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Asymptotic behavior of cosmological models in scalar-tensor theories of gravity
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We study the qualitative properties of cosmological models in scalar-tensor theories of gravity by exploiting
the formal equivalence of these theories with general relativity minimally coupled to a scalar field under a
conformal transformation and field redefinition. In particular, we investigate the asymptotic behavior of spa-
tially homogeneous cosmological models in a class of scalar-tensor theories which are conformally equivalent
to general relativistic Bianchi cosmologies with a scalar field and an exponential potential whose qualitative
features have been studied previously. Particular attention is focused on those scalar-tensor theory cosmologi-
cal models, which are shown to be self-similar, that correspond to general relativistic models that play an
important role in describing the asymptotic behavior of more general models~e.g., those cosmological models
that act as early-time and late-time attractors!. @S0556-2821~98!03222-6#

PACS number~s!: 98.80.Hw, 04.50.1h
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I. INTRODUCTION

Scalar-tensor theories of gravity are currently of great
terest, partially due to the fact that such theories occur as
low-energy limit in superstring theory~see@1# and references
therein!. The first scalar-tensor theories to appear~with v
5v0) were due to Jordan@2,3#, Fierz @4# and Brans and
Dicke @5# and the most general scalar-tensor theories w
formulated by Bergmann@6#, Nordtvedt @7# and Wagoner
@8#. The observational limits on scalar-tensor theories
clude solar system tests@9–12# and cosmological tests suc
as big bang nucleosynthesis constraints@13,14#.

The possible isotropization of spatially homogeneous c
mological models in scalar-tensor theories has been stu
previously. For example, Chauvet and Cervantes-Cota@15#
have studied the possible isotropization of Bianchi models
types I, V and IX within the context of Brans-Dicke theo
without a scalar potential, but with baryotropic matter,p
5(g21)m, by studying exact solutions at late times. M
moso and Wands@16# have studied Brans-Dicke theory wit
a variablev5v(f) in the presence of baryotropic matt
~but with no scalar field potential! and, in particular, gave
forms for v under which Bianchi type I models isotropiz
We note that there is a formal equivalence between suc
theory ~with gÞ2) and a scalar-tensor theory with a pote
tial but without matter, via the field redefinitionsV[(2
2g)m andv¹af¹bf→v¹af¹bf2gmfda

0db
0 .

In a recent paper@17# ~see also@18# and@19#!, cosmologi-
cal models containing a scalar field with an exponential
tential were studied. In particular, the asymptotic proper
of the spatially homogeneous Bianchi models, and espec
their possible isotropization and inflation, were investigat
Part of the motivation for studying such models is that th
can arise naturally in alternative theories of gravity@20#; for
example, Halliwell@21# has shown that the dimensional r
duction of higher-dimensional cosmologies leads to an ef
tive four-dimensional theory coupled to a scalar field with
0556-2821/98/59~2!/023507~9!/$15.00 59 0235
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exponential self-interacting potential.
The action for the general class of scalar-tensor theo

~in the so-called Jordan frame! is given by@6,8#

S5E A2gFfR2
v~f!

f
gabf ,af ,b22V~f!12LmGd4x.

~1!

However, under the conformal transformation and field
definition @22,23,16#

gab* 5fgab ~2a!

dw

df
5

6Av~f!13/2

f
, ~2b!

the action becomes~in the so-called Einstein frame!

S* 5E A2g* FR* 2g* abw ,aw ,b22
V~f!

f2
12
Lm

f2 Gd4x,

~3!

which is the action for general relativity~GR! containing a
scalar fieldw with the potential

V* ~w!5
V„f~w!…

f2~w!
. ~4!

Our aim here is to exploit the results in previous wo
@17# to study the asymptotic properties of scalar-tensor th
ries of gravity with action~1! which under the transforma
tions ~2! transform to general relativity with a scalar fie
with the exponential potential given by

V* 5V0ekw, ~5!
©1998 The American Physical Society07-1
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where V0 and k are positive constants. That is, since w
know the asymptotic behavior of spatially homogeneous
anchi models with action~3! with the exponential potentia
~5!, we can deduce the asymptotic properties of the co
sponding scalar-tensor theories under the transformation~2!
~as long as the transformations are not singular!.1 In particu-
lar, we are concerned with the possible isotropization a
inflation of such scalar-tensor theories.

