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THE ULTIMATE CATEGORICAL INDEPENDENCE RATIO OF A
GRAPH*

JASON I. BROWN', RICHARD J. NOWAKOWSKIt, AND DOUGLAS RALL!}

Abstract. Let 8(G) denote the independence number of a graph G. We introduce A(G) =
limg_, 0 B(G*)/|V(G)|*, where the categorical graph product is used. This limit, surprisingly, lies
in the range (0,1/2] U {1}. We can show that this limit can take any such rational number, but
is there any G for which A(G) is irrational? A useful technique for bounding A(G) is to consider
special spanning subgraphs. These bounds allow us to efficiently compute A(G) for many G. We
give a condition which if true for G shows that A(G) > 8(G)/|V(G)|. This brings up the question:
for which G does A(G) = B(G)/|V(G)|? This happens if G is a Cayley graph of an Abelian group
or if G is a connected graph that has an automorphism which has a single orbit.
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1. Introduction. Graph products have been used to find the essential value of
a graph parameter (such as independence number or chromatic number) of a graph
G by “multiplying” G by itself £ times and examining the growth of the parameter
on G*. For example, the Shannon capacity [12, 15, 16] of a graph G is defined by

6(G) = lim f(®L,G)Y*,

where ® is the strong product of graphs and G(H) denotes the independence number
of graph H (i.e., the maximum cardinality of an independent set of vertices of H).
The Shannon capacity of a graph arose from a problem of transmission of words over
a noisy line but has a number of other applications (see [12]).

Another such concept is the ultimate chromatic number of a graph G; that is,

xu(G) = kllrr;o(x(oleG))l/k_

(Here o denotes the lexicographic product and x(H) the chromatic number of H.)
This was introduced by Hilton, Rado, and Scott [11] (see also [5]) and is related to
the problem of assigning radio frequencies to vehicles operating in zones (see Gilbert
[6] and Roberts [13, 14]). The determination of both the Shannon capacity for some
graphs and the ultimate chromatic number for all graphs can be solved using linear
programming techniques. (See [15] for the former and [9] for the latter.)

In contrast to the Shannon capacity, one can investigate the parameter of the
independence number by looking at the ratio of this parameter to the total number
of vertices in the graph; if |V(G)| = n, the ultimate independence ratio of G is

I(G) = k:ll»nc-)lo ﬁ(Di‘c:lG)/nk’

where O is the Cartesian product. This was introduced in [10]. We consider an
analogous (but significantly different) concept.
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Let G = (V(G), E(G)) be a graph. We will assume that graphs are finite and
simple. We write a ~ b if a is adjacent to but not equal to b, and a L b if a is neither
adjacent nor equal to b. The categorical product G x H of G and H has the vertex
set V(G) x V(H) and (a,z) ~ (b,y) if both @ ~ b and = ~ y. As the categorical
product is the only product we shall consider henceforth, for the rest of the paper
we use x¥_ ;G and G* interchangeably. The parameter we consider is the ultimate
categorical independence ratio of a graph G which is defined as

A(G) = Jim (x},G)/n*,

where |V(G)| = n. We show that this limit exists in the next section.

The next two sections deal with upper and lower bounds, respectively. The fourth
section investigates disjoint unions of graphs, and we find classes of graphs for which
the sequence (3(G*)/|V (G¥)|) is not constant; i.e., A(G) > B(G)/|V(G)|. In the fifth
section we look at graphs for which A(G) = 3(G)/|V(G)| and in the last section we
pose several problems.

