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We study the qualitative properties of cosmological models in scalar-tensor theories of gravity by exploiting
the formal equivalence of these theories with general relativity minimally coupled to a scalar field under a
conformal transformation and field redefinition. In particular, we investigate the asymptotic behavior of spa-
tially homogeneous cosmological models in a class of scalar-tensor theories which are conformally equivalent
to general relativistic Bianchi cosmologies with a scalar field and an exponential potential whose qualitative
features have been studied previously. Particular attention is focused on those scalar-tensor theory cosmologi-
cal models, which are shown to be self-similar, that correspond to general relativistic models that play an
important role in describing the asymptotic behavior of more general m¢elgls those cosmological models
that act as early-time and late-time attractof$0556-282(98)03222-¢

PACS numbd(s): 98.80.Hw, 04.50+h

I. INTRODUCTION exponential self-interacting potential.
The action for the general class of scalar-tensor theories
Scalar-tensor theories of gravity are currently of great in{in the so-called Jordan framés given by[6,8]
terest, partially due to the fact that such theories occur as the
low-energy limit in superstring theorgeel 1] and references () o 4
therein. The first scalar-tensor theories to appéaith o S:j ] ¢>R—79 b.abp=2V(¢)+2Ly A
=wg) were due to Jordaf2,3], Fierz [4] and Brans and )
Dicke [5] and the most general scalar-tensor theories were
formulated by Bergmanii6], Nordtvedt[7] and Wagoner However, under the conformal transformation and field re-
[8]. The observational limits on scalar-tensor theories indefinition[22,23,16
clude solar system tesf8—12] and cosmological tests such

as big bang_nuc_leosyn'_[hes_is constra_[n13,14]. 9%p= #Gab (2a)
The possible isotropization of spatially homogeneous cos-

mological models in scalar-tensor theories has been studied T am,

previously. For example, Chauvet and Cervantes-Cof %:M, (2b)

have studied the possible isotropization of Bianchi models of d¢ ¢

types |, V and IX within the context of Brans-Dicke theory ) i o
without a scalar potential, but with baryotropic matter, the action become§n the so-called Einstein frame
=(y—1)u, by studying exact solutions at late times. Mi-

moso and Wandgl6] have studied Brans-Dicke theory with . . 4
a variablew= w(¢) in the presence of baryotropic matter S _j V=9 d*x,
(but with no scalar field potentinland, in particular, gave ®)
forms for @ under which Bianchi type | models isotropize.

We note that there is a formal equivalence between such ghich s the action for general relativityGR) containing a
theory (with y#2) and a scalar-tensor theory with a poten-gcajar fielde with the potential

tial but without matter, via the field redefinitiong=(2

V() L

> ¢

R*—g* % 20 p—2

~ ) andwVadVpd—wVad Vb= yudys). V(b(0))
In a recent papdrl7] (see alsg18] and[19]), cosmologi- V¥ ()= ——. (4)
cal models containing a scalar field with an exponential po- »(¢)

tential were studied. In particular, the asymptotic properties

of the spatially homogeneous Bianchi models, and especially Our aim here is to exploit the results in previous work
their possible isotropization and inflation, were investigated[17] to study the asymptotic properties of scalar-tensor theo-
Part of the motivation for studying such models is that theyries of gravity with action(1) which under the transforma-
can arise naturally in alternative theories of gray2g]; for  tions (2) transform to general relativity with a scalar field
example, Halliwell[21] has shown that the dimensional re- with the exponential potential given by

duction of higher-dimensional cosmologies leads to an effec-

tive four-dimensional theory coupled to a scalar field with an V* =V, eke, 5)
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where V, and k are positive constants. That is, since wedominant term asymptotically is a leading exponential term;
know the asymptotic behavior of spatially homogeneous Bihence the analysis here is rather more gen@val shall re-
anchi models with actioig3) with the exponential potential turn to this in the next sectignFor the remainder of this
(5), we can deduce the asymptotic properties of the correpaper we shall not explicitly consider ordinary matter; i.e.,
sponding scalar-tensor theories under the transformat®ns we shall set the matter Lagrangians in E¢b. and (3) to
(as long as the transformations are not singdidn particu-  zero. Matter can be included in a straightforward way
lar, we are concerned with the possible isotropization andi24,16,235.
inflation of such scalar-tensor theories.

