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New slant on tilted cosmology
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The physical properties of a class of cosmological models in which the matter is described by a perfect fluid
moving relative to a shear-free, irrotational, and geodesic timelike congruence, which is assumed to be asso-
ciated with the cosmic microwave background radiation field, are investig&86856-282196)03420-0

PACS numbd(s): 98.80.Hw, 04.20.Jb

[. INTRODUCTION vanced to study the effects of a large-scale peculiar velocity
field relative to the CMB fram¢6], particularly the growth
In a recent paper by Coley and Mc Mar|ug, spacetimes of inhomogeneities in such models and the relationship with
admitting a shear-free, irrotational, and geodéSiS) time-  the observed large-scale structure.
like congruence were studied. Moreovésingle perfect If the strong energy condition holds, the energy-
fluid spacetimes in which the fluid four-velocity is tilting momentum tensor has a unique unit timelike eigenvector
relative to the SIG timelike congruen¢ehich we shall refer  u{'. For a general source in which the matter is described
to here as tilting SIG modelsvere investigated; in particu- using the fluid approximatiofe.g., an imperfect fluid or a
lar, it was shown that such spacetimes are not necessariulti-component fluid which is formally equivalent to a
Friedmann-Robertson-WalkegiFRW) models. Our aim in (single imperfect fluid, of particular interest here are the
this paper is to study further such tilting SIG models and totwo-fluid models in which the respective four-velocities are
investigate whether they may be of any particular physicahot parallel; se¢7]], there exists another unique unit time-
interest. like vectoru? which is parallel to the particle flux; however,
Motivated by the existence of an isotropic cosmic micro-u? is not necessarily parallel tg* . Therefore, there are two
wave backgroundCMB) radiation field, Ehlers, Geren, and different relativistic thermodynamic descriptions of the state
Sachs[2] studied spacetimes, satisfying the Einstein fieldof the fluid depending upon whether the energy-momentum
equations, in which the gravitational field is generated by aensor is decomposed relativeup (the Landau-Lifshit18]
gas with a locally isptro_piéin momentum space with respect frame or u2 (the Eckar{9] frame. Clearly, when studying
to the world-velocity fieldu® of the CMB photons one-  gpacetimes admitting a SIG timelike congruence, only one
particle distribution function obeying Liouville’s equation gych timelike vector field is shear-free, irrotational, and geo-
(i.e., the model of matter was that of kinetic thepy their  gegic. The tilting SIG models studied here bear some resem-
classic paper, Ehlers, Geren, and Sad@]sshowed that Li-  pjance to those studied previously by Coley and Tupper
ouville’s equation implies that the shear of the world-[7 1] in that in both cases there are matter sources tilting
velocity field is necessarily ze{®], and that for an expand- rgjative to a SIG timelike congruence; however, here the
ing world-velocity field, either in the case of massive goyrce is a perfect fluid and in Coley and Tupp#@] the

particles or in the case of nonaccelerating particles with zer eometry was fixed to be Robertson-Walker but the source
rest mass, the world-velocity field is necessarily irrotational.yas an imperfect fluid.

The field equations then imply that the resulting spacetime is
FRW if the matter is assumed to be moving with the world-
velocity field[2]. These results have motivated us to study Il. THE MODELS

further spacetimes admitting a SIG timelike congruence o stress-energy tensor can be formally decomposed

which, from a physical point of view, is associated with the, iy, yespect to the shear-free, irrotational, and geodesic time-
world-velocity field of the CMB photons. However, unlike like congruencai® according to

Ehlers, Geren, and Sachs, we shall not assume that the matter
is comoving with the world-velocity fieldalthough, in the
case where the “relative” velocity is small, the resulting
cosmological models can be regarded as “generalized”
FRW models. where q.u?=75= muUP=0 and the projection tensor
Recently, observations of the large-scale streaming ofizp=0ap+ UaUp satisfie$ h,,uP=0. The quantities
matter[4] and their relevance regarding theories of structureu,p,d,, and ., denote the energy density, pressure, heat
formation(see, for exampld5]) has attracted much interest, conduction and anisotropic stress, respectively, as measured
and (so-called tilting cosmological models have been ad- by an observer whose four-velocityu§. The existence of a

Tap= pmUaUp+ phap+ gaUp+ gpUat map, 1)

