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Vol. 146, No. 4 The American Naturalist October 1995 
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Abstract.-A common measure of the temporal variability of a population is the standard devia- 
tion of the logarithms of successive estimated population sizes, ln(Dt). This measure overesti- 
mates true temporal variability (the standard deviation of the logarithms of true population 
density, ln[At]) because it is contaminated by spatial variance (variability among samples taken 
on the same date). The random error in Dt causes an overestimation of temporal variance, both 
directly and also indirectly, by causing ln(D,) to underestimate ln(A,). Both problems are more 
severe if spatial variance is large or the sample size, on a date, is small. We develop an alternative 
estimator, which uses an estimate of spatial variance to correct for both problems. To evaluate 
it, we sampled from simulated populations with a wide range of clumping. The results show 
that the standard estimate can be badly biased. The new estimator is much better and is quite 
accurate over a broad range of conditions. Our results suggest a reanalysis of some ecological 
studies that have estimated temporal variability to attack theoretically important questions. In 
particular, the apparently greater average temporal variability of terrestrial arthropods compared 
with terrestrial vertebrates could be an artifact caused by the fact that, typically, clumping is 
weaker and density estimates are more accurate in vertebrates. 

Some populations appear to fluctuate in abundance a great deal, others very 
little. Much effort has been directed at accounting for such differences in temporal 
variability in population abundance. Taxonomic patterns have been postulated: 
Connell and Sousa (1983) found no evidence of differences in the temporal vari- 
ability of terrestrial insect and vertebrate populations, while Schoener (1985) 
found lizards to have very low variability, and Ostfeld (1988) found a similar 
pattern for small rodents. Population variability has been found to be positively 
correlated with fecundity and high population growth rate (Spitzer et al. 1984; 
Spitzer and Leps 1988), predation (Fairweather 1988), and geographical range 
(Gaston and Lawton 1988a) and negatively associated with longevity (Connell 
and Sousa 1983; Williamson 1984), body size (Gaston 1988; Gaston and Lawton 
1988b), and polyphagy (Watt 1965; Redfearn and Pimm 1988). The temporal vari- 
ability of spider populations has been linked to the probability of extinction 
(Schoener and Spiller 1992) and that of carabid beetle populations to habitat 
stability (Hanski 1982). Temporal variability patterns are of interest to ecologists 
both practically (e.g., in relation to pest control and exploited or endangered 
populations) and theoretically (e.g., in relation to stability). 
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520 THE AMERICAN NATURALIST 

Crucial to all of these problems is a measure of the temporal variability of the 
true population size. For virtually any real population, of course, we cannot know 
the true density, which we denote by A, but can only estimate it, typically by 
the average number found in a set of replicate samples taken at time t, which we 
denote by Dt. In studies such as those discussed above, estimates of temporal 
variability (most commonly the standard deviation of the log of successive popu- 
lation densities) have been obtained by replacing At with Dt. 

The purposes of this article are to show that these measures of temporal vari- 
ance are not appropriate because they are inflated by the effects of spatial vari- 
ance (the variation of each Dt about its "target" At), to propose an alternative 
measure, and to demonstrate that much of the apparent difference in temporal 
variability among groups of organisms could be induced by errors of estimation. 

We focus on the most popular measure, the standard deviation of the logs of 
estimated densities. This approach measures relative variation: it can be rewritten 
as a function of the proportions, At/Y At. This may be of interest in its own right, 
since it has more ecological significance than other possibilities, such as variation 
among the densities themselves. It may also give comparisons among species 
that are independent of mean density although, as McArdle et al. (1990) point 
out, this requires variance = a(mean)2, a version of Taylor's empirical "power 
law" (Taylor 1961). 

CONFOUNDING OF TEMPORAL AND SPATIAL VARIANCE 

Simple Examples 

Current estimates of temporal variability conflate spatial variance with tempo- 
ral variance and hence systematically overestimate temporal variability. Tempo- 
ral variation in the estimated population mean consists of two components: tem- 
poral variation in the true population mean, which is the component we seek, 
and variation in the difference between this true mean and its estimate. The 
second source of variance arises because spatial variability leads to an error in 
the estimation of the true population density on each date (fig. 1). This error will 
increase as spatial variation increases or sample size decreases. 