The outline of the paper is as follows. In Sec. II, we
review the framework within which GR and a scalar field A. Exact exponential potential models

scalar-tensor theory with a potentidordan framg concen-  odel with an exact exponential potential satisfy E@)
trating on both the exact and approximate forms for the pagnd (4) with Eq. (5), viz.,

rametersV and w in the Jordan frame. In particular, we dis-

cuss the explicit example of the Brans-Dicke theory with a doe Vo(¢)+3/2

power-law potential and we also discuss the conditions @:iT (7
which lead to appropriate late-time behavior as dictated by

solar system and cosmological tests. In Sec. lll, we then

apply the conformal transformations to Bianchi models stud-

ied in the Einstein frame to produce exact solutions which Voeke = V( ¢)_ @)

represent the asymptotic behavior of more general spatially
homogeneous models in the Jordan fraffe w=w,, a
constankt These Brans-Dicke models are self-similar and the

corresponding homothetic vectors are also exhibited. Wexs |ong as the transformatior®) remain non-singular we

¢2

conclude with a discussion in Sec. IV. can determine the asymptotic properties of the underlying
scalar-tensor theories from the asymptotic properties of the
Il. ANALYSIS exact exponential potential model. These properties were

lar field Bianchi ._studied in[17]. We recall that the asymptotic behavior de-
For scalar field Bianchi models the conformal factor in pends crucially on the parametefin Eq. (5)] which will be

Eq. (28 is a function oft only [i.e., ¢=¢(t)], and hence |o|ateq to the various physical parameters in the scalar-tensor
under(non-singulay transformationg2) the Bianchi type of theory (1).

the underlying models does not charige., the metric®ap, | particular, in[17] it was shown that all scalar field
andg}, admit three space-like Killing vectors acting transi- gianchi models with an exponential potenti&) (except a
tively with the same group structyrén general, in the class  gypclass of Bianchi type IX models which recollapisetro-

of scalar-tensor theories represented by @jjthere are tWo  ize to the future ifk?<2 and, furthermore, inflate ik
arbitrary (coupling functionsw(#) andV(¢). The models 2. it k=0, these models inflate towards the de Sitter solu-
which transform under Eqg¢2) to an exponential potential tjon and in all other cases they experience power-law infla-
model, in which the two arbitrary functions andV are  tionary behavior. Ifk?>2, then the models cannot inflate,

constrained by Eq¢2b) and(4), viz., and can only isotropize to the future if the Bianchi model is
of type I, V, VII, or IX. Those models that do not isotropize

f d_V:2+k ) /§+w(¢) 6) typically asymptote towards a Feinsteinffiea anisotropic

Vdo 2 ’ model[27]. Bianchi type VI}, models withk?>2 can indeed

isotropize[17] but do not inflate, while generically the ever-
make up a special subclass with essentially one arbitrargxpanding Bianchi type IX models do not isotrop[26].
function. Although only a subclass of models obeys this con-  Therefore, at late times and for each specific choice of
straint, this subclass is no less general than massless sca[g(rd,) both the asymptotic behavior of the models and the
field models ¥=0; see, for exampl€16]) or Brans-Dicke  character of the conformal transformatit®) may be deter-
models with a potential ¢=w,, cons}, which are often mined by the behavior of the scalar fiekdat the equilibrium
studied in the literature. Indeed, the asymptotic analysis ifoints of the system in the Einstein frame. Recently this
this paper is valid not only for “exact” exponential models, pehavior has been thoroughly investigafdd]. We shall
but also for scalar-tensor models which transform under Eqssymmarize only those aspects relevant to our study. The ex-
(2) to a model in which the effective potential is a linear jstence of GR as an asymptotic limit at late times is also
combination of terms involving exponentials in which the getermined by the asymptotic behavior of the scalar field; we
shall return to this issue in Sec. Il C.
For spatially homogeneous space-times the scalar dield
The possible isotropization of spatially homogeneous scalaris formally equivalent to a perfect fluid, and so expansion-
tensor theories which get transformed to a model with an effectivdiormalized variables can be used to study the asymptotic
potential which passes through the origin and is concave up may beehavior of Bianchi model$17,28. The scalar field vari-
deduced from the results of Heus[&4]. able, ¥, is defined by
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where 6* is the expansion of the timelike congruences or-