“Present address: University of British Columbia, Finance Divi- We follow the notation and conventions in El[i$1] as utilized
sion, Faculty of Commerce, 2053 Main Mall, Vancouver, BC, in Coley and Mc Manug1]. Furthermore, Roman indices range
Canada V6T 1Z2. from O to 3 and Greek indices range from 1 to 3.
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SIG congruence implies that there exists a coordinate systeand the only nonzero componentsof; are

[1] such thaw?= 57 and such that the metric may be written
as

ds?= —dt?+H3(t,x")h,z(x°)dx*dx?, 2)
whence
p=3H 2R—2H 3V2H+H *VH-VH+3H 2H?
3
p=—2H"*H- 3, 4
da=2dV(InH)], (5)

Tap=Rap— $NagR=V,V 4(INH) +(V InH)(V gInH)
+ 1[VZ(InH) = V(InH)- V(InH) Th .4, (6)

whereR,; is the Ricci tensor of the three-metr, 5(x?),
V, is the covariant derivative with respect th,g,
V?H=h*fV V;H, andVH-VH=h"fV HV ;H. The con-
servation laws and Bianchi identities are given[ty

p+3H MH(p+p)+H 'V4q,=0, (7)
®)

H VA st H3(VAH) 5= Vou—H 'Ha,, (9)

90e+3H Ha,+V p+H 2VP7, =0,

2017 45= =V 0+ 20,V gy (INH) + 3 HZVV(H‘qu)haéb)

= —2{72¢ 7 m =2t 2 2 m, =S mg®. (15
Writing the four-velocity of the tilted fluitl as v,
= (—coshy,Hsinhy,0,0), whereys is called the tilt angle

(i.e., coslp=—vu?), we find that

p=(n+p)costy—p, (16)
p=p+3 (u+p)sintty, (17
N T ]
(18)
1 3cosky+sintfy
T o prcosfty  3uipcostiy 19
whence
p+p=(u+p)[costty+3sintfy], (20)
qm=Htanhy, (21)
9*=mg’[(u+p)— 3 mH *g°]. (22)

Now, from Eqs.(3)—(6), and using Eqs(16)—(22), we
find that

-1 _q. K2 2
¢ (v, 2)=1+ 7 (y*+2), (23
We assume that the source is a single perfect fluid with
stress-energy tensor wherek is a constant. Therefore,
Tap= (/‘L_‘FEUan_"p_gaba (11 2 Hyx 2H§ Hy Ty Ty f)z( K
— - - ™ 3T H W mT e e @
whereu andp are, respectively, the energy density and pres-
sure as measured by an observer moving with the fluid 5 5
whose four-velocity? is tilting with respect tau?. (If v? is e 2Hy  2H¢ EH*Z _ 2H  Hy 4Hfy
not tilting then the resulting spacetime must necessarily be # P=~ HZ 3 H HZ H f
FRW[1,11].) From Eq.(11), and using Egs(1) and(2), we 2 ]
2f
deduce that _ fxx _ f_;+ of-2| (25)
WaB:W{QQq,B_%(hyaq'yQ6)ha,B} (12 ’
[where 7 is defined by(12)]. Equation(10), in conjunc- Finally, using Eqs(14) and(15), Eq. (22) yields
tion with Egs. (12) and (8), can now be employed to H H.H.]2 3 1
show that the unit spacelike vecton?/vh,zq°g? is [Wm— —gz—t} =g (+P)— EH_ZWXX , (26
both shear-free and twist-free with respect to the three-metric .

h,s. Hence, the three space admits an umbilical foliation
and there exist coordinates such thataﬁdx“dxﬁ
=a?(x*)dx?+b?(x%) (dy?+dZ%). Furthermore, Eq(6) then
implies that the spacetime metric may be writter]{ Hs

ds?=—dt?+ H?(t,x){dx?+ f2(x) p2(y,z)(dy?>+ d 2%},
(13

where the term insidé } is preciselyhaﬁdx“dxﬂ andH is a
nonseparable function, and where
g=1h"°q,0,=2813x(InH),

9,=0%,; (14

which becomes a differential equation fli(t,x) and f(x)

when Egs.(24) and (25 are used to eliminater,, and
p+p from the right-hand side of the equation. We also note
that an expression for the density can be obtained from
Egs.(4) and(25):

2The inclusion of the functiom in the four-velocityv, corrects
an error that appeared in our original analyjsi$ The correction
has altered the original form of the Eq48), (21), (22), and(26)—
(35) (see[1] for a full comparison
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Thus far, we have found expressions for the four quanti-

ties u,p,q, andw in terms of the function$d,f, and ¢(«)
and their derivativesu is given by Eq.(27); p is given
through Egs. (25 and (27); q by Eg. (14); and
m=3m,,/29° where m,, andq are given by Eqs(24) and
(14), respectively.

