45)

where we fix an arbitrary initial condition by choosing
a0 � a�t0� � 1. The deceleration parameter is given by

q �
3

2
�� 1; (46)

and, as usual,

� � �0a�3�; (47)

where H2
0 �

�2

3 �0.
-6
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A. Scalar perturbations

In this case the propagation equations for the kinematic
quantities are

�0 �

�
3

2
�� 2

�
�� E; E0 � �3�� 3�E �

3

2
��;

(48)

while the constraints are given by

W � �W � H � �H � �� � �E � �Q � 0;

2Z
 � 2�� 3Q
; 3� � 2E � 3Q
 �U
;
(49)

and the equations for the inhomogeneity variables be-
come

�0 � �3�� 3��� �Z
;

Z0

 �

�
3

2
�� 2

�
Z
 �

3

2
��U
;

Q0

 �

�
3

2
�� 3

�
Q
 �

1

3
U
; U0


 � �3�� 4�U
:

(50)

The above equations can be easily solved to give

� � �0a3��2 ��1a�3=2���3;

E � �
3

2
��0a

3��2 ��1a
�3=2���3;

(51)

and

� � ���0a
3��2 �

�
2

3
�1 �Q


0

�
a�3=2���3

�
�

3�� 2
U


0a
3��4;

Z
 � �0a3��2 �

�
�1 �

3

2
Q


0

�
a�3=2���3

�
1

3�� 2
U


0a
3��4;

Q
 � Q

0a

�3=2���3 �
2

3

1

3�� 2
U


0a
3��4;

U
 � U

0a

3��4

(52)

for � � 2
3 , and

� � �
2

3
�0 �

�
2

3
�1 �Q


0 �
1

3
U


0

�
a�2 �

1

3
U


0 lnaa
�2;

Z
 � �0 �

�
�1 �

3

2
Q


0

�
a�2 �

1

2
U


0 lnaa
�2;

Q
 � Q

0a

�2 �
1

3
U


0 lnaa
�2; U
 � U


0a
�2

(53)

if � � 2
3 .

Here �0, �1, Q

0, U



0 are arbitrary constants of integra-

tion, corresponding to the four independent modes.
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Finally the solutions for Q
, U
can be converted into
the physical quantities Q�LE�, U�LE� [which correspond to
the scalar modes of Qa, Ua defined in (23)] using the
background solutions for H and �:

Q�LE� �
1

3H0
Q


0a
3��4 �

2

9H0

1

3�� 2
U


0a
�9=2���5;

U�LE� �
1

3
U


0a
3��4

(54)

for � � 2
3 and

Q�LE� �
1

3H0
Q


0a
�2 �

1

9H0
U


0 lnaa
�2;

U�LE� �
1

3
U


0a
�2

(55)

if � � 2
3 .

B. Vector perturbations

For vector perturbations the complete set of propaga-
tion equations for the kinematic and nonlocal quantities
are given by the ten dimensional system

W0

 � �3�� 4�W
; �0 �

�
3

2
�� 2

�
�� E;

E0 � �3�� 3�E �
3

2
��; H 0 � �3�� 3�H � �E;

��0 � �3�� 3� ��� �E; �E0 �

�
9

2
�� 4

�
�E �

3

2
� ��;

�Q0

 � �3�� 4� �Q
; (56)

subject to the following constraints

4Z
 � 3�� 6Q
; 6� � 3E � 6Q
 � 2U
;

H � �� � �E � 6�W
 � �Q
;
�H � �W
 � 0;

(57)

while the propagation equations for the inhomogeneity
variables are

�0 � �3�� 3��� �Z
;

Z0

 �

�
3

2
�� 2

�
Z
 �

3

2
��U
;

Q0

 �

�
3

2
�� 3

�
Q
 �

1

3
U
; U0


 � �3�� 4�U
:

(58)

Solutions can again be easily obtained and are given by
-7
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� � �0a3��2 � �1a�3=2���3;