thogonal to the surfaces of homogenéitt the finite equi-
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(where 8 and a are positive constantsthen Eq.(2b) inte-
grates to yield

b= ¢0exp( ¢:¢0> , (15)

librium points of the reduced system of autonomous ordinary,pare

differential equations, wherd is a finite constant, it has
been showr{28] that 6* = 65 /t*, wheret* is the time de-
fined in the Einstein frame:

dt* =+ /g dt. (10)

From Eq.(9) it follows that ¢oc1/t* , whence upon substitu-
tion into the Klein-Gordon equation

*

o+ 0% o+ =0, 11
® ot s (11)

we find that, at the finite equilibrium points,
2
qo(t*)=(po—E|nt*, k+0, (12

where ¢, is a constant. Hence, from E(Rb) we can obtain
¢ as a function oft*, provided a particulaw(¢) is given.
From Eq.(10) we can then find the relationship betweén
andt, consequently obtaiy as a function oft, and hence
determine the asymptotic behavior ¢ft) for a given theory
with specific w(¢) (in the Jordan frame Specifically, we
can determine the possible isotropization and inflation of
given scalar-tensor theory in a very straightforward way.

As mentioned above, the behavior determined from the d’::f’o{ +(t—t)

key equation(12) is not necessarily valid for all Bianchi

a

w=*\w,+3/2, (16)

and hence Eq4) yields
V* =Vgeke, (17)
where the critical parameté?ris given by

— a—2

w

From[17] we can now determine the asymptotic behavior of
the models in the Einstein frame, as discussed in Sec. Il A,

for a given model with specific values efandw (and hence

a particular value fok).

The possible isotropization of the given scalar-tensor
theory can now be obtained direct{gssentially by reading
off from the proceeding results—see Sec. I)l A~or ex-
ample, the inflationary behavior of the theory can be deter-
mined from Eqgs(2a), (10) and (12). Let us further discuss
the asymptotic behavior of the corresponding scalar-tensor
theories(in the Jordan frame From Egs(10), (12) and(15)
we have that, asymptotically,

1 —2(1+kw)
1+ — , 19
. ” (19

w

models. For Bianchi models in which the phase space is
compact, the equilibrium points represent models that devhere thex sign is determined from E¢10). Both this sign
have the behavior described by Ed.2), as do the finite and the signs o and 1+ ke are crucial in determining the
equilibrium points in Bianchi models with non-compact relationship betweet* andt; i.e., ast* — o eithert— =+ o
phase spaces. It is possible that the infinite equilibriumpr t—t, and hence eithep—0 or ¢—=, respectively, as
points in these non-compact phase spaces also share this e-, — oo,

havior, although this has not been proved. Finally, from Egs.

(2) we note that since the asymptotic behavior is governed 1. Generalization

by Eqg. (12), the corresponding transformations are non-
singular and this technique for studying the asymptotic propy |
erties of spatially homogeneous scalar-tensor theories is
valid.

Suppose again thai= wg, so that Eq(15) also follows,
t nowV is a sum of power-law terms of the form

V=n§0 Bn®, (20)

B. Example

Suppose we consider a Brans-Dicke theory with a powerwherem>1 is a positive integer. Then E¢4) becomes
law potential, viz.,

o(d)=wg (13) Vv =n§0 B2
V=pB¢* 14 mo_ o
pe (49 =3 Buexelne), =22 (21)
n= w

Note thatg* >0 for all Bianchi models except those of type IX. For example, if
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1 Next, let us consider an expansion inpl/valid for ¢
V=VU+§m¢2+x¢{ 0

” w

then w:nzo (;: 28)
_ -1 . -
V*=Voe 2¢@+ —m+\e??/® .