The point can be made by a simple and extreme example. Suppose that the 
mean number of insects per twig in a forest is precisely 11, but half of the twigs 
support two insects and half support 20. Suppose further that the density does not 
change over the entire study period and that, on each date, we sample a single ran- 
domly chosen twig. The sample will never correctly estimate the true population 
size, and abundance will appear to fluctuate from two to 20, yet this apparent tempo- 
ral variability will be caused entirely by spatial variation in abundance. 

The problem is also familiar from the one-way random effects ANOVA model 
(Snedecor and Cochran 1989, chap. 13): Xti = pL + At + Eti. For example, Xt 
might be the number of insects on the ith random twig from the tth random tree, 
p, the average density of insects over all trees, At the deviation of tree t from this 
average, and Eti the deviation of the ith twig from the tree t average. Suppose 
that we wish to estimate the variance among trees on a single date (i.e., the 
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t 

FIG. 1.-Illustration of how spatial variance inflates estimates temporal variability. True 
temporal variability is determined by the sequence of true population densities (indicated by 
solid circles). Spatial variance causes the estimates of population density (open circles) to 
be different from the true density. The errors (vertical lines) contribute to estimated temporal 
variability based on the estimated densities. 

variance of At). We could use the sample variance of the tree averages, XI., 
X2-. ... (the dot in "Xt." signifies we are averaging over the twigs taken from 
tree t). But these are not the true mean densities, only an estimate of them: 
their variance, is partly attributable to variation between twigs within a tree. We 
therefore "correct" for this by subtracting an allowance for it; that is, we use 
(MS[between trees] - MS[within trees])/r: 

S2(A) = (Xt - X..)21(T - 1) - Jts2(Xt)/Tr, (1) 
where s2(Xt) = li(Xti - Xt.)2/(r - 1), if there were T trees and r twigs per tree. 

To return to temporal variability, suppose that t now stands for sampling date, 
we take twig samples from only one tree, and we are interested in variation across 
times rather than across trees. Current measures of temporal variability do not 
follow the ANOVA recipe. Instead they use the uncorrected variance among 
dates (i.e., the uncorrected variance of Dt or its transform). The error is illustrated 
in figure 1. The standard approach is based on the temporal variance of the 
successive density estimates (indicated by an open circle on the figure), but this 
variance is the sum of the temporal variance of the successive true densities 
(indicated by the solid circles in fig. 1) and the variance of the "errors" of estima- 
tion (indicated by the vertical lines connecting the estimates and the true densi- 
ties). It is worth noting that other sources of variation in the estimate of mean 
density have the same effect (e.g., if densities on the sampled twigs are estimated 
rather than counted). We next develop a correction to subtract this spatial 
variance. 

Adjusting for Spatial Variance 

In this section, we address estimation of the variance of log(density), that is, 
ln(AL), using new random samples of twigs on each date (e.g., the sampling might 
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522 THE AMERICAN NATURALIST 

be destructive). The approach also works for any other transformation of density 
(provided approximations similar to those given below are accurate enough) or 
for no transformation at all, as in the ANOVA example. In some cases, it can 
also work under a different sampling regime (e.g., if the sampling is stratified or 
if an initial set of random twigs is chosen at the outset and revisited throughout 
the study). In these cases, such schemes can give better (smaller variance) esti- 
mates of temporal variability and can be informative about temporal variance on 
different spatial scales. However, they can give badly biased estimates if there 
is time x space interaction (e.g., if stratum 1 is more attractive than stratum 2 
under some conditions but less attractive under others). 

