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New slant on tilted cosmology
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The physical properties of a class of cosmological models in which the matter is described by a perfect fluid
moving relative to a shear-free, irrotational, and geodesic timelike congruence, which is assumed to be asso-
ciated with the cosmic microwave background radiation field, are investigated.@S0556-2821~96!03420-0#

PACS number~s!: 98.80.Hw, 04.20.Jb
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I. INTRODUCTION

In a recent paper by Coley and Mc Manus@1#, spacetimes
admitting a shear-free, irrotational, and geodesic~SIG! time-
like congruence were studied. Moreover,~single! perfect
fluid spacetimes in which the fluid four-velocity is tilting
relative to the SIG timelike congruence~which we shall refer
to here as tilting SIG models! were investigated; in particu
lar, it was shown that such spacetimes are not necess
Friedmann-Robertson-Walker~FRW! models. Our aim in
this paper is to study further such tilting SIG models and
investigate whether they may be of any particular physi
interest.

Motivated by the existence of an isotropic cosmic micr
wave background~CMB! radiation field, Ehlers, Geren, an
Sachs@2# studied spacetimes, satisfying the Einstein fie
equations, in which the gravitational field is generated b
gas with a locally isotropic~in momentum space with respec
to the world-velocity fieldua of the CMB photons! one-
particle distribution function obeying Liouville’s equatio
~i.e., the model of matter was that of kinetic theory!. In their
classic paper, Ehlers, Geren, and Sachs@2# showed that Li-
ouville’s equation implies that the shear of the worl
velocity field is necessarily zero@3#, and that for an expand
ing world-velocity field, either in the case of massiv
particles or in the case of nonaccelerating particles with z
rest mass, the world-velocity field is necessarily irrotation
The field equations then imply that the resulting spacetim
FRW if the matter is assumed to be moving with the wor
velocity field @2#. These results have motivated us to stu
further spacetimes admitting a SIG timelike congruen
which, from a physical point of view, is associated with th
world-velocity field of the CMB photons. However, unlik
Ehlers, Geren, and Sachs, we shall not assume that the m
is comoving with the world-velocity field~although, in the
case where the ‘‘relative’’ velocity is small, the resultin
cosmological models can be regarded as ‘‘generalize
FRW models!.

Recently, observations of the large-scale streaming
matter@4# and their relevance regarding theories of structu
formation~see, for example,@5#! has attracted much interes
and ~so-called tilting! cosmological models have been a
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vanced to study the effects of a large-scale peculiar velocity
field relative to the CMB frame@6#, particularly the growth
of inhomogeneities in such models and the relationship with
the observed large-scale structure.

If the strong energy condition holds, the energy-
momentum tensor has a unique unit timelike eigenvector
uL
a . For a general source in which the matter is described
using the fluid approximation@e.g., an imperfect fluid or a
multi-component fluid which is formally equivalent to a
~single! imperfect fluid, of particular interest here are the
two-fluid models in which the respective four-velocities are
not parallel; see@7##, there exists another unique unit time-
like vectoruE

a which is parallel to the particle flux; however,
uE
a is not necessarily parallel touL

a . Therefore, there are two
different relativistic thermodynamic descriptions of the state
of the fluid depending upon whether the energy-momentum
tensor is decomposed relative touL

a ~the Landau-Lifshitz@8#
frame! or uE

a ~the Eckart@9# frame!. Clearly, when studying
spacetimes admitting a SIG timelike congruence, only one
such timelike vector field is shear-free, irrotational, and geo-
desic. The tilting SIG models studied here bear some resem-
blance to those studied previously by Coley and Tupper
@7,10# in that in both cases there are matter sources tilting
relative to a SIG timelike congruence; however, here the
source is a perfect fluid and in Coley and Tupper@10# the
geometry was fixed to be Robertson-Walker but the source
was an imperfect fluid.

