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Viscous fluid collapse
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The problem of seeking solutions of Einstein’s field equations that represent the collapse of realis-
tic matter distributions is discussed. A specialized approach to this problem is taken in which the
fact that a given energy-momentum tensor may formally represent different types of matter distri-
bution is exploited. A solution is presented in which an ““interior” solution consisting of a collapsing
viscous fluid (i.e., a solution of the Einstein field equations for an imperfect fluid source) is matched
continuously across its boundary to a Schwarzschild “exterior.” In this solution the geometrical part
corresponding to the interior solution is formally identical to that of a closed (i.e., k=+1)

Friedmann-Robertson-Walker dust model.

INTRODUCTION

An important problem in current gravity theory is the
search for solutions of Einstein’s field equations which
represent the collapse of realistic astronomical matter dis-
tributions to condensed objects, such as black holes. This
problem takes the following form: A solution of the field
equations with a nonzero energy-momentum tensor (inte-
rior solution) representing the interior of an astronomical
body collapsing in upon itself and a solution of the vac-
uum field equations (exterior solution) representing the re-
gion external to the body are taken and matched continu-
ously across the (collapsing) boundary of the object.

To date, this search has been rather fruitless in that
only very simple interior solutions representing unrealistic
matter distributions have been investigated. The standard
model of collapse is given by the following (see Wein-
berg!). The interior is assumed to be represented by a
closed (i.e, k= +1) Friedmann-Robertson-Walker
(FRW) dust model. That is, the matter is represented by a
pressure-free perfect fluid which is both isotropic and
homogeneous. The Einstein field equations

Guy=p(u,u, (1)

then have the solution represented by the FRW line ele-
ment

2
ds?=—dt*+R*1) l—dr——;ﬂ—r2d92+rzsin29d¢2 )
in a comoving coordinate system in which 0<r <1 and
0<t<mR, (or at least mRy/2 <t < 7R, which represents
the “collapsing stage”). The actual solution is given
parametrically by

t=5C(p—siny), R =+C(1—cosy), A3)
where we note that
.2
R =§——1, p=3CR3, p=0, 4)
29

and C =R is the maximum value of R.

The collapse occurs at ¥=27 or ¢t =mR, when R be-
comes equal to zero. The collapsing model is completed
by choosing M /4mrg3=1 where r =rg is the radius of the
astronomical body (a constant, since r is a comoving coor-
dinate), whence the solution matches to the Schwarzschild
exterior vacuum solution, in that the gravitational field is
continuous across the surface r =rg.

The standard model above is inadequate because the as-
tronomical body cannot be realistically represented by
dust. The question arises as to whether models can be
found in which the interior can be modeled by a more
physical fluid, that of a viscous magnetohydrodynamic
fluid with energy-momentum tensor given by

My =Eu, +(p+pluyty +pguy

=20y +qutty +qyuy (5)

where p, p, ut, Ouys 9u, and 7 are, respectively, the densi-
ty, thermodynamic pressure, fluid velocity vector, shear
tensor, heat-conduction vector, and shear-viscosity coeffi-
cient. E,, is the energy-momentum tensor of any elec-
tromagnetic field present and is given by

1
Eyuy=FuoF,*— TgMFaﬁFaB ’

where F,,, is the electromagnetic field strength tensor.
This problem is, however, very difficult. First, there
are very few known viscous-fluid solutions of Einstein’s
field equations. Second, if we have a nondust interior
solution, we cannot necessarily match this to an exterior
Schwarzschild solution; we wish the nonperfect fluid
quantities such as the electromagnetic field and the heat
conduction to be continuous across the boundary of the
astronomical body (in addition to the thermodynamical
quantities). Therefore, we may need to use more “realis-
tic” exterior solutions, such as Reissner-Nordstrom-type
exteriors or radiation models [such as the R(z)=t!/?,
k=0 FRW model]. The more complicated interior and
exterior solutions will in turn lead to more complicated
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junction conditions at the boundary of the astronomical
body (“matchup” conditions).

A further difficulty that may arise with more compli-
cated interior and exterior solutions concerns the types of
coordinate systems employed in these solutions. In the
standard model comoving coordinates are employed and
the matchup occurs at r=constant. In more complicated
solutions there may be difficulties in finding a suitable
coordinate system for both interior and exterior solutions.
In addition, if the coordinate systems are not comoving,
difficulties arise concerning the speed of matter inside, on,
and outside the boundary, and how to actually identify
the boundary where the matchup occurs.