The outline of the paper is as follows. In Sec. II, w
review the framework within which GR and a scalar fie
with a potential~Einstein frame! are formally equivalent to a
scalar-tensor theory with a potential~Jordan frame!, concen-
trating on both the exact and approximate forms for the
rametersV andv in the Jordan frame. In particular, we di
cuss the explicit example of the Brans-Dicke theory with
power-law potential and we also discuss the conditio
which lead to appropriate late-time behavior as dictated
solar system and cosmological tests. In Sec. III, we th
apply the conformal transformations to Bianchi models st
ied in the Einstein frame to produce exact solutions wh
represent the asymptotic behavior of more general spat
homogeneous models in the Jordan frame~for v5v0 , a
constant!. These Brans-Dicke models are self-similar and
corresponding homothetic vectors are also exhibited.
conclude with a discussion in Sec. IV.

II. ANALYSIS

For scalar field Bianchi models the conformal factor
Eq. ~2a! is a function oft only @i.e., f5f(t)#, and hence
under~non-singular! transformations~2! the Bianchi type of
the underlying models does not change~i.e., the metricsgab

andgab* admit three space-like Killing vectors acting trans
tively with the same group structure!. In general, in the class
of scalar-tensor theories represented by Eq.~1! there are two
arbitrary ~coupling! functionsv(f) andV(f). The models
which transform under Eqs.~2! to an exponential potentia
model, in which the two arbitrary functionsv and V are
constrained by Eqs.~2b! and ~4!, viz.,

f

V

dV

df
526kA3

2
1v~f!, ~6!

make up a special subclass with essentially one arbit
function. Although only a subclass of models obeys this c
straint, this subclass is no less general than massless s
field models (V50; see, for example,@16#! or Brans-Dicke
models with a potential (v5v0 , const!, which are often
studied in the literature. Indeed, the asymptotic analysis
this paper is valid not only for ‘‘exact’’ exponential model
but also for scalar-tensor models which transform under E
~2! to a model in which the effective potential is a line
combination of terms involving exponentials in which th

1The possible isotropization of spatially homogeneous sca
tensor theories which get transformed to a model with an effec
potential which passes through the origin and is concave up ma
deduced from the results of Heusler@24#.
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dominant term asymptotically is a leading exponential ter
hence the analysis here is rather more general~we shall re-
turn to this in the next section!. For the remainder of this
paper we shall not explicitly consider ordinary matter; i.
we shall set the matter Lagrangians in Eqs.~1! and ~3! to
zero. Matter can be included in a straightforward w
@24,16,25#.

A. Exact exponential potential models

Scalar-tensor models which transform under Eqs.~2! to a
model with an exact exponential potential satisfy Eqs.~2b!
and ~4! with Eq. ~5!, viz.,

dw

df
56

Av~f!13/2

f
~7!

V0ekw5
V~f!

f2
. ~8!

As long as the transformations~2! remain non-singular we
can determine the asymptotic properties of the underly
scalar-tensor theories from the asymptotic properties of
exact exponential potential model. These properties w
studied in@17#. We recall that the asymptotic behavior d
pends crucially on the parameterk @in Eq. ~5!# which will be
related to the various physical parameters in the scalar-te
theory ~1!.

In particular, in @17# it was shown that all scalar field
Bianchi models with an exponential potential~5! ~except a
subclass of Bianchi type IX models which recollapse! isotro-
pize to the future ifk2<2 and, furthermore, inflate ifk2

,2; if k50, these models inflate towards the de Sitter so
tion and in all other cases they experience power-law in
tionary behavior. Ifk2.2, then the models cannot inflate
and can only isotropize to the future if the Bianchi model
of type I, V, VII, or IX. Those models that do not isotropiz
typically asymptote towards a Feinstein-Iba´ñez anisotropic
model@27#. Bianchi type VIIh models withk2.2 can indeed
isotropize@17# but do not inflate, while generically the eve
expanding Bianchi type IX models do not isotropize@26#.

Therefore, at late times and for each specific choice
v(f) both the asymptotic behavior of the models and
character of the conformal transformation~2! may be deter-
mined by the behavior of the scalar fieldw at the equilibrium
points of the system in the Einstein frame. Recently t
behavior has been thoroughly investigated@17#. We shall
summarize only those aspects relevant to our study. The
istence of GR as an asymptotic limit at late times is a
determined by the asymptotic behavior of the scalar field;
shall return to this issue in Sec. II C.

For spatially homogeneous space-times the scalar fielw
is formally equivalent to a perfect fluid, and so expansio
normalized variables can be used to study the asympt
behavior of Bianchi models@17,28#. The scalar field vari-
able,C, is defined by

r-
e
be
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C[
ẇ

A6u*
, ~9!

whereu* is the expansion of the timelike congruences
thogonal to the surfaces of homogeneity.2 At the finite equi-
librium points of the reduced system of autonomous ordin
differential equations, whereC is a finite constant, it has
been shown@28# that u* 5u0* /t* , wheret* is the time de-
fined in the Einstein frame:

dt* 56Af dt. ~10!