The simple examples illustrate the main problem of estimating the variance 
of ln(AL), but there are some additional complications. To give the details, we 
need to define some symbols. We use the example of sampling insects on a 
given tree, using the counts on randomly sampled twigs on each of T dates. We 
define 

rt= the number twigs sampled on date t; 
D,j = the number of insects on the ith sampled twig on date t; 
Dt. =the average of the Dti's over i (i.e., over twigs, within a date); (2) 
At the true density per twig on date t; 
At = ln(At), the logarithm (base e) of the true density per twig on date t; 

and 

A. = ItAtIT, the average of the At's (over sampling times, or dates). 

Suppose we choose to measure temporal variability of the true population size 
by the variance of the logarithms of successive At's: 

52 = Zt(At - A.)2/(T - 1). (3) 

(Strictly, this is the "sample" variance, because the divisor, T - 1, allows one 
degree of freedom for the estimation of the "true mean" of the At's by their 
average, A.. We will refer to this as the "variance" throughout.) 

Since the At 's cannot be observed, we must estimate them, using the Dti's. We 
discuss details of this estimation later. For the moment we define 

Lt = estimate of At, based on {D,j, i = 1, 2,... , rtj. (4) 

So D is observed density, and L is estimated log density, based on D. 
If, as in current measures of temporal variability, we simply replace the unob- 

served At's by their estimates, the L 's, our estimate of true temporal variance, 
SA, iS 

S2 = lt(Lt - L.)21(T - 1), (5) 

where L. is the average of L,, L2, . . ., Lt. 
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ESTIMATION OF TEMPORAL VARIABILITY 523 

But this estimate is contaminated by "within-tree" (i.e., spatial) variation. 
Thus, if the mean of Lt is 

E{Lt}- At (6) 

and its (spatial) variance is 

V{Lt} - U2(7) V{t-Lt' 

then the mean of SL, the estimated temporal variance, can be shown to be 

E{S2} = S2 + Jtff2tlT, (8) 

where the second term on the right-hand side is average spatial variance. We can 
therefore subtract an estimate of this contamination, as in the ANOVA analogy 
above. 

Thus, suppose we can estimate the (spatial) variance of the estimate of ln(At) 
by 

sLt = estimate of V{Lt} based on {Dti, i = 1, 2, . . . , rtj, (9) 

where s2j is unbiased; that is, 

E{iSLt} = uLt (10) 

(Note the difference between S2, the variance of the sample L1, . . ., LT La 
variance between dates] and s2 , the estimated variance of Lt, due to spatial 
variation [i.e., between twigs within date t, of Dt1, Dt2, . . . 

Then we can adjust the estimate of SA to obtain 

s2 (adj) = SL - s2/T(11) 

where the second term is an estimate of the average spatial variance. Equations 
(8), (10), and (11) show that 

E{SL (adj)} = S2. (12) 

To summarize, we estimate the log of the population density, ln(At) = At, on 
each date, by Lt; we also estimate the variance of this estimate, V{Lt}, by s2t. 
We then estimate the across-dates variance of the At's, s2, by the across-dates 
variance of the LI's, s2, minus the average of the estimated within-date (i.e., 
spatial) variances of the Lt's. The formula in equation (11) is a generalization of 
that in equation (1). 

THE ESTIMATES OF LN(DENSITY) AND THEIR VARIANCES 

We have not specified how the counts on twigs, Dt1, Dt2, ... , on a given date 
are to be converted into a value of Lt, the estimate of At = ln(At) for that date. 
The obvious method is to average them, obtaining Dt., and let 

Lt= ln(Dt.). (13) 
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524 THE AMERICAN NATURALIST 

There are two problems with this method. One is that Dt. = 0 if all Dti's are 
zero (i.e., no insects at all are found on date t), and Lt is undefined. The other is 
that, even if this could be prevented (e.g., if somehow at least one twig was 
guaranteed to have at least one insect), and Dt. was an unbiased estimator of At 
(i.e., E{Dt.} = At), Lt = ln(Dt.) would still be a biased estimator of At. This bias 
is caused by Jensen's inequality (Feller 1966, p. 152): ln(x) is a concave-down 
nonlinear function of x, and hence the mean of the log of a variable will be less 
than the log of the mean-for example, E{ln(Dt.)} < ln(E{Dt.}) = ln(At) = A, 
This is most easily pictured by considering only two points, x, and x2; the average 
of ln(x,) and ln(x2) is on the chord joining ln(x,) and ln(x2) on the graph of ln(x); 
this chord lies completely below the graph. 

