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We discuss the averaging problem in general relativity, using the form of the macroscopic gravity
equations in the case of spherical symmetry in volume preserving coordinates. In particular, we calculate
the form of the correlation tensor under some reasonable assumptions on the form for the inhomogeneous
gravitational field and matter distribution. On cosmological scales, the correlation tensor in a Friedmann-
Lemaı̂tre-Robertson-Walker (FLRW) background is found to be of the form of a spatial curvature. On
astrophysical scales the correlation tensor can be interpreted as the sum of a spatial curvature and an
anisotropic fluid. We briefly discuss the physical implications of these results.
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The gravitational field equations on large scales are
obtained by averaging the Einstein equations of general
relativity (GR). The Universe is not isotropic or spatially
homogeneous on local scales. An averaging of inhomoge-
neous spacetimes on large scales can lead to important
effects. For example, on cosmological scales the dynami-
cal behavior can differ from that in the spatially homoge-
neous and isotropic Friedmann-Lemaı̂tre-Robertson-
Walker (FLRW) model [1]; in particular, the expansion
rate may be significantly affected. Consequently, a solution
of the averaging problem is of considerable importance for
the correct interpretation of cosmological data. It is also of
importance for physical phenomena on astrophysical (ga-
lactic) scales.

There are a number of theoretical approaches to the
averaging problem [2–4]. In the approach of Buchert [4]
a 3� 1 cosmological spacetime splitting is employed and
only scalar quantities are averaged. The perturbative ap-
proach [2] involves averaging the perturbed Einstein equa-
tions; however, a perturbation analysis alone cannot
provide detailed information about an averaged geometry.
On the other hand, the macroscopic gravity (MG) approach
to the averaging problem in GR [3] gives a prescription for
the correlation functions which emerge in an averaging of
field equations. The MG approach is consequently a fully
covariant, gauge independent and exact method. In par-
ticular, in the MG approach tensor fields are averaged over
4-volume averaging regions (rather than spatial averaging
regions) about points of the microscopic spacetime. The
resulting object is extended to a field defined over the
macroscopic spacetime by Lie-dragging of 4-volume aver-
aging regions. By employing a bilocal operator acting on
tensor fields of the microscopic spacetime, the now modi-
fied averaging operator guarantees tensorial objects (i.e.,
covariance) in the macroscopic spacetime. We shall adopt
the MG averaging approach. Averaging of the structure
equations for the geometry of GR then leads to the struc-
ture equations for the averaged (macroscopic) geometry
and the definitions and the properties of the correlation
tensor. The averaged Einstein equations can always be

written in the form of the Einstein equations for the macro-
scopic metric tensor when the correlation terms are moved
to the right-hand side of the averaged Einstein equations
[3].

Spherical symmetry is of particular physical interest,
and it is especially important to study the averaging prob-
lem within the class of spherically symmetric cosmological
models. In [5] the microscopic field equations were taken
and the averaging procedure was effected to determine the
precise form of the correlation tensor in this case. In
volume preserving coordinates (VPC), the spherically
symmetric line element is given by

 ds2 � �Bdt2 � Adr2 �
du2�������

AB
p

�1� u2�
�

1� u2�������
AB
p d�2;

(1)

where the functions A and B depend on t and r. The FLRW
metric in VPC is given by (1), with A � R2=F4, B � 1=R6,
where R � R�t� and F � F�r�, subject to dF

dr ������������������
1� kF2
p

=F2 and k � �1, 0 or 1. We can calculate the
form of the Einstein tensor Ga

b, take averages, and obtain
the appropriate form for the MG field equations and hence
the correlation tensor Cab (for example, we have that
Crt � Gr

thgi � hGr
ti). In VPC, in which the bilocal op-

erator acts as an identity operator, the average is then
simply given by

 hf�r; t�i �
1

TL

Z T=2

t0���T=2�
dt0

Z L=2

r0���L=2�
dr0f�r� r0; t� t0�;

(2)

which, for smooth functions with a slowly varying depen-
dence on cosmological time, essentially reduces to a spa-
tial average in terms of the averaging scale L (with
L � h0=H < 1).

