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A complete global analysis of spatially flat, four-dimensional cosmologies derived from the type IIA string
and M-theory effective actions is presented. A non-trivial Ramond-Ramond sector is included. The governing
equations are written as a dynamical system. Asymptotically, the form fields are dynamically negligible, but
play a crucial role in determining the possible intermediate behavior of the soldtiensthe nature of the
equilibrium point3. The only past-attracting solutidisource in the systenmay be interpreted in the eleven-
dimensional setting in terms of flat space. This source is unstable to the introduction of spatial curvature.

PACS numbgs): 98.80.Hw, 04.50t+h, 11.25.Mj

I. INTRODUCTION assume that the only non-trivial components of the field
strength of the three-form potential are those on khg
There are five anomaly-free, perturbative superstring< S' subspace.
theories[1]. It is now widely believed that these theories ~ The outline of the paper is as follows. In Sec. Il we derive
represent special points in the moduli space of a more fun@ effective, four-dimensional action by employing the dual-
damental, non-perturbative theory known as M thefgty ity relationship in four dimensions betweerpdorm and a

. : (4—p)-form. The field equations for the class of spatially
(F_or areview see, e.g., R¢B]) Moreover, "”.‘Other. point of isotropic and homogeneous Friedmann-Robertson-Walker
this moduli space corresponds to eleven-dimensional supe

. . - fFRW) universes are derived in Sec. Ill and expressed as a
gravity. This represents the low-energy limit of M theory compact autonomous system of ordinary differential equa-
[2,4]. . , i i tions. All of the equilibrium points of the system and their

The original formulation of M theory was given in terms giapility are determined in Sec. IV. A complete analysis of
of the strong coupling limit of the type IlA superstring. In the flat cosmological models is presented in Sec. V together
this limit, an extra compact dimension becomes appareniyith a discussion and interpretation of the results. The ro-
with a radiusR related to the string couplings by R=gZ®  bustness of the models is addressed in Sec. VI wherein a
[2]. The compactification of M theory on a circl&!, then  number of generalizationé.e. additional degrees of free-
leads to the type IlA superstring. In this framework, the di-dom) are included; in particular curvature effects are consid-
laton field of the ten-dimensional string theory is interpretedered. We conclude with a discussion in Sec. VII.
as a modulus field parametrizing the radius of the eleventh
dimension. Il. FOUR-DIMENSIONAL EFFECTIVE ACTION

This change of viewpoint reestablishes the importance of The bosonic sector of the effective supergravity action for
eleven-dimensional supergravity in cosmology and has interthe low-energy limit of M theory is given in component form
esting consequences for the dynamics of the very early unby*
verse. An investigation into the different cosmological mod-
els that can arise in M theory is therefore important and a
number of solutions to the effective action have recently in this paper, the spacetime metric has signature+(,- - -, +)
been found5-8]. and variables in eleven dimensions are represented with a circum-

The bosonic sector of eleven-dimensional supergravityflex accent. Upper case, Latin indices with circumflex accents take
consists of a graviton and an antisymmetric, three-form povalues in the rangéd= (0,1, ...,10),upper case, Latin indices
tential[9]. The purpose of the present paper is to employ thavithout a circumflex accent vary from=(0,1, . . .,9), lowercase
theory of dynamical systems to determine the qualitative beGreek indices spap=(0,1,2,3) and lower case Latin indices rep-
havior of a wide class of four-dimensional cosmologies de+esent spatial dimensions. A totally antisymmetriform is defined
rived from this supergravity theory. We compactify the by Ap=(1/p!)AA1_”ApdxA1/\-.-/\dxAp and the corresponding
theory to four dimensions under the assumption that the gedfield strength is given by Fp.1=dA,=[1/(p
ometry of the wuniverse is given by the product +1)!]FA1,,,Ap+ldxA1/\- .- /A\dx?+1, The coordinate of the elev-
M, X Y8x S, whereM, is the four-dimensional spacetime, enth dimension is denoted by. The eleven-dimensional Planck
Y8 represents a six-dimensional, Ricci-flat internal space andhass is the only dimensional parameter in this th¢@y and units
St is a circle corresponding to the eleventh dimension. Weare chosen such that #6=1.
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namical degree of freedom is the modulus field parametriz-

“szf dHx V||| R— —F i a.a FA1A2AGAs ing the volume of the internal space. We therefore assume
48 e that the string-frame metri¢4) has the form
1 SArhoAgBiBByBE1C,Cal, dsi=g)dx“dx’+e?A 5;dx'dx], (5)
- E ‘/|§| whereg;; (i,j=1,...,6) is thesix-dimensional Kronecker

delta andg represents the modulus field.
Moreover, we compactify the form fields in E() by