(If all twigs had at least one insect, an alternative estimator is liln[Dti]lrt, the 
average of the values of ln[density] for each twig. However, Jensen's inequality 
can be used to show that EJ1i1n(Dti)1rt} < E{ln(Dt.)}, so this estimator has even 
greater bias. We do not consider it further.) 

Jensen's Inequality Adjustment 
We next propose a correction for the underestimation of the natural logarithm 

of mean density, A, introduced by Jensen's inequality. First, we estimate the 
bias, as follows. Provided twigs are chosen randomly, E{Dti} = At. The deviation 
of twig i from the mean is 

eti = Dti - At. (14) 

The observed average density on date t is 

Dt.= et.+,e (15) 

where E{et.} = 0. For the spatial (among-twigs) variance on date t, we write 

c= V{Dti} = V{eti.} (16) 

Assuming the twigs are independently sampled, the variance of Dt. due to spatial 
variation is 

V{et.} = aD. = Dtlrt. (17) 

Thus, from equation (13), Lt = ln(At + et.). Taylor series expansion gives, ap- 
proximately, 

Lt = ln(At) + et.lAt - et.12At. (18) 

Since E{et.} = 0, E{e2.} = U2., and E{s2.} = u 2., where 

s. = (Dti- Dt.)2/rt(rt - 1), (19) 

the estimated spatial variance of Dt., we obtain, approximately, 
E{Lt + s2 .12A2} ln(- I ). (20) 

This suggests approximating the bias by s2./D . and using the estimator 

L=tJ ln(Dt.) + s2./2D2. (21) 
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ESTIMATION OF TEMPORAL VARIABILITY 525 

as an improved (less biased) estimate of ln(zAt). We use the notation Lj to remind 
us that this estimate corrects for Jensen's inequality. 

Note also that, if et.lAt is small, equation (18) gives Lt ~ ln(At) + et.lAt; thus 
V{Lt} u- u2./A2. This suggests estimating y2t (eq. [7]) by 

SLt= SD /D2 (22) 

(see eq. [19]), which can be used for the adjustment in equation (11). 

The Problem of Zeros 

The previous discussion is somewhat artificial, since it assumes that Dt. cannot 
be zero. To facilitate the presentation, we only summarize here possible re- 
sponses to the situation in which there are dates on which no organisms are found 
in samples; details are in the appendix. Such "zero dates," however, pose an 
awkward problem, and current solutions (mainly adding one to observations), 
and most potential solutions, involve arbitrary decisions that can affect conclu- 
sions. We distinguish two cases. 

First, in the case of existing data sets, if Dt. = 0 for any date, t, then we cannot 
estimate ln(At) by ln(Dt.). Unfortunately, there seem to be no straightforward 
replacements. We make six suggestions in the appendix and assume for the rest 
of the discussion that an appropriate step has been taken to provide an estimate 
of ln(Dt.) on dates on which no organisms have been found. 

Second, in the case of future data sets, if "zero twigs" (i.e., Dti = 0) are 
possible, and twigs are chosen randomly and independently, then zero dates (Dt. 
= 0) are also possible when fixed sample sizes are used. Unlimited sequential 
sampling-for example, sampling until two nonzero twigs have been found (Hal- 
dane 1945)-can guarantee unbiased nonzero estimates of At (assuming At > 0) 
but may involve unacceptably large samples. 

A compromise has been proposed (Stewart-Oaten 1995), based on a scheme of 
Kim and Nachlas (1984) and analysis by Kremers (1987). This is a modified 
sequential scheme in which an initial sample of r twigs is taken. If this contains 
fewer than m nonzero twigs, sampling continues until m nonzero twigs are found 
or, failing that, until the logistically feasible maximum number, R, have been 
taken. If m > 1, these samples provide an unbiased estimate of mean density, 
which requires an arbitrary adjustment away from zero only if no organisms are 
found in the R samples (appendix). This estimate replaces the average, Dt., in the 
equations above: the two are often equal, but not always. The sequential samples 
also allow us to estimate the variance of this estimate. This estimated variance 
replaces the -S2 ." of equation (19) for use in equations (22) and (11): the two are 
usually different, but not greatly. In this article, we avoid the zero dates problem 
by using this sequential scheme in the simulations presented next. 

