2.849 (2) A. The $\mathrm{O}(2), \mathrm{C}(11), \mathrm{C}(8), \mathrm{C}(7), \mathrm{N}(1), \mathrm{H}(\mathrm{N} 1)$ moiety is planar within $0.03 \AA$ and the $\mathrm{O}(3), \mathrm{C}(9)$, $\mathrm{C}(8), \mathrm{C}(11), \mathrm{N}(2), \mathrm{H}(\mathrm{N} 2)$ moiety is planar within $0.01 \AA$. There is no evidence of intermolecular hydrogen bonding.

References

Cromer, D. T. \& Waber, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.2B. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)

Frenz, B. A. (1978). Computing in Crystallography, edited by H. Schenk, R. Olthof-Hazekamp, H. van Koningsveld \& G. C. Bassi, pp. 64-71. Delft Univ. Press.
Ibers, J. A. \& Hamilton, W. C. (1964). Acta Cryst. 17, 781-782.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Mack, R. A. \& Georgiev, V. St. (1987). J. Org. Chem. 52, 477-478.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., DeclercQ, J.-P. \& Woolfson, M. M. (1982). MULTAN11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.

Acta Cryst. (1988). C44, 296-300

Synthesis of Cedranoid Sesquiterpenes. IV. X-ray Characterization of the endo-6-Hydroxy-endo-8-methyl and exo-6-Hydroxy-exo-8-methyl Isomers of Methyl 6-Hydroxy-4,4,8-trimethyl-3-oxo-cis-bicyclo[3.3.0]octane-1-carboxylate

By D. Jean Burnell, Vernon J. Freer, Rupinder S. Grewal, Peter C. Hayes, Jeffery F. Sawyer and Peter Yates
Lash Miller Chemical Laboratories, University of Toronto, Toronto, Ontario, Canada M5S 1A1

(Received 26 February 1987; accepted 29 September 1987)

Abstract

C}_{13} \mathrm{H}_{20} \mathrm{O}_{4}\), endo-endo isomer (1), $M_{r}=240 \cdot 3$, monoclinic, $P 2 / n, a=15.041$ (3), $b=6.225$ (3), c $=27.795$ (5) $\AA, \beta=101.56$ (2) ${ }^{\circ}, U=2550$ (2) \AA^{3}, Z $=8\left(2\right.$ independent molecules), $D_{x}=1.25 \mathrm{~g} \mathrm{~cm}^{-3}$, Mo $K \bar{\alpha}$ radiation, $\lambda=0.71069 \AA, \quad \mu=0.9 \mathrm{~cm}^{-1}$, $F(000)=1040, T=298 \mathrm{~K}, R=0.090, w R=0.071$ for 1499 reflections with $I \geq 2 \sigma(I)$. exo-exo Isomer (2), $M_{r}=240.3$, rhombohedral, $R \overline{3}, a=12.916$ (7) \AA, α $=92.86(5)^{\circ}, \quad U=2146(4) \AA^{3}, \quad Z=6, \quad D_{x}=$ $1 \cdot 12 \mathrm{~g} \mathrm{~cm}^{-3}$, Mo $K \bar{\alpha}$ radiation, $\mu=0.8 \mathrm{~cm}^{-1}, F(000)$ $=780, T=298 \mathrm{~K}, R=0.062, w R=0.064$ for 1306 reflections with $I \geq 3 \sigma(I)$. In isomer (1), the two independent molecules in the asymmetric unit are approximate mirror images and the 6 -hydroxy and 8 -methyl substituents are both endo. The cyclopentane rings are both flattened envelopes and there are significant transannular $\mathrm{O}=\mathrm{C} \cdots \mathrm{OH}$ contacts (2.88 and $2.91 \AA$) in both molecules. In isomer (2), the C(6) and C(8) substituents are both exo and the cyclopentane rings have distorted envelope and half-chair conformations. The molecules of this isomer are linked by hydrogen bonding into hexameric units.