We follow standard graph theoretic terminology (cf. [1, 2, 8]), but we make
explicit note of a few definitions. We abbreviate the disjoint union of m copies of
graph G by mG. Let S C V(G) and v € V(G). Then (S) denotes the induced
subgraph on the vertices of S. The neighborhood of v € V(G) is N(v) = {y|y ~ v}
and N(S) = UyesN(v); N[v] = N(v) U {v} is the closed neighborhood of v and
N[S] = UyesN[v]. The set S is called independent if (S) contains no edges and, as
mentioned above, 8(G) denotes the maximum cardinality of an independent set of G.
The chromatic number of G is denoted by x(G). We remark that G x H is connected if
and only if both G and H are connected and at least one is 3-chromatic [17]. It is easy
to see as well that GXx H 2 Hx G, GXx (HUK) = (Gx HYU(Gx K), and x(Gx H) <
min{x(Q), x(H)}. Whether x(Gx H) = min{x(G), x(H)} is Hedetniemi’s conjecture,
an open problem that has attracted (and frustrated!) a number of mathematicians
(see, for example, [4, 3]).

2. Upper bounds for A(G). The first fact needed is that the ultimate categor-
ical independence ratio really exists for any graph. We will make use of the following
elementary but important fact.

LEMMA 2.1. Let G and H be graphs. Then 3(G x H) > max{8(G)|V (H)|,|V(G)|
B(H)}.

Proof. If I is an independent set of H then U,e;G X {a} is an independent set
of G x H and thus (G x H) > B(H)|V(G)|. The second part follows similarly since
the product is commutative. O

From this lemma it follows that 8(G*)/n* > nB(G*~1)/n* = B(G*~1)/n*~1.
Therefore the sequence 3(G*)/n* is nondecreasing and is bounded above by 1 and
so the ultimate categorical independence ratio exists. We contrast this with the
ultimate independence ratio of Hell, Yu, and Zhou [10], where I(G) is the limit of the
nonincreasing sequence 3(0%_, G)/nk¥).

The following observation is extremely useful and forms the basic idea for this
and the next section.

LEMMA 2.2. If G is a spanning subgraph of H then A(G) > A(H).

Proof. For all k, G* is a spanning subgraph of H*. Thus 8(G*) > B(H¥) and
therefore B(G*)/nk > B(H*)/nk. ]

The previous result, along with the next, is quite helpful in bounding the ultimate
categorical independence ratio of a graph.

THEOREM 2.3. If G is a regular graph of degree r > 0 then A(G) < 1/2.
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Proof. Let I C V(G) be an independent set with |I| = §(G) and let C = V(G)—1I.
Each vertex in G has degree r so summing the degrees of the vertices in C' we have
(n—pB(G@))r. Some edges have been counted twice, but the edges between I and C have
only been counted once. Therefore, since [ is an independent set, r3(G) < (n—08(G))r;
ie., 3(G)/n < 1/2. Now G* is a regular graph of degree r* so B(G*)/n* < 1/2 and
consequently A(G) < 1/2. 0

Theorem 2.3 and Lemma 2.2 give the following corollary.

COROLLARY 2.4. If H has a regular spanning subgraph of degree at least one then

B(H)/n < A(H) <

N =

This result shows that A(Ca,) = A(Pan) = 1/2, the latter because Py, has a
perfect matching as a spanning subgraph. Moreover, if G has a Hamiltonian cycle
then A(G) < 1/2. However, if G has a Hamiltonian path then it is possible for A(G)
to be greater than 1/2. For example, A(Pyp41) > (n+1)/(2n + 1) > 1/2. Indeed,
this raises the question: What is A(Pan41)? We answer this question later.

General upper bounds for the ultimate categorical independence ratio are few and
far between. One technique that appears fruitful involves partitioning the vertex set
into subgraphs. In the following, the phrase K decomposes into L1, ..., L; means that
LyU- - -UL; is a spanning subgraph of K. (We denote this as wellby K = L{U---UL;.)

LEMMA 2.5. If G is a graph of ordern and Gx H = nH then B(Gx H) = S(H)n.
Moreover, if also H = G then A(G) = B(G)/n.

Proof. From Lemma 2.1 we have that 8(G x H) > B(H)|V(G)| > B(H)n for any
graphs G and H.