E � �
3

2
��0a

3��2 � �1a
�3=2���3;

H � �� � �E � H 0a3��4;

W � �aH��1W
 �
3

2
�W


0a
�9=2���5;

�Q
 � �6�W

0 �H 0�a

3��4;

(59)

and

� � �
3

4
��0a

3��2 �

�
1

2
�1 �Q


0

�
a�3=2���3

�
�

3�� 2
U


0a
3��4;

Z
 �
3

4
�0a

3��2 �
3

4
��1 � 2Q


0�a
�3=2���3

�
1

3�� 2
U


0a
3��4;

Q�LE� �
1

3H0
Q


0a
3��4 �

2

9H0

1

3�� 2
U


0a
�9=2���5;

U�LE� �
1

3
U


0a
3��4

(60)

for � � 2
3 , and

� � �
1

2
�0 �

�
1

2
�1 �Q


0 �
1

3
U


0

�
a�2 �

1

3
U


0 lnaa
�2;

Z
 �
3

4
�0 �

�
3

4
�1 �

3

2
Q


0

�
a�2 �

1

2
U


0 lnaa
�2;

Q�LE� �
1

3H0
Q


0a
�2 �

1

9H0
U


0 lnaa
�2;

U�LE� �
1

3
U


0a
�2

(61)

if � � 2
3 . Again, we have converted the solutions for Q
,

U
 into the physical quantities Q�LE�; U�LE�.
There are six independent modes corresponding to the

constants of integration �0, �1, W0, H 0, Q

0 and U


0.

C. Tensor perturbations

For tensor perturbations the propagation equations in
the long wavelength limit are

�0 �

�
3

2
�� 2

�
�� E; E0 � �3�� 3�E �

3

2
��;

H 0 � �3�� 3�H � �E; ��0 � �3�� 3� ��� �E;

�E0 �

�
9

2
�� 4

�
�E �

3

2
� ��; (62)

subject to the following constraints:

�H � 0; �� � H : (63)
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The solutions are

� � �0a
3��2 � �1a

�3=2���3;

E � �
3

2
��0a3��2 � �1a�3=2���3;

H � �� � H 0a
3��4 �H 1a

�9=2���3;

�E � H 0a3��4 �
3

2
�H 1a�9=2���3;

(64)

where �0, �1, H 0, H 1 are four independent constants of
integration.

VI. THE DARK ENERGY ERA

The dark energy dominated regime is characterized by
�
 � � and �
 � �2=� or ��
 � �� and ��
 � ��,
so we now evaluate the perturbation equations in the limit
���;��;��
 � ! �0; 0; 1�.

The background solution (R), has the same metric as a
flat radiation FRW model, with � � 0 and �
 � �


0a
�4.

The scale factor a, Hubble parameter H and deceleration
parameter q are given by

a�t� � �t=t0�
1=2; H � H0a

�2; q � 1: (65)

As explained in Sec. III the perturbation equations are
only defined for small but nonzero energy density �, or
equivalently arbitrarily close but not on the exact back-
ground (R). We therefore use � � �0a

�3� for small but
nonzero values of �0.

A. Scalar perturbations

In the case of scalar perturbations the propagation
equations reduce to:

�0 � �E; (66)

E 0 � E � 2�; (67)

subject to the following constraints:

W � �W � H � �H � �� � �E � �Q � 0;

2�� 3Q
 � 2Z
;

2E � 3Q
 �U
 � 3��� � 2����;

(68)

while the equations for the inhomogeneity variables are

�0 � �3�� 3��� �Z
; Z0

 � 6

�� 1

�
��U
;

Q0

 � �Q
 �

1

3
U
 � 4

�� 1

�
�;

U0

 � �4Z
 � 12

�� 1

�
�:

(69)

The following solutions can then be obtained:

� � �0a2 � �1a�1; E � �2�0a2 � �1a�1; (70)
-8
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and

� � �0 � �1a3��5 �
3�

3�� 7
�0a2;

Z
 �
3�� 3

�
�0 �

2

�
�1a3��5 � 3

3�� 5

3�� 7
�0a2;

Q
 �
2�� 2

�
�0 �

4

3�
�1a3��5 �

4

3

3�� 4

3�� 7
�0a2

�
2

3
�1a�1;

U
 �
6�� 6

�
�0 �

4

�
�1a

3��5 �
12

3�� 7
�0a

2

(71)

for � � 7
3 . We do not give the solutions for � � 7

3 , since all
values of � > 2 are outside the region of interest.