II. THE MODELS

The stress-energy tensor can be formally decomposed
with respect to the shear-free, irrotational, and geodesic time-
like congruenceua according to

Tab5muaub1phab1qaub1qbua1pab , ~1!

where qau
a5pa

a5pabu
b50 and the projection tensor

hab5gab1uaub satisfies1 habu
b50. The quantities

m,p,qa , andpab denote the energy density, pressure, heat
conduction and anisotropic stress, respectively, as measured
by an observer whose four-velocity isua. The existence of a

vi-
,

1We follow the notation and conventions in Ellis@11# as utilized
in Coley and Mc Manus@1#. Furthermore, Roman indices range
from 0 to 3 and Greek indices range from 1 to 3.
6095 © 1996 The American Physical Society
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SIG congruence implies that there exists a coordinate sys
@1# such thatua5d t

a and such that the metric may be writte
as

ds252dt21H2~ t,xg!hab~xd!dxadxb, ~2!

whence

m5 1
2 H

22R22H23¹2H1H24¹H•¹H13H22Ḣ2,
~3!

p522H21Ḧ2 1
3 m, ~4!

qa52] t@¹a~ lnH !#, ~5!

pab5Rab2 1
3 habR2¹a¹b~ lnH !1~¹alnH !~¹blnH !

1 1
3 @¹2~ lnH !2¹~ lnH !•¹~ lnH !#hab , ~6!

whereRab is the Ricci tensor of the three-metrichab(x
g),

¹a is the covariant derivative with respect tohab ,
¹2H[hab¹a¹bH, and¹H•¹H[hab¹aH¹bH. The con-
servation laws and Bianchi identities are given by@1#

ṁ13H21Ḣ~m1p!1H21¹aqa50, ~7!

] tqa13H21Ḣqa1¹ap1H22¹bpab50, ~8!

H21¹bpab1H23~¹bH !pab5 ¹am2H21Ḣqa , ~9!

2] tpab52¹aqb12q~a¹b)~ lnH !1 1
3 H

2¹g~H22qg!hab .
~10!

We assume that the source is a single perfect fluid w
stress-energy tensor

Tab5~m̄1 p̄!vavb1 p̄gab , ~11!

wherem̄ andp̄ are, respectively, the energy density and pre
sure as measured by an observer moving with the fl
whose four-velocityva is tilting with respect toua. ~If va is
not tilting then the resulting spacetime must necessarily
FRW @1,11#.! From Eq.~11!, and using Eqs.~1! and~2!, we
deduce that

pab5p$qaqb2 1
3 ~hgdqgqd!hab% ~12!

@where p is defined by~12!#. Equation ~10!, in conjunc-
tion with Eqs. ~12! and ~8!, can now be employed to
show that the unit spacelike vectorqg/Ahabq

aqb is
both shear-free and twist-free with respect to the three-me
hab . Hence, the three space admits an umbilical foliatio
and there exist coordinates such thathabdx

adxb

5a2(xa)dx21b2(xa)(dy21dz2). Furthermore, Eq.~6! then
implies that the spacetime metric may be written as@1#

ds252dt21H2~ t,x!$dx21 f 2~x!f2~y,z!~dy21dz2!%,
~13!

where the term inside$ % is preciselyhabdx
adxb andH is a

nonseparable function, and where

qa5qda
x ; q[Ahgdqgqd52] t]x~ lnH !, ~14!
tem
n

ith

s-
uid

be

tric
n,

and the only nonzero components ofpab are

pxx522 f22f22pyy522 f22f22pzz5
2
3 pq2. ~15!