2 Vi,
v=> —. (29)

(with obvious definitions for the new constants/hich is a n=0 ¢

linear sum of exponential potentials. Asymptotically one of . )
these potentials will dominatde.g., as g—+x, V* For wg# —3/2, the results are similar to th#e=0 expansion:

—>fe2*°"”) and the asymptotic properties can be deduced as

. ; . —@o~—wln 30
in the previous section. ¢=¢o~—wlng (30)
2. Approximate forms V* ~exp{ 2(@:900)] (31)

In the last subsection we commented upon the asymptotic w

properties of a scalar-tensor theory with the formsdoand

V given by Eqgs(13) and(14). Let us now consider a scalar- where nowg— + = as ¢—c. Whenw,= —3/2, we obtain

tensor theory with forms fow andV which are approxi- 4w,

mately given by Eqs(13) and (14) (asymptotically in some (¢— o)~ 5 (32
well-defined sengan order to discuss whether both theories

will have the same asymptotic properties. In doing so, we (0= o)

hope to determine whether the technigues discussed in this Vo~ ——— (33
paper have a broader applicability. 16w]

We assume thab andV are analytic at the asymptotic
values of the scalar field in the Jordan frame in an attempt téf is apparent that the sign @f is important in determining
determine whether their values correspond to the appropriatghether¢—c or ¢—0 in order to obtain the appropriate
forms for ¢ andV* in the Einstein frame, namely whether form for ¢, as was exemplified at the end of Sec. Il B.
¢— — and the leading term iN* is of the formeke. Finally, in the event tha andV are analytic about some
Consider an analytic expansion fgr about¢=0: finite value of¢, namelygy, it can be shown thap— ¢ as
¢— ¢g. Hence, if one insists thab remain analytic asy
— wq In the limit of ¢— — o, then ¢ must either vanish or
w:nzo wnd" (22)  diverge, and the GR limit is not obtained. This would then
suggest that if one imposed— —o for ¢— ¢y, then w
would not be analytic aboup= ¢,.

V=2 V4", (23
n=0 C. Constraints on possible late-time behavior
where allw,, andV,, are constants. Using E) we find, up In this paper we are concerned with the possible
to leading order inp, that for wy# —3/2, asymptotic behavior of cosmological models in scalar-tensor
theories of gravity. However, there are physical constraints
zp—<p0~gln b, (24) on acceptable late-time behavi@st* —«~; see Eq.(10)].

For example, such theories ought to have GR as an
so thate— = [depending on the sign in E@16)] for ¢ asymptotic limit at late timege.g., w—0 and ¢— ¢) in
—0. The potential in the Einstein frame (® leading order ~ order for the theories to concur with observations such as

solar system tests. In addition, cosmological models must

2(¢— @) “isotropize” in order to be in accordance with cosmological
VF~exp - ——=—— (25  observations.

Nordtvedt[7] has shown that for scalar-tensor theories
with no potentialw(¢)—» andw 3dw/d¢p—0 ast—x in
order for GR to be obtained in the weak-field limit. Similar
requirements for general scalar-tensor theories with a non-
(0 0o)2~dwyd 26) Zero potential'are npt known, and_ as will be demonstrat_ed

¢~ ¢o L from the consideration of two particular examples found in

w

Hence, the parametdr of Eq. (5) is defined here ak=
—2lw. For wg= —3/2 we have

the literature, not all theories will have a GR limit.

V* ~ 16“’5 27) The first example is the Brans-Dicke theorw= wg
(o— @0)4’ =const) with a power-law self-interacting potential given by
Eq. (14) studied earlier in Sec. Il B. In this casé, is given
so thato-+ —» as¢—0. by Egs.(15) and(16) and the potential is given bil4), viz.,
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V(p)=Bd* a=2FkJwy+3/2. totically as¢— o, although for a finite but large value gf
the theory can have a limit which is as close to GR as is

