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Are braneworlds born isotropic?
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It has recently been suggested that an isotropic singularity may be a generic feature of brane cosmologies,
even in the inhomogeneous case. Using the covariant and gauge-invariant approach we present a detailed
analysis of linear perturbations of the isotropic modg|l, which is a past attractor in the phase space of
homogeneous Bianchi models on the brane. We find that for matter with an equation of state pagameter
>1, the dimensionless variables representing generic anisotropic and inhomogeneous perturbations decay as
t—0, showing that the modef, is asymptotically stable in the past. We conclude that brane universes are
born with isotropy naturally built-in, contrary to standard cosmology. The observed large-scale homogeneity
and isotropy of the Universe can therefore be explained as a consequence of the initial conditions if the
braneworld paradigm represents a description of the very early Universe.
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[. INTRODUCTION inhomogeneous universe model should locally be the same
as in Bianchi IX, it has been suggested that the isotropic

A classic problem of cosmology is finding ways to ex- singularity could be a generic feature of brane cosmological
plain the very high degree of isotropy observed in the cosmienodels.
microwave backgroundCMB). In general relativity, where If this conjecture[10,11] could be proved correct, brane
isotropy is a special rather than generic feature of cosmologicosmology would have the very attractive feature of having
cal models, we need a dynamical mechanism which is able tisotropy built in. Inflation in this context would still be the
produce isotropy. One of the most efficient mechanisms fomost efficient way of producing the fluctuations seen in the
isotropizing the Universe is inflatiofl] but it requires suf- CMB, but there would be no need of special initial condi-
ficiently homogeneous initial data in order to start atfa]l  tions for it to starf17]. Also the Penrose conjectuf&8] on
Although one can adopt the view that it is sufficient to havegravitational entropy and an initially vanishing Wey! tensor
one such homogeneous enough patch in an otherwise inhaould be satisfied in these modéts. Refs.[19,20).
mogeneous initial universe to explain what we observe, this In this paper we prove that this conjecture is true, within
seems somehow unsatisfactory. In our view the isotropy perturbative approach and in the large-scale and high en-
problem remains open to debate in standard cosmology. ergy regime, as justified below. We arrive at this result

Over the past few years the braneworld paradigm has rehrough a detailed analysis of generic linear inhomogeneous
ceived considerable attention as a possible candidate f@nd anisotropic perturbatiof21—-24 of this past attractor
string inspired cosmologysee[3] for a recent review In . This is done by using the full set of linea#B covariant
this scenario the observable universe is a 4-dimensionglropagationand constraint equations for this background,
slice, the brane embedded in a higher dimensional space-which describe the kinematics of the fluid flow and the dy-
time calledthe bulk Here we consider the formulation de- namics of the gravitational fieldsee Eqs(87)—(100) in Ref.
veloped in Ref[4] in order to generalize a previous model [25]]. These equations are then split into thegalar, vector,
by Randall and Sundrum[5], where the bulk is andtensorcontributions giving three sets of linear propaga-
5-dimensional and contains only a cosmological constantjon and constraint equations that govern the complete per-
assumed to be negative. turbation dynamics.

In a series of recent papers a number of autfi6rsly| From a dynamical systems point of view the past attractor
have presented a detailed description of the dynamics of haF, for brane homogeneous cosmological models found in
mogeneous and anisotropic braneworlds, finding a remarkRefs.[10,1]] is a fixed point in the phase space of these
able result: unlike standard general relativity, where the gemodels. This phase space may be thought of as an invariant
neric cosmological singularity is anisotropic, the pastsubmanifold within an higher dimensional phase space for
attractor for homogeneous anisotropic models in the brane imore general inhomogeneous models. Our analysis can be
a simple Robertson-Walker modg},. More significantly, in  thought of as an exploration of the neighborhoodgfout
Refs.[10,1]] it was shown that this result holds true in Bi- of the invariant submanifold explored in Ref40,11.
anchi type IX models, as well as for some simple inhomo- We restrict our analysis to large scales, at a time when
geneous models. Since the Belinski-Lifshitz-Kalatnikov physical scales of perturbations are much larger than the
(BLK) conjecturd 16] suggests that the Bianchi type IX be- Hubble radius\>H ! (equivalent to neglecting Laplacian
havior in the vicinity of the singularity is general, i.e., that terms in the evolution equationsThis may at first glance
the approach to the cosmological singularity in a genericseem restrictive, but it is not the case for the noninflationary
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perfect fluid models that are relevant to our discussion. In- We use the harmonics defined[22] to expand the above
deed, it is well known that any wavelength<H ! at a  tensorsX,,X,;, in terms of scalarS), vector(V) and tensor
given time becomes much larger thein ! at early enough (T) harmonicsQ. This yields a covariant and gauge invariant
times. Because of this crucial property of perturbations forsplitting of the evolution and constraint equations for the
noninflationary models our analysis is completely generalabove quantities into three sets of evolution and constraint

