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In this paper we perform a qualitative analysis of the dynamical system resulting from the soft
inflation scenario. This allows us to examine the various types of asymptotic behavior displayed by the
system; we pay particular attention to the inflationary solutions given by Berkin, Maeda, and Yokoyama
[Phys. Rev. Lett. 65, 141 (1990)]. We find that as ¢— o, no unique attracting critical point exists, but
rather there exists a higher-dimensional set of critical points. It is shown that the solution given by Ber-
kin, Maeda, and Yokoyama is representative of a class of solutions which asymptotically undergoes
power-law inflation. Under the assumption that new inflation occurs, we show that, asymptotically,
there exists a global attractor. Under the assumption that chaotic inflation occurs, we show that there
exists an attractor for finite values of the field ¢ and that solutions which inflate will experience infinitely

many inflationary eras.

PACS number(s): 98.80.Cq

I. INTRODUCTION

Inflationary cosmology was originally investigated in
the hope that some outstanding problems in cosmology
might be solved. However, to date there is no fully ac-
ceptable model for the source of inflation. In a recent pa-
per [1], a soft inflationary scenario was proposed in which
the matter content is described by two coupled scalar
fields, one of which has a decaying potential and the oth-
er which serves as the inflaton during expansion [1,2].
Inflation with two scalar fields has been considered previ-
ously [3]. However, the effect of the decaying exponen-
tial potential in soft inflation is to reduce the rate of
inflation in a manner similar to that in extended inflation
[4]. As the inflaton rolls down a flat plateau, the second
scalar field evolves on the exponential potential resulting
in power-law inflation [5]. The advantages of soft
inflation are (i) when the inflaton is of new inflation type
[6] the fine-tuning of initial conditions is lessened and
density perturbations are suppressed, and (ii) when the
inflaton is of chaotic inflation type [7], the restrictions
placed upon the coupling parameter are reduced consid-
erably. Thus soft inflation allows the constraints placed
on previous models to be loosened.

In this article we shall show that the field equations
governing soft inflation can be written as a dynamical
system allowing us to analyze in a mathematically
rigorous way the evolution of the model and the corre-
sponding asymptotic behaviors.

The action under investigation is
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where k*=87G, ¢ and 1 (the inflaton) are scalar fields,
V() is a potential, and B is the coupling constant. Vari-
ation of the action in a flat Friedmann-Robertson-Walker
(FRW) universe yields the following set of nonlinear
second-order ordinary differential equations:

é+3H¢$—Bke PV (y)=0, (1.2a)

v+ 3H¢+e—ﬂk¢%@=o , (1.2b)
where the constraint equation is

1t12=53i §<¢>2+%<¢)2+e~wm¢) , (1.3)

and where an overdot denotes differentiation with respect
to time and H =d /a is the Hubble parameter where a is
the length scale.

Berkin et al. [1] have found a unique stable power-law
inflationary solution as the field — + . The solution is
given by

k¢=k¢,+(2/B)n(t /k) ,

a=ay(t/ty*"F

FW)=f(y)—(1—p*/6)In(a /a,) ,
where for a general potential V' we have

_ BV(y)
exp(Bkd.) 2(1—p/6)

Fan=x* [ dy—- .

(1.4)

>

We wish to investigate whether this solution is generic.
This can be done using qualitative techniques of dynami-
cal systems theory.
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First we define new independent and dependent vari-
ables:

%:eﬁmﬁﬂ , (1.5a)
D=¢'=debt/? (1.5b)
Y=y =yebt/? (1.5¢)

where a prime denotes differentiation with respect to the
new time 7. Calculating both @’ and ¥’, the resulting
equations form a four-dimensional autonomous system of
ordinary differential equations:

p'=e, (1.6a)
Y=V, (1.6b)
q>'=%"q>2———‘/23" DL+ W2V ()] 2+ BV (Y) |
(1.6¢)
v=B gy VO g g gy VW)
2 2 dy
(1.6d)
where the constraint equation is
2
H2=e"3"¢—'g6—[¢>2+\112+2V(1//)] . (1.7
We see that the singular points (defined by

¢'=y'='=V’'=0) at finite values are given by

®=0, ¥=0, V(¢)=0, d—‘;ipﬂ=o. (1.8)
We note that Egs. (3.5)-(3.7) in Berkin and Maeda [2]
therefore hold at all finite singular points in the full sys-
tem. Further analysis depends on the chosen form of the
potential V(). In this work we shall consider potentials
arising from both new and chaotic inflation.