There are four constants of integration �0, �1, �0, �1

corresponding to the four independent modes.
The scalar contributions to the physical quantities de-

fined in (24) can then easily be obtained:

Q�DE� �
2�� 2

3H0�
�0a�

4

9H0�
�1a3��4

�
4

9H0

3�� 4

3�� 7
�0a

3 �
2

9H0
�1;

U�DE� � U
:

(72)

In particular, the density perturbation ��DE� can be writ-
ten as ��
��DE� � ���, and using the fact that
��;�� � 0, we find that ��� � ��� ! 0 as � ! 0.
Hence the density perturbations are given by

��DE� � ���0 ����1a3��5 �
3�

3�� 7
���0a2 (73)

and are suppressed as one approaches the dark energy
solution.

B. Vector perturbations

In the case of vector perturbations the propagation
equations are

W0

 � �3�� 4�W
; (74)

�0 � �E; (75)

E 0 � E � 2�; (76)

H 0 � ��0 � �E0 � 0; (77)

�Q 0

 � 8�3�� 4�W
; (78)

which are subject to the following constraints
123517
3�� 6Q
 � 4Z
;

3E � 6Q
 � 2U
 � 6��� � 2����; �� � H ;

H � 8W
 � �Q
 � 0; �H � �W
 � 0;
�� � �E � 8W
 � �Q
:

(79)

The inhomogeneity variables evolve according to

�0 � �3�� 3��� �Z
; Z0

 � 6

�� 1

�
��U
;

Q0

 � �Q
 �

1

3
U
 � 4

�� 1

�
�;

U0

 � �4Z
 � 12

�� 1

�
�:

(80)

The solutions to this system are

� � �0a2 � �1a�1; E � �2�0a2 � �1a�1;

H � �� � �E � H 0; W � 2W

0a

3��3;
�Q
 � 8W


0a
3��4 �H 0;

(81)

and

� � �0 � �1a
3��5 �

3

4

3�
3�� 7

�0a
2;

Z
 �
3�� 3

�
�0 �

2

�
�1a

3��5 �
9

4

3�� 5

3�� 7
�0a

2;

Q
 �
2�� 2

�
�0 �

4

3�
�1a3��5 �

3�� 4

3�� 7
�0a2

�
1

2
�1a�1;

U
 �
6�� 6

�
�0 �

4

�
�1a

3��5 �
9

3�� 7
�0a

2;

(82)

where again � � 7
3 .

This time there are six constants of integration: �0, �1,
H 0, W


0 , Q

0, �1.

The vector modes of the physical quantities defined in
(24) can then be found:

��DE� �
�2�0

3H2
0

�0a
4�3� �

�2�0

3H2
0

�1a
�1

�
�2�0

4H2
0

3�
3�� 7

�0a6�3�;

Q�DE� �
2�� 2

3H0�
�0a�

4

9H0�
�1a

3��4

�
4

9H0

3�� 4

3�� 7
�0a

3 �
2

9H0
�1;

U�DE� � U
:

(83)
-9
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C. Tensor perturbations

The tensor parts of the propagation equations in the
long wavelength limit are:

�0 � �E; E0 � E � 2�; H 0 � H � �E;
��0 � ��� �E; �E0 � 2�E � 2 ��; (84)

subject to the following constraints:

�H � 0; �� � H : (85)

The solutions are

� � �0a2 � �1a�1; E � �2�0a2 � �1a�1;

H � �� � H 0 �H 1a
3; �E � H 0 � 2H 1a

3;
(86)

with a constant of integration for each of the independent
modes: �0, �1, H 0, H 1.
VII. HIGH ENERGY LIMIT: THE F b

BACKGROUND

The high energy limit is characterized by �2

� � � and
�2

� � �
 or �� � �� and �� � ��
 so this time we
evaluate the perturbation equations in the limit
���;��;��
 � ! �0; 1; 0�.