. B 1 H// . 2 H// -1 a1
A== on Az e e e G
1 —5+27H2%+ |25+ 54H?%+ 81H*

2H| 4+ 9H2+ 25+ 54H2+81H*
(32
We can disregard the tah solution since

max(tanky_)<—1. The tanky, solution is valid for all val-
ues ofH since|tanhy, |<1.

If we now make the change of variables
(t,x,y,2)—(W,X,y,z), wherew=H?/ o, then the metric can

In addition, u,p,q, and7r are given in terms of the three be written as

(unknown physical quantitiesu,p, and ¢ through Egs.

(16)—(19). Thus, Eqgs(16)—(19) can be used to yield a single

algebraic identity betweep,p,q, and, namely, Eq.(22).
Hence, Eq(26), where,, and .+ p have been eliminated

2

Cdw
ds?=—| —— —dx| +w(dx?+dy?+d7?),

aw) 33

using Eqgs(24) and(25), is the only differential equation that whereC is an arbitrary constant and

needs to be satisfied. In other words, the quantities,q,

and m,, are automatically specified once a solution

{H,f,k} to Eq.(26) is given. Thus, Eq(26) is the only field

equation that must be satisfi¢dnless, of course, some ad-

ditional structure is placed on the physical quantitie®,

and ). Henceforth, any reference to E6) is a reference
to the differential equation obtained from E@6) when Egs.
(24) and(25) are used to eliminater,, and .+ p from the

right-hand side of the equation.

Solutions to Eq(26) exist. Unfortunately, the special so-

lution given in[1] [see Eqs(7.72 and(7.73)] is incorrect
because of the error in, [see footnotg2)]. However, the

error can be easily remedied to yield a special class of solu-

tions. If f=1, k=0, andH=H(7), wherer=t+ ax (a=

cons}), then Eq.(26) becomes a quadratic equation in

H”/(H")? (we have introduced the notatidth’' =dH/d7):

”n

H” 2 H
[W} 3H2(2H2- az)—[m}ZH(az-i- 15H2)

+8(a?+3H?)=0. (29

Solving the above equation fét”/(H')? yields the two so-
lutions

H” B
(H/)Z_

a?+ 15H?+ \/25a:*+ 54a°H?+ 81H*
3H(2H?- o) ’

(29

which can be integrated to giid’ as a function ofH. If

g(w)=(—1+2w)"AW¥q 3(1+3w)
5h(w)+ 25+ 27wr’12

* h(W)]gm[ 5h(w) 25— 27w

17h(w)+ 77+ 135w] 1712 a4
17h(w)— 77— 135w ’ 349

h(w)=9(3w+1)?+ 16.

The density, as calculated from E@7), is given by

(39

_(HNL 2 H 11
L3 Y3 Rmz T e R (36)
B (H')2 —5—24w+h(w)
=37 Y owew=1 (37)

Thus, in the limit asv tends to infinity, that isH—o, Eq.

(32 implies that the tilt angle tends to zero and hence the
models asymptotically tend to FRW models at late times.
Furthermore, the density perturbation decreases in the limit
asw tends to infinity according to

ou 1

" ~ (39
The fact that the density perturbations decay in these models
(which consequently tend to FRW modelsan be clearly
seen from the form of the “perturbation” terms ja,p and

a#0, thena can always be set equal to 1 by a rescaling oftant?y [in Egs.(25), (27), and(32)], which are of the form

both the coordinates ard. Thus, without loss of generality,
we takea=1.

We can use Egg15) and(21) to obtain an expression for
the tilt angle: namely,

3Ty
2gH"°

tanhy= (30

Equations(14), (24), and(29), with o= 1, then imply that

H™2.