Introduction. Synthetic routes to the cedranoid sesquiterpenes being pursued in these laboratories (Yates, Burnell, Freer \& Sawyer, 1987; Grewal, Hayes, Sawyer \& Yates, 1987) have involved the preparation of several bicyclo[3.3.0]octanes as intermediates. In this paper we report on the determination of the relative

0108-2701/88/020296-05\$03.00
configurations in two such intermediates, (1) and (2), by X-ray crystallography.

(1)

(3)

(2)

(4)

$$
\left(E=\mathrm{CO}_{2} \mathrm{Me}\right)
$$

Experimental. Isomer (1) was prepared by hydrogenation of (3), as described elsewhere (Yates, Burnell, Freer \& Sawyer, 1987). Crystallization from pentane containing $5-10 \%$ dichloromethane gave colorless crystals as small thin needles, m.p. $395 \cdot 6-396.1 \mathrm{~K}$. Crystal of overall dimensions $0.019 \times 0.069 \times$ © 1988 International Union of Crystallography

Table 1. Experimental details

	Isomer (1)	Isomer (2)	
Reflections for cell determination*	25/	25/	
\| Number/2 θ range (${ }^{\circ}$)\|	$7.2<2 \theta<27.8$	$19.9<2 \theta<28.8$	
ω scan range (${ }^{\circ}$)	$0.75+0.35 \tan \theta$	$0.85+0.35 \tan \theta$	
Max. time in final scan (s) ${ }^{\dagger}$	70	65	
Standard reflections \|Number/interval (s)		3/8500 \ddagger	3/8000§
Max. $2 A\left({ }^{\circ}\right.$ /octants	$50 / h, k, \pm 1$	$50 / h, \pm k, \pm 1$	
Number of data collected (including	4814	7413	
standards)	$\begin{gathered} \left(h_{\text {tiax }}=13, k_{\text {max }}=62\right) \\ l_{\text {max }}=6, ~ \end{gathered}$	$\begin{gathered} \left(h_{\operatorname{maxa}}=11, k_{\max }=10 .\right. \\ \left.l_{\max }=15\right) \end{gathered}$	
Structure solution	Direct methods (MULTAN11/82)	Direct methods (SHELX76)	
Number of data in least squares	$1499 \mid I \geq 2 \sigma(n)$	$1306\|I \geq 3 \sigma(t)\| ¢$	
Final $R(\sim R)$	0.0897 (0.0705)	0.0620 (0.0639)	
Max. A / σ in final cycle	0.60**	0.25**	
Factor used in weighting scheme $\dagger \dagger$	0.00022	0.00060	
Max. $\mathrm{A} \rho\left(\mathrm{e} \AA{ }^{\text {® }}\right.$)	<0.16	0.41	

Table 2. Final atomic positional and thermal parameters $\left(\AA^{2} \times 10^{3}\right)$

First line is molecule 1, second is molecule 2 in isomer (1) and third line is isomer (2)