This model corresponds to a stationary (equilibrium)
point F b in the phase space of homogeneous Bianchi
models [7,8], as well as in the phase space of the special
class of inhomogeneous G2 cosmological models. In both
cases F b is found to be the source, or past attractor, for
the generic dynamics for � > 1 (� � 1 is also included in
the homogeneous case), consistent with [3–6]. The stabil-
ity of this result is now examined through an analysis of
the perturbation equations for this case.

The background scale factor a, Hubble function H and
deceleration parameter q of these models are given by

a�t� � �t=t0�
1=3�; H � H0a

�3�; q � 3�� 1;

(87)

where again we fix an arbitrary initial condition by
choosing a0 � a�t0� � 1. The energy density behaves in
the usual way:

� � �0a
�3�: (88)

From the Friedmann Eq. (15) we find that H2
0 �

�2

6� �
2
0.

A. Scalar perturbations

The scalar propagation equations for this case reduce
to

�0 � �3�� 2��� E; E0 � �6�� 3�E � 3��; (89)

subject to the constraints
123517
W � �W � H � �H � �� � �E � �Q � 0;

2Z
 � 2�� 3Q
; 6� � 2E � 3Q
 �U
:
(90)

The scalar evolution equations for the inhomogeneity
variables are

�0 � �3�� 3��� �Z
;

Z0

 � �3�� 2�Z
 � 3�3�� 1���U
;

Q0

 � �3�� 3�Q
 �

1

3
U
 � 6��;

U0

 � �6�� 4�U
:

(91)

Solutions can again be easily obtained by solving the
above system of linear equations. They are

� � �0a6��2 � �1a3��3;

E � �3��0a
6��2 ��1a

3��3;
(92)

and

� �
1

2
Q


0a
�3 �

��3�� 1�

6�� 1
�0a

6��2

�
�

2�6�� 1�
U


0a
6��4;

Z
 �
3

2
Q


0a
�3 �

�3�� 1�2

6�� 1
�0a6��2

�
3�� 1

2�6�� 1�
U


0a
6��4;

Q
 � Q

0a

�3 �
6�2

6�� 1
�0a6��2 �

2

3
�1a3��3

�
3�� 1

3�6�� 1�
U


0a
6��4;

U
 � U

0a

6��4

(93)

for � � 1
6 , and

� �

�
1

2
Q


0 �
1

6
U


0

�
a�3 �

1

8
�0a

�1 �
1

12
U


0 lnaa
�3;

(94)

Z
 �
3

2
Q


0a
�3 �

9

8
�0a�1 �

1

4
U


0 lnaa
�3; (95)

Q
 � Q

0a

�3 �
1

12
�0a�1 �

2

3
�1a�5=2 �

1

6
U


0 lnaa
�3;

(96)

U
 � U

0a

�3 (97)

for � � 1
6 . The scalar parts of the physical quantities
-10
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��HE�, Q�HE�, U�HE� defined by (25) are given by

��HE� �
�2�0

12H2
0

Q

0a

3��3 �
��3�� 1�

6�� 1

�2�0

6H2
0

�0a9��2

�
�

6�� 1

�2�0

12H2
0

U

0a

9��4;

Q�HE� �
1

6H0
Q


0a
3��4 �

1

H0

�2

6�� 1
�0a

9��3

�
1

9H0
�1a

6��4 �
1

18H0

3�� 1

6�� 1
U


0a
9��5;

U�HE� �
1

6
U


0a
6��4

(98)
for � � 1
6 , and

��HE� �
�2�0

12H2
0

�
Q


0 �
1

3
U


0

�
a�5=2 �

�2�0

48H2
0

�0a
�1=2

�
�2�0

72H2
0

U

0 lnaa

�5=2;

Q�HE� �
1

6H0
Q


0a
�7=2 �

1

6H0

1

12
�0a�3=2 �

1

9H0
�1a�3

�
1

36H0
U


0 lnaa
�7=2;

U�HE� �
1

6
U


0a
�3

(99)
for � � 1
6 .