The a=1 case for Friedmann-Robertson-Walk@frRW) required) However, by studying the evolution of the gravi-
metrics was studied by Kolitch29] and thea=2 (k=0) tational “constant” G from the full Einstein field equations
case, corresponding to a cosmological constant in théi.e., not just the weak-field approximatipnNordtvedt
Einstein-frame, was considered for FRW metrics by Santo§7,31] has shown that

and Gregory 30]. Earlier we considered whether anisotropic ]
models in Brans-Dicke theory with a potential given by Eq. G

3+2w
44+2w

(14) will isotropize. Assuming a large value fary, as sug- G
gested by solar system experiments, we conclude that for a

wide range of values fow the models isotropize. However, wherew’=dw/d¢ (so that the correct GR limit is only ob-
in the low-energy limit of string theory wher@g=—1 the  tained asw— and o' 0~ 3—0). Torres[32] showed that

2w’
1+ —o
( (3+2w)?

models are only guaranteed to isotropize for &<3. when 2w(¢$)+3x¢*, G(t) decreases logarithmically and
Substituting Eq(12) in Eg. (15) we get henceG—0 asymptotically. In the above work, no potential
was included. For a theory witheX ¢) + 3« ¢ and with a
b~ (t%)*20, 5= 1 / 2 _ (34 ~ hon-zero potential satisfying E¢6) we have that
k 3+ 2(1)0
b dV
Now, substituting the above expression into E), we ob- v @:AJF Bg“

taint* as a function ot and hence we obtain

pt 20175, (35) (a#0, A andB constanty so that
— A~BoY a

Depending on the sign, we deduce from this expression that V($)=Vod"e )

for larget the scalar field tends either to zero or to infinity p potential of this form was considered by Barr¢@a].

and so this theory, with the potential given by Etd), does Finally, Barrow and Parsor|84] have studied three pa-

not have a GR limit. rametrized classes of models fof ¢) which permitw— oo

In the second example we assume that as ¢— ¢, (Where the constanp, can be taken ag evalu-
ated at the present tijmand hence have an appropriate GR

3 Ag? .
O(¢)+ 5= ———, (3 Mt
(= o) 1
. _ 211 —a -
whereA is an arbitrary positive constant. This form fet ¢) (i) 20(¢)+3=28Bj|1- ¢/d| ( a>2) ’

was first considered by Mimoso and Warid§] (in a theory
without a potentigl Now, we obtain 1
_ (il)  2w(¢)+3=B3[In(¢/do)| 27 | 5>,
b=cpotBe A, 37)

_ 2 -1
whereB is a constant, and the potential, defined by &g.is (ili)  20(4)+3= B3|1_(¢/¢0)w| vV B).

given by Other possible forms fow(¢) were discussed in Barrow

e and Carr[35] and, in particular, they considered modé
V($)=Vo $*($— o)™ @8 bove bu[t a]llowedx<8 in order for); possible GR Iim(izﬁo
As before, at the equilibrium points we can exprésss a  Pe obtained also ag— . Schwingef36] has suggested the
function oft*, which then allows us to computeas a func-  form 2e(¢)+3= B?/¢ based on physical considerations.
tion of t*. At late times we find that

¢~ o+t (39)

Ill. APPLICATIONS

. . Let us exploit the formal equivalence of the class of
whgre,B is a constant yvhosg sign dependslormo_ and the  gcalar-tensor theoried) with w(¢) andV(¢) given by
choice of one of the signs in the theory. What is important

here is that in this case, at late times, we find that the scalar o(Pp)=wy, V(¢d)=pB¢%, (40)

field tends to a constant value f®<<0, thereby yielding a

GR limit. In both of the examples considered above, thewith that of GR containing a scalar field and an exponential

conformal transformation for the equilibrium points is regu- potential(5). Indeed, since the conformal transformati@a)

lar. is well-defined in all cases of interest, the Bianchi type is
Of course, these are not the only possible forms for anvariant under the transformation and we can deduce the

variablew( ). For example, Barrow and Mimog@2] stud-  asymptotic properties of the scalar-tensor theories from the

ied models with 2(¢)+3x¢* (a>0) satisfying the GR corresponding behavior in the Einstein frame. Also, we have

limit asymptotically.(The GR limit is only obtained asymp- that

023507-5



ANDREW BILLYARD, ALAN COLEY, AND JESUS IBANEZ

k

(41)

w

We recall that at the finite equilibrium points in the Ein-
stein frame we have that