From Eq.~9! it follows that ẇ}1/t* , whence upon substitu
tion into the Klein-Gordon equation

ẅ1u* ẇ1
]V*

]w
50, ~11!

we find that, at the finite equilibrium points,

w~ t* !5w02
2

k
ln t* , kÞ0, ~12!

wherew0 is a constant. Hence, from Eq.~2b! we can obtain
f as a function oft* , provided a particularv(f) is given.
From Eq.~10! we can then find the relationship betweent*
and t, consequently obtainf as a function oft, and hence
determine the asymptotic behavior off(t) for a given theory
with specific v(f) ~in the Jordan frame!. Specifically, we
can determine the possible isotropization and inflation o
given scalar-tensor theory in a very straightforward way.

As mentioned above, the behavior determined from
key equation~12! is not necessarily valid for all Bianch
models. For Bianchi models in which the phase space
compact, the equilibrium points represent models that
have the behavior described by Eq.~12!, as do the finite
equilibrium points in Bianchi models with non-compa
phase spaces. It is possible that the infinite equilibri
points in these non-compact phase spaces also share th
havior, although this has not been proved. Finally, from E
~2! we note that since the asymptotic behavior is gover
by Eq. ~12!, the corresponding transformations are no
singular and this technique for studying the asymptotic pr
erties of spatially homogeneous scalar-tensor theorie
valid.

B. Example

Suppose we consider a Brans-Dicke theory with a pow
law potential, viz.,

v~f!5v0 ~13!

V5bfa ~14!

2Note thatu* .0 for all Bianchi models except those of type IX
02350
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~whereb and a are positive constants!; then Eq.~2b! inte-
grates to yield

f5f0expS w2w0

v̄
D , ~15!

where

v̄[6Av013/2, ~16!

and hence Eq.~4! yields

V* 5V0ek̄w, ~17!

where the critical parameterk̄ is given by

k̄5
a22

v̄
. ~18!

From @17# we can now determine the asymptotic behavior
the models in the Einstein frame, as discussed in Sec. I
for a given model with specific values ofa andv̄ ~and hence
a particular value fork̄).

The possible isotropization of the given scalar-ten
theory can now be obtained directly~essentially by reading
off from the proceeding results—see Sec. III A!. For ex-
ample, the inflationary behavior of the theory can be de
mined from Eqs.~2a!, ~10! and ~12!. Let us further discuss
the asymptotic behavior of the corresponding scalar-ten
theories~in the Jordan frame!. From Eqs.~10!, ~12! and~15!
we have that, asymptotically,

f5f̃0F6~ t2t0!S 11
1

kv̄
D G22/~11kv̄ !

, ~19!

where the6 sign is determined from Eq.~10!. Both this sign
and the signs ofv̄ and 11kv̄ are crucial in determining the
relationship betweent* and t; i.e., ast*→` either t→6`
or t→t0 and hence eitherf→0 or f→`, respectively, as
w→2`.

1. Generalization

Suppose again thatv5v0 , so that Eq.~15! also follows,
but nowV is a sum of power-law terms of the form

V5 (
n50

m

bnfan, ~20!

wherem.1 is a positive integer. Then Eq.~4! becomes

V* 5 (
n50

m

bnfan22

5 (
n50

m

b̄nexp~ k̄nw!, k̄n5
an22

v̄
. ~21!

For example, if
7-3



o

a

to

r-

es
w
th

c
t
ria
r

e

en

ble
sor
ints

an

as
ust
al

es

r
on-
ted
in

by

ANDREW BILLYARD, ALAN COLEY, AND JESUS IBÁÑEZ PHYSICAL REVIEW D 59 023507
V5V01
1

2
mf21lf4,

then

V* 5V̄0e22w/v̄1
1

2
m̄1l̄e2w/v̄

~with obvious definitions for the new constants!, which is a
linear sum of exponential potentials. Asymptotically one
these potentials will dominate~e.g., as w→1`, V*
→l̄e2w/v̄) and the asymptotic properties can be deduced
in the previous section.

2. Approximate forms

In the last subsection we commented upon the asymp
properties of a scalar-tensor theory with the forms forv and
V given by Eqs.~13! and~14!. Let us now consider a scala
tensor theory with forms forv and V which are approxi-
mately given by Eqs.~13! and ~14! ~asymptotically in some
well-defined sense! in order to discuss whether both theori
will have the same asymptotic properties. In doing so,
hope to determine whether the techniques discussed in
paper have a broader applicability.