A COMPARISON OF STANDARD AND CORRECTED ESTIMATES 

We now investigate how badly the standard approach overestimates temporal 
variability, as a function of spatial variability, and the improvements gained by 
removing spatial variation and adjusting for Jensen's inequality. 
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526 THE AMERICAN NATURALIST 

We compare four ways to estimate S2, the temporal variance of ln(A), de- 
pending on whether we correct for spatial variance (eq. [5] vs. eq. [11]) and 
on whether our estimate of Lt corrects for Jensen's inequality (eq. [13] vs. 
eq. [21]). 

We present our results in terms of logs to base 10, as is usual, rather than to 
base e as in our discussion so far. Both S2 and its estimates can be converted to 
base 10 by multiplying by (logloe)2. We denote the converted value of S2 by 
s2 10; all estimates (s2,s2j [adj], etc.) are also converted, but we omit the subscript 
10 for these. 

The comparisons used successive true mean densities of At = 1, 2, 4, and 5 
insects per twig, for t = 1, 2, 3, and 4 = T dates. We chose these numbers 
because, with Alot = logl0(Lt), we get s210 = (AOt - Alo.)2/(T - 1) = 0.1. This 
value is very close to the mean and modal values observed in terrestrial vertebrate 
populations (see below). 

The number of insects on a randomly chosen twig was assumed to be negative 
binomial, with mean At and variance A,(1 + cA). Clumping was defined by the 
parameter c. This is not the usual "clumping parameter," which is k = 1/c, but 
we prefer c because it increases as clumping increases, as seems more natural 
(the Poisson distribution has c = 0), and it more clearly separates highly clumped 
distributions, which seem to arise more often in the field and change more rapidly 
(e.g., distributions with k = 0.2 and k = 0.1 differ by far more than those with 
k = 5 and k = 10). We considered clumping values of c = 0, 1, 2, . . ., 10, 
which seem to cover all but a few levels observed in the field. 

To avoid dates with zero organisms, we used the sequential sampling scheme 
summarized above. For each date (a density and a clumping parameter), 10,000 
density estimates were calculated, each based on a set of sequential samples. 
The minimum number of samples on a given date (the minimum number in a set) 
was r = 5, we required at least m = 2 positive samples, and the maximum was 
set at R = 100 samples. Further details are given at the end of the appendix. The 
average number of samples ranged from 5 to 9.7 (i.e., 9.7 was the average sample 
size over 10,000 "dates" with density = 1 and clumping = 10); the largest sample 
taken was 54, so it was never necessary to use the arbitrary adjustment for a 
zero date. We also report briefly on results for r = 15. 

In the first set of simulations, clumping remained constant as mean density 
changed from date to date. Thus, for c = 3, an estimate of S2 10 was based on at 
least r samples from the negative binomial distribution with mean one and clump- 
ing parameter c = 3 (so the variance was four), a second set of samples of at 
least r from the negative binomial distribution with mean two and clumping pa- 
rameter three (so the variance was 14), and third and fourth sets of r or more, 
negative binomial with means four and five, clumping parameter three in both 
cases, and variances 52 and 80, respectively. 

The four estimates are graphed against the clumping parameter values in figure 
2, together with a flat line representing the true value of s52I, namely 0.10. The 
top curve on the graph is the standard uncorrected estimate. The graph answers 
the two questions raised at the start of this section, as follows. 

First, spatial variability in abundance strongly inflates the standard measure of 
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TYPE OF 
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FIG. 2.-Results of simulations estimating temporal variability (variance of successive log 
densities) by four methods for a population that varied over a period of 4 yr at a density 
between one and five and was spatially distributed according to the negative binomial. The 
estimates were calculated for spatial clumping values ranging from zero (Poisson) to 10. The 
true variance, which is independent of spatial clumping, was 0.1. The top curve is the 
standard estimate uncorrected for either spatial variance or Jensen's inequality. The other 
curves show that the estimates come progressively closer to the mean as we correct for 
these two factors, the lowest curve resulting from our proposed estimator. For comparison, 
current mean or modal estimates are roughly 0.1 for terrestrial vertebrates and 0.35 for 
arthropods. 

temporal variability, and the effect increases with clumping. For example, the 
mean value of the standard measure is three to four times the real value at 
clumping values often seen in nature (5 < c < 10; see below); actual values will 
often be higher still. 