�0, �1, Q

0, U



0 are arbitrary constants of integration

corresponding to the four independent modes.
TABLE I. Large-scale contributions of the different modes to
background. We assume 0< � � 2, � � 2

3 , and we omit nonzero co
� � .�0a

3��2 � /�1a
�3=2���3, where .;/ are some nonzero cons

is recovered when Q

0 � U


0 � 0.

harmonic scalar
mode a3��2 a�3=2���3 a3��4 a�9=2���5 a3��2 a�3=2

� �0 �1 � � � � � � �0 �
E �0 �1 � � � � � � �0 �
H � � � � � � � � � � � � � � � � �

W � � � � � � � � � � � � � � � � �

� �0 2�1 � 3Q

0 U


0 � � � �0 �1 �

Z
 �0 2�1 � 3Q

0 U


0 � � � �0 �1 �

Q�LE� � � � � � � Q

0 U


0 � � � � �

U�LE� � � � � � � U

0 � � � � � � � �
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B. Vector perturbations

For vector perturbations the propagation equations are

W0

 � �3�� 4�W
; �0 � �3�� 2��� E;

E0 � �6�� 3�E � 3��; H 0 � �6�� 3�H � �E;
��0 � �6�� 3� ��� �E; �E0 � �9�� 4� �E � 3� ��;

�Q0

 � �6�� 4� �Q
 � 36�2W
; (100)

subject to the following constraints

4Z
 � 3�� 6Q
; 12� � 3E � 6Q
 � 2U
;

H � �� � �E � 12�W
 � �Q
;
�H � �W
 � 0:

(101)

The propagation equations characterizing the inhomoge-
neities are

�0 � �3�� 3��� �Z
;

Z0

 � �3�� 2�Z
 � 3�3�� 1���U
;

Q0

 � �3�� 3�Q
 �

1

3
U
 � 6��;

U0

 � �6�� 4�U
:

(102)

Solutions are easily obtained and are given by

� � �0a6��2 � �1a3��3;

E � �3��0a6��2 ��1a3��3;

H � �� � �E � H 0a6��4; W � 3�W

0a

6��5;
�Q
 � 12�W


0a
3��4 �H 0a

6��4; (103)

and
the geometric and kinematic quantities for the low energy
nstant coefficients. The first line in this table should be read as
tants, for all scalar, vector and tensor modes. General relativity

vector tensor
���3 a3��4 a�9=2���5 a3��2 a�3=2���3 a3��4 a�9=2���3

1 � � � � � � �0 �1 � � � � � �

1 � � � � � � �0 �1 � � � � � �

� H 0 � � � � � � � � � H 0 H 1

� � � � W

0 � � � � � � � � � � � �

2Q

0 U


0 � � � � � � � � � � � � � � �

2Q

0 U


0 � � � � � � � � � � � � � � �

� Q

0 U


0 � � � � � � � � � � � �

� U

0 � � � � � � � � � � � � � � �
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TABLE II. Large-scale behavior of the nonzero physically relevant geometric and kinematic quantities for the different back-
grounds in the limit a ! 0. The values S, V, T in brackets denote scalar, vector and tensor contributions. One can easily see how the
appropriately normalized perturbation quantities defined in (23) and (24) converge for wider ranges of � as a ! 0.