Ill. PERTURBATION ANALYSIS

Let us investigate the possible growth of inhomogeneities
in these models. We write
H=R(t)[1+ e(t,x)], (39

f(x)=14+ 8(x), (40
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where €(t,x) and §(x) are small perturbations, and we at- ) 1 )
tempt to solve Eq(26) to successive orders ia and &. If 43y~ 2) €= Bven(exxt o + mal ¥ = 2) (exxt Oxx)
k#0, then to “zeroth” order Eq(26) yields 0 47)
2R 2R? « to second order. Comparing Eq44) and(47) yields
AR R LK o, a1) paring Edé4) and(47) y
R R R
Y
= +
and to “first” order we obtain 2€n =gz (€x Ox) (48)
1 and
2ey+ @[EXX-I— St 2k(e+8)]=0, (42
€xt= V(1) (€35t Oyx) (49)
which represents a perturbation about the solutid), |\ here
which is either the Kantowski-Sachs solutionskt=1 or a
Bianchi type Il solution ifk=—1. ) y+1
The casex=0 is of more physical interest since the v (t):4R2(t)' (50

model can be interpreted as a perturliéat) FRW model. In
this case, to “first” order Eq.(26) becomes(assuming Thys, Eq.(46), in conjunction with Eqs(48)—(50), implies
€xxT 6xx7 0) that the only consistent solutions are

R R? (i) y=0,
R R (43
€(t,X)=— 8(X) + agRoXx?+ (apgX+ bg)t+ cox+ do,

which has the solutioR=R,eM (A cons}; thus the “back- (51

ground” solution is given by the de Sitter metric, which is of .
particular relevance in early Universe cosmoldgyg., infla- (if)

tion). To “second” order we obtain
€(t,X) = — 8(X) + bg(t— V2RgX) + h(t+ V2Rpx), (52)

y=1,

1 e
46>2<t:[5xx+ Oxxl| 2€4+ @(Exx"_ Oxx) |- (44) (i) y#0,1,

In general, further progress can only be made by makinge(t,x)= — §(x) + ag| X2+ 2vtx+ thz +bgt + cox+ do,
additional assumptions; we shall consider the following two Ro
assumptions separateli) a barotropic equation of state for (53

the tilted fluid, and(ii) a constant tilt angle. .
i) g where ag(#0)---dy are arbitrary constantsg(x) and

h(t+ V2Rox) are arbitrary functions, an(t)=R,= const.
We note that solutiotii) exhibits wavelike behavior.

If we assume a barotropic equation of state of the form The only solution in the casex#0 is given by
p=(y—1)u, wherey is constant, then we obtain the addi- k= —1,y=2,R(t)=t, and
tional equation

A. Barotropic equation of state

€(t,X)=— 8(x)+ (apgx+bg)t ~ 1+ coexp(2x)

2 9 -2_2 _ -1
q2(3y=2)+§ (2= y)H 2ah=—9yH Hymy, (45) G — 2%, -
from Egs. (4), (15-(19), and (22); Eq. (45 holds for all
values ofk.

First, we consider the case=0. If €,,+ 6,,=0 then Eq.
(45) implies thate,;=0 and thus to first ordeg+0. [If we
take e, + 8y,=0 but assume thaj#0 to second order then — R*Z{K(GJr 8)+ €xxt Syt (55)
e(t,x)=—4o(x) +a(t)x+b(t), wherea,b, and é are arbi-
trary functions, and the following solutions are consistentSettingcy=d,=0, we find that the density perturbation has
to second order(i) y=0,a=const,R=Rgexp(t), and(ii)  the form
y#0,R=(cot+dg)?®, whereRy,\,co, andd, are arbitrary
constantd. Hence, we shall assume thagt + 6,,#0. Equa-
tion (43) yields the solutiorR=Ryexp(\t), whereR, and\
are constants. Equatidd5) is then trivially satisfied to ze-
roth order, and yields

Equation(27) gives the equation for the density:

w=3R?R*+ kR™2+2[3R™'R;¢;

op
7:_2(aox+b0)/t. (56)