The form of the correlation tensor depends on the as-
sumed form for the inhomogeneous gravitational field and
matter distribution (and may depend on the choice of VPC
[5]). We assume that
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where the inhomogeneous functions A and B satisfy a set
of appropriate and self-consistent conditions (for example,
h @@t hA�r; t�ii � h

@A�r;t�
@t i). The assumptions (3) and (4) con-

stitute a spatial Fourier decomposition of the metric func-
tions in which the variation in the timelike direction is
assumed small and the dominant source of inhomogeneity
arises from a spatial variation of the gravitational field
(thus the 4-volume average effectively reduces, in this
case, to a smoothing on a spatial domain). Note that the
coordinates t and r appearing in (1) are not the usual
‘‘time’’ and ‘‘radial’’ coordinates; however, the unit mag-
nitude timelike coordinate basis vector has zero vorticity,
which implies the existence of a foliation of spacetime
(where the r coordinate parameterizes the spatial hyper-
surfaces). Since the coordinate basis vectors @t and @r are
independent (i.e., the metric is diagonal), it follows that
variation along timelike and spatial directions is not
coupled. Although other forms for the inhomogeneous
gravitational field are possible (i.e., different assumptions
to (3) and (4)), it is not expected that the main conclusions
here will be affected (see, for example, [5]).

Expanding in powers of L< 1, we obtain the correlation
tensor up to O�L2� [5]:

 Cab � diag
�
C�

2‘
hAi

; C;
‘
hAi

;
‘
hAi

�
; (5)

where C � Crr and

 ‘�t� �
�2

8
��a1 � 3b1��a1 � b1� � � �a1 � 3 �b1�� �a1 � �b1��:

The function C can then be calculated from the contracted
Bianchi identities. We note that if Cab is isotropic (i.e., of
the form of a perfect fluid) then C � ‘

hAi and Cab is of the
form of a spatial curvature term. Hereafter, for convenience
we shall drop the angled brackets on averaged quantities.

Let us first discuss averaging on cosmological scales. In
the case that Br � 0, as in the case of a FLRW background,
the contracted Bianchi identities immediately yield C �
‘=A and Ar � 0, and ‘=A � ‘0R�2 (where ‘0 is a con-
stant). Therefore, in this case we obtain

 Cab � ‘0R
�2diag�3; 1; 1; 1�; (6)

and Cab is necessarily of the form of a spatial curvature
term.

The cosmological result that in the spherically symmet-
ric case the averaged Einstein equations in an FLRW
background have the form of the Einstein equations of
GR for a spatially homogeneous, isotropic macroscopic
spacetime geometry with an additional spatial curvature
term, confirms the results in previous work in which we
were able to explicitly solve the MG equations to find a
correction term (correlation tensor) in the form of a spatial
curvature [6]. This result is also (i) consistent with the work
of Buchert [4], in which a spatial curvature term appears
when averaging in a FLRW background, (ii) consistent
with the results of averaging an exact Lemaı̂tre-Tolman-
Bondi (LTB) spherically symmetric dust model [7], in
which solutions of the LTB metric in (nondiagonal) VPC
are given explicitly as perturbations about the spatially flat
FLRW model and found to give rise to solutions which can
be interpreted as having both spatial curvature and a con-
stant correction term, and (iii) consistent with results in
which the effects of linear inhomogeneous perturbations
on an exact spatially homogeneous and isotropic FLRW
background [2,8] are found to give rise to correlation terms
of the form of a spatial curvature term.

Inhomogeneities can affect the dynamics and may sig-
nificantly affect the expansion rate of the spatially aver-
aged ‘‘background’’ FLRW universe (the effect depending
on the scale of the initial inhomogeneity) [2]. Therefore, a
more conservative approach to explain the acceleration of
the Universe [9] without introduction of exotic fields is to
utilize a back-reaction effect due to inhomogeneities of
the Universe. Indeed, it has been suggested that back-
reactions from inhomogeneities could explain the appar-
ently observed accelerated expansion of the niverse today.
This has been investigated by studying the effective
Friedmann equation describing an inhomogeneous
Universe after averaging, using both perturbative and
qualitative analyses [8,10]. It is clear that the perturbative
effect proposed always gives rise to a renormalisation of
the spatial curvature. It has also been argued that the effect
does not simply reduce to spatial curvature and an accel-
eration can also result (although it is unlikely to be com-
patible with other observational data).