Second, our proposed estimator, s2j(adj), which adjusts for both spatial varia- 
tion and Jensen's inequality, is a great improvement and overall does very well. 
Its mean value is very close to the real value (0.1) over a broad range of clumping 
and is never greater than 0.141, less than 50% greater than the true value. Even 
when we adjust only for spatial contamination, the mean of s2(adj) is never 
greater than 0.185. The Jensen's inequality correction improves estimates, but 
not markedly: the reason seems to be that, while the unadjusted estimates under- 
estimate the true value of At, they underestimate it by about the same amount 
for each density, At, so the spread in values, which is the focus of estimation of 
S2, iS not much affected. 

Clumping commonly decreases with mean density in real populations (Murdoch 
and Stewart-Oaten 1989), so we calculated the four estimates for several situa- 
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tions in which clumping declined as mean density increased from one to five. We 
then examined the relationships between mean clumping and the four estimates 
of temporal variability. The results are very little changed from those presented 
above: the estimates were very close to those for the case with fixed clumping, 
though the standard estimate does slightly worse in all cases than before (by an 
average of 0.015) and the new estimate slightly better (by an average of 0.006). 

Finally, we also looked at larger sample sizes (minimum number of samples 
for each density estimate, r = 15). Surprisingly, in this situation our estimator is 
more affected by clumping than when r = 5. For example, its mean estimate of 
the temporal variance (whose true value is 0.1) is 0.174 when c = 10. However 
it still does better than the other estimates, whose means are 0.190 (no adjustment 
for Jensen's inequality), 0.258 (no adjustment for spatial variation), and 0.275 (no 
adjustment for either) in this case. We suspect that the problem is related to the 
Taylor series approximation but have not yet been able to develop an acceptable 
improvement. 

IMPLICATIONS FOR DIFFERENCES AMONG TAXA 

The results in figure 2 raise the possibility that the published differences in 
estimated temporal variability among major taxonomic groups might be, in large 
part, artifactual. Terrestrial vertebrates have been recorded as having temporal 
variance values around 0.1: this is about the modal value for small mammal 
populations and about the mean for birds (equivalent to a standard deviation of 
logs about 0.3; see Ostfeld 1988, figs. 1 and 2). This is also, by design, the true 
value for-the simulations presented in figure 2. By contrast, the modal value 
found to date for terrestrial arthropods is about 0.35 (equivalent to the published 
value for the standard deviation of logs of about 0.6) (Ostfeld 1988). It is possible, 
however, that terrestrial vertebrates and arthropod populations have much more 
similar temporal variabilities than these differences suggest, for two reasons, both 
related to differences in the accuracy of density estimates among taxa. 

First, terrestrial insects have notoriously clumped spatial distributions. Clump- 
ing (c) values of 5-10 appear to be common, and even values around 20 have 
been observed (see, e.g., Atkinson and Shorrocks 1984; Reeve 1985; Hassell et 
al. 1987). Thus the standard approach, using common sample sizes, will often 
assign to insects values for temporal variance in the range of 0.3-0.4 (i.e., typi- 
cally reported values) when the true temporal variance is actually only 0.1. We 
do not know of clumping estimates for terrestrial vertebrates, but such species, 
in contrast to arthropods, often have behavioral mechanisms, such as territorial- 
ity, that lead to even spatial distributions. Second, some terrestrial vertebrates 
such as breeding birds can be censused rather than sampled, in which case there 
is virtually no error in the estimate of temporal variability regardless of spatial 
clumping. Thus the observed values around 0.1 for many terrestrial vertebrates 
may be very close to their true value. Indeed, Xia and Boonstra (1992) have 
pointed out that the tendency for saturation of small mammal traps, nesting boxes 
in birds, and home ranges in other vertebrates (and one could add breeding territo- 
ries in birds) induces underestimation of the temporal variability of the total 
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population whenever density moves into the range in which these effects occur. 
This type of problem does not arise in typical sampling methods for arthropods. 