II. CHAOTIC INFLATION

In chaotic inflation we choose the potential
V()=(A, /n)yY" where n is even and A, is constant [2].
In particular, here we consider n =2. From above we see
that for finite values of ¢, we have a nonisolated line
singularity along the ¢ axis (¢$,,0,0,0). Linearizing about
the singular line we find that all eigenvalues have
Re(A)=0 and hence all critical points are ‘“nonlinear.”
We note that the system (¢, ®,¥) is independent of ¢.
Thus for each ¢=¢, we need only consider a three-
dimensional system to determine the qualitative behavior.
Progress is made by converting to cylindrical coordi-
nates:

W =r cosf , (2.1a)
2
b=z . (2.1¢)

The inverse transformation is

r2=wl+ )07, (2.22)
VA,

@=arctan chd , (2.2b)

z=d . (2.2¢)

The equations then become (hereafter dropping the sub-
script on A for convenience)

r=r cos@%[ﬁz—\/g(zz-%—rz)“z] , (2.3a)
9'=VK—cos9sin912‘—[3z—\/3(22+r2)“2] ,  (2.3b)
z’=z%[Bz—\/_é(zz+r2)l/2]+%K—rzsinze . (2.3¢)
It can be shown that if B<V'6 [1] then
Bz—V6(z*+rH)172<0 . (2.4)

Hence we can see that ' <0 everywhere. We define the
compact set

S={(r,0,z)lr<e,—1<z=<1},

where €+1=6/8%. On the boundary r=e¢, for
(—1=z=1), r<0. On the boundary z=—1, for
(0=r=<e), it is easily seen that z’=0. On the boundary
z=1, for (0=r <€), after some algebra it can be seen
that z’ <0. Hence the set S is a positively invariant com-
pact set in R i.e., it is a trapping set. We can choose
V =r as a Lyapunov function. Since 7' <0 everywhere,
V'=r'<0 everywhere in S. Then, by the global
Lyapunov theorem [8], we have that

Ya€E€S, wla)CW={xES|V(x)=0}, (2.5)

where
w {(r 0), |6==-1, |0 5 [(r=0.z 0)].
(2.6)

But the omega-limit set of a, w(a), is the union of com-
plete orbits. The only whole orbit in W is the singular
point {r=0,z =0}. Hence the w(a) for any point a in the
trapping set S is the singular point. Therefore, for each
¢=¢, the singular point (¢,,0,0,0) is a sink.

Let us now consider the conditions for these singular
points to be inflationary. Using the fact that ¢ =aH and
the appropriate coordinate transformations we calculate

A

" 2
.q_: —Brp K_ | A 2—(1)2——\1/2 2.7
Pl 2¢ . 2.7)

3

For inflation to occur & /a must be greater than zero.
Hence the condition for which inflation takes place is
given by

ryp_er—wiso.
2
This inequality describes the interior of a cone aligned
along the ¢ axis. So any orbits inside the cone will ex-

(2.8)
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perience an acceleration in their expansion. We note that
the apex of the cone is at the singular point (see Fig. 1).
Let us define the compact set

S={(r,0,z)|r<e,—€<z <€},
where
=2V
k(B+V'12)
After some algebra it can be shown that 6’ >0 inside S.
Along with the fact that ' <0, this shows that orbits
spiral around the singular point infinitely many times in a
sufficiently small neighborhood of the singular point.
Thus for any point {a} in the inflationary regime, we can
show that the orbit through {a} will eventually leave the
inflationary regime. _
We can show that if B<V'2 then every orbit (except
the orbit » =0) that enters the inflationary regime will do

so infinitely many times as it spirals its way to the singu-
lar point. We choose

S=1(r,0,z)|r Ze,lz| S—r—a

where € >0. The set S is a compact set that contains part
of the inflationary region in such a way that at 6=/2 or
37 /2 the inflationary cone is bounded by S. On the
boundary r =€ we have that ' <0. The differential equa-
tion (2.3) defines a vector field U on the surfaces
z=1r/V2 with inward normals (with respect to S) #
and 7_. It can be shown that if 8< V2, that #-U>0, so
the angle between # and U is less than 90° which implies
that the vector field v is directed into S, that is trajec-
tories are flowing into the set S. Hence for 8 < V2 the set
S is a trapping set, and thus any orbit that enters S must
also enter the inflationary regime infinitely many times as
it spirals its way to the singular point.