We assume thatv and V are analytic at the asymptoti
values of the scalar field in the Jordan frame in an attemp
determine whether their values correspond to the approp
forms for w and V* in the Einstein frame, namely whethe
w→2` and the leading term inV* is of the formekw.

Consider an analytic expansion forf aboutf50:

v5 (
n50

`

vnfn ~22!

V5 (
n50

`

Vnfn, ~23!

where allvn andVn are constants. Using Eq.~2! we find, up
to leading order inf, that forv0Þ23/2,

w2w0'v̄ ln f, ~24!

so thatw→6` @depending on the sign in Eq.~16!# for f
→0. The potential in the Einstein frame is~to leading order!

V* 'expH 2
2~w2w0!

v̄
J . ~25!

Hence, the parameterk of Eq. ~5! is defined here ask[

22/v̄. For v0523/2 we have

~w2w0!2'4v1f ~26!

V* '
16v1

2

~w2w0!4
, ~27!

so thatw→” 2` asf→0.
02350
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Next, let us consider an expansion in 1/f, valid for f
→`:

v5 (
n50

`
vn

fn
, ~28!

V5 (
n50

`
Vn

fn
. ~29!

For v0Þ23/2, the results are similar to thef50 expansion:

w2w0'2v̄ ln f ~30!

V* 'expH 2~w2w0!

v̄
J , ~31!

where noww→7` asf→`. Whenv0523/2, we obtain

~w2w0!2'
4v1

f
~32!

V* '
~w2w0!4

16v1
2

. ~33!

It is apparent that the sign ofv̄ is important in determining
whetherf→` or f→0 in order to obtain the appropriat
form for w, as was exemplified at the end of Sec. II B.

Finally, in the event thatv andV are analytic about some
finite value off, namelyf0 , it can be shown thatw→w0 as
f→f0 . Hence, if one insists thatv remain analytic asv
→v0 in the limit of w→2`, thenf must either vanish or
diverge, and the GR limit is not obtained. This would th
suggest that if one imposedw→2` for f→f0 , then v
would not be analytic aboutf5f0 .

C. Constraints on possible late-time behavior

In this paper we are concerned with the possi
asymptotic behavior of cosmological models in scalar-ten
theories of gravity. However, there are physical constra
on acceptable late-time behavior@as t*→`; see Eq.~10!#.
For example, such theories ought to have GR as
asymptotic limit at late times~e.g., v→` and f→f0) in
order for the theories to concur with observations such
solar system tests. In addition, cosmological models m
‘‘isotropize’’ in order to be in accordance with cosmologic
observations.

Nordtvedt @7# has shown that for scalar-tensor theori
with no potential,v(f)→` andv23dv/df→0 ast→` in
order for GR to be obtained in the weak-field limit. Simila
requirements for general scalar-tensor theories with a n
zero potential are not known, and as will be demonstra
from the consideration of two particular examples found
the literature, not all theories will have a GR limit.

The first example is the Brans-Dicke theory (v5v0
5const) with a power-law self-interacting potential given
Eq. ~14! studied earlier in Sec. II B. In this case,f is given
by Eqs.~15! and~16! and the potential is given by~14!, viz.,
7-4
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V~f!5bfa, a527kAv013/2.

The a51 case for Friedmann-Robertson-Walker~FRW!
metrics was studied by Kolitch@29# and thea52 (k50)
case, corresponding to a cosmological constant in
Einstein-frame, was considered for FRW metrics by San
and Gregory@30#. Earlier we considered whether anisotrop
models in Brans-Dicke theory with a potential given by E
~14! will isotropize. Assuming a large value forv0 , as sug-
gested by solar system experiments, we conclude that f
wide range of values fora the models isotropize. Howeve
in the low-energy limit of string theory wherev0521 the
models are only guaranteed to isotropize for 1,a,3.

Substituting Eq.~12! in Eq. ~15! we get

f;~ t* !62d, d5
1

k
A 2

312v0
. ~34!

Now, substituting the above expression into Eq.~9!, we ob-
tain t* as a function oft and hence we obtain

f;t62d/17d. ~35!

Depending on the sign, we deduce from this expression
for large t the scalar field tends either to zero or to infini
and so this theory, with the potential given by Eq.~14!, does
not have a GR limit.