Another consideration when attempting more realistic
solutions concerns the nature of the matchup itself.
Perhaps there should be several regions, each characteriz-
ing a particular aspect of the nature of the star (or other
astronomical body under investigation), and each of which
could be matched up at their common boundary. One
might imagine a central, dense core region, in which nu-
clear reactions are taking place and the model of which
would necessarily contain quantum effects. This might
match up to a region that could loosely be called the outer
layers of the star. This might consist of a single region or
several subregions. For example, we might have a viscous
magnetohydrodynamic fluid deep inside the star matching
up to a dustlike region representing the outermost layers
of the star. This region then matches up at the boundary
of the star to an exterior region (or perhaps, if the outer
layers are dust, we might model the star as being a nonlo-
calized object; that is, the outer layer of the star does not
have a sharp boundary, but it is dust whose density simply
decreases as one moves away from the interior of the star).

These last considerations can actually be used to one’s
advantage, however. An important problem then becomes
matching regions of the star to other regions so that we
need not seek solutions which are true for all coordinate
values, but only for coordinate values representative of the
region under consideration. For example, we might seek a
solution matching a viscous-fluid outer layer to an exteri-
or solution, and examine the collapse of the outer layers of
the star. In this scenario the viscous-fluid solution need
not be valid down to =0, but only down to r =r,, where
the model would then be assumed to match onto a central
core region.

APPROACH/THE MODEL

We shall present one particular approach to the above
problem. We will obtain a solution that will overcome all
the above difficulties, although it will be a very special-
ized solution.

The approach is to exploit the fact that a given energy-
momentum tensor may formally represent different types
of matter distribution (Tupper®® and Coley and
Tupper*~®). That is, the energy-momentum tensor of a
perfect fluid may be formally identical to that of a viscous
magnetohydrodynamic fluid. Here, we shall exploit the
formal equivalence of (1) and (5), in which, for simplicity,
we shall assume that no electromagnetic field is present
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(i.e., E,,=0). Parenthetically, we note that as a by-
product of the analysis outlined below we will have shown
that positive-curvature FRW models may be interpreted
as viscous-fluid solutions—the solutions given below are
among the first that exhibit this behavior.

Therefore, we are looking for an interior solution in
which the material composition is that of a viscous fluid,
but whose gravitational field (geometrical part) corre-
sponds to that of the k= + 1 FRW model represented by
Egs. (2), (3), and (4).

Let us assume that the four-velocity is of the form

u,=[—a,BR(1—r?)~12,0,0], (6
where a*>— %=1, a>1, and a is a function that may de-
pend on ¢ and the radial coordinate r, and, since u 9" =0,
let us assume that the heat-flux vector is of the form

qp:Q[B:_ '_aR(l—‘rz)_l/zyO,O] s (7)

where QZEq”q“. Then, the Einstein field equations
G, =M, for the metric given by (2) and (3), reduce to

3CR 3 =pa’+pB—4nB8°X —2Qaf,

0=pB*+pa’—Tna’X —2QaB ,
(8)

0=p+3nX,
0=p+p — 51X —Q(a*+B)aB)~",
where

X=a+BRN1—r)2_BR-r~11—r)172  (9)

and differentiation with respect to ¢ and r is denoted,
respectively, by a dot and by a prime.
Equations (8) have the solution

p=3a’CR 3, p=B>CR™?
10
_ -3 . 3m -3 (10
Q=3aBCR™>, nX=—5B°CR™".

The solution satisfies all the appropriate energy conditions
(Hawking and Ellis”) in which the density and pressure
are always non-negative. Equation (10) represents a phys-
ically acceptable solution provided 7 >0, i.e., X <0, viz.,

a+BRIN—r)2_ BRI~ 1—r)H2<0. (11)

Equations (10), with an a satisfying (11), represent a
class of viscous-fluid solutions of Einstein’s equations in
which the geometrical part is identical to that of the
positive-curvature FRW model represented by (2). Fur-
ther specification of the solution entails the specification
of the function a. Many choices exist for a [subject to
(11)] but we shall attempt to find an a appropriate to the
matchup problem under investigation. This specification
essentially amounts to finding an appropriate set of boun-
dary conditions for a.

We want the viscous-fluid solution to be valid for
O<r \grs, where rg is the surface of the star (i.e., in the
interior of the star). (Note that we could impose the
weaker domain of validity r, <7 <rs.) The model we
have in mind is one in which the outer layers of the star
are essentially dust; that is, all the viscous effects present
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play their crucial role toward the innermost regions of the
star—in the outer regions we simply have dust. This is, of
course, physically reasonable, and as we shall see, of great
practical use. Thus we impose the boundary condition
that

a=1 atr=rg, (12)

so that at r =rg the fluid becomes dust and the model is
identical to the standard underlying perfect-fluid model.