$$
U_{\mathrm{eq}}=\frac{1}{3} \text { trace } \mathbf{U} .
$$

	x	y	z	$U_{\text {eq }}$
$\mathrm{O}(1)$	0.6478 (5)	-0.2874 (10)	-0.1208 (2)	59 (5)
	0.5653 (4)	1.0355 (10)	0.6586 (2)	58 (5)
	0.4928 (2)	-0.1275 (3)	-0.0486 (2)	90 (2)
$\mathrm{O}(2)$	0.8546 (4)	-0.0040 (11)	-0.0765 (2)	51 (5)
	0.5865 (4)	0.7419 (11)	0.7726 (2)	47 (4)
	0.8458 (2)	0.0169 (2)	0.1309 (2)	64 (2)
$\mathrm{O}(3)$	0.6406 (4)	0.2883 (11)	0.0233 (2)	44 (5)
	0.3147 (5)	0.3984 (11)	0.6729 (2)	54 (5)
	0.6870 (3)	-0.1988 (3)	0.3391 (3)	103 (3)
$\mathrm{O}(4)$	0.6126 (4)	-0.0561 (11)	0.0367 (2)	56 (5)
	0.2790 (5)	0.7204 (11)	0.6414 (2)	59 (5)
	0.5218 (3)	-0.2428 (4)	0.3040 (4)	146 (4)
C(1)	0.6693 (7)	-0.1477 (16)	-0.0901 (3)	40 (7)
	0.5242 (6)	0.8843 (16)	0.6720 (3)	31 (6)
	0.5449 (3)	-0.1311 (3)	0.0309 (3)	64 (3)
C (2)	0.6611 (7)	0.0912 (15)	-0.0999 (3)	37 (7)
	0.5498 (6)	0.6482 (14)	0.6686 (3)	28 (6)
	0.6601 (3)	-0.1523 (3)	0.0388 (3)	61 (3)
C(3)	0.7260 (6)	0.1857 (14)	-0.0554 (3)	29 (6)
	0.4975 (5)	0.5450 (14)	0.7052 (3)	27 (6)
	0.6965 (3)	-0.1037 (3)	0.1460 (3)	53 (2)
C(4)	0.8256 (7)	0.1976 (16)	-0.0580 (3)	41 (7)
	0.5446 (6)	0.5353 (16)	0.7587 (3)	43 (7)
	0.7383 (3)	0.0086 (3)	0.1529 (3)	49 (2)
C(5)	0.8716 (6)	0.2171 (16)	-0.0050 (3)	48 (7)
	0.4674 (6)	0.5037 (17)	0.7859 (3)	51 (7)
	0.7189 (3)	0.0454 (3)	0.2625 (3)	64 (3)
C(6)	0.8191 (6)	0.0673 (14)	0.0242 (3)	32 (6)
	0.3901 (6)	0.6488 (15)	0.7586 (3)	37 (6)
	0.6078 (3)	0.0049 (3)	0.2740 (3)	65 (3)
C(7)	0.7250 (6)	0.0317 (15)	--0.0111 (3)	32 (6)
	0.4131 (6)	0.6823 (15)	0.7059 (3)	32 (6)
	0.5992 (3)	-0.1036 (3)	$0 \cdot 2140$ (3)	59 (2)
C(8)	0.7066 (6)	-0.1920 (14)	-0.0366 (3)	28 (6)
	0.4409 (6)	0.9103 (15)	0.6925 (3)	41 (7)
	0.5043 (3)	-0.1161 (4)	0.1377 (3)	74 (3)
C(9)	0.6527 (6)	0.0763 (18)	0.0170 (3)	34 (7)
	0.3295 (7)	0.6100 (17)	0.6700 (4)	40 (8)
	0.5968 (4)	-0.1909 (4)	0.2882 (4)	88 (3)
C(10)	0.5761 (6)	0.3455 (16)	0.0533 (3)	52 (7)
	0.2335 (6)	0.3090 (18)	0.6430 (4)	65 (8)
	0.6892 (6)	-0.2738 (7)	0.4178 (6)	169 (7)
C(11)	0.5613 (6)	0.1512 (16)	-0.0977 (3)	47 (7)
	0.5067 (6)	0.5782 (14)	0.6161 (3)	40 (6)
	0.6658 (4)	0.2714 (3)	0.0378 (4)	95 (4)
$\mathrm{C}(12)$	0.6795 (6)	0.1553 (15)	-0.1505 (3)	41 (6)
	0.6517 (6)	0.6094 (16)	0.6782 (3)	49 (7)
	0.7170 (4)	-0.1116 (4)	-0.0516 (3)	83 (3)
C(13)	0.8743 (6)	- 0.1374 (16)	0.0413 (3)	$53(8)$
	0.3823 (7)	0.8584 (16)	0.7869 (3)	62 (8)
	0.5741 (4)	0.0082 (5)	0.3863 (3)	100 (4)

atom and these peaks were excluded from the final refinements. Calculations were on PDP 11/23 and Gould 9705 computers using programs in the SHELX (Sheldrick, 1976), MULTAN (Main et al., 1982) and Enraf-Nonius $S D P$ packages (Frenz, 1981). Scattering factors stored in the programs were taken from International Tables for X-ray Crystallography (1974).