In the second example we assume that

v~f!1
3

2
5

Af2

~f2f0!2
, ~36!

whereA is an arbitrary positive constant. This form forv(f)
was first considered by Mimoso and Wands@16# ~in a theory
without a potential!. Now, we obtain

f5f01B e7w/AA, ~37!

whereB is a constant, and the potential, defined by Eq.~6!, is
given by

V~f!5V0 f2~f2f0!7AAk. ~38!

As before, at the equilibrium points we can expressf as a
function of t* , which then allows us to computet as a func-
tion of t* . At late times we find that

f;f01tb, ~39!

whereb is a constant whose sign depends onk, v0 and the
choice of one of the signs in the theory. What is importa
here is that in this case, at late times, we find that the sc
field tends to a constant value forb,0, thereby yielding a
GR limit. In both of the examples considered above,
conformal transformation for the equilibrium points is reg
lar.

Of course, these are not the only possible forms fo
variablev(f). For example, Barrow and Mimoso@22# stud-
ied models with 2v(f)13}fa (a.0) satisfying the GR
limit asymptotically.~The GR limit is only obtained asymp
02350
e
s
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a

at

t
ar

e

a

totically asf→`, although for a finite but large value off
the theory can have a limit which is as close to GR as
required.! However, by studying the evolution of the grav
tational ‘‘constant’’G from the full Einstein field equations
~i.e., not just the weak-field approximation!, Nordtvedt
@7,31# has shown that

Ġ

G
52S 312v

412v D S 11
2v8

~312v!2D ,

wherev85dv/df ~so that the correct GR limit is only ob
tained asv→` and v8v23→0). Torres@32# showed that
when 2v(f)13}fa, G(t) decreases logarithmically an
henceG→0 asymptotically. In the above work, no potenti
was included. For a theory with 2v(f)13}fa and with a
non-zero potential satisfying Eq.~6! we have that

f

V

dV

df
5A1Bfa

(aÞ0, A andB constants!, so that

V~f!5V0fAeBfa/a.

A potential of this form was considered by Barrow@33#.
Finally, Barrow and Parsons@34# have studied three pa

rametrized classes of models forv(f) which permitv→`
asf→f0 ~where the constantf0 can be taken asf evalu-
ated at the present time! and hence have an appropriate G
limit:

~ i! 2v~f!1352B1
2u12f/f0u2a S a.

1

2D ,

~ ii ! 2v~f!135B2
2u ln~f/f0!u22udu S d.

1

2D ,

~ iii ! 2v~f!135B3
2u12~f/f0! ubuu21 ~; b!.

Other possible forms forv(f) were discussed in Barrow
and Carr@35# and, in particular, they considered models~i!
above but alloweda,0 in order for a possible GR limit to
be obtained also asf→`. Schwinger@36# has suggested th
form 2v(f)135B2/f based on physical considerations.

III. APPLICATIONS

Let us exploit the formal equivalence of the class
scalar-tensor theories~1! with v(f) andV(f) given by

v~f!5v0 , V~f!5bfa, ~40!

with that of GR containing a scalar field and an exponen
potential~5!. Indeed, since the conformal transformation~2a!
is well-defined in all cases of interest, the Bianchi type
invariant under the transformation and we can deduce
asymptotic properties of the scalar-tensor theories from
corresponding behavior in the Einstein frame. Also, we ha
that
7-5
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k[
a22

v̄
, v̄2[v01

3

2
. ~41!

We recall that at the finite equilibrium points in the Ei
stein frame we have that

u* 5u0* t
*
21 , ~42!

w~ t* !5w02
2

k
ln~ t* !, ~43!

where

u0* 511
k2

2
ekw0. ~44!

Integrating Eq.~2b! we obtain

f~ t* !5d exp@v̄21w~ t* !#5f0t
*
22/kv̄ , ~45!

where the constantf0[d exp(w0 /v̄), we recall thatt and t*
are related by Eq.~10!, and Eq.~2a! can be written as

gab5f21gab* . ~46!

A. Examples

~1! All initially expanding scalar field Bianchi model
with an exponential potential~5! with 0,k2,2 within gen-
eral relativity ~except for a subclass of models of type IX!
isotropize to the future towards the power-law inflationa
flat FRW model@25#, whose metric is given by

ds252dt
*
2 1t

*
4/k2

~dx21dy21dz2!. ~47!

In the scalar-tensor theory~in the Jordan frame!, f is given
by Eq. ~45! and from Eq.~46! we have that

dsST
2 5f0

21t
*
2/kv̄$ds2%. ~48!

Defining a new time coordinate by

T5ct
*
~11kv̄ !/kv̄ , c[

kv̄

11kv̄
f0

21/2 ~49!