Writing the four-velocity of the tilted fluid2 as va
5(2coshc,Hsinhc,0,0), wherec is called the tilt angle
~i.e., coshc52vau

a), we find that

m5~m̄1 p̄!cosh2c2 p̄, ~16!

p5 p̄1 1
3 ~m̄1 p̄!sinh2c, ~17!

q5~m̄1 p̄!Hcoshcsinhc5
3H~m1p!coshcsinhc

3cosh2c1sinh2c
,

~18!

p5
1

~m̄1 p̄!cosh2c
5
3cosh2c1sinh2c

3~m1p!cosh2c
, ~19!

whence

m1p5~m̄1 p̄!@cosh2c1 1
3 sinh

2c#, ~20!

qp5Htanhc, ~21!

q25pq2@~m1p!2 1
3 pH22q2#. ~22!

Now, from Eqs.~3!–~6!, and using Eqs.~16!–~22!, we
find that

f21~y,z!511
k

4
~y21z2!, ~23!

wherek is a constant. Therefore,

pxx5
2

3 F2
Hxx

H
2
2Hx

2

H2 2
Hx

H

f x
f

2
f xx
f

1
f x
2

f 2
2

k

f 2G , ~24!

m1p52
2Htt

H
1
2Ht

2

H2 1
2

3
H22F2

2Hxx

H
1
Hx
2

H2 2
4Hx

H

f x
f

2
2 f xx
f

2
f x
2

f 2
1k f22G . ~25!

Finally, using Eqs.~14! and ~15!, Eq. ~22! yields

FHxt

H
2
HxHt

H2 G253

8
pxxF ~m1p!2

1

2
H22pxxG , ~26!

which becomes a differential equation forH(t,x) and f (x)
when Eqs.~24! and ~25! are used to eliminatepxx and
m1p from the right-hand side of the equation. We also no
that an expression for the densitym can be obtained from
Eqs.~4! and ~25!:

2The inclusion of the functionH in the four-velocityva corrects
an error that appeared in our original analysis@1#. The correction
has altered the original form of the Eqs.~18!, ~21!, ~22!, and~26!–
~35! ~see@1# for a full comparison!.
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m53SHt

H D 21 1

H2 H 2
2Hxx

H
1
Hx
2

H2 2
4Hx

H

f x
f

2
2 f xx
f

2
f x
2

f 2
1

k

f 2 J . ~27!

Thus far, we have found expressions for the four quan
tiesm,p,q, andp in terms of the functionsH, f , andf(k)
and their derivatives:m is given by Eq.~27!; p is given
through Eqs. ~25! and ~27!; q by Eq. ~14!; and
p[3pxx /2q

2 wherepxx andq are given by Eqs.~24! and
~14!, respectively.

In addition,m,p,q, andp are given in terms of the three
~unknown! physical quantitiesm̄,p̄, and c through Eqs.
~16!–~19!. Thus, Eqs.~16!–~19! can be used to yield a single
algebraic identity betweenm,p,q, andp, namely, Eq.~22!.
Hence, Eq.~26!, wherepxx andm1p have been eliminated
using Eqs.~24! and~25!, is the only differential equation that
needs to be satisfied. In other words, the quantitiesm,p,q,
and pxx are automatically specified once a solutio
$H, f ,k% to Eq.~26! is given. Thus, Eq.~26! is the only field
equation that must be satisfied~unless, of course, some ad
ditional structure is placed on the physical quantitiesm̄,p̄,
andc). Henceforth, any reference to Eq.~26! is a reference
to the differential equation obtained from Eq.~26! when Eqs.
~24! and ~25! are used to eliminatepxx andm1p from the
right-hand side of the equation.

Solutions to Eq.~26! exist. Unfortunately, the special so
lution given in @1# @see Eqs.~7.72! and ~7.73!# is incorrect
because of the error inva @see footnote~2!#. However, the
error can be easily remedied to yield a special class of so
tions. If f51, k50, andH5H(t), wheret5t1ax (a5
const!, then Eq. ~26! becomes a quadratic equation i
H9/(H8)2 ~we have introduced the notationH8[dH/dt):

F H9

~H8!2G
2

3H2~2H22a2!2F H9

~H8!2G2H~a2115H2!