B. Constant tilt angle

Ay=0 (46) Alternatively, if we assume that the tilt angle is constant
then gm= aH(=Htanh)) where « is constant and hence,
to first order and Eq. (15 implies that
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= 5 aHQ. (57) tions on a given scale can be followed until they become
sufficiently large (for gravitational collapsg on scales
Equation(57) yields k=0 to zeroth order, and again E43) =100 Mpc cosmological perturbations can be used up until
implies thatR=Rgyexp(\t), whereh andR, are constantas  the present epoch.
before, we can assume thaf,+ €,,# 0, elseq~0 to first In the inflationary scenario exponential expansion driven
orde. [If ex+ 6x=0, then Eqs(26) and (57) imply that  for example, by a scalar field smooths the Universe out to-
€=—6(x) +aox+b(t), wherea, is an arbitrary constant \yards a flat de Sitter-like state. Quantum-mechanical fluc-
andp(t) is an arbitrary func'qon, isa consistent so_lutlon UP tyations of the(scalay field(s) “within the horizon” then
to first order. We note that in this case the equations up Qe rise to new, small-scale perturbations. These de Sitter
first order give no information about the form B{(t).] To g ctyations then lead to fluctuations in the metric tensor
first order, Eq.(57) yields since gravitons are the propagating modes associated with
transverse, traceless metric perturbations which behave as
€xxt OxxT2aRpeXp(At) €,4=0. (58 minimally coupled scalar fields.
In the models under investigation here, there are pertur-
Now, repeated use of E@58), to substitute fore,,+ Sy in bations that are due to the tilt, the evolution of the tilting

Eq. (44), yields modes has been studied. These models and more realistic
models, including other physical perturbations, should be
(1— a?) ;3= — aRyEXP(\L) €y . (59) further analyzed, paying particular attention to the evolution

of the growing modes, and the results of any such analysis
should, of course, be compared to the conventional analysis
[12] of density perturbations about an FRW background.
However, what is really necessary is a completwariant
and gauge-invariantapproach to calculate the cosmological
e(t,x)=a(x)t+b(x), (600 density perturbationf12,13. This work will be done else-
where[14], not only for the particular type of models studied
wherea(x) andb(x) are arbitrary functions. Equatiof8)  here, but for the general class of tilting modgls,15,14.
then yields The models that have been studied here may also be of
relevance in other areas of cosmology which are currently of
61) interest. In particular, they are of relevance in the study of
models which are linear perturbations of FRW models in the
. so-called “longitudinal” gauge. In this gauge the normals
where_al(;&O)_ and a, are arbitrary constants, and=0.  are poth shear-free and irrotational and the matter moves
Thus, integrating Ec(58) yields the solution relative to these normalghat is, the matter is tilted If the
matter is a barotropic perfect fluid then in this gauge the
€(t,x)=— 8(x)+ Rpa; x*+ (a;x+ag)t+dy, (62  metric can be written in terms of a single scalar potential;
this form of the metric has been extensively used in the study
wherea; #0,, andd, are arbitrary constant&an always of the evolution of density perturbations and gravitational

First, consider the case’= 1. Equation(59) then implies
that

a(x)=a;xt+ag,

chosea=1 without loss of generalily lensing calculationgfor example, se§17]).
If a®#1 then it can be shown that the only valid solution  |n addition, the solutions here may be of significance in
occurs fora=1/2, namely, the study of other, more general, classes of cosmological
models. For example, some of these solutions occur as spe-
t t cial casedin which the shear is zeyof the so-called “si-
€(t,X)=—=a(X) +ag| X+ \/ER +hi x- \/ER ) lent” universe models, these are cosmological models with
0 0 (63) irrotational dust in which the magnetic part of the Weyl ten-
sor vanishe$18].
wherea, is an arbitrary constant and(x—t/\2R,) is an In summary, we have studied tilting cosmological models
arbitrary function. Again, the above solution exhibits wave-admitting a shear-free, irrotational, and geodesic timelike
like behavior. congruence. These cosmologies may be of importance in
modeling large-scale structure formation, particularly that of
IV. DISCUSSION the observed large-scale streaming of matter relative to the

The extreme degree of observed isotropy of the CMB plus
the philosophical prejudice of the Copernican principle lead
us to believe that the overall structure of the Universe is wejl ACKNOWLEDGMENTS
modeled by FRW models. All scenarios advocated to explain
the large-scale structure of the present observed Universe This work was supported, in part, by the Natural Science
(for example, galaxies and clusters of galakiesolve an  and Engineering Research Council of Canada. D.McM.
evolution (through gravitational instabilijy from initially  gratefully acknowledges the Canadian Institute for Theoreti-
small density perturbations. Cosmological perturbationcal Astrophysics for providing partial support. The authors
theory develops linear equations for perturbations away fronthank P. K. S. Dunsby for his many valuable comments dur-
spatial homogeneity and isotropy. The growth of perturbaing the completion of this work.
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