~where kv̄11Þ0; i.e., aÞ1), we obtain, after a constan
rescaling of the spatial coordinates,

dsST
2 52dT21T2K~dX21dY21dZ2!, ~50!

where

K[
k212kv̄

k2~11kv̄ !
.

Finally, the scalar field is given by

f5f0c2/~11kv̄ !T22/~11kv̄ !5f 0̄T2/~12a!. ~51!
02350
Therefore, all initally expanding spatially homogeneo
models in scalar-tensor theories obeying Eqs.~40! with 0
,(a22)2,2v013 ~except for a subclass of Bianchi typ
IX models which recollapse! will asymptote towards the ex
act power-law flat FRW model given by Eqs.~50! and~51!,
which will always be inflationary sinceK5(11a
12v0)/(a21)(a22).1 @note that whenever 2v0.(a
22)2235a224a11, we have that 11a12v0.a223a
125(a21)(a22)#.

Whenk2.2, the models in the Einstein frame cannot i
flate and may or may not isotropize. Let us consider t
examples.

~2! Scalar field models of Bianchi type VIh with an expo-
nential potential~5! with k2.2 asymptote to the future to
wards the anisotropic Feinstein-Iba´ñez model@27# given by
(mÞ1)

ds252dt
*
2 1a0

2~ t
*
2p1dx21t

*
2p2e2mxdy21t

*
2p3e2xdz2!,

~52!

where the constants obey

p151,

p25
2

k2S 11
~k222!~m21m!

2~m211!
D ,

p35
2

k2S 11
~k222!~m11!

2~m211!
D . ~53!

In the scalar-tensor theory~in the Jordan frame!, f is
given by Eq.~45! and the metric is given by Eq.~48!. After
defining the new time coordinate given by Eq.~49!, we ob-
tain

dsST
2 52dT21A0

2~T2q1dX21T2q2e2mXdY21T2q3e2XdZ2!,

~54!

where

qi[
11kv̄pi

11kv̄
~ i 51,2,3!, A0

25a0
2f0

21c22q1, ~55!

andY andZ are obtained by a simple constant rescaling~and
X5x). Finally, the scalar field is given by Eq.~51!.

The corresponding exact Bianchi type VIh scalar-tensor
theory solution is therefore given by Eqs.~51! and~54! in the
coordinates (T,X,Y,Z). Consequently, all Bianchi type VIh
models in the scalar-tensor theory satisfying Eqs.~40! with
(a22)2.2v013 asymptote towards the exact anisotrop
solution given by Eqs.~51! and ~54!.

~3! An open set of scalar field models of Bianchi typ
VII h with an exponential potential withk2.2 asymptote to-
wards the isotropic~but non-inflationary! negative-curvature
FRW model@17# with metric

ds252dt
*
2 1t

*
2 ds2, ~56!
7-6
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whereds2 is the three-metric of a space of constant nega
curvature. Again,f is given by Eq.~45! and the metric is
given by Eq.~48!, which becomes, after the time recoord
natization~49!,

dsST
2 52dT21C2T2ds2, ~57!

where C2[f0
21c225@(11kv̄)/kv̄#2. This negatively

curved FRW metric is equivalent to that given by Eq.~56!.
Finally, the scalar field is given by Eq.~51!.

Therefore, when (a22)2.2v013, there is an open se
of (BVII h) scalar-tensor theory solutions satisfying Eqs.~40!
which asymptote towards the exact isotropic solution giv
by Eqs.~51! and ~57!.

Equations~43! and ~45! and the resulting analysis ar
only valid for scalar-tensor theories satisfying Eqs.~40!.
However, the asymptotic analysis will also apply to gener
ized theories of the forms discussed in Secs. II B 1 and
2. Finally, a similar analysis can be applied in Brans-Dic
theory withV50 @37#.

B. Self-similarity

All three attracting scalar-tensor theory solutions in t
last subsection are self-similar; metric~50! admits the homo-
thetic vector ~HV! X5T ]/]T1(12K)$X ]/]X1Y ]/]Y
1Z ]/]Z%, metric ~54! admits the HV X5T ]/]T1(1
2q2)Y ]/]Y1(12q3)Z ]/]Z, and metric~57! admits the
HV X5T ]/]T. Of course, all three solutions in the corr
sponding general relativistic model~i.e., in the Einstein
frame! are self-similar. Let us show that this is always t
case; i.e., all scalar-tensor solutions obtained in this way
self-similar.