, (1) assuming that the only non-trivial components that remain

after the compactification are those associated with the ex-
~ ternal spacetimeM,. This implies, in particular, that the
where R is the Ricci curvature scalar of the eleven- Chern-Simons term is unimportant, since it is proportional to
dimensional manifold with metricg,,, g=deg,, and F/\F. The effective four-dimensional action is then given in
FaAhh,= (A AdA s, is the four-form field strength of the string frame by
the antisymmetric three-form potentiAIAlAzAa. The topo- .
logical Chern-Simons term arises as a nhecessary conse- S:J d*x/|gal

1

>< A A A A = A A A A © ~ A A A
Al AL FB.8,8,8,F¢ 6.8,

e *|R+(VD)?—6(VRB)?

guence of supersymmetf9].

In deriving a four-dimensional effective action from Eq. N 1 63 o
(1), we first consider the Kaluza-Klein compactification on a o Hun T [ = 2587 F L P, (6)
circle, St. This results in the effective action for the massless
type IIA superstring2,11]. The three-form potentiahzge ~ Where
reduces to a three-form potentidhgc and a two-form po-
tential, BAg=Aagy - If we ignore the one-form potential that
arises from the dimensional reduction of the metric, the ten
dimensional action is given byl 1]

s- | dlox@[

q)E(I)lo_ 6B (7)

is the four-dimensional dilaton field.
The field equations and Bianchi identities for the form
1 fields are

Rs+ (VP02 — 1_2HABCHABC

-o VA —
V,.(e""HA)=0 (8
1 1 M1A2B1B2B3B4C1CoC5C, IuHng=0 ©
- _FABCDFABCD_ oA d
~ an
48 384 . /| gl
V (e®PFr) =0 (10)
X BAlAzFBleBaB4FC102C304] ' 2) I uF inip1 =0, (12

where Hagc=33(sBgq and Fagcp=4daAscp are the respectively. In four dimensions, @form is dual to a (4
field strengths of the potentiaBs andAgcp, respectively, — P)-form and Eqs(8) and (10) are solved by thé\nsaze

the ten-dimensional dilaton fiel®,,, is related to the radius (12,13
of the eleventh dimensiom” [2]: HAA = g® ey (12)
1
Y= §‘I’1o () Frir=Qe  PPerr, 13
and we have performed a conformal transformation to thVhere e“*** is the covariantly constant four-formy is a
string frame: scalar variable an@ is an arbitrary constant. Although Egs.
(12) and(193) solve the field equation®) and(10), the Bi-
gia=0%as, Q%=e. (4)  anchi identitieg9) and(11) must also be satisfied. Equation

, oo , (13 istrivially satisfied, since we are working in four dimen-
The first line in Eq.(2) contains the massless excitations gions and substituting E4L2) into Eq. (9) implies that
arising in the Neveu-Schwarz—Neveu-Schw@is-NS sec-

tor of the type IlIA superstring and the second line is the Vﬂ(e‘bv#g):o, (14)

Ramond-RamondRR) sector of this theory1]. In general,

the NS-NS fields couple directly to the dilaton field in the Equation(14) may be interpreted as the field equation for

string frame, but the RR fields do not. the pseudo-scalar axion field,[12]. Moreover, substituting
We now consider the compactification of thedi) to Egs.(12) and(13) into the remaining field equations for the

four dimensions. The simplest compactification that can b@raviton, dilaton and modulus fields implies that they may be

considered is on an isotropic six-torus, where the only dy-derived from a dual effective action
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e ?| R+(V®D)?—6(VB)>— %e”(va)2

S:J d*x /|94

1 -
—EQze 6a1. (15)
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sponds to the spatially flat FRW spacetifi?é. In this case,
the only non-trivial components of the four-form field
strength that can exist entirely on the subsphice< St are
Fomnp @ndFymnp, Wherem=(1,2,3), etc. The former rep-
resent the non-trivial components of the RR four-form field
strength in Eq(15) and the latter are equivalent to those of

In the following section, we derive the cosmological field the NS-NS three-form field strength. The scale factors of the

equations from the effective actigib).