The final atomic positional parameters, selected torsion angles, bond lengths and bond angles for both isomers and details of the hydrogen bonding in isomer (2) are given in Tables 2-5, respectively.*

[^0]$$
\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{4}
$$

Table 3. Selected torsion angles $\left({ }^{\circ}\right)$ and puckering constants $\left({ }^{\circ}\right)$ for the cyclopentane rings

Torsion angle	Isomer (1)				Isomer (2)	
	Molecule 1		Mol	cule		
1	19.9 (7)		-19.5 (7)	俋 2		
2	-1.0(7)	$\Delta=32(4)^{*}$	$-19.9(8)$ 2.9	$=26$ (4)	$-23.9(3)$ $12.5(3)$	= 19 (2)
3	-17.9(7)	$\varphi_{m}=-33(1)$	15.3 (7)	$\varphi_{m}=30$ (1)	4.1 (3)	$\varphi_{m}=26 \cdot 1(4)$
5	30.9 (7)		-28.2(7)		-18.9 (3)	
5	-31.4 (7)		29.0 (7)		25.7 (3)	
6	30.0 (7)		-27.3 (7)		-12.2(3)	
7	-6.6 (7)	$\Delta=19$ (3)	3.4 (7)	$\Delta=26$ (3)	-15.5 (3)	$A^{\prime}=4$ (1)
8	-19.6(7)	$\varphi_{m}=-43(1)$	21.7 (7)	$\varphi_{m}=43$ (1)	37.7 (3)	$\varphi_{m}=-46.0(3)$
10	38.8 (7)		-39.5 (7)	ω_{m}	-46.0 (3)	$9_{m}=-460$ (3)
10	-42.4 (7)		41.4 (7)		35.9 (3)	
$\mathrm{C}(3)-\mathrm{C}(7)-\mathrm{C}(9)-\mathrm{O}(3)$	-40.6 (9)		49.1 (9)		47.0 (4)	
$\mathrm{C}(3)-\mathrm{C}(7)-\mathrm{C}(9)-\mathrm{O}(4)$	145.9 (9)		-131.5 (10)		-137.1 (5)	
$\mathrm{C}(13)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(3)$	-129.0 (6)		125.9 (6)		-142.9 (3)	
$\mathrm{C}(13)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	-16.0 (8)		10.1 (8)		102.6 (4)	
$\mathrm{C}(13)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(9)$	107.9 (7)		-113.0(7)		-21.0 (4)	
$\mathrm{O}(2)-\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	-45.6 (8)		45.2 (8)		-84.1 (3)	
$\mathrm{O}(2)-\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(7)$	72.2 (7)		-73.8(7)		157.4 (3)	
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(7)-\mathrm{C}(6)$	154.4 (6)		-152.7(6)		-137.9 (3)	
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(7)-\mathrm{C}(8)$	-93.5 (6)		97.2 (7)		106.8 (3)	
Foid angle, θ^{+}	124.0 (6)		125.0 (7)		122.4 (3)	
* Altona, Geise \& Romers (1968). $\dagger \theta$ is defined as $\left.\frac{1}{2} \right\rvert\,\{[C(2)-C(3)-C(7)-C(6)]\|+\| \tau[C(4)-C(3)-C(7)-C(8)\| \| \mid$.						