In @17# it was shown that the cosmological solutions co
responding to the finite equilibrium points of the ‘‘reduce
dynamical system’’ of the spatially homogeneous scalar fi
models with an exponential potential are all self-similar. L
gab* be the metric of such a solution andX* the correspond-
ing HV; hence we have that

LX
*
gab* 52gab* , ~58!

whereL denotes the Lie derivative alongX* . In the coordi-
nates in whichu* 5u0* t

*
21 , fromLX

*
u* 52u* we find that

@37#

X* 5t*
]

]t*
1X

*
m~x

*
g !

]

]x
*
m

. ~59!

Now, the metricgab in the corresponding scalar-tens
theory is given by Eq.~46!, where the scalar field is given b
Eq. ~45!, viz.,

f~ t* !5f0t
*
22/kv̄ ~60!

@or by Eq.~51! in terms of the time coordinateT#. We em-
phasize that thispower-law form for f is only valid for
scalar-tensor theories that obey conditions~40!. Hence, from
Eqs.~58!–~60! it follows that
02350
e

n

l-
B

re

-

d
t

LX
*
gab5X* @f21~ t* !#gab* 1f21LX

*
gab*

5t*
]

]t*
~f0

21t
*
2/kv̄!gab* 12f0

21t
*
2/kv̄gab*

5S 2

kv̄
12D f0

21t
*
2/kv̄gab*

52cgab , ~61!

where the constantc is given byc5(11kv̄)/(kv̄). That is,
X5X* is a homothetic vector for the spacetime with met
gab and consequently the corresponding scalar-tensor th
solution is self-similar.

C. Special casea51

In the analysis above we have omitted the special c
a51 ~i.e.,kv̄521). This case is degenerate as we will no
demonstrate. Let the general relativistic metric be defined

ds252dt
*
2 1gmndxmdxn. ~62!

First, suppose we takekv̄521 in Eq.~45! and define a new
time coordinate by

T5f0
21/2ln~ t* !, ~63!

then the metric~62! becomes

dsST
2 52dT21f0

21exp~22Af0T!gmndxmdxn, ~64!

wheref(T)5f0exp(2Af0T). Now, from Eq.~61! we ob-
tain

LX
*
gab50; ~65!

i.e., in this caseX5X* is a Killing vector~KV ! of the space-
time ~64!. Since the KVX is timelike, the spatially homoge
neous metric~64! admits four KV’s acting simply transi-
tively and hence the resulting spacetime is~totally—i.e.,
four-dimensionally! homogeneous.

All known non-flat homogeneous spacetimes are given
Table 10.1 in@38#; hence the metric~64! is given by one of
those spacetimes in this table representing an orthogonal
tially homogeneous metric with a diagonal Einstein ten
~representing a perfect fluid spacetime or an Einstein sp
time with a cosmological constant!; all of these metrics are
indeed known@38#. In the case when metric~64! is the flat
Minkowski metric, the corresponding general relativis
spacetime~62! is de Sitter spacetime. However, this corr
sponds to the degenerate case in which

u* 5u0* , a constant;

this is the only possibility in which Eq.~42! is not valid and
hence the resulting analysis does not follow. This degene
case corresponds tok50 in Eq. ~5! ~i.e., V* 5V0 , a con-
7-7
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stant!; sincekv̄521 this corresponds tov̄→` or v0→`
~in which case GR is recovered from the scalar-tensor the
under consideration!.

Finally, if a51 in Eq.~14! ~i.e., V5bf), then the action
~1! becomes

S5E A2gFf~R22b!2
v0

f
gabf ,af ,b12LmGd4x,

which is equivalent to that for Brans-Dicke theory incorp
rating an additional constantb. Under the conformal trans
formation and field redefinition~2! the action becomes tha
for general relativity with a cosmological constant~and ad-
ditional matter fields!, and from the cosmic no-hair theore
it follows that all spatially homogeneous models~except for
a subclass of Bianchi type IX! asymptote to the future to
wards the de Sitter model@39#.

IV. CONCLUSIONS

In this paper we have studied the asymptotic behavior
special subclass of spatially homogeneous cosmolog
models in scalar-tensor theories which are conforma
equivalent to general relativistic Bianchi models containin
scalar field with an exponential potential by exploiting r
sults found in previous work@17#.

We illustrated the method by studying the particular e
ample of Brans-Dicke theory with a power-law potential a
various generalizations thereof, paying particular attention
the possible isotropization and inflation of such models.
addition, we discussed physical constraints on possible l
time behavior and, in particular, whether the scalar-ten
theories under consideration have a general relativistic l
at late times.

In particular, several exact scalar-tensor theory cosm
logical models~both inflationary and non-inflationary, isotro
pic and anisotropic! which act as attractors were discusse
and all such exact scalar-tensor solutions were shown to
self-similar.