0* =65t (42)
* 2 *
o(t )=<,DO—E|n(t ), (43
where
k2
05 =1+ ?ek%' (44)
Integrating Eq.(2b) we obtain
p(t)=dexgo lo(t)]=¢et; 2, (49

where the constanb,=d exp(<p0/5), we recall that andt*
are related by Eq.10), and Eq.(2a can be written as

Jab= ¢ '0%- (46)

A. Examples

(1) All initially expanding scalar field Bianchi models
with an exponential potentigb) with 0<k?<2 within gen-
eral relativity (except for a subclass of models of type)IX

PHYSICAL REVIEW D 59 023507

Therefore, all initally expanding spatially homogeneous
models in scalar-tensor theories obeying E@) with O
<(a—2)?<2wy+3 (except for a subclass of Bianchi type
IX models which recollapsewill asymptote towards the ex-
act power-law flat FRW model given by Eq&0) and (51),
which will always be inflationary sinceK=(1+a«
+2wp)/(e—1)(a—2)>1 [note that whenever @,>(a
—2)2—-3=a’—4a+1, we have that  a+2wy>a’—3a
+2=(a—1)(a—2)].

Whenk?>2, the models in the Einstein frame cannot in-
flate and may or may not isotropize. Let us consider two
examples.

(2) Scalar field models of Bianchi type Yyivith an expo-
nential potentia5) with k?>2 asymptote to the future to-
wards the anisotropic Feinstein-fiez model[27] given by
(m#1)

ds?=—dt2 +ad(t2P1dx®+ t2P2e?mdy2 + 12P%e?Xd ),

(52
where the constants obey
p.=1,
2 (k2=2)(m2+m)
po= | 1+ —————
k? 2(m?+1)
2 (k*=2)(m+1)
=—| 1+ — 53
P k2< 2(mP+1) 3

isotropize to the future towards the power-law inflationary

flat FRW model[25], whose metric is given by
ds2= —dE + t“¥(dx+ dy?+d ). (47)

In the scalar-tensor theoiyn the Jordan frame ¢ is given
by Eq. (45) and from Eq.(46) we have that

d2 = g 2K {d?). (49
Defining a new time coordinate by
- = ko
T: Ct(1+ kw)/kw , — _ —-1/2 49
* 1+ko o 49

(Wherekw+1#0; i.e., a# 1), we obtain, after a constant
rescaling of the spatial coordinates,

dsi;= —dT2+ T2K(dX?+d Y2+ dZ?), (50)
where
k2+ 2ka
KE - — .
K?(1+kw)
Finally, the scalar field is given by
¢:¢002/(1+k7)-|——2/(1+k7):Wzl(l—w_ (51)

In the scalar-tensor theorfin the Jordan frame ¢ is
given by Eq.(45) and the metric is given by Eq48). After
defining the new time coordinate given by E49), we ob-
tain
dséT:

—dT2+ A§(T?Nd X2+ T292e2™d Y2 + T243e2Xd 22),
(54)

where

_ 1+ k;p,

= i=1,2,3,
g 1+ ko ( )

Ai=a3¢p, 'c™?%m, (55

andY andZ are obtained by a simple constant rescaliagd
X=x). Finally, the scalar field is given by E¢1).

The corresponding exact Bianchi type \8calar-tensor
theory solution is therefore given by Eq51) and(54) in the
coordinates T,X,Y,Z). Consequently, all Bianchi type VI
models in the scalar-tensor theory satisfying Eg$€) with
(a—2)?>2wy+3 asymptote towards the exact anisotropic
solution given by Egs(51) and (54).