Ill. COSMOLOGICAL FIELD EQUATIONS

We denote the FRW metric ol , by the line element

ds?=—n?dt?>+e?*dQ2, wheree® represents the scale fac-

tor of the universen is the lapse function andQ? is the
three-metric on the surfaces of isotropy, with positike=(
+1), negative k=—1) or zero k=0) curvature, respec-
tively. Substituting thisAnsatzinto the effective action6),

universe in the string and M-theory interpretations are re-
lated by Egs.(3) and (4). These relationships provide the
recipe that allows the type IlA string cosmologies to be re-
interpreted in terms of eleven-dimensional, M-theory mod-
els. It can be verified by direct comparison that for 0,
Egs. (18a—(18e are formally equivalent to the field equa-
tions derived in Ref[7]. The advantage of employing the
string-frame variables in this work is that the first derivative
of the shifted dilaton field17) is a dominant variable and
this greatly simplifies the analysis of the global dynamics.

integrating over the spatial variables and normalizing the co- To proceed, we define a new time variabig,

moving volume to unity, yields the reduced action

S=fdt

1 . n
+ _ecp+6ao_2_ _ 2e76B+3a
2n 2Q

n~le ?(3a?— p?+6kn%e 2%+ 632)

: (16)

where a dot denotes differentiation with respect &nd

¢=P—3a (17)
defines the “shifted” dilaton field14].
The corresponding field equations are
S | 1
CY:(IQD‘FEp—Zk e72a_ZQ2€763+<p+3a, (18a
I . . 1
¢=5 3a?+ g%+ 6ke 2+ 632—5,3 :
(18b
p=—"6ap, (189
R |
B=Po+ 7 Q% o erde, (189
22 n2 1 —2a
0=3a"—p°+68 +§p—6ke
1
4 EQ2 876B+(p+3a’ (189
where we specifin=1 and
p=pet g2 (19

d_” — o~ 6B+ p+3a)2

T (20
The system of equationd8a—(18¢ then becomes
1 9
o= Ea”@,+3a,B,_E(a’)2+(¢,)2_6(,8,)2
3
+4ke*<5a+<°*eﬂ>—ZQ2, (21)

" "2 2 1 2 1 1\2 ot 3 o
¢"=3(a’)+6(B) "+ Q7 5(¢)+3B¢"— 5 a’e’,
(22)

71_1113 1231112 23
B'=5B ¢ +3(B") = 5a' B +7Q% (23

1
Epef(go+3a76ﬁ):(¢/)2_3(ar)2_6(3/)2

1
+6ke Gt 2Q% (29

where a prime denotes differentiation with respecttand
the Hamiltonian constrain{18¢ has been employed to
eliminate the axion fieldp.

Since Q2 is semi-positive definite, it follows from Eq.
(24) that ¢’ is a dominant variable in the spatially flat and
negatively curved modelsk&0). In addition, it follows
from Egs.(22) and(24) thate’ is a monotone function. This
is important because it implies the global result thatis
either monotonically increasing or decreasintjroughout

parametrizes the kinetic energy of the pseudo-scalar axiothe evolution of the model§The variablep’ plays an analo-

field.

gous rde to that of the expansion parameter in the spatially

Kaloper, Kogan and Olive have considered the equivalenhomogeneous perfect fluid models of general relatifi®].)

compactification of the M-theory effective acti¢b directly
in terms of eleven-dimensional variables whish, corre-

We therefore introduce the new dimensionless time vari-
able, 7, according to
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dr 0<{x?,y% z,u}<1 31
- o 25 {x%,y%,z,u} (31
and a global analysis can therefore be undertaken.
where we assume here that>0. (The casep’ <0 is dis- We include the boundary of the state space in our analysis
cussed in Sec. YWe also define the following set of dimen- because the dynamics in the invariant boundary submani-
sionless variables: folds is useful in determining the global properties of the
orbits in the physical phase space. The boundary of the state
J3a’ 6’ Q? space consists of a number of invariant submanifolds of the
XSE——, Y=—71" =7 system. They ar¢i) models where the axion field is trivial
¢ ¢ 2(¢") (2=0), (ii) the spatially flat modelsu(=0), and(iii) mod-

els wherez=0, corresponding to the case where the four-

_ Bke™ (Ser 00 Q= e (¢73a708)p (06 form field strengthF ., is dynamically unimportant. The
(¢")2 ' 2(9)2 system of equations also admits an invariant submanifold,
that is not part of the boundary of state space:
This leads to a decoupling of the equation §gr, which can
be written as K: x+2y++3=0, u=0. (32
de’ [ 1 1 3 . 6| ) The equilibrium points are:
Ay | Tt m XXyt oy e 27) Equilibrium set: The line [*
The remaining equations can then be written in the following x2+y?=1, z=0, u=0, QO=0,

dimensionless form:
N=0, Np=—2(\3x+1), Ag=—1+3x—16y,

dx 1 2
ar (1—x°—y z)(x+\/§)+22(x \/§) \/gu, .
(28a Ng=—2 ﬁX'f’l ,
dy > 2 1 . . .
g, =Xy =y+ Sy + \6), (28D  where); denote the eigenvalues. The zero eigenvalue indi-