Discussion.* The two independent molecules in the asymmetric unit of isomer (1) both have the hydroxyl and secondary methyl substituents endo and are approximate mirror images (Figs. 1 and 2). Thus, a best molecular fit of the mirror image of molecule 2 to molecule 1 using the program BMFIT (Yuen \& Nyburg, 1979) shows that atoms C(1) to C(8) in the two molecules fit to within $0.05 \AA$, while the deviations of the other non-H atoms are (in \AA): $\mathrm{O}(1), 0.058 ; \mathrm{O}(2)$, $0.054 ; \mathrm{O}(3), 0.317$; O(4), 0.241 ; C(9), 0.095; C(10), 0.439 ; C(11), 0.059 ; C(12), 0.068 and $\mathrm{C}(13), 0.144$. The maximum deviations are for the methoxycarbonyl groups, which are slightly rotated with respect to each other $\{\Delta \tau[\mathrm{C}(3)-\mathrm{C}(7)-\mathrm{C}(9)-\mathrm{O}(4)]=14(2) ; \Delta \tau[\mathrm{C}(3)-$ $\mathrm{C}(7)-\mathrm{C}(9)-\mathrm{O}(3)]=9(2)^{\circ}$, Table 3\}. In the asymmetric unit the angular difference between the vectors $\mathrm{C}(1) \rightarrow \mathrm{C}(5)$ and $\mathrm{C}(3) \rightarrow \mathrm{C}(7)$ defining the length and width of the two molecules is 97 and 101°, respectively.

Selected torsion angles in Table 3 indicate that the conformations of the cyclopentane rings in both molecules of isomer (1) are non-ideal but have puckering constants slightly closer to those expected for envelope ($C_{s} ; \Delta=36^{\circ}, \varphi_{m}=46.7^{\circ}$) rather than for half-chair ($C_{2} ; \Delta=0^{\circ}, \varphi_{m}=46.7^{\circ}$) conformations. The crystal packing of this isomer consists of layers of

[^1]molecules approximately in the ($10 \overline{1}$) plane (Fig. 2). There is a hydrogen bond $\left[\mathrm{O}(2)_{\text {mol } 1} \cdots \mathrm{O}(1)_{\text {mol } 2}\left(\frac{3}{2}-x\right.\right.$, $\left.-1+y, \quad-\frac{1}{2}-z\right)=2.80 \AA ; \quad \mathrm{H}(1)_{\text {mol }} \cdots \mathrm{O}(1)_{\text {mol } 2}=$ $1.68 \AA$] between the molecules. Other intermolecular contacts are generally weak. Both molecules, however, contain intramolecular $\mathrm{O}(2) \cdots \mathrm{C}(1)$ contacts [2.88 and 2.91 (1) $\AA]$, which have been considered to be of some significance in other bicyclo[3.3.0]octane and related structures (Burgi, Dunitz \& Shefter, 1974; Murray-Rust, Glen, Newton \& Ali, 1982). The strongest of these interactions are ca $2.6 \AA$ in length and at distances $>3 \cdot 1 \AA$ are generally negligible.

In isomer (2), both the hydroxyl and the secondary methyl substituents are exo (Fig. 3), and the two cyclopentane rings adopt a flattened distorted envelope and a half-chair conformation with puckering constants $\Delta=19 \cdot 2,4 \cdot 1^{\circ}, \varphi_{m}=26 \cdot 1,-46 \cdot 0^{\circ}$, respectively (Table 3). (Ideal values for C_{s} and C_{2} forms are $\Delta=36$, 0° with $\varphi_{m}=46.7^{\circ}$.) The methoxycarbonyl group is in a similar orientation with respect to the $\mathrm{C}(3)-\mathrm{C}(7)$ bond to the $-\mathrm{CO}_{2} \mathrm{Me}$ group in molecule 2 of isomer (1) and is rotated by ca 10° with respect to the $-\mathrm{CO}_{2} \mathrm{Me}$ group in molecule 1 of isomer (1). With the changes in configuration at $C(4)$ and $C(6)$ and in the conformations of both rings there are some small changes in bond angles between the isomers. The most noticeable of these are at $C(7)$, where deviations in angles of up to 5.9° are observed. Another notable change is in angle $\mathrm{O}(2)-\mathrm{C}(4)-\mathrm{C}(5)\left(4 \theta_{\mathrm{av}}=4.7^{\circ}\right)$. Other changes