These points touch on a problem we have not addressed. Estimates of temporal 
variability are themselves variable and should have confidence intervals attached. 
We have not done this in our simulations partly because the estimation of the 
variance of temporal variance estimates is a complicated topic that would distract 
from our main concern, the bias arising from spatial variance. These intervals 
would often be wide, unless many dates were used, far more than the four of our 
simulations. 

Still, the imprecision in temporal variance estimates is not a sufficient explana- 
tion for the consistent finding, across studies, of higher invertebrate than verte- 
brate variation. In some cases, of course, the explanation is likely to be that the 
finding represents reality: insect pests that defoliate large areas of forests and 
then virtually disappear for years at a time obviously fluctuate enormously in 
contrast to many vertebrate populations that are known to be quite stable. But 
we believe that the bias due to spatial variance, together with the other factors 
noted here, probably contributes substantially to many apparent differences. 

DISCUSSION 

Many ecological questions require an estimate of the temporal variability of 
the abundance of organisms in a region. We have shown that one of the estimates 
currently used, the variance or standard deviation of successive estimated log 
densities, is not appropriate. It measures variability in the log of the estimated 
(ln[D,]) rather than the true (ln[A,]) population density. On the average, this 
measure overestimates true temporal variability: it reflects not only the variation 
of ln(LAt) over time but also sampling error-that is, the variation of ln(Dt) around 
ln( A) due to spatial variation. The size of the overestimate increases if the spatial 
variance of the population increases or the sampling intensity decreases. Other 
standard estimates, such as the coefficient of variation, and Dmax/Dmin, seem likely 
to have a similar problem. 

We propose the measures s2 (adj) (eq. [11]), where s2 is as in equation (5). For 
existing data sets with no zero dates, Lt is given by Ltj in equation (21), and SL 

is given by equation (22). For future data sets, we propose the sequential scheme 
and the estimates in the appendix. These measures estimate s2, the (temporal) 
sample variance of the natural logs of the true population densities, {lt}, over a 
set of observation dates, {t}. (For S2 10, using logs to base 10, multiply by [logl0e]2.) 
They take spatial variability into account by removing its estimated effects at two 
stages, and they sharply reduce the bias for most true densities and levels of 
clumping encountered in practice. We believe our new estimates are applicable 
to a wide range of ecological problems. 

Data presented elsewhere (Murdoch et al. 1995) provide an example from red 
scale populations on grapefruit trees in a grove in California under biological 
control. The standard approach yielded an estimate of temporal variance (uncor- 
rected s210 = 0.176) that was three times that obtained using the estimator in this 
article (S2 10 [adj] = 0.06). This was due to spatial variance, which remained large 
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even though sample size was large (a total of 32-64 twigs taken from 16 trees), 
and we used data from only one part of the tree (the outer region) and hence 
greatly reduced the variability in density among samples. 

Our results suggest that existing analyses of temporal variability, and the con- 
clusions drawn from them, need reappraisal. This is especially true for attempts 
to determine whether vertebrate populations, especially lizards, birds, and some 
mammals, are less variable through time than are arthropod populations, a ques- 
tion with broad implications for both population and community theory (Connell 
and Sousa 1983; Schoener 1985; Ostfeld 1988). Vertebrate populations may well 
be less variable on the average, but this result could also be, at least in part, an 
artifact of the statistic used. 

Overestimation induced by spatial variance is not the only problem in the compar- 
ison of temporal variability among taxa. The zero dates problem, mentioned above, 
also confounds present comparisons. For example, Schoener (1986) added 0.1 to 
each estimate of spider density on Bahamian islands but not to estimates of lizard 
densities; adding a smaller (larger) amount would likely have increased (decreased) 
the estimate of spider variability. By contrast, J. H. Connell and W. P. Sousa (1983, 
personal communication) added one to all estimates of density whether or not 
zeroes existed, a procedure that is likely to have reduced estimated temporal vari- 
ability more in low-density than in high-density populations. 