cates that this is indeed an equilibrium set, corresponding to
dz a circle'of unit r'adius in thex,y) plane. V\(g refrain from.
P [z—1— \/§y+ J3x+ 2(1-x?—y?—2)]z, presentlng_ the elg_envectors, l_Jut note th_at |t_|s the el_gendlrec—
T tion associated with 3 that points in a direction outside the
(280 submanifoldz=0, while the eigenvector of, extends into
the u direction. The stability of these equilibria is discussed

du 1 ; . ;
= Tu[23x+3(z+ 2x%+ 2y?) . (28¢  in the following sectiorf.
dr 3 Equilibrium point: The source R
The variable() is given by - 5,3 - J/6 28 252 00
Q=1-x?-y?-z—u, (29) “Taer Y7719 TTaer YTser
and satisfies the auxiliary equation 20 14 7+iy119
Ni=75, No=7g5, ANga=0——F5 -
do 19 19 19
d—=—[2y2+z+2x(x+ V3)1Q. (30 o _
T Equilibrium point: The saddle M
IV. STRUCTURE OF STATE SPACE AND LOCAL 1
ANALYSIS X=— g Y70 u=g =0,

In this section we present all of the equilibrium points that
arise in the systen289—(28d). We are primarily interested
in the spatially flat models. However, we also consider the 2z hyperholic equilibrium points the stability is determined by
stability of these models to perturbations in the spatial Curye signs of the real parts of the associated eigenvalues; in the case
vature. The local stability analysis we perform is valid for of 4 source(past attractorall are positive and in the case of a sink
both positive and negative spatial curvature, although we eXguture attractorall are negative. Otherwise, the point is a saddle. If
plicitly consider thek<0 models since in this case the con- the real part of any of the eigenvalues of an isolated equilibrium
dition p=0 implies that all of the dimensionless variables point is zero, it is non-hyperbolic and the stability cannot be deter-
are bounded. The physical state space is defined by mined directly from the eigenvalues.
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2 4 2 since by definitionx< /3, this variable is a monotonically
M=A=3, A3=3, M= 3. decreasingunction on this submanifold angis amonotoni-
cally increasingfunction. The lineL™ is a source forx>
The saddle poinM corresponds to the Milne form of flat —1/4/3 andy2y<x—143 and a sink otherwise.
space. This may be mapped onto the future light cone of the The boundary=0 describes models where the four-form
origin of Minkowski spacetime and in this sense may befield strength is dynamically negligible. This submanifold
interpreted as the string perturbative vacuum represented #an also be solved exactly and the orbits follow the straight

terms of non-standard coordinates. line paths:
V. DYNAMICS OF THE SPATIALLY FLAT y= Yo(x+43) (35
COSMOLOGIES Xo+ /3

A. Global analysis where §q,Yo) again represents the initial point of the orbit.

In this section we consider the global dynamics of theln this case, the functiox is monotonicallyincreasingon
spatially flat cosmologiesk0, u=0). For these models, this submanifold. The liné * is a source fox< —1/,/3 and
the state space is three-dimensional and the orbits can ther@-sink otherwise.
fore be represented pictorially. The time-reversed dynamics of the’>0 models we
The only equilibrium points in the spatially flat models lie have considered thus far is equivalent to the dynamics of the
on the lineL* and the eigenvalues are given in Sec. IV.case where’ <0. This follows by redefining the time vari-
From these eigenvalues, it can be seen that this line is a sirdble, 7:
for x> —1/y/3 andy2y>x—1/{/3. The linesx= — 1/y/3 and

J2y=x-1/\/3 intersect onL" at the point P:(x,y) ﬂ:_go, (36
=(—1//3,—\2/3), at which all three eigenvalues are zero. dn ’

Hence,P is a non-hyperbolic equilibrium point. All other _ _ )
points onL* are saddles. so thatn and = are both increasing or both decreasing to-