Table 4. Selected bond distances (\AA) and bond angles ${ }^{(}{ }^{\circ}$) with e.s.d.'s in parentheses

Isomer (1)			
	Molecule 1	Molecule 2	Isomer (2)
$\mathrm{O}(1)-\mathrm{C}(1)$	1.22	1.22	1.203 (4)
$\mathrm{O}(2)-\mathrm{C}(4)$	1.46	1.45	1.431 (4)
$\mathrm{O}(3)-\mathrm{C}(9)$	1.35	1.34	1.321 (6)
$\mathrm{O}(3)-\mathrm{C}(10)$	1.45	1.44	1.439 (6)
$\mathrm{O}(4)-\mathrm{C}(9)$	1.22	1.20	1.182 (5)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.51	1.53	1.527 (5)
$\mathrm{C}(1)-\mathrm{C}(8)$	1.51	1.49	1.507 (6)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.53	1.55	1.534 (5)
$\mathrm{C}(2)-\mathrm{C}(11)$	1.56	1.54	1.542 (6)
$\mathrm{C}(2)-\mathrm{C}(12)$	1.54	1.52	1.513 (5)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.52	1.52	1.520 (5)
$\mathrm{C}(3)-\mathrm{C}(7)$	1.56	1.53	1.569 (5)
$\mathrm{C}(4)-\mathrm{C}(5)$	1.50	1.52	1.507 (5)
C(5)-C(6)	1.55	1.55	1.521 (5)
$\mathrm{C}(6)-\mathrm{C}(7)$	1.57	1.59	1.563 (6)
$\mathrm{C}(6)-\mathrm{C}(13)$	1.54	1.54	1.534 (5)
$\mathrm{C}(7)-\mathrm{C}(8)$	1.56	1.55	1.531 (5)
C(7)-C(9)	1.49	1.51	1.517 (6)
$\sigma=0.011-0.014 \AA$			
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	125.2	124.9	125.5 (4)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(8)$	123.7	123.3	124.3 (4)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(8)$	111.1	111.8	110.2 (3)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	102.5	101.0	$103 \cdot 3$ (3)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(11)$	105.7	105.5	$106 \cdot 1$ (3)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(12)$	113.4	$113 \cdot 6$	112.0 (4)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(11)$	109.7	109.5	110.1 (3)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(12)$	115.9	116.6	115.5 (3)
$\mathrm{C}(11)-\mathrm{C}(2)-\mathrm{C}(12)$	109.0	109.9	109.3 (4)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	117.1	117.6	118.0 (3)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(7)$	$107 \cdot 3$	$108 \cdot 0$	107.0 (3)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(7)$	103.5	103.7	$104 \cdot 3$ (3)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(2)$	110.1	108.6	111.5 (3)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	102.9	103.8	103.7 (3)
$\mathrm{O}(2)-\mathrm{C}(4)-\mathrm{C}(5)$	107.7	108.4	112.7 (3)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$106 \cdot 4$	104.8	$102 \cdot 2$ (3)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	104.4	$104 \cdot 3$	$104 \cdot 8$ (3)
C(5)-C(6)-C(13)	111.0	111.8	114.2 (3)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(13)$	116.0	114.4	116.6 (4)
C(6)-C(7)-C(3)	104.8	105.8	104.5 (3)
C(6)-C(7)-C(8)	117.7	117.5	112.4 (3)
C(6)-C(7)-C(9)	$108 \cdot 1$	$105 \cdot 3$	111.2 (3)
$\mathrm{C}(3)-\mathrm{C}(7)-\mathrm{C}(8)$	102.5	$104 \cdot 2$	$106 \cdot 1$ (3)
$\mathrm{C}(3)-\mathrm{C}(7)-\mathrm{C}(9)$	115.0	114.1	112.7 (3)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(9)$	109.0	$110 \cdot 2$	109.7 (4)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(1)$	$106 \cdot 4$	106.4	$106 \cdot 7$ (3)
$\mathrm{C}(7)-\mathrm{C}(9)-\mathrm{O}(3)$	112.6	$112 \cdot 3$	112.4 (4)
$\mathrm{C}(7)-\mathrm{C}(9)-\mathrm{O}(4)$	$126 \cdot 2$	126.9	124.6 (5)
$\mathrm{O}(3)-\mathrm{C}(9)-\mathrm{C}(4)$	120.9	$120 \cdot 8$	122.9 (5)
$\mathrm{C}(9)-\mathrm{O}(3)-\mathrm{C}(10)$	116.1	118.4	116.0 (5)
$\sigma=0.6-1.0^{\circ}$			