We are also interested in the behavior of the field ¢ at
infinity [9]. By making use of a Poincaré-like transforma-
tion (and a new time transformation) given by

1Y @ v [dr

¢’ ¢7 ¢ ¢ ) - = ’ (2.9)

1
d7 ¢

the transformed set of equations become

Inflationary Regime

FIG. 1. The cone describes the inflationary regime defined by
Eq. (2.8).

x=—uvx?, (2.10a)

u=x(w—uv), (2.10b)

p=Br o ‘/6Kv(v2+w2+ku2)1/2—xv2+@(—ku2 ,
2 2 2
(2.10c)
Ve
u')=—62£vw———26k w24+ w?+Au)?—xow —Aux .
(2.104d)

We are interested in the singular points on the hypersur-
face x =0 (that is, as ¢— + 0, x—0%). We note that
the set x =0 is an invariant set. Thus the problem be-
comes less difficult because x =0 divides the phase space
into three invariant sets.

In the set x =0 we find that the critical values depend
on the value of the parameter 8 and are given by

172
A

=u, vV=vy= , w=0, <V6,

U=uy vV=uv, (6—[3’2] Blugl, w B

u=0, v=v,, w=0, B=V6,
6 172

u=0, v=p,= [—’ﬂ lw,l,  w=w, B>V6.

(2.11)

Note that in each case the critical points are again non-
isolated. Motivated by Berkin et al. [1], hereafter we
shall consider the case B < V6.

Linearizing the system about the singular line we find
that the eigenvalues are

A,=0, x2=x3=—§\/u6—ﬂ2)|uoi<o. (2.12)

There exists a center manifold which is tangent to the
eigenvector associated with the zero eigenvalue, namely
v=w =0; the u axis is a center manifold for all #,. The
nonlinear system is thus topologically equivalent in a
neighborhood of the singular point to the linear system
restricted to the center manifold [10]. We also note that
u=ug, is a two-dimensional invariant set, and thus we
have effectively foliated the phase space and now need
only consider the planar system (v,w) (with parameter
ug). For uy70, the singular point is hyperbolic and so
(by the Hartman-Grobman theorem [10]) the nonlinear
system is topologically equivalent to the linear system
which is an attracting stellar node. For u,=0, the equa-
tions can be integrated exactly and the same behavior re-
sults. Thus inside the invariant set x =0 the singular line
is a sink.

We note that X = —vx? and that the singular line has
positive v coordinate. Hence in any sufficiently small
neighborhood of the singular line X <0, so in the set x >0
the orbits are attracted to the line. However, in the set
x <0 orbits are repeled away from the line. Thus as
¢— + oo the singular line is a sink and as ¢— — o the
singular line is a source.

We next consider whether these singular points at posi-
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tive infinity are inflationary. In the appropriate coordi-
nates we have that

-2;—'=e*’3“¢x_2 (2.13)

Ao 2 2
TUTTUVTTwW
2

We note that in a neighborhood of the singular point the
condition

—&uz——vz—w2>0 (2.14)

2

must hold true if inflation is to occur. Equation (2.14)
represents a cone along the u axis. If in any u =u, stable
manifold we substitute the coordinate values of the singu-
lar point into the condition (2.14) we find that in order to
have inflation 8<V2 (which is precisely the same condi-
tion given in Berkin et al. [1] to guarantee power-law
inflation). Thus there is a neighborhood about the singu-
lar line such that it is a stable attractor and for B<V'2 it
is also inflationary.