It can be shown that the poifitis a source in the three- gether. If we define the other state variables as in(E9),

dimensional phase space. It follows from E428a and the variablesc andy for ¢’ <0 are now the reflections of the
(28b) that variablesx andy for ¢’ >0, i.e.,x— —x andy— —y. With

the new time variablé36), the evolution equation&28a—
d 1 (28d) will have an “‘overall” change in sign, i.e.dx/dr
gt V2y+\3)=(x+2y+ \/5)( 1-x*-y?— EZ) — —dx/dr, etc. Thus, the equilibrium points are identical in
(33  both cases, but the eigenvalues have opposite signs. Conse-
guently, the dynamics of the’ <0 models is the time re-
for u=0. This implies that+ 2y + /3 is amonotonically ~ versal of thee¢’>0 models, where contracting models for
increasingfunction in the physical phase space. The term¢’>0 are expanding models fer' <0, and vice versa.
(1—x2—y?—13z) is positive-definite in the interior region
and can only be zero on the boundary, whete y?>=1 and B. Physical interpretation

z=0. The termx+2y+3 is positive-definite in the The phase space for the spatially flat models is depicted in

physical state space and can only vanish in the extendegigs 1-4. Figures 1 and 2 correspond to the invariant sub-
phase space at the pplhtlg]deezd, the line+2y=—\3is  manifoldsz=0 and =0, respectively. Flgures 3 and 4 rep-
tangent to the unit circl&”+y“=1 andz=0 and actually yesent views of two typical orbits in the full three-
touches it at the poinP. We may conclude, therefore, that gimensional phase space.

the non-hyperbolic equilibrium poirt is indeed a source for - The equilibrium setL* represents solutions where the
the three-dimensional system. We have verified this by anakorm_fields are trivial and only the dilaton and moduli fields
ysing the equilibrium poin® using spherical polar coordi- are dynamically important. These are known as the “dilaton-

nates and by numerical calculations. _ moduli-vacuum” solutions and have an analytical form
The dynamics on the boundary of the state space is alsgyen py

important when interpreting the behavior of the orbits. The

boundary consists of the two invariant submanifofdls-0 e*=e%|t| M
andz=0. TheQ =0 (trivial axion field submanifold can be
solved analytically in terms of the variables of the state space eP=ePx|t| 31

and the solution is given by

eB:eB*|t|te\/(173hi)/6, (37)

g Jos Yot V6)(x=3)
Xo— /3 ’ where{a, ,P, ,B, ,h,} are constants, and==*=1. Note
that the “—" solutions in Eq.(37), which are represented by
where §o,Yo) represents the initial point of the orbit. Thus, the lineL™, correspond t¢<0 and, in the time-reverse case
orbits follow straight line paths in thex(y) plane. Moreover, (¢<0), the “+” solutions of Eq.(37) correspond ta>0.

(39

043504-5



BILLYARD, COLEY, LIDSEY, AND NILSSON PHYSICAL REVIEW D 61 043504

L FIG. 3. Phase diagram of the spatially flat cosmologies when
both NS-NS and RR form fields are non-trivial. Note that rep-
FIG. 1. Phase portrait of the invariant submanifeld0, corre-  fesents a line of equilibrium points. The trajectories in Figs. 1 and 2
sponding to the case where the RR four-form field strength is triviaRre depicted in grey in this figure alorg=0 andz=1-x*-y?,
and the NS-NS three-form field strength is dynamically important."éspectively. Small black dots represent saddle points. See also cap-
The lineL* represents a line of equilibrium points. Large black tion to Fig. 1.
dots denote repellersource$ while grey-filled dots denote attrac-
tors (sinks. The point P represents a source in both the two- high that it can always dominate the kinetic energy of the
dimensional and three-dimensional phase spaces. axion field.
In the other invariant submanifold(X=0), the NS-NS
Let us first consider the dynamics in the invariant sub-two-form potential is trivial, and the RR three-form potential
manifold z=0, where the NS-NS axion field is non-trivial is dynamical. The cosmological constant te@R in the ef-
and the RR four-form field strength vanish@sg. 1). These fective action (15 may be interpreted as a O-form field
trajectories represent the ‘“dilaton-moduli-axion” solutions strength. In a certain sense, this degree of freedom plays a
discussed in Ref[17]. The trajectory alongy=0 corre- role analogous to that of a domain wajlL9]. However, in
sponds to the solution where the internal dimensions argontrast to the membrane associated with the axion field, this
static. In this case, the universe is initially contracting ( “domain wall” resists the expansion of the universe. Thus,
<0), but ultimately bounces into an expansionary phase (the majority of solutions that are initially expanding ulti-
>0). The bounce is induced by the two-form potential. It mately recollapse, as shown in Fig. 2. There are some solu-
follows from Eq.(12) that the field strength of this antisym- tions where the internal space is initially evolving suffi-
metric tensor field is directly proportional to the volume ciently rapidly that the modulus field dominates the form
form of the three-space. This implies that the axion field mayfield and the expansion can proceed indefinitely. Solutions
be interpreted as a membrane that is wrapped around ttibat are initially collapsing do not undergo a bounce.
spatial hypersurfacdd.8]. This membrane resists the initial  In both invariant submanifolds, the poiRtcorresponds to
collapse of the universe and results in a bouncing cosmolan endpoint on the line of sources. In Fig. 1, the reflection of
ogy. Many solutions exhibit such a bounce, but others colthis point in the liney=0 represents the opposite end of the
lapse to zero volume. These arise when the initial kinetidine of sources. This point corresponds to a dual solution,
energy of the modulus field@internal spaceis sufficiently =~ where the radius of the internal space is inverted. Thus, the
endpoints of the line of sources in the invariant submanifold

y z=0 are related by a scale factor duality.