Suppose that G x H can be partitioned so that the subgraphs in each partition
are all isomorphic to H. Thus any independent set of G x H intersects each part
in no more than B(H) many vertices. Therefore (G x H) < B(H)n. Consequently,
B(G x H) = B(H)n.

If a graph G is of order n and G? decomposes into nG, then inductively G* =
n*~1G and B(G*)/n* < (n*~18(G))/n* = B(G)/n. Thus A(G) = B(G)/n. ]

This result shows that A(K,) = % This follows since K2 can be decomposed
into nK,: if the vertices of K,, are Z,, and X; is the subgraph of K2 induced by
{(4,5 +1):j € Z,}, then K2 decomposes into Xy, ..., Xn_1; i.e., K2 = nK,.

Decompositions can be utilized to prove the following general upper bound.

THEOREM 2.6. Suppose G = H U Ky, U --- U Ky, where |V(H)| = n and
X(H) <my <--- <myp. Then A(G) < A(H).

Proof. Suppose HU Kp,, U-+-U Ky, is a spanning subgraph of G, where x(H) <
my < ++- < my. Then G¥ decomposes into

k k ‘ ‘
U (Z)H X (Kmy U+ U K )0

=0

We observe that if x(H) < r then H x K, has a decomposition into r copies of

H, as follows. Let x(H) = j and the color classes of H be Cy, Ca, ..., C;j. Let
V(K,) = {a1,as,...,a.}. The ith copy of H would be (Cy x {a;}) U(Cs X {ai+1}) U
--U(Cj x {asyj—1}) for i = 1,2,...,r where the subscripts are taken modulo .

Since x(H*) < x(H) for all 4, using the previous remark we have (for i < k)

H X (Kpy U+ UKy, )F
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= H' x (Km1 U--- UKmp) X (Km1 U--- UKmp)k—i—l
= (H' X Ky UH' X Ky U+~ UH' X Ky ) X (K U -+ U Koy )*7571
= (m1+- - +mp)H X (K, U+~ UKy, )F71
and so by induction,
HE x (Ko, U...UKmp)k—i = (mq +”.+mp)k—in‘

for any 7 € {0,...,k}. (We interpret the Oth power of a graph to be Kj.)
Thus G* has a decomposition into

(U <I;) (my +--~+m,,)’°"'H") U (Kmy U UK, )"
>0

Now as B((Km, U+ U Kp,)*) < (my + -+ my)* we have

B(GY) < (Z @ (mat ot mp)’c-’ﬂ(H")> e my)

>0

Since B(H*) < A(H)n?,

B(GY) < (Z (f) (ma+ -+ mp)* T ACH W) +(myt e+ mp)

>0
=AH) (n+m1+ -+ +myp)* — (my +~-~+mp)k)
+(my + -+ +my)k.
Dividing through by (n +my + - - +m,)* yields

B(G*)
(n+my+ - +mp)F

SA(H)(l_ (ml+-.-+mp)k ) (m1+--'+mp)’°

(n+my+ - +mp)k (n+mq+---+mp)k’

Letting k — oo we get A(G) < A(H). o

Suppose we have a coloring  of G, the complement of G, and ¢g < c¢; < --- < ¢p
are the sizes of the color classes. Then we have a decomposition of the original graph
G into cliques:

G=K,UK,U---UK, .

Taking H = K., and applying the previous theorem, we deduce that A(G) < 1/c¢p.
Of course the bound is improved when ¢ is as large as possible. We summarize as
follows.

COROLLARY 2.7. For each coloring ™ of G, let c(m) denote the minimum cardi-
nality of a color class in m, and let ¢ denote the mazimum of c(m) over all colorings.
Then A(G) < 1.

3. Lower bounds for A(G). If one takes an independent set [ in G, then the
subset I x G*~1 is an independent set in G* (this is inherent in Lemma 2.1), and it
follows that A(G) > B(G)/|V(G)|. There are graphs (such as the complete graphs) for
which equality holds (we will have more to say about such graphs later). The following
lemma is often useful in showing when independent sets larger than 3(G)|V (G)| exist
in the product of G and H.
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LEMMA 3.1. Let G and H be graphs and let I be an independent set of G where
|G — N[I]| =k. Then B(G x H) > kB(H) + |I||V(H)|.