18~a213H2!50. ~28!

Solving the above equation forH9/(H8)2 yields the two so-
lutions

H9

~H8!2
5

a2115H26A25a4154a2H2181H4

3H~2H22a2!
, ~29!

which can be integrated to giveH8 as a function ofH. If
aÞ0, thena can always be set equal to 1 by a rescaling
both the coordinates andH. Thus, without loss of generality,
we takea51.

We can use Eqs.~15! and~21! to obtain an expression for
the tilt angle: namely,

tanhc5
3pxx

2qH
. ~30!

Equations~14!, ~24!, and~29!, with a51, then imply that
ti-

n

-

-

lu-

n

of

tanhc652
1

2H F H9

H~H8!2
1

2

H2GF H9

H~H8!2
2

1

H2G21

~31!

52
1

2HF25127H26A25154H2181H4

419H26A25154H2181H4 G .
~32!

We can disregard the tanhc2 solution since
max(tanhc2),21. The tanhc1 solution is valid for all val-
ues ofH sinceutanhc1u<1.

If we now make the change of variables
(t,x,y,z)→(w,x,y,z), wherew5H2/a2, then the metric can
be written as

ds252S Cdwg~w!
2dxD 21w~dx21dy21dz2!, ~33!

whereC is an arbitrary constant and

g~w!5~2112w!17/2w1/3@3~113w!

1h~w!#3/4F5 h~w!125127w

5h~w!225227w G5/12
3F17h~w!1771135w

17h~w!2772135wG217/12

, ~34!

h~w![A9~3w11!2116. ~35!

The density, as calculated from Eq.~27!, is given by

m53SH8

H D 2F12
2

3

H9

H~H8!2
1
1

3

1

H2G ~36!

53SH8

H D 2F11
25224w1h~w!

9w~2w21! G . ~37!

Thus, in the limit asw tends to infinity, that is,H→`, Eq.
~32! implies that the tilt angle tends to zero and hence the
models asymptotically tend to FRW models at late times.
Furthermore, the density perturbation decreases in the limit
asw tends to infinity according to

dm

m
;
1

w
. ~38!

The fact that the density perturbations decay in these models
~which consequently tend to FRW models! can be clearly
seen from the form of the ‘‘perturbation’’ terms inm,p and
tanh2c @in Eqs. ~25!, ~27!, and~32!#, which are of the form
H22.

III. PERTURBATION ANALYSIS

Let us investigate the possible growth of inhomogeneities
in these models. We write

H5R~ t !@11e~ t,x!#, ~39!

f ~x!511d~x!, ~40!
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wheree(t,x) and d(x) are small perturbations, and we a
tempt to solve Eq.~26! to successive orders ine and d. If
kÞ0, then to ‘‘zeroth’’ order Eq.~26! yields

2
2R̈

R
1
2Ṙ2

R2 1
k

R2 50, ~41!

and to ‘‘first’’ order we obtain

2e tt1
1

R2@exx1dxx12k~e1d!#50, ~42!

which represents a perturbation about the solution~41!,
which is either the Kantowski-Sachs solution ifk51 or a
Bianchi type III solution ifk521.

The casek50 is of more physical interest since th
model can be interpreted as a perturbed~flat! FRW model. In
this case, to ‘‘first’’ order Eq.~26! becomes~assuming
exx1dxxÞ0)

R̈

R
5
Ṙ2

R2 , ~43!

which has the solutionR5R0e
lt (l const!; thus the ‘‘back-

ground’’ solution is given by the de Sitter metric, which is o
particular relevance in early Universe cosmology~e.g., infla-
tion!. To ‘‘second’’ order we obtain

4ext
2 5@exx1dxx#F2e tt1

1

R2 ~exx1dxx!G . ~44!

In general, further progress can only be made by mak
additional assumptions; we shall consider the following tw
assumptions separately:~i! a barotropic equation of state fo
the tilted fluid, and~ii ! a constant tilt angle.