III. NEW INFLATION

We consider a potential of the form V()
=V,—(A/4)* which gives rise to new inflation [2].
From Eq. (1.7) we see that there are no critical points at a
finite distance from the origin, since their existence would
imply that V,=0, which would not lead us to new
inflation but to chaotic inflation. However, the interest-
ing behavior in these models occurs when the field ¢ — «
[9]. By making use of the Poincaré-like transformation as
before [see Eq. (2.9)], except with a new time transforma-
tion

dar _ 1

ar ¢’
we are able to examine the phase portraits as ¢— . The
transformed set of equations become

(3.1)

Xx=—uvx*, (3.2a)
a=x3w—uv), (3.2b)
_ 172
v=&v2x2——‘/6kvx vzxz-l—wzxz—&u‘t‘f‘ZVQX4
2 2 2
—v2x3——li—Kku4+BKVox4 : (3.20)
_ 172
,\/
u‘)=§2£vwx2— 26wa v2x2+w2x2—%u4+2V0x4

—vwx 3+ Aux . (3.2d)

We look for critical points on the equator of the Poin-
caré sphere given by x =0. The critical points form a
two-dimensional submanifold of the phase space given by

x=0, u=0, v=vy, w=wy, (3.3)
where v, and w, are constants. In order to analyze the
stability of this submanifold, we first notice that Egs. (1.2)

and (1.3) yield

. 2 . .
H=—"-(§*+¢") <0, (3.4)
where the overdot denotes differentiation with respect to
the original time coordinate. Thus H can be considered
as a Liapunov function [10].

We note that H(x) is a C! scalar function, and that
. 2 . 2 2 2
H= —52—(¢2+¢2)= —"7 VAW opex (35)

We let (), designate a bounded component of the region
H(x)<I; then within ,, H(x)io. We see that R, the
set of all points within Q; where H(x)=0, is given by

R ={(x,u4,0,0)} . (3.6)

From Egs. (3.2), we find that the set M, the largest invari-
ant set in R, is given by

M={(0,0,0,0)} , (3.7)

that is, M consists of a single point, the origin. There-
fore, by application of a theorem by La Salle and Lefs-
chetz [11] (to H), we have that every solution of the above
system in (), tends to the origin as t — + o i.e., the ori-
gin is asymptotically stable.

For the solutions to be of inflationary type, i.e.,
d /a >0, we require that

a K?

;=—7[¢2+w2—V(¢)]>0, (3.8)
which yields, in terms of the new variables,

v2x2+w2x2+%u4—-Vox4<0. (3.9)
In addition, the physical region is defined by

v2x2+w2x2—-%u4+2V0x420. (3.10)

We wish to investigate whether there are trajectories in
the physical region satisfying the inflationary condition.
We note that the (new) variables are not dimensionless
and that typical values of the (dimensional) parameters
Vo and A are of the order of ¥;~10"° gem > and A~
[12]. This indicates that there are indeed regions within
physical phase space close to the singular point in which
the trajectories are inflationary.

IV. CONCLUSIONS

We have used the geometrical techniques of dynamical
systems theory to investigate the generic behavior of the
differential equations resulting from soft inflation. We
found that as the field ¢— + o« there exists no unique
critical point which can act as an attractor, but a one- or
two-dimensional submanifold of critical points; conse-
quently the nature of these submanifolds needed further
analysis. For the chaotic inflation case, we found that for
finite values of @, there does not exist an asymptotically
stable inflationary solution, but for 8 < V2 there exist tra-
jectories that enter the inflationary regime infinitely many
times. Also, as the field §— + o, for B < V2 there exist



48 QUALITATIVE ANALYSIS OF SOFT INFLATION 561

regions U CR* such that for any initial point in U the or-
bit asymptotically approaches a stable singular point
evolving through some inflationary regime as it ap-
proaches the singular point; hence the solution given by
Berkin et al. [1] is representative of a class of solutions in
which the model undergoes power-law inflation as
¢— + . For the new inflation case, we found that there
exist no critical points for finite values of the field ¢, but
as the field ¢ — + o, the two-dimensional submanifold of

critical points contains a global attractor at the origin
and that there are regions within physical phase space
(close to the singular point) in which the trajectories are
inflationary.
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