Proof. Let P be a maximum-sized independent set of H. Let Q = (V(G) —
N[I]) x Pand R=1x V(H). Then Q UR is independent in G x H and |Q U R| =
kB(H) +|I|IV(H). O

Fic. 1.

If G is the graph in Figure 1, then 8(G)/5 = 3/5, but 3(G?)/25 = 16/25 > 3/5.
Moreover, let I = {a,c} and H = G*. Then |G — N[I]| = 2, and applying the lemma
to G x H, we have A(G) > 2/3.

Yet for the graph G in Figure 1, what is A(G)? The next result provides the
answer as well as giving A(Pa,+1) by proving the surprising fact that if the indepen-
dence number of any graph is more than half the number of vertices, then the ultimate
categorical independence ratio is 1.

THEOREM 3.2. Let G be a graph with n vertices. If B(G)/n > 1/2 then A(G) = 1.

Proof. Let I be an independent set of G with |I| = 3(G) > n/2. Note that
B(G) > n — B(G).

In G* denote the factors as G, i = 1,2,. ..,k with I; as the copy of I in the ith
factor. Now form the set

J =J(xierL) x (x;¢p (V(G) - I))
P

where the union is taken over all P C {1,2,...,k} with |P| > k/2. For any two vertices
x = (z1,...,2x),¥ = (Y1,--.,Yx) in J, as each has more than half its coordinates in
I, there is an 7 such that z;, y; € I, and hence x and y are not adjacent. Thus J is
an independent set.

Counting gives us the following;:

1= (5)serm-s@y.
i>k/2
Completing the summation and taking it away again gives
k. /k . i k . i
=% (4)scron-sep= - 5 (5)acyn-sen,
j=o M i<k M

and thus

ok k i — k=
l=nk— 3 (j>(f3(G))( B(G))+.

J<k/2

Now since B(G) > (n — B(G)), f(z) = (n—f%%)ﬁ is an increasing function of z. It
follows that for j < k/2,

B(GY (n—B(G))¥7 < B(G)**(n - BG))*2.,
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Therefore we get

M=M~§jcymwmwmmwz

i<k/2
> nk — 246(G)(n — B(G))>.

Dividing by n* gives

k/2
PI C LE ) R
n

Now as 48(G)(n — B(G)) < n?, the right side tends to 1 as k goes to infinity, and
since A(G) > |J|/nF for all k, we are done. O

We have seen that A(Capt+1) = n/(2n + 1) < 1/2. Thus the addition of a single
edge to a graph (here to Ps,41), while changing the ratio of independence number
to order by an arbitrarily small amount, may greatly affect the ultimate categorical
independence ratio.

We now consider a lower bound which is a companion result to Theorem 2.6.

THEOREM 3.3. Let I be an independent subset of G. Then A(G) > |I|/|N[I]|

Proof. Let H= N[I] and F = G — H and put m = |V(F)| and n = |V(H)|. Let
JCGF—FF = (HUF)* - F* (that is, for i = 1,2, ...,k choose i of the coordinates
and in these coordinates the entries will be taken from H and in the others the entries
will be taken from F'), with the extra condition that in the first coordinate in which
the entries are taken from H they will be restricted to vertices from I. Then J is an
independent set of G. This follows since if x,y € J then let ¢ and j, respectively, be
the least indices such that z; € I and y; € I. If i = j then 2; = y; or oy L y;;if i <j
then y; € F thus z; L y; and so x L y. In any event, x and y are nonadjacent. Now

1= 3 (5= = B (D) atmt—s = Bl (@t = ).

i>0 i>0
Therefore,

]