A. Barotropic equation of state

If we assume a barotropic equation of state of the fo
p̄5(g21)m̄, whereg is constant, then we obtain the add
tional equation

q2~3g22!1 9
4 ~22g!H22pxx

2 529gH21Httpxx ~45!

from Eqs. ~4!, ~15!–~19!, and ~22!; Eq. ~45! holds for all
values ofk.

First, we consider the casek50. If exx1dxx50 then Eq.
~45! implies thatext50 and thus to first order,q'” 0. @If we
takeexx1dxx50 but assume thatq'” 0 to second order then
e(t,x)52d(x)1a(t)x1b(t), wherea,b, and d are arbi-
trary functions, and the following solutions are consiste
to second order:~i! g50,a5const,R5R0exp(lt), and ~ii !
gÞ0,R5(c0t1d0)

2/3g, whereR0 ,l,c0, andd0 are arbitrary
constants.# Hence, we shall assume thatexx1dxxÞ0. Equa-
tion ~43! yields the solutionR5R0exp(lt), whereR0 andl
are constants. Equation~45! is then trivially satisfied to ze-
roth order, and yields

lg50 ~46!

to first order and
t-

e

f

ing
o
r

rm
i-

nt

4 ~3g22!ext
2 56ge tt~exx1dxx!1

1

R0
2~g22!~exx1dxx!

2

~47!

to second order. Comparing Eqs.~44! and ~47! yields

2e tt5
g

R2 ~exx1dxx! ~48!

and

ext5n~ t !~exx1dxx! ~49!

where

n2~ t !5
g11

4R2~ t !
. ~50!

Thus, Eq.~46!, in conjunction with Eqs.~48!–~50!, implies
that the only consistent solutions are

~ i! g50,

e~ t,x!52d~x!1a0R0x
21~a0x1b0!t1c0x1d0,

~51!

~ ii ! g51,

e~ t,x!52d~x!1b0~ t2A2R0x!1h~ t1A2R0x!, ~52!

~ iii ! gÞ0,1,

e~ t,x!52d~x!1a0S x212ntx1
g

2R0
2 t

2D 1b0t1c0x1d0 ,

~53!

where a0(Þ0)•••d0 are arbitrary constants,d(x) and
h(t1A2R0x) are arbitrary functions, andR(t)5R05 const.
We note that solution~ii ! exhibits wavelike behavior.

The only solution in the casekÞ0 is given by
k521,g52,R(t)5t, and

e~ t,x!52d~x!1~a0x1b0!t
211c0exp~2x!

1d0exp~22x!. ~54!

Equation~27! gives the equation for the density:

m>3R22Rt
21kR2212@3R21Rte t

2R22$k~e1d!1exx1dxx%#. ~55!

Settingc05d050, we find that the density perturbation has
the form

dm

m
522 ~a0x1b0!/t. ~56!

B. Constant tilt angle

Alternatively, if we assume that the tilt angle is constant
then qp5aH([Htanhc) wherea is constant and hence,
Eq. ~15! implies that
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pxx5
2
3 aHq. ~57!

Equation~57! yieldsk50 to zeroth order, and again Eq.~43!
implies thatR5R0exp(lt), wherel andR0 are constants~as
before, we can assume thatdxx1exxÞ0, elseq'0 to first
order!. @If exx1dxx50, then Eqs.~26! and ~57! imply that
e52d(x)1a0x1b(t), where a0 is an arbitrary constan
andb(t) is an arbitrary function, is a consistent solution u
to first order. We note that in this case the equations up
first order give no information about the form ofR(t).# To
first order, Eq.~57! yields

exx1dxx12aR0exp~lt !ext50. ~58!

Now, repeated use of Eq.~58!, to substitute forexx1dxx in
Eq. ~44!, yields

~12a2!ext52aR0exp~lt !e tt . ~59!