/I\ We may now consider the dynamics in the full three-
dimensional phase space, where both the NS-NS two-form
potential and RR three-form potential are dynamically sig-
nificant. Although they are asymptotically negligible, the in-
terplay between these fields has important consequences.
The key point is that the RR field causes the universe to
collapse, but the NS-NS field has the opposite effect. These

— X two fields therefore compete against one another, as can be
seen in Figs. 3 and 4.
The pointP is the only source in the system when both
form fields are present. Furthermore, it follows from the defi-
L* nitions (26) that it represents the collapsing, isotropic, ten-

FIG. 2. Phase portrait of the invariant submaniféld-0, cor-
responding to the case where the NS-NS three-form field strength is®In general, a solitonigp-brane is supported by the magnetic
trivial and the RR four-form field strength is dynamically important. charge of a D —p—2)-form field strength irD spacetime dimen-
See also caption to Fig. 1. sions.
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z These redefinitions imply that the souféeorresponds to
T the “Kasner” solution (&g, 89, 70)=(0,0,1). This point rep-
resents the Taub form of Minkowski spacetiffis5]. The

relevance of this solution to the problems associated with the
pre-big-bang curvature singularity have recently been dis-
cussed7,8], and it is interesting from an eleven-dimensional
point of view that such a simple solution is uniquely selected
by the dynamics. The endpoints of the line of sinkslon
correspond to the ‘Kasner solutions (1/2(/2) and
(0,2/7~5/7), respectively, and consequently in both cases a
subset of the scale factors are static.

This concludes our discussion of the phase space for the
spatially flat cosmologies. In the following section, we con-
~ FIG. 4. An alternative view of a different trajectory in the spa- sider the robustness of these models to a number of possible
tially flat phase space. See also captions to Figs. 1 and 3. generalizations, including the effects of spatial curvature.

dimensional cosmology, whewe= 3. The four-dimensional
dilaton field, ®, is trivial in this case. As the collapse pro- VI. ROBUSTNESS OF THE MODELS
ceeds, a typical orbit moves upwards in a cyclical fashion
until a critical point is reached, where one of the form fields
is able to dominate the dynamics. The orbit then shadows the Although the compactness of the phase space depends on
corresponding trajectory in the invariant submanifald0  the fact thatk<0, one can assume arbitrary signs fom
or 0=0. In Fig. 3, the axion field dominates and causes th&rder to determine théocal stability of the equilibrium
universe to bounce. By this time, however, the kinetic energyP0ints in the three-dimensional set0 with respect to cur-
of the modulus field has become significant and the solutioiyature perturbations. The eigenvalue associated witor
ultimately asymptotes to a dilaton-moduli-vacuum solutionthe equilibrium pointsL ™ is always negative. This means
onlL™. that the sinks o™ (i.e., points onL™ for x>—1/y/3 and
All sinks in this phase space correspond to solutionsy2y>x—1/y/3) remain sinks in the four-dimensional phase
where the internal dimensions are expandigg-0). There  space. In addition, this implies that the poihts now only a
is a particular point where the spatial dimensions spanningaddle; that isthe stability of Pis unstable to the introduc-
the spacetimeM, become static in the late-time limit. In tion of both positive and rlegative spatial curvature.
general, zero volume in a finite time or superinflatex0) _Since a portion ofL™ acts as sinks in the four-
towards a curvature singularity. In this sense, they corredimensional phase space, there existsghubal result that
spond to pre-big-bang cosmologies, since the comovinéh,e corr_espondllng dlllato_n-modull-vacuum soluti@B3) (for
Hubble radius decreasgs5,20. However, since the internal 3@>—¢ and §3>3a— ¢) will be attracting solutions for
space is expanding, it is not clear to what extent this behavthe spatially curved models. We may deduce further global
ior represents a realistic, four-dimensional inflationary solufesults by restricting our attention to the negatively curved
tion. models k<0), in which case the four-dimensional phase
As discussed above, the time-reversed dynamics of thepace is compact. As discussed above, the [®ista only a
above class of models is deduced by interchanging th&addle point in this extended phase space. Moreover, it fol-
sources and sinks and reinterpreting expanding solutions ilpws from the analysis of Sec. IV that the only attracting
terms of contracting ones, and vice versa. Thus, the late-timequilibrium point is the pointR. (There is an additional
attractor for the time-reversed system is the expanding, isssaddleM which will affect the possible intermediate dynam-
tropic, ten-dimensional cosmology located at pdnt ics) This source corresponds to a negatively curved model
It is of interest to reinterpret the equilibrium points of the with a trivial axion field; indeed, it is a power-law, self-
phase space in terms of eleven-dimensional solutions. Singdmilar collapsing solution with non-negligible modulus and
the eleven-dimensional three-form potential is triviallon, ~ RR form field.
these points represent “Kasner” solutions to eleven- We have been unable to find a monotone function on the
dimensional, vacuum Einstein gravity. Thus, the liné is  extended four-dimensional phase space, but it is plausible
analogous to the Kasner ring that arises in the vacuum Biarthat all negatively curved models evolve from the solution
chi | models of four-dimensional general relativty6]. corresponding to the global souréetowards the dilaton-
For the compactification we have considered, the scalgoduli-vacuum solutiongon the attracting portion of ™).
factors in the eleven-dimensional frame a{re;‘,ez’,e’/}, Clearly the curvature is dynamically important at early times.