B(GF) > —~ ((n+m)* —m*),

and dividing through by (n +m)* we get

B(G*) |u( ( m k)
) S BNy .
(n+m)k — n n+ m)
Thus as k — oo we finally obtain A(G) > |I|/n. 0
This theorem shows in particular that if G has an isolated vertex z, then A(G) =
1, since if I = {z}, then A(G) > 1/1.
The previous two theorems can be combined to yield the following corollary.
COROLLARY 3.4. If G has an independent set I such that |I| > |N(I)| then
AG) =1.
Proof. By the previous theorem A(G) > |I|/|N|[{]|, but this latter term is greater
than 1/2 and thus by Theorem 3.2, A(G) = 1. 0
We know from Theorem 3.2 that if 3(G)/|V(G)| > 1/2 then A(G) = 1. What
can we say if 3(G)/|V(G)| =1/2?
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COROLLARY 3.5. Suppose that G is a graph of order n with 3(G) = n/2. Then
A(G) =1/2 if G has a perfect matching, and A(G) = 1 otherwise.

Proof. If G has a perfect matching then G has a 1-regular spanning subgraph and
so A(G) < 1/2. In fact, A(G) = 1/2 in this case as A(G) > B(G)/n =1/2.

Now assume that G has no perfect matching. Let J be an independent set of size
n/2 in G. Then there is no matching of J into G — J, and hence by Hall’s theorem,
there is a subset I C J such that |[N(I)] < |I|. Set H = N[I]. Then applying
Theorem 3.3,

|
| + [N (D)

and hence by Theorem 3.2, A(G) = 1. ]

We remark that there are graphs G for which A(G) = 1/2 and yet G has no
perfect matching. For example, we see in the next section that for any n > 1,
A(K2 U Kop41) = 1/2 while clearly neither this graph nor any power has a perfect
matching.

We can now determine quickly what the ultimate categorical independence ratio
is for any bipartite graph G. Let G have order n. We can find a 2-coloring of G in
polynomial time. Let the color classes be C; and Cy. Clearly

B(G)

1

A(G) > > %,

If |C1] # |C2|, then B(G) > n/2, and hence A(G) = 1. Assume now that |Cq| = |Cy|.
If there is a perfect matching in G (and this can be determined in polynomial time),
then A(G) = 1/2. Otherwise, by Corollary 3.5, A(G) = 1. Thus we have the following
corollary.

COROLLARY 3.6. If G is bipariite, then A(G) can be determined in polynomial
time.

Again, we contrast this result with that for the ultimate independence ratio, where
it is known [7] that I(G) = 1/2 for any bipartite graph G.

4. The ultimate categorical independence ratio for disjoint unions. It
is of interest to see how the ultimate categorical independence ratio can change under
graph operations. The independence number of the union of graphs changes in an
obvious way, namely the sum of the independence numbers of its constituent parts.
It is not so clear as to how the ultimate categorical independence ratio changes under
disjoint union. For a graph G, it is clear that (G U G)* = 2*¥Gk. Tt follows that
A(GUG) = A(2G) = A(G). The next result shows that A(GU H) is at least the
maximum of A(G) and A(H).

THEOREM 4.1. If G and H are any graphs, then A(GUH) > max{A(G), A(H)}.

Proof. Let ng = |[V(G)| and ny = |V (H)|. We show first that A(GUH) > A(G).
The other inequality follows similarly.

Note that

and hence
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By dropping the ¢ = 0 term, we obtain
k k_(k i k—i
B(GUH) )>Z(i)ﬂ(G x H*™)

(na+nH)k - - (nG-l-nH)k
k B(G*)nj;
Z (nG n T)LH)k [Lemma 2.1]

k—1i

k i

’nG+nH)’c ni,

There are two cases. Flrst, suppose A(G) = B(G)/ng. Then A(G) = B(G?)/n},
for all ¢. In this case

BUGUH)Y) Zi (rmnfy * 4G
(ng +nm)k nG-FnH ne,

=1

Thus
nk
AGUH) = lim %&f—ﬁl))—k) > lim A(G) (1 _ m) — AG).