Alternatively, we could have chosen the boundary con-
dition a=1 at r =r, where r, <r, <rg, so that at r=r,
the viscous-fluid quantities reduce to their perfect-fluid
counterparts. We could then smoothly match the
viscous-fluid interior (r, <r <r,) at r =r, to the standard
dust solution valid in the region r, <r <rg (which then
matches in the usual way to the Schwarzschild exterior at
r =rg). Moreover, perhaps the above prescription is more
in keeping with the representation of the outer layers as
dust. However, for convenience, in the remainder of this
article we will consider the extreme case r,=rg in which
the thickness of the outer dust layer shrinks to O (i.e.,
rg—r,—0). Thus the matter constituting the star is only
formally equivalent to dust at the surface of the star
r =rg. (Clearly the analysis that follows can be trivially
generalized to the case in which rg—r,5£0.)

We note that with the boundary condition (12), =0
and p =Q=0 at the surface of the star. In particular, at
r =rg the matter is comoving. Consequently, the surface
of the star will be at » =rg=a constant in the coordinate
system being used (since at 7 =rg the matter is comoving
in this coordinate system). This makes the matchup with
the exterior region straightforward (and identical to the
matchup in the standard model) and avoids the problems
outlined in the Introduction. Indeed, if (12) is satisfied,
again choosing

M
1= 3
477"'5'

(13)

ensures that the model matches up continuously to a
Schwarzschild exterior.

We also wish to impose some conditions on the model
as we approach r=0. As we have mentioned previously,
we wish the viscous effects to play an increasingly impor-
tant role as we approach the central regions; consequently
we desire a and | B| to increase as r—0. Therefore, we
also impose the phenomenological boundary condition

a—o asr—0 (14)

(alternatively we could impose the boundary condition
a—constant > 1 as »r—0).

To complete the solution we must therefore specify an
a that satisfies inequality (11) and the boundary condi-
tions (12) and (14) such that the solution is valid for
O<r.<r<rg<l1l (at least in the collapsing phase
T <Y <2m). It is more convenient at this point to work
with 3. Inequality (11) is satisfied if we impose the more
restrictive conditions

and the boundary conditions become (in terms of 3)
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B=0 atr=rg

and

B— positive constant
or asr— 0. (16)

B— oo

There are many choices for B that satisfy (15) and (16).
Let us put

B=f(t)g(r,rs) . (17)

If we investigate the ¢ dependence of B, we simply want
f' <0 (assuming f and g are positive functions). Possible
choices for f might be () f(#)=t"% (a>0), (i)
F(t)=F(R(t)) where dF/dR >0 (since R is negative in
the collapsing stage and f <0< (dF/dR)R <0), (iii)
there exist solutions in which B is independent of ¢, i.e.,
S (t)=constant.

Let us now investigate the spatial dependence of B. If
we choose

rs b
glrrg)= —r——l , b>0, (18)
we note that
b—1
. —brs rs 1
g = r2 r -

which is always negative so that inequality (11) is always
satisfied. At r =rg, B=0, and as r—0, B— ». The solu-
tion is valid as »—0. Thus (18) is an acceptable choice
for g.

Alternatively, we might choose

g(r, rs)=a(rs—r)b, a,b>0. (19)

Again g’ is negative so that inequality (11) is satisfied.
When r=rg, 8=0, but as r—0, g(r,rg)—ars®, a con-
stant. The solution is valid for 0 < r <rs.

CONCLUSION

As an illustration, let us consider one particular model.
Let us choose
2

,
Blrty=t—'|—=_1 (20)
With this choice of 3, the solution (10) becomes
, 4
p=3C|1+12 ~f——1 R73,
, 4
p=Ct—2 —rs——l R7?,
2 411/2 (21)
-1 rs -2 s -3
o=3ct~'| = 1| |14:2|2—1 R73,
r r
4
r
nX=—3Ct7* | —1| R,
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where R (¢) is given by (3) and the solution is valid for
O<r<rs and w<y¥<2w. This is a solution of the
viscous-fluid field equations in which the geometrical part
is formally identical to the positive-curvature FRW line
element (2).

Equations (21) represent the interior solution of a
collapsing-viscous-fluid matter distribution. It is physi-
cally acceptable because p >0, p >0, and 7 >0 since in-
equality (11) is satisfied. As r—0, B— « and we note
that p/p—3, so that at the star’s center the matter is in a
radiationlike state, which is an advantage of the model.
The interior solution represents a collapsing-viscous-fluid
ball since R <0 and at ¢ =mRy, R=0. If we examine the
density on a spatial hypersurface as t—mR, (i.e.,R —0)
we find that it increases with time, possibly indicating the

motion of matter toward the center.

At r=rg, B=0 and the matter distribution becomes
that of dust and the matter is comoving relative to the
coordinate system being used. Choosing 1=M /4rmrs>,
the gravitational field matches continuously at » =rg to
an exterior Schwarzschild gravitational field as in the
standard case. Thus the complete solution represents a
collapsing viscous fluid matched continuously across its
boundary to an exterior Schwarzschild vacuum spacetime.
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