~ ~ . In the time-reverse case, the solutions asymptote from the
where, from Eq(4), a=a— /2 andf=g—v/2. The "Kas- non-inflationary dilaton-moduli-vacuum solutions in the past

ner” solutions are then given by the power laws=ao/t,  and evolve to the future towards a curvature dominated
B=PBo/t and y=1y,/t, where t=[dtexp(~y/2) and the model; it is plausible that they evolve towards a model which
constants of integration satisfy the constrainisy3 6.3, is the time-reversal of the one representedRbyTrherefore,
+7y,=1 and 3+6B5+yi=1. curvature can also be dynamically important at late times.

A. Effects of spatial curvature
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B. Effects of generalized couplings X=— \/5(12+ Cz)Dz y:8c\/€D2 7= —192C D4
We now consider a generalization of the effective action
(15) given by u=v=0, (42

with eigenvalues

—2CD?, —(C*C(17c*+924))D?,

1
- §Q26°B], (38) —4(12+c?)D?, —6(12+c?)D?,

R+(V®)2—-6(VB)?

s:f d4x\/—_g[ e?

- %ez‘b(va)z—z/\

whereA represents a cosmological constant term aiglan ~ WhereC=(c+6)(c—6) andD ?=108+c?. Note that this
arbitrary constant. The former term may arise through nonPCiNt corresponds to an exact self-similar collapsing cosmo-
perturbative corrections to the string effective action. Theogical_solution with non-trivial modulus and four-form
motivation for considering an arbitrary coupling of the fi€lds. The value of) as a function ot is given by
modulus field to the four-form field strength is that the gen-
erality of the dynamics discussed in Sec. (M which c= —2C(60+c?)
. X ) ) ) O=—— (43
—6) can be investigated. Equati@®8) reduces to the action (108+c?)?
studied in Ref[21] whenc=0.
By invoking the same assumptions as in Sec. Ill, the acwhich implies that—6=<c=<6 in order for(0=0. Whenc
tion (38) reduces to = +6, the pointWis a part of the equilibrium sét™; in fact,
it becomes just the non-hyperbolic poiatdiscussed previ-
U - P ously. Note that it is also a part of the invariant submanifold
S:j dje “(3a”~ ¢ +6ke 2+ 657~ 2A) cx—62y+3c=0; u=v=0, which generalizes the in-
variant submanifolK defined in Eq(32).
n Ee‘“ea' 2_ Q2eeht3a (39) There are two non-flatu# 0) vacuum equilibrium points
2 ’ with a vanishing cosmological constant0, one of which
is a source and the other a saddle. There is also a non-
and the corresponding field equations can again be derivealyperbolic vacuum equilibrium point with a non-vanishing
from this action. In analogy with Eq$23) and(283—(28d),  cosmological constantv(=1) with x=y=z=u=0, which
we introduce a new time variable, defined by appears to be a source. In addition, we can find monotone
functions in the boundary submanifolds; indeed, the bound-

i=(¢')‘1e‘(1/2)(°ﬁ+¢+3“)g, ao Q=u=v=0 and the boundary submanifolt=u=v
dr dt =0 can be solved exactly in terms of the variables of the
state space. Exact solutions of the equations of motion for

and the new reduced variable particular values o€ can also be found.