First, consider the casea251. Equation~59! then implies
that

e~ t,x!5a~x!t1b~x!, ~60!

wherea(x) andb(x) are arbitrary functions. Equation~58!
then yields

a~x!5a1x1a0 , ~61!

where a1(Þ0) and a0 are arbitrary constants, andl50.
Thus, integrating Eq.~58! yields the solution

e~ t,x!52d~x!1R0a1x
21~a1x1a0!t1d0 , ~62!

wherea1Þ0,a0 and d0 are arbitrary constants~can always
chosea51 without loss of generality!.

If a2Þ1 then it can be shown that the only valid solutio
occurs fora51/A2, namely,

e~ t,x!52d~x!1a0S x1
t

A2R0
D 1hS x2

t

A2R0
D ,

~63!

wherea0 is an arbitrary constant andh(x2t/A2R0) is an
arbitrary function. Again, the above solution exhibits wav
like behavior.

IV. DISCUSSION

The extreme degree of observed isotropy of the CMB p
the philosophical prejudice of the Copernican principle le
us to believe that the overall structure of the Universe is w
modeled by FRW models. All scenarios advocated to exp
the large-scale structure of the present observed Univ
~for example, galaxies and clusters of galaxies! involve an
evolution ~through gravitational instability! from initially
small density perturbations. Cosmological perturbati
theory develops linear equations for perturbations away fr
spatial homogeneity and isotropy. The growth of perturb
t
p
to

n

e-

lus
ad
ell
lain
erse

on
om
a-

tions on a given scale can be followed until they become
sufficiently large ~for gravitational collapse!; on scales
*100 Mpc cosmological perturbations can be used up unti
the present epoch.

In the inflationary scenario exponential expansion driven
for example, by a scalar field smooths the Universe out to
wards a flat de Sitter-like state. Quantum-mechanical fluc
tuations of the~scalar! field~s! ‘‘within the horizon’’ then
gives rise to new, small-scale perturbations. These de Sitte
fluctuations then lead to fluctuations in the metric tensor
since gravitons are the propagating modes associated wi
transverse, traceless metric perturbations which behave a
minimally coupled scalar fields.

In the models under investigation here, there are pertur
bations that are due to the tilt, the evolution of the tilting
modes has been studied. These models and more realis
models, including other physical perturbations, should be
further analyzed, paying particular attention to the evolution
of the growing modes, and the results of any such analysi
should, of course, be compared to the conventional analys
@12# of density perturbations about an FRW background.
However, what is really necessary is a completecovariant
andgauge-invariantapproach to calculate the cosmological
density perturbations@12,13#. This work will be done else-
where@14#, not only for the particular type of models studied
here, but for the general class of tilting models@13,15,16#.

The models that have been studied here may also be o
relevance in other areas of cosmology which are currently o
interest. In particular, they are of relevance in the study o
models which are linear perturbations of FRW models in the
so-called ‘‘longitudinal’’ gauge. In this gauge the normals
are both shear-free and irrotational and the matter move
relative to these normals~that is, the matter is tilted!. If the
matter is a barotropic perfect fluid then in this gauge the
metric can be written in terms of a single scalar potential;
this form of the metric has been extensively used in the stud
of the evolution of density perturbations and gravitational
lensing calculations~for example, see@17#!.

In addition, the solutions here may be of significance in
the study of other, more general, classes of cosmologica
models. For example, some of these solutions occur as sp
cial cases~in which the shear is zero! of the so-called ‘‘si-
lent’’ universe models, these are cosmological models with
irrotational dust in which the magnetic part of the Weyl ten-
sor vanishes@18#.

In summary, we have studied tilting cosmological models
admitting a shear-free, irrotational, and geodesic timelike
congruence. These cosmologies may be of importance i
modeling large-scale structure formation, particularly that of
the observed large-scale streaming of matter relative to th
CMB.
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