This is related to the previous work of several autho
Specifically, Chauvet and Cervantes-Cota@15# studied
isotropization in Brans-Dicke gravity including a perfe
fluid with p5(g21)m. They examined whether the anis
tropic models contain a FRW model as an asymptotic lim
which is how they defined isotropization. For Bianchi mo
r-

02350
ry

a
al
y
a

-

to
n
e-
r
it

o-

,
be

.

t,
-

els of types I, V and IX, they found exact solutions in the
cosmologies which can isotropize to the future, depending
the values ofg and v and two other arbitrary constants
Furthermore, Mimoso and Wands@16# also studied scalar
tensor models with variablev without a self-interacting po-
tential V but coupled to barotropic matter. Regarding t
possible isotropization of the cosmological models~meaning
here that the shear of the fluid becomes negligible!, they
concentrated on models of Bianchi type I and first discus
constraints on a fixedv5v0 model necessary for isotropiza
tion at late times. In the particular case of a false vacu
(p52m), they showed that the de Sitter solution is the la
time attractor of the model. They then proceeded to exam
arbitraryv(f) Bianchi type I cosmologies and showed th
if a solution is to asymptote towards a GR limit~i.e., v
→`), then it must also isotropize. Their paper also discus
initial singularities in models of other Bianchi types.

The work in this paper can be generalized in a numbe
ways. In particular, more general scalar-tensor theories
be considered and more general~than spatially homoge-
neous! geometries can be studied. For example, the m
general class of inhomogeneousG2 models could be consid
ered@40,41,43# in which there exists two commuting spac
like Killing vectors. The motivation for studyingG2 cos-
mologies is that there is some evidence that the class
self-similar G2 models plays an important role in describin
the asymptotic behavior of more generic general relativis
scalar field models with an exponential potential~cf. @42#; in
this way, we may be able to find special scalar-tensorG2
cosmological models that describe the asymptotic proper
of more general scalar-tensor cosmologies. Some pote
problems that exist in this more general context is that si
f, and hence the transformation~2a!, depends on both time
and one space variable, the transformation~2! will be singu-
lar ~at least for certain values of the space variable! and the
classification ofG2 models may not be preserved under su
a transformation.

ACKNOWLEDGMENTS

We would like to thank Robert van den Hoogen and
saso Olasagasti for helpful comments. This work w
funded, in part, by NSERC~A.B. and A.C.!, the I.W. Killam
Fund ~A.B.! and CICYT PB96-0250~J.I.!.
el

n
-

@1# G. T. Horowitz, inProceedings of 12th International Confe
ence on General Relativity and Gravitation, edited by N.
Ashby, D. F. Bartlett, and W. Wyss~Cambridge University
Press, Cambridge, England, 1990!, pp. 419–439.

@2# P. Jordan, Nature~London! 164, 637 ~1949!.
@3# P. Jordan, Z. Phys.157, 112 ~1959!.
@4# M. Fierz, Helv. Phys. Acta29, 128 ~1956!.
@5# C. Brans and R. H. Dicke, Phys. Rev.124, 925 ~1961!.
@6# P. G. Bergmann, Int. J. Theor. Phys.1, 25 ~1968!.
@7# K. Nordtvedt, Astrophys. J.161, 1059~1970!.
@8# R. V. Wagoner, Phys. Rev. D1, 3209~1970!.
@9# S. Buchmannet al., in Proceedings of the Seventh Marc

Grossman Meeting on General Relativity, edited by R. T. Jan-
tzen and G. M. Keiser~World Scientific, Singapore, 1996!.

@10# A. Abramovici et al., Science256, 325 ~1992!.
@11# J. Houghet al., in Proceedings of the Sixth Marcel Grossma

Meeting on General Relativity, edited by H. Sato and T. Na
kamura~World Scientific, Singapore, 1993!.

@12# C. Bradaschiaet al., Nucl. Instrum. Methods Phys. Res. A
289, 518 ~1990!.
7-8



th.

ev

-
nd

,

ASYMPTOTIC BEHAVIOR OF COSMOLOGICAL MODELS . . . PHYSICAL REVIEW D59 023507
@13# J. D. Barrow, Phys. Rev. D35, 1805~1987!.
@14# A. Serna and J. M. Alimi, Phys. Rev. D53, 3087~1996!.
@15# P. Chauvet and J. L. Cervantes-Cota, Phys. Rev. D52, 3416

~1995!.
@16# J. P. Mimoso and D. Wands, Phys. Rev. D52, 5612~1995!.
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