However, the primary motivation for these comments is
2N e Batoetch) to emphasize two important points regarding the very inter-
VE . (41 esting dynamics of the M-theory cosmologies studied earlier.
(¢") First, we note that the conclusions obtained for the spatially

_ . _ curved models are robust when additional physical fields
From these definitions and the reduced variables defined e 6.g., aA term are included. Second, and perhaps more

lier, we obtain a five-dimensional system of ordinary differ- importantly, we see that the value=—6 is a bifurcation
ential equations for the reducédimensionlessvariables af- a1 ein the analysis of general models with arbitrary cou-
ter eliminating the variablé) that is now defined bf)=1  jing ¢ |n this context, therefore, the M-theory cosmologi-

2 2 - - .
—X“=y“=z—u—v. Since p=0, all of the dimensionless 5| models we have studied exhibit rather unique dynamics.
variables are bounded for the models witis0 andA >0,

where the physical state space is defined by 0
<{x?,y%,z,u,v}<1, and a global analysis is therefore pos-
sible in this case. Including the boundar@s-0, z=0, u In this paper we have presented a complete dynamical
=0 andv=0 leads to a compact state space. analysis of spatially flat, four-dimensional cosmological

We can analyze these models and obtain qualitative informodels derived from the M-theory and type IIA string effec-
mation about the dynamics in an analogous way to that dongve actions. We have shown that models generically spiral
in Sec. 1l [22]. The equilibrium seL": x?+y?=1, z=u  away from a sourc®, undergoing bounces due to the inter-
=v =0 still exists, and since the eigenvalues associated witplay between the NS-NS two-form potential and the RR
(u and v are (both negative, part oL * will act as sinks three-form potential. Eventually, they evolve towards
and the non-hyperbolic point= —1/4/3, y=—2/3, z=u dilaton-moduli-vacuum solutions with trivial form fields
=v=0 is clearly a saddle. These are local results and aréorresponding to the sinks dn*). We note the important
valid in all cases. dynamical result thap' is monotonic.

There also exists an attracting equilibrium pdikit Thus, the form fields that arise as massless excitations in

VII. DISCUSSION
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the type IIA superstring spectrum, or equivalently from thearise, the dimensionally reduced action can be expressed pre-
three-form potential of eleven-dimensional supergravitycisely in the form of Eq(15), with the inclusion of a set of
may have important consequences in determining initial andnassless scalar fields in the NS-NS sector. In particular, the
final conditions in string and M-theory cosmologies, evencompactification onT#x T?x S!, where T" represents the
though they are dynamically negligible in the early- and late-isotropic n-torus, is relevant to compactifications involving
time limits. In particular, the poir® is the only source in the the four-dimensional spad€3 [23]. This space has played
system. It can be interpreted in the string context as the iscan important role in establishing various string dualifigk
tropic, ten-dimensional solution. Alternatively, it representsit is the simplest four-dimensional, Ricci-flat manifold after
the Taub form of flat space when viewed in terms of elevenihe torus[24] and may be approximated by the orbifd{®8
dimensional variables. ~T4Z, [25].

When the effects of spatial curvature are included, we Moreover, the effects of spatial anisotropy in the space-
obtained the local result that the poidtbecomes a saddle. time M, can also be considered by introducing two, un-
On the other hand, the dilaton-moduli-vacuum solutions withcoupled moduli fields into the NS-NS sector of the reduced
trivial form fields are generic attracting solutions. In the action(16). In this context, such fields parametrize the shear
analysis of the negatively-curved models, we found that thén the cosmologies. When these fields are non-trivial, the
early time attractor(the sourceR) has non-zero curvature, models represent the class of isotropic curvature cosmologies
implying that spatial curvature is dynamically important atand correspond to Bianchi type I, V and IX universes
early times in these examples. [21,26€]. It would be interesting to consider these generaliza-

This work can be generalized in a number of ways. Wetions further.
considered a specific compactification from eleven to four
dimensions, where the topology of the internal dimensions
was assumed to be a product space consisting of a circle and
an isotropic six-torus. We emphasize, however, that the A.P.B. is supported by Dalhousie University, A.A.C. is
analysis also applies to compactifications on a Calabi-Yawsupported by the Natural Sciences and Engineering Research
three—fold since the gauge fields arising from the higherCouncil of CanadaNSERQ, J.E.L. is supported by the
dimensional metric have been ignorgd. The qualitative Royal Society and U.S.N. is supported by I&iftelsen,
analysis may be readily extended to compactifications on &venska Institutet, Stiftelsen Blanceflor and the University of
general, rectilinear toruStx . .. x St. After suitable redefi- Waterloo. We thank N. Kaloper and I. Kogan for helpful
nitions of the additional moduli fields that subsequentlycommunications.
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