i.e. valid for any\ ast—0. equations for scalar, vector, and tensor modes, respectively:
In what follows we restrict our analysis to the case of Ss
vanishing background dark radiatioty£0). X=X2Q ®)
—I—1ywSAHS vAVv
1. DIMENSIONLESS VARIABLES AND HARMONICS Xa=K"X"Q+X"Q, ©)
We define dimensionless expansion normalized quantities Xap=k 2X5Q35, +k~1XVQY,+ XTQL, . (10)
for the shearo,,, the vorticity w,, the electrick,,, and
magneticH ;, parts of the Weyl tensdi23]: Ill. PERTURBATION EQUATIONS AND THEIR
SOLUTIONS
__Oab _ Wa _Eab _Hab ) o . .
2= Wa=1p 5ab—m, Hab_Fv (o We begin by giving theevolution equations forscalar
perturbations(suppressing the label):S
whereH is the Hubble parametgbﬂzé/a anda s Fhe scgle 3'=(3y—2)3 ¢, (11)
factor. It turns out to be convenient to use the dimensionless
variable & =(6y—3)E—3y3, (12
W =aw, 2 A'=(3y—3)A—yZ*, (13
to char%ct_erize the vortic_ity of the fluid flow. Here, 7% =(3y—2)Z* —3(3y+1)A— U*,
= napcw”° is the usual vorticity vector. (14)
The appropriate dimensionless density and expansion gra-
dients which describe thecalar and vector parts of density 1
perturbations are given bigee Ref[25] for details of defi- Q*'=(3y=-3)Q*—3U*—6yA, (15
nitions)
a 3a U*'=(6y—4)U*, (16)
A,=—D,p, Z:=—D,H, 3 . . .
& p aP a H? @ where the equation of state parameters defined byp

- . - =(y=1p.
and for the braneworld contributions we define the following  The scalar constraint equations are

dimensionless gradients describing inhomogeneity in the

nonlocal quantities 23, =27* —3Q*, (17
2 2 — * *
K°p Kk“ap 2E=6A—-3Q* +U*, (18
U§=Fua, Q§=TQa, 4

Vector perturbation®n large-scale are described by the fol-

whereU, andQ, are defined in Eq(27) of [26]. lowing evolutionequations for the basic variables

When undertaking a complete analysis of the perturbation = (3y—2)S — = 2(v—1)W* 19
dynamics it turns out useful to define a set of auxiliary vari- =By-22 (y=DHW*, (19
ables corresponding to the curls of the standard quantities

defined above: £'=(6y=3)E=3y2+6yW", (20)
o 1 o 1 A'=(3y—3)A—yZ*, (21)
\N§=ﬁcurl\/\/§, Eab=ﬁcurlEab, (5) .

Z*'=(3y—2)Z* —(9y+3)A—U* — (6y—6)W*,
1 (22
Eab= ﬁcurlé’ab, HabzﬁHab, (6) 1
Q*'=(3y=3)Q* ~ 5U* ~ 674, (23)
* *
Qa = jyounQa- @ U*'=(6y—4)U*, (24)

Finally, it is useful to use the dimensionless time derivative W*'=(3y—4)W*, (25

d/dr=d/d(Ina) (denoted by a primeto analyze the past .

evolution of the perturbation dynamics. H' =(6y—3)H—12yW* +Q*, (26)
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TABLE |. Large-scale behavior or geometric and kinematic quantities in the high energy Iirm'{#(%r. Herep=3y—3,q=6vy—2,
=-3,5=6y—4,u=6y—5,v=6y—3, w=3y—4.

Quantity Scalar contribution Vector contribution Tensor contribution
b3 _3gkge 0¥l _oorgp . & 116y Sqaf, 3 ad
208%™ gy rpy A 2Qa" 3, 15, M R
., 3(6y+1) . p4(1+67) p _ q
£ _gQO ap13’y—+1Alaq _ZQOap’Waq an , 3'}’21a
* ‘y * *
A Alaq,%Qla’,—mUOas Ala ,2Q1a - 6 U 0
* 3y+1 N 3y—1 % 3y+1 N 3'y—1 .
z - 1% 3Q1 " '\ 56,—1y Yo - Aq2%3Q% '\ 5e,—1) Yo 0
6y 3y-1 " 6y . 137v—1
Q* Qg a”, Py +1Ala ,Qra ,mUOaS Qoapfgy—_,_lAlaq:Ql '36 1U a® 0
u* Uias Ujas 0
w 0 Wpa 0
H 0 Hoa® H oS, H ;2%
W 0 0 0
Q* 0 —H ga’%,4W,a" 0
s 0 Hoa® H oa’ H ;a3
3 0 Hoa® H oas,—3yH 282
H 0 0 0
and their curls Finally, the large-scale evolution ¢éénsor perturbationsre
o o governed by propagation equations for the tensor contribu-
\N*’=(6y— 5)W*, (27)  tions of the sheab.,y,, the electricE,, and magneticH,y,
parts of the Weyl tensor:
— _ )
Q" =(6y—4)Q* —36y"W*, (28) 3 =(3y—-2)S—§, (39)
H'=(9y—4)H—6yW* (29 & =(6y—3)E—3yS+H, (40)
&' =(9y—4)E-393, (30) H' =(6y—3)H—E, (41)
—(6y— 3)S-F. (31) together with propagation equations for their curls
The constraintsfor the basic variables are 2'=(6y=3)2-¢, (42
33 =47* - 6Q* + 6W*, 32) E'=(9y—4)E-3y3, (43
36=12A—6Q* +2U*, (33) H' =(9y—4)H. (44)
— The only tensorial contribution to the constraints is
H= 12‘yW* - Q* , (34) . o
o 2>=H, H=0. (45
3=H, (39 _ _ :
Solutions to these three sets of equations are presented in
and the curl constraints are Table I. On close inspection of the exponents we conclude
that 7, is stable in the padiast—0) to generic inhomoge-
H=6yW* =0, 36 neous and anisotropic perturbanons prqwdgd the matter is
Y (36 described by a noninflationary perfect fluid withlaw equa-
— —, tion of state parameter satisfying>1 and we use the large-
2=12yW*-Q*, (37) scale approximation\>H ~1). In particular it can be easily
. . seen that the expansion normalized shear vanishea as
E=12yW* —Q*. (38) —0, signaling isotropization.
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IV. DISCUSSION OF RESULTS [28] in which two of the authors claimed the contrary to be