The MG method adopted here is an exact approach in
which inhomogeneities affect the dynamics on large scales
through the correlation term (and hence the main criticisms
of the back-reaction approach to studying the possible
contributions to an accelerated expansion [8,10] do not
apply here). Averaging can have a very significant dynami-
cal effect on the evolution of the Universe; the correction
terms change the interpretation of observations so that they
need to be accounted for carefully to determine if the
models may be consistent with an accelerating Universe.
Averaging may or may not explain the observed accelera-
tion. However, it is clear that it cannot be neglected, and a
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proper analysis will not be possible without a comprehen-
sive understanding of the affects of averaging.

Let us next consider the effects of averaging on astro-
physical scales (e.g., galactic scales). We assume that a
galaxy can be approximated as spherically symmetric. In a
non-FLRW background (with Br � 0), the contracted
Bianchi identities can then be integrated to obtain [5]

 C � �
‘
A
� f�t�

�AB�1=2

A2‘ ; _‘ � �
�

2f

A2‘

�
;t
A3=2B1=2:

(7)

We note that Cab is necessarily anisotropic (and cannot be
formally equivalent to a perfect fluid). For the solution with
‘ � ‘0 � const: and 2f � g�r�A2‘, we can always write

 Cab � ‘0A
�1diag�3; 1; 1; 1� ��diag�1; 1; 0; 0� (8)

where � � �fg�r�AB1=2 � 2‘0A
�1g. The correlation ten-

sor Cab then automatically satisfies the contracted Bianchi
identities. It can be interpreted as the sum of a perfect fluid
and an anisotropic fluid (when Br � 0). If both terms
separately satisfy the contracted Bianchi identities, then
the first term can be interpreted as a spatial curvature term
and the second term can be interpreted as an anisotropic
fluid with p? � 0 and pk � ��eff . For an anisotropic fluid
in spherically symmetric models the energy-momentum
tensor is of the form diag���;pk; p?; p?�, where pk �
p� 2

3� and p? � p� 1
3�, and � is the anisotropic pres-

sure. From above, we see that if the (total) correlation
tensor Cab is interpreted as an anisotropic fluid (which is
comoving in VPC), it follows that � � �� and p �
� 1

3�. Anisotropic fluids in spherically symmetric models
have been studied in [11].

Although the correlation tensor Cab satisfies the con-
tracted Bianchi identities, when interpreted as the sum of a
spatial curvature perfect fluid and an anisotropic fluid
through (8), the two separate fluids do not in general satisfy
separate conservation equations. However, the contracted
Bianchi identities can be rewritten in the form of a conser-
vation law for the anisotropic pressure �,

 �t �
1

2
�
�
At
A
�
Bt
B

�
�
‘0

A

�
2
At
A
�
Bt
B

�
� 0; (9)

in VPC where the metric is given by Eq. (1).
Let us comment on the astrophysical applications of an

anisotropic fluid. It is known that dark matter is a major
constituent of the halos of galaxies [12]. By an analysis of
observed rotation curves, under reasonable assumptions
(e.g., that galaxies can be modeled as spherically symmet-
ric) it has been found that the dark matter is of the form of
an anisotropic fluid [13]. This has been taken up in [14], in
which the consequences of anisotropic dark matter stresses
are discussed in weak field gravitational lensing (where it
was noted that any attempt to model dark matter in galactic
halos with classical fields will lead to anisotropic stresses
comparable in magnitude with the energy density).

It is of interest to further study the effects of averaging in
the astrophysical context. The results of this work could be
used to model the effects phenomenologically by including
an anisotropy term (comoving in VPC), which in general
has p � � 1

3�, and in the case ‘0 � 0 is of the specific
form p? � 0 and pk � ��eff (where the correlation ten-
sor is given by ��diag�1; 1; 0; 0�). The anisotropic fluid
satisfies the Bianchi identities, but since it arises from an
averaging procedure it need not satisfy any energy con-
ditions. It may be beneficial to work in VPC, in which the
metric is diagonal and the correlation tensor is ‘‘comov-
ing’’ (although the matter is not generally comoving).
Indeed, in VPC the correlation tensor is given explicitly
in terms of the averaged metric functions (e.g., � �
�g�r�AB1=2 � ‘0A

�1, p � � 1
3�, � � g�r�AB1=2 �

2‘0A
�1). A disadvantage is that astrophysicists are not

familiar with working in these coordinates. Alternatively,
we could transform back to more conventional coordinates
and determine the form of the correlation tensor; however,
these coordinates may not be the most natural (e.g., the
metric will not be diagonal) and the form of the correlation
tensor (which is no longer comoving) may be quite
complicated.
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