Now we may assume that A(G) > B(G)/ng. We choose ¢ > 0 and we will show
that A(GU H) > A(G) —e€. Let

€
Since B(G*)/n, is a nondecreasing sequence we can fix J > 1 so that
ﬂ(G)>'yforall]>J and B(G)<'yforallz<.]
nl, ng

Let
max{ng,ny}
ng +ng

P =

and

0 ifJ=1.

Note that for J > 1, p = max {y — B(G*)/n¥; |i < J}. Also, ¢ € (0,1) and p > 0
constants. Thus, taking k > 2J, from (*) we get

BUGUH)®) _ -~ (Dnemi " (5)nimk B(GY)
(ng +ng)k = Z (nG+nH)k Z (na+nH )k ( g )

“:{ v—-B(G)/ng ifJ>1,

k k i k—1 J—1 k—i .
_ (z’)"&”H ) _ "G"H ( ﬁ(Gl))
B FYZ (ng +nm)* v ("G + ng)k Z (ng +nm)k :
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Therefore,

B((GUH)¥) £ n} -1
o (A(G) - -2-) (1 O +HnH)k) ORI

where C' = %—:%% is a nonnegative constant.
This shows that

AGUH) = lim %i,))?
> lim ((A(G) -%) (1 - W%) _ CkJ_ldjk)
> AGQ) —¢

for any € > 0 and hence A(GU H) > A(G).

In both cases we have that A(GU H) > A(G). Similarly, we also have that
A(G U H) > A(H), and, therefore, it follows that A(G U H) > max{A(G),
A(H)}. ]

As a corollary to this theorem and Corollary 2.7, we can determine the ultimate
categorical independence ratio for the disjoint union of complete graphs.

COROLLARY 4.2.

!
1
(i:l min{m; :i=1,...,1}

This corollary yields infinitely many graphs G for which A(G) is not 1, not 1/2,
nor B(G)/|V(G)|; in fact, the disjoint union of complete graphs of order at least 2
where not all the cliques have the same size are such examples.

Finally, we also derive that there are graphs G with arbitrarily small 3(G)/|V (G)|
for which A(G) climbs up to 1. For example,

B(K12UK,) _ 3
IV(K]_’QUK:”)I n+3’

while A(Kl’z U Kn) =1as A(Kl,g U Kn) > A(Kl,z) =1.

5. Universal graphs and the distribution of A(G). Lemma 3.1 leads nat-
urally to the next definition. A graph G is called categorical-universal if 3(G x H) =
max{B(G)|V (H)|, B(H)|V(G)|} for all graphs H. A related notion of universal graphs
was originally introduced in the Shannon capacity.

Of course if G = K,, then G is categorical-universal since K, x H contains no
edges and thus 3(K,, x H) = n|V(H)| = max{8(K,)|V(H)|,3(H)|V(K,)|}. In fact,
it can be shown that these are the only categorical-universal graphs.

A more restricted concept than a categorical-universal graph is the following:
graph G is self-universal if A(G) = B(G)/|V(G)|. From Lemma 2.5 it follows that
if a graph G is of order n and G? decomposes into nG, then G is self-universal. We
have also seen that regular bipartite graphs and cliques are in the class. The next
result greatly increases the known self-universal graphs by showing that it includes all
Cayley graphs on an Abelian group. (A similar result holds for ultimate independence
ratios [10].)

THEOREM 5.1. If G is the Cayley graph of an Abelian group then G is self-
ungversal.
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Proof. Let S be the generating set for G and |V(G)| = n. In what follows we do
not distinguish between an element of the group and a vertex of the Cayley graph.
The proof is by induction. Suppose that 3(G?)/n' = B(G)/n fori =1,2,...,k — 1.