Table 5. Geometry of the hydrogen bonding in isomer (2) (distances in \AA, angles in ${ }^{\circ}$)

$\mathrm{O}(2)-\mathrm{H}(\mathrm{O} 2)$	$0.99(4)$	$\mathrm{C}(4)-\mathrm{O}(2)-\mathrm{H}(\mathrm{O} 2)$	$113(2)$
$\mathrm{O}(2) \cdots \mathrm{H}\left(\mathrm{O} 2^{\prime}\right)(1-y,-z, 1-x)$	$1.71(4)$		$\cdots \mathrm{H}\left(\mathrm{O}^{\prime}\right)$
$\mathrm{O}(2) \cdots \mathrm{O}\left(2^{2}\right)(1-y,-z, 1-x)$	$2.687(3)$	$\mathrm{O}\left(2^{\mathrm{i}}\right) \cdots \mathrm{O}(2) \cdots \mathrm{O}\left(2^{i i}\right)$	119.9
$\cdots \mathrm{O}\left(2^{i i}\right)(1-z, 1-x,-y)$	$2.687(3)$	$\mathrm{H}(\mathrm{O} 2)-\mathrm{O}(2) \cdots \mathrm{H}\left(\mathrm{O}^{\text {i }}\right)$	$115(4)$
		$\mathrm{O}(2)-\mathrm{H}(\mathrm{O} 2) \cdots \mathrm{O}\left(2^{\mathrm{ii}}\right)$	$172(4)$

are $<3^{\circ}$ and are not significant within the measured e.s.d.'s. The fold angle θ (Table 3) between the cyclopentane rings in both isomers is essentially the same (122-125 $)$.

No intramolecular contacts involving the hydroxyl and the $\mathrm{C}(1)-\mathrm{O}(1)$ carbonyl group are observed in isomer (2). Instead, the hydroxyl is involved in hydrogen bonding with the OH group of other molecules (Table 5) resulting in hexameric units about centers of symmetry (Fig. 4).

Fig. 1. ORTEP view (Johnson, 1965) of molecule 2 of isomer (1). Thermal ellipsoids are drawn at the 50% probability level. H atoms are drawn with uniform isotropic thermal parameters.

Fig. 2. Stereoscopic view down \mathbf{b} of the crystal packing in isomer (1).

Fig. 3. ORTEP (Johnson, 1965) view of isomer (2).

Fig. 4. Stereoscopic view down [111] of the crystal packing in isomer (2).