(3) An open set of scalar field models of Bianchi type
VI, with an exponential potential witk’>>2 asymptote to-
wards the isotropi¢but non-inflationary negative-curvature
FRW model[17] with metric

ds?=—dt2 +t2do?, (56)
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wheredo? is the three-metric of a space of constant negative Ly Gap=Xs[ ¢ 2(t*)]g%+ ¢ 1Ly 0%,
curvature. Againg is given by Eq.(45) and the metric is * *
given by Eq.(48), which becomes, after the time recoordi-

izati I —1oke 12K
natization(49), —t* _*(¢0 lti/k Vgt 25 1ti/k 9,
dsi,=—dT?+C?T?dg?, (57)
S 2 —
where C?=¢,'c ?=[(1+ko)/kow]?. This negatively =(—_+2 ¢ HtkegE,
curved FRW metric is equivalent to that given by E§6). Ko

Finally, the scalar field is given by E@51).
Therefore, when ¢—2)?>2w,+ 3, there is an open set =2C0ap, (62)

of (BVII},) scalar-tensor theory solutions satisfying E@<€)

which asymptote towards the exact isotropic solution giverivhere the constarttis given byc=(1+ kw)/(kw). That is,

by Egs.(51) and (57). X=X, is a homothetic vector for the spacetime with metric
Equations(43) and (45) and the resulting analysis are Yab and consequently the corresponding scalar-tensor theory

only valid for scalar-tensor theories satisfying E¢40).  solution is self-similar.

However, the asymptotic analysis will also apply to general-

ized theories of the forms discussed in Secs. IIB 1 and 11 B C. Special casew=1

2. Finally, a similar analysis can be applied in Brans-Dicke

theory withV=0 [37]. In the analysis above we have omitted the special case

a=1 (i.e.,kw=—1). This case is degenerate as we will now
o demonstrate. Let the general relativistic metric be defined by
B. Self-similarity
All three attracting scalar-tensor theory solutions in the ds?=—dtZ +,,,dx“dx". (62)
last subsection are self-similar; metfE&0) admits the homo- .
thetic vector (HV) X=T d/aT+(1—-K){X d/dX+Y a/9Y  First, suppose we takaw= —1 in Eq.(45) and define a new
+Z 9/9Z}, metric (54) admits the HV X=T 9/dT+(1 time coordinate by
—02)Y Y+ (1—q3)Z dldZ, and metric(57) admits the
HV X=T d/dT. Of course, all three solutions in the corre- T=¢, "An(t,,), (63
sponding general relativistic modél.e., in the Einstein
frame are self-similar. Let us show that this is always thethen the metrig62) becomes
case; i.e., all scalar-tensor solutions obtained in this way are B
self-similar, dsir=—d T+ ¢y exp(—2VoT) 7, dx“dx", (64
In [17] it was shown that the cosmological solutions cor-
responding to the finite equilibrium points of the “reduced Where ¢(T) = doexp(2/¢oT). Now, from Eq.(61) we ob-
dynamical system” of the spatially homogeneous scalar fieldain
models with an exponential potential are all self-similar. Let _
g4, be the metric of such a solution aixg the correspond- £x,9a0=0;
ing HV; hence we have that

(65

i.e., in this cas&X= X, is a Killing vector(KV) of the space-
Ly 95p=209%, (58)  time (64). Since the KVX is timelike, the spatially homoge-
* neous metric(64) admits four KV's acting simply transi-
where£ denotes the Lie derivative along, . In the coordi-  tively and hence the resulting spacetime (istally—i.e.,

nates in whichg* = g5t %, from £y 6* = — 6* we find that ~four-dimensionally homogeneous. _ o
[37] * All known non-flat homogeneous spacetimes are given in

Table 10.1 in38]; hence the metri¢64) is given by one of
g J those spacetimes in this table representing an orthogonal spa-
X, =tF — + XK (x))—. (59) tially homogeneous metric with a diagonal Einstein tensor
at* XK (representing a perfect fluid spacetime or an Einstein space-
time with a cosmological constantall of these metrics are
Now, the metricg,;, in the corresponding scalar-tensor indeed knowr{38]. In the case when metri®4) is the flat
theory is given by Eq(46), where the scalar field is given by Minkowski metric, the corresponding general relativistic
Eq. (45), viz., spacetime(62) is de Sitter spacetime. However, this corre-
— sponds to the degenerate case in which
B(1*) = ot X (60)