CrLAM. Leta = (ai,as2,...,ax) be any vertex of G*. Then {(gai, gas,...,gax)|g €
V(G)} is isomorphic to G.

Let T = {(ga1,9a2,...,9ar) | g € V(G)}. Define ¢ : G — T by ¢(h) = (hay, has,
... hag). Now g ~ h if and only if there exists s € S such that gs = h. Moreover,
since G is Abelian for any a € G then gas = gsa = ha. Thus ga ~ ha if and only if
g ~ h. Since this holds in every coordinate, we have ¢(g) ~ ¢(h) if and only if g ~ h.
Thus the claim is proved.

For each x € V(G*) set Ty = {gx|g € V(G)}. If ¢ € Tx N T, then there exist
f,g € G such that ¢; = fx; = gz; for i = 1,2,...,k. Thus z; = f~1gz; and it follows
that any vertex of Ty is in T, and conversely. Therefore Ty = T, and these decompose
G* into |V(G*~1)| many copies of G. From Lemma 2.5 the result now follows. O

As a consequence we now know that both odd and even cycles are self-universal.

We can extend the class of known self-universal graphs even further.

THEOREM 5.2. Let G be a graph of order n with an automorphism f that has a
single orbit of size n. Then G is self-universal.

Proof. We define an equivalence relation = on V(G**!) by x = y if y = f!(x)
for some ! (where f is applied coordinatewise). Now each class is of the form
{x, f(x), f2(x),..., f~"1(x)}. We'll show that the subgraph induced by each such
class is isomorphic to G.

Let x = (x1,%9,...,2x41) and y = fY(x) = (fY=z1), f'(z2),..., f(zrs1)) (for
some 1 <1 <n—1) be any two elements of a class. If z; 1 y; = f'(x1) then x L y.
If 21 ~ y1 = fl(z1), then x ~ y, as if z; = f7(z1); then y; = fi(z;) = fIH (1) ~
fi(z1) = z;. It follows that the subgraph of G¥*! induced by the class generated
by x is isomorphic to G, and thus G*¥*! decomposes into copies of G, and again by
Lemma 2.5 we are done. 0

We now turn to the distribution of the ultimate categorical independence ratio.
From Theorem 3.2, we know that there is a gap between 1/2 and 1. Clearly 0 is not the
ultimate categorical independence ratio for any graph G, so {A(G) : G is a graph} C
(0,1/2] U {1}. While we do not know if A(G) can be irrational, we can show that the
closure of the set above is in fact [0,1/2] U {1}.

THEOREM 5.3. For any rational number r € (0,1/2] U {1} there is a graph G,
with A(G,) =r.

If r = 1, we may take G, to be any graph with independence number greater than
half the number of vertices. Otherwise, let r = p/l (p, | positive integers) and G, be
the Cayley graph Z; where z is joined to y if and only if z —y € {p,p+1,...,l—p}; it
can be easily seen that 3(G,) = p, and from Theorem 5.1, A(G,) = B8(G.)/|V(G,)| =
p/l=r.

6. Open problems. There are a number of open problems concerning the ulti-
mate categorical independence ratio. While we have shown that every rational number
r € (0, 1] U {1} is the ultimate categorical independence ratio of a graph, we do not
know the following.

PROBLEM 6.1. Can A(G) be irrational?

There are also families of graphs (such as complete multipartite graphs) for which
the determination of A(G) is unknown. (Although, for many cases, the results here
will provide a solution.)

PROBLEM 6.2. What is A(G) for a random graph G? Are almost all graphs G of
order n self-universal?
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In terms of algorithmic considerations, we have shown that one can determine in
polynomial time the ultimate categorical independence ratio of a bipartite graph.
PROBLEM 6.3. Is A(G) computable? If so, what is its complexity?

Finally, in many cases, equality does hold in Theorem 4.1, and we do not know
of any examples where equality does not hold.

PRrROBLEM 6.4. Is A(GU H) = max{A(G), A(H)}?

v Q@ ® U 2 8o @
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