It is of interest that the hydroxyl group of (5), which is the precursor of isomer (2) and is formed as the only product from the sodium borohydride reduction of (4), must have the exo configuration. Usually such reactions of bicyclo[3.3.0]octan-2-ones proceed with preferential attack on the exo face of the ketone to give the endo alcohol (Tabushi, Fujita \& Oda, 1970; Paquette, 1979). The exclusive formation of the endo product in the case of (4) may result from two factors: (i) reduced steric hindrance to endo attack because of an increased fold angle between the rings resulting from the presence of the ethylenic bond and (ii) increased

(5)

(6)

$$
\left(E=\mathrm{CO}_{2} \mathrm{Me}\right)
$$

hindrance to exo attack because of the secondary exo-methyl group. These factors apply only if this methyl group has a pseudoaxial disposition and the endo geminal methyl group a pseudoequatorial disposition [cf. (6)]. It may be noted, however, that in isomer (2) both the hydroxyl and the secondary methyl
groups are pseudoequatorial with dihedral angles $\mathrm{C}(12)-\mathrm{C}(2) \cdots \mathrm{C}(4)-\mathrm{O}(2)$ and $\mathrm{C}(9)-\mathrm{C}(7) \cdots \mathrm{C}(6)-$ $\mathrm{C}(13)$ of -46 and -21°, respectively.

We thank the Natural Science and Engineering Research Council of Canada for support of this work.

References

Altona, C., Geise, H. J. \& Romers, C. (1968). Tetrahedron, 24, 13-32.
Burgi, H. B., Dunitz, J. D. \& Shefter, E. (1974). Acta Cryst. B30, 1517-1527.
Frenz, B. A. (1981). Enraf-Nonius Structure Determination Package. College Station, Texas, USA.
Grewal, R. S., Hayes, P. C., Sawyer, J. F. \& Yates, P. (1987). J. Chem. Soc. Chem. Commun. pp. 1290-1292.

International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor. D. Reidel, Dordrecht.)
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1982). MULTAN11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Murray-Rust, P., Glen, R. C., Newton, R. F. \& Ali, S. M. (1982). Acta Cryst. B38, 2704-2707.

Paquette, L. A. (1979). Top. Curr. Chem. 79, 41-165.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Tabushi, I., Fujita, K. \& Oda, R. (1970). J. Org. Chem. 35, 2383-2386.
Yates, P., Burnell, D. J., Freer, V. J. \& Sawyer, J. F. (1987). Can. J. Chem. 65, 69-77.
Yuen, P. S. \& Nyburg, S. C. (1979). J. Appl. Cryst. 12, 258.

Structure of \boldsymbol{N}-(2-Acetyl-3-benzofuranyl)-p-toluenesulfonamide

By F. Bachechi and V. M. Coiro
Istituto di Strutturistica Chimica, CNR, Area della Ricerca, CP 10, 00016 Monterotondo St., Roma, Italy

F. Gatta and G. Settimu

Istituto Superiore di Sanità, Viale Regina Elena 295, Roma, Italy
and M. Delfini
Istituto di Chimica e Tecnologia dei Radioelementi, CNR, Padova, Italy
(Received 19 March 1987; accepted 6 July 1987)

$$
\begin{array}{r}
\text { Abstract. } \mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{4} \mathrm{~S}, M_{r}=329.4, \text { monoclinic, } P 2_{1} / n, \\
a=11 \cdot 574(5), \quad b=8 \cdot 375(4), \quad c=17 \cdot 342(8) \AA, \quad \beta= \\
108 \cdot 0(3)^{\circ}, \quad V=1598(1) \AA^{3}, \quad Z=4, \quad D_{x}= \\
1.369 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda(\mathrm{Mo} K \alpha)=0.71073 \AA, \mu=2 \cdot 11 \mathrm{~cm}^{-1}, \\
0108-2701 / 88 / 020300-04 \$ 03.00
\end{array}
$$

$F(000)=688$, room temperature, $R=0.045$ for 2777 observed counter reflections. The structure consists of two planar moieties, the benzofuran system and the S-aryl one, which form an angle of about 79°. There is © 1988 International Union of Crystallography

[^0]: * Lists of structure-factor amplitudes, anisotropic thermal parameters and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 44392 (21 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square. Chester CH1 2HU, England.

[^1]: *The crystallographic numbering system used to identify atoms is used throughout the following discussion. The chemical system is given in (1).