We have considered here only the case of vanishing bac frue (i.e., braneworlds do not isotropizerhe claim in[28]

ground Weyl energy densityf=0. This assumption consid- was based on the existence of the decaying mede

S ; . .o
erably simplifies the analysis, but it is expected that our re_(growmg In the pastin the solutions forA and Q* which

; ; X when substituted into the sheét7) and divE constraints
sults will remain true foe/#0. Indeed, whe(#0 3, stil 18) gave the same mode in the expansion normalized shear

remains a past attractor qf the Isotropic models. n o_theoé and electric part of the Weyl tensér This resulted from
words, our analysis is restricted to the invariant submanifold™ . ; . .
using an incorrect propagation equation for the non-local en-

U=0 of the larger phase space wiit¥ 0, but this submani- . A . :
: i : . ergy flux in[26] [Eq. (32) in this pape} which gave different
fold is asymptotically stable againgt#0 perturbations. A solutions forQ* [29]. The error in[26] results in a wrong

more complete.analygls !ncludmg this case will be the SUb'decaying mode that is totally irrelevant for the future evolu-
ject of a future investigation.

In a related paper the dynamics of a classsphtially tion of perturbations studied in that paper, but changes dra-

. ; . matically their behavior as—0. It is easy to see that when
inhomogeneous &cosmological models in the brane-world L . .
. ; . . the corrected solution§n Table |) are substituted into Eqs.
scenario has been studig?l7]. Area expansion normalized _3
. ; X o 17) and(18) thea™ ° mode actually cancels out b andé&.
scale-invariant dependent variables, the timelike area gau . . .
. o ote also that this mode does not appear in the solution for
and an effective logarithmic timewere employed, and the :
S . . the magnetic part of the Weyl tensaf.
initial singularity occurs foit— —<. The resulting govern- SinceS. € and’H give a better description of the geom
ing system of evolution equations of the spatially inhomoge- - g P ge
! ; etry, their past evolution represents the true behavior of
neousG, brane cosmological models can then be written nisotropies close to the initial sin ularity, and dotIn fact
a constrained system of autonomous first-order partial differ- P g '

. e : : one can argue that the existence of &1¢ mode inA [de-
ential equations in two independent variables. The local dy-ined in Eq9(3)] results from it not being the most ap[propri—

namical behavior of this class of spatially inhomogeneoug . . . X :
models close to the singularity was then studiedherically ate measure of inhomogeneity at .h'g.h energle?msmczte the
It was found that the area expansion rate increases Wi'[hofpmmant ba_ckground energy.dens[ty IS moputle =P
bound(and hence the Hubble ratt—«~ ast— —«, so that see Eq(11) in [3.0]]' M_ore g{e_msely, if we deflnAHE (high
there always exists an initial singularityFor y>4/3, the engrgz ngrmah;mg W'(tjhp.n 'SStead ofp theZA ,O§+Ag/,)f)
numerics indicate isotropization towards, ast— — for an the decaying mode in becomes a mo «a )
all initial conditions. In the case of radiationy€4/3), the ~>nce€—3+3y>0for y>1, we remove the decaying mode
models were still found to isotropize as— —o0, albeit in the density inhomogeneity.
slowly. From the numerical analysis we find that there is an
initial isotropic singularity in all of thes&, spatially inho-
mogeneous brane cosmologies for a range of parameter val- The authors thank Yanjing He and W.C. Lim for useful
ues which include the physically important cases of radiatiordiscussions. P.K.S.D. and N.G. thank the department of
and a scalar field source. The numerical results are supportédathematics and Statistics at Dalhousie University for hos-
by a qualitative dynamical analysis and a detailed calculatiopitality while some of this work was carried out and the NRF
of the past asymptotic decay rafey]. (South Africa for financial support. A.C. acknowledges
Finally, we note that this result corrects an earlier papeiNSERC (Canada for financial support.
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