Quantity mode 0< �< 2
9 <�< 1

3 <�< 4
9 <�< 5

9 <�< 2
3 <�< 5

6 <�< 1 � < 10
9 <�< 4

3 <�< 5
3 <�< 2

Low energy limit
�; E �0�S; V; T� 1 1 1 1 1 0 0 0 0 0 0

�1�S; V; T� 1 1 1 1 1 1 1 1 1 1 1

H H 0�V; T� 1 1 1 1 1 1 1 1 1 0 0
H 1�T� 1 1 1 1 1 0 0 0 0 0 0

W W

0 �V� 1 1 1 1 1 1 1 1 0 0 0

� � ��LE� �0�S; V� 1 1 1 1 1 0 0 0 0 0 0
�1; Q



0�S; V� 1 1 1 1 1 1 1 1 1 1 1

U

0�S; V� 1 1 1 1 1 1 1 1 1 0 0

Q�LE� Q

0�S; V� 1 1 1 1 1 1 1 1 1 0 0

U

0�S; V� 1 1 1 1 1 1 1 1 0 0 0

U�LE� U

0�S; V� 1 1 1 1 1 1 1 1 1 0 0

Dark energy limit
�; E �0�S; V; T� 0 0 0 0 0 0 0 0 0 0 0

�1�S; V; T� 1 1 1 1 1 1 1 1 1 1 1

H H 0�V; T� const const const const const const const const const const const
H 1�T� 0 0 0 0 0 0 0 0 0 0 0

W W

0 �V� 1 1 1 1 1 1 1 0 0 0 0

��DE� a �0�0�S; V� 0 0 0 0 0 0 0 0 0 0 0
�0�0�S; V� 0 0 0 0 0 0 0 0 0 1 1

�0�1�S; V� 1 1 1 1 1 1 1 1 1 1 1

Q�DE� �0�S; V� 0 0 0 0 0 0 0 0 0 0 0
�1�S; V� const const const const const const const const const const const
�0�S; V� 0 0 0 0 0 0 0 0 0 0 0
�1�S; V� 1 1 1 1 1 1 1 1 1 0 0

U�DE� �0�S; V� 0 0 0 0 0 0 0 0 0 0 0
�0�S; V� const const const const const const const const const const const
�1�S; V� 1 1 1 1 1 1 1 1 1 1 0

High energy limit
�; E �0�S; V; T� 1 1 0 0 0 0 0 0 0 0 0

�1�S; V; T� 1 1 1 1 1 1 1 0 0 0 0

H H 0�V; T� 1 1 1 1 1 0 0 0 0 0 0
H 1�T� 1 1 0 0 0 0 0 0 0 0 0

W W

0 �V� 1 1 1 1 1 1 0 0 0 0 0

��HE� �0�S; V� 1 0 0 0 0 0 0 0 0 0 0
Q


0�S; V� 1 1 1 1 1 1 1 0 0 0 0
U


0�S; V� 1 1 1 0 0 0 0 0 0 0 0

Q�HE� �0�S; V� 1 1 0 0 0 0 0 0 0 0 0
�1�S; V� 1 1 1 1 1 0 0 0 0 0 0
Q


0�S; V� 1 1 1 1 1 1 1 1 1 0 0
U


0�S; V� 1 1 1 1 0 0 0 0 0 0 0

U�HE� U

0�S; V� 1 1 1 1 1 0 0 0 0 0 0

aThis quantity is suppressed by a factor of �0, hence not significant when approaching the vacuum model (R).
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��HE� �
�2�0

12H2
0

Q

0a

3��3 �
��3�� 1�

6�� 1

�2�0

9H2
0

�0a
9��2

�
�

6�� 1

�2�0

12H2
0

U

0a

9��4;

Z
 �
3

2
Q


0a
�3 �

3

4

�3�� 1�2

6�� 1
�0a

6��2

�
3�� 1

2�6�� 1�
U


0a
6��4;

Q�HE� �
1

6H0
Q


0a
3��4 �

1

4H0

3�2

6�� 1
�0a9��3

�
1

12H0
�1a6��4 �

1

18H0

3�� 1

6�� 1
U


0a
9��5;