[or by Eq.(5)) in terms of the time coordinat€]. We em-

phasize that thigpower-law form for ¢ is only valid for this is the only possibility in which Eq42) is not valid and
scalar-tensor theories that obey conditiof®). Hence, from  hence the resulting analysis does not follow. This degenerate
Egs.(58)—(60) it follows that case corresponds to=0 in Eqg. (5) (i.e., V¥=V,, a con-

0* =65, aconstant;
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Stanl; Sinceka: —1 this Corresponds ta_)oo or wg—® els of types I, Vand IX, they found exact solutions in these
(in which case GR is recovered from the scalar-tensor theor§osmologies which can isotropize to the future, depending on

under consideration the values ofy and w and two other arbitrary constants.
Finally, if =1 in Eq.(14) (i.e., V= 8¢), then the action Furthermore, Mimoso and Wand46] also studied scalar-
(1) becomes tensor models with variable without a self-interacting po-

tential V but coupled to barotropic matter. Regarding the
g possible isotropization of the cosmological modgigeaning
S=f V-9 ¢(R—23)_Egab¢,a¢,b+2£m d’x, here that the shear of the fluid becomes negligibleey
concentrated on models of Bianchi type | and first discussed
which is equivalent to that for Brans-Dicke theory incorpo- constraints on a fixed = wy model necessary for isotropiza-
rating an additional constanf. Under the conformal trans- tion at late times. In the particular case of a false vacuum
formation and field redefinitiort2) the action becomes that (p=—u), they showed that the de Sitter solution is the late-
for general relativity with a cosmological constdand ad-  time attractor of the model. They then proceeded to examine
ditional matter fields and from the cosmic no-hair theorem arbitrary w(¢) Bianchi type | cosmologies and showed that
it follows that all spatially homogeneous modétxcept for  if a solution is to asymptote towards a GR linfite., o
a subclass of Bianchi type IXasymptote to the future to- —o0), then it must also isotropize. Their paper also discussed

wards the de Sitter modgB9]. initial singularities in models of other Bianchi types.
The work in this paper can be generalized in a number of
IV. CONCLUSIONS ways. In particular, more general scalar-tensor theories can

_ ) . . be considered and more genef#han spatially homoge-
In this paper we have studied the asymptotic behavior of feous geometries can be studied. For example, the more

special subclass of spatially homogeneous cosmologiCqlanera| class of inhomogeneoBs models could be consid-

models in scalar-tensor theories which are conformallygredr40,41,43 in which there exists two commuting space-
equivalent to general relativistic Bianchi models containing ;.o Killing vectors. The motivation for studyings, cos-

scalar field with an exponential potential by exploiting ' mologies is that there is some evidence that the class of

sults found in previous workl7]. self-similar G, models plays an important role in describing

We illustrated 'ghe method by studying the particu.lar X the asymptotic behavior of more generic general relativistic
ample of Brans-Dicke theory with a power-law potential andscalar field models with an exponential potentil [42]; in

various generalizations thereof, paying particular attention his way, we may be able to find special scalar-ter@er

the 'p.OSSIb|e Isotropization a.nd mflatlon.of such quels. Ir‘cosmological models that describe the asymptotic properties
addition, we discussed physical constraints on possible lat

. behavi di iUl hether th | %f more general scalar-tensor cosmologies. Some potential
time behavior and, In particular, whether the scalar-tensof,pjams that exist in this more general context is that since
theories under consideration have a general relativistic I|m|(ZS and hence the transformati¢2a), depends on both time
at late times. and one space variable, the transformat@nwill be singu-

In particular, several exact scalar-tensor theory COSMOp (4t least for certain values of the space varipbled the

qulcal moo!els(both mfl_atlonary and non-lnflanonary, ISOWr0- o2 ssification 0fG, models may not be preserved under such
pic and anisotropicwhich act as attractors were d|scussed,a transformation

and all such exact scalar-tensor solutions were shown to be
self-similar.

This is related to the previous work of several authors.
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