U�HE� �
1

6
U


0a
6��4

(104)

for � � 1
6 , and

��HE� �
�2�0

12H2
0

�
Q


0 �
1

3
U


0

�
a�5=2 �

�2�0

72H2
0

�0a�1=2

�
�2�0

72H2
0

U

0 lnaa

�5=2;

Z
 �
3

2
Q


0a
�3 �

27

32
�0a

�1 �
1

4
U


0 lnaa
�3;

Q�HE� �
1

6H0
Q


0a
�7=2 �

1

6H0

1

16
�0a�3=2 �

1

12H0
�1a�3

�
1

36H0
U


0 lnaa
�7=2;

(105)

U�HE� �
1

6
U


0a
�3 (106)

for � � 1
6 . There are six constants of integration: �0, �1,

H 0, W

0 , Q


0, U


0.

C. Tensor perturbations

The tensor parts of the propagation equations in the
long wavelength limit are:

�0 � �3�� 2��� E; E0 � �6�� 3�E � 3��;

H 0 � �6�� 3�H � �E; ��0 � �6�� 3� ��� �E;
�E0 � �9�� 4� �E � 3� ��; (107)

subject to the constraints

�H � 0; �� � H : (108)

The solutions are given by
123517
� � �0a
6��2 ��1a

3��3;

E � �3��0a6��2 � �1a3��3;

H � �� � H 0a6��4 �H 1a9��3;
�E � H 0a

6��4 � 3�H 1a
9��3:

(109)

There are four constants of integration: �0, �1, H 0, H 1.

VIII. RESULTS AND DISCUSSION

In the previous three sections we have developed and
solved the perturbation equations for the low energy, dark
energy and high energy backgrounds, respectively.

The main results of our analysis are summarized in
Table II, in which we present the early time asymptotics
a ! 0 of the physically relevant quantities for the differ-
ent energy regimes. These physically relevant quantities
are the harmonically decomposed components of the
expansion normalized vorticity, shear, and the electric
and magnetic parts of the Weyl tensor (18) and (19), as
well as the appropriate gradients of the energy density �,
the nonlocal energy density �
 and the nonlocal flux q
a
defined in (23)–(25). The remaining quantities appearing
in the previous sections are required to close the system of
equations, but are otherwise of no particular physical
importance.

We can see from Table I that in the low energy regime
the results from general relativity are recovered. In
particular, we find the same decaying mode �1 in both
the shear � and density gradient �, implying that in
general relativity the flat RW models are unstable with
respect to generic linear homogeneous and anisotropic
perturbations into the past which was the problem out-
lined in the introduction and partly the motivation for
inflation.

In the dark energy limit, as seen from Table II, we find
that for any value of � there is a quantity that diverges as
a ! 0. The dark energy background is, however, an un-
stable equilibrium point in the state space of flat FRW
models [4], and can therefore only be attained for very
special initial conditions.

The main result of this analysis relates to the evolution
of the perturbation quantities in the high energy back-
ground F b. We find that, unlike in GR, both shear and
density gradient tend to zero at early times if � > 4=3
(see Table II). Thus the high energy models isotropize
into the past for realistic equations of state when we
include generic linear inhomogeneous and anisotropic
perturbations.

IX. CONCLUSION

In this paper we have given a comprehensive large-
scale perturbative analysis of flat FRW braneworld
models with vanishing cosmological constant, sett-
ing the anisotropic stress on the brane to zero. This
extendsthe work presented in [18] by providing a com-
-13
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plete analysis of scalar, vector and tensor perturbations
for all the important stages of the braneworld evolution,
namely, the low energy GR, high energy and dark energy
regimes.

To make this precise we defined dimensionless varia-
bles that were specially tailored for each regime of inter-
est. In this way we were able to clarify further the past
asymptotic behavior of these models and obtain results
which exactly match the recent work of Coley et al. [17]
123517
on the spatially inhomogeneous G2 braneworld models:
isotropization towards the F b model occurs for an equa-
tion of state parameter � > 4=3.
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