McArdle et al. (1990) commented on these and several other issues. They note 
that estimated temporal variability tends to increase with the number of sampling 
periods, often because of autocorrelation (McArdle 1989). The true At's (and AkY's) 
are themselves random variables, forming part of a time series, the realization of 
a stochastic process. Values close in time are more likely to be similar in size; a 
small number of sampling periods implies a short duration for the entire study: 
all values are then close in time, so their variance, s2, is likely to underestimate 
the variance of the process, u2. This offers yet another reason, in addition to 
sampling error (spatial variance) and trap saturation, for reviewing current evi- 
dence comparing the temporal variability of arthropods and mammals: the avail- 
able arthropod estimates are based on many more years of data than the mammal 
estimates. 

Over how long a time period should samples be taken, and what should be 
their frequency? Connell and Sousa (1983) among others have already pointed out 
the need for care in comparing organisms with dissimilar life histories, particularly 
generation times. Samples of long-lived organisms such as trees must be taken 
over long periods since the populations will change only slowly. Sampling of an 
insect population, with more or less continuous breeding and several overlapping 
generations per year, might be done over only a few years. These authors sug- 
gested that generation time should be the temporal unit of measurement. How- 
ever, the issue is broader than differences in generation time and hinges instead 
upon the type of fluctuations we are interested in. 

For example, freshwater zooplankton show substantial variations in density 
over most of the year on a frequency of weeks; they also show characteristic 
fluctuations in response to the seasons, and, in some situations, the peak spring 
density varies significantly on an annual basis. Each of these types of fluctuations 
arises from a different cause, and it may make sense to focus on only one for 

This content downloaded from 129.173.74.49 on Thu, 18 Feb 2016 15:13:06 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


ESTIMATION OF TEMPORAL VARIABILITY 531 

comparative purposes. Analysis of the short-term fluctuations requires sampling 
every few days within a single season; analysis of spring peak dynamics might 
require only a few samples each year but many years of sampling. 

Again, consider two annual insect species with, obviously, the same generation 
time. The winter moth fluctuates from year to year in English woodlands (Varley 
and Gradwell 1963). There does not appear to be any longer-term process at 
work. By contrast, the larch bud moth in Swiss forests cycles over several orders 
of magnitude with a period of almost a decade (Baltensweiler 1971), while another 
annual insect, the spruce bud worm, seems to have a period of several decades 
(Royama 1984). 

One appealing measure of temporal variation in a stochastic process, {AJ}, is 
the total power: the mean (over "runs" of the process, which is assumed repeat- 
able) of the average (over time) of (At - A)2, where A is the mean of the average 
of the A 's. In practice, we assume the time average is enough; that is, A = 

"imT,- ST At dt/2T and power = limT," STT (At - A)2dt/2T. This is the integral 
of contributions due to fluctuations at different frequencies (Priestley 1981). Our 
zooplankton and insect examples above are to suggest total power will be poorly 
estimated if important frequencies are unrepresented; unimportant frequencies 
can be unrepresented without serious loss (e.g., the power for zooplankton cycles 
is concentrated at high frequencies; McCauley and Murdoch 1987), so frequent 
sampling can be compressed into a short period, while the power for trees is 
concentrated at low frequencies, so samples do not need to be frequent; and total 
power may not be what we want, if our interest is in the variation of particular 
kinds or from particular sources. For example, if our interest is in unpredictability 
rather than variation, we might wish to estimate the power after seasonal variation 
has been removed. 

Several aspects of scale complicate the picture we have presented. The defini- 
tion of a "population" is to some extent arbitrary (McArdle and Gaston 1993), 
and the amount of temporal variability will often depend on this definition. It 
has been noted (Murdoch et al. 1985, fig. 1) that the temporal variability of a 
metapopulation is likely to decrease as we sample from increasingly larger areas; 
Reeve (1988) provides theoretical examples. This implies we need to know some- 
thing of the spatial dynamics of the populations we seek to assess or compare. 

Variation in density and population will be equal if the same region is used for 
each survey and if it is large enough that no member of the population is ever 
outside it; for example, the population might be defined as all individuals within 
the sampled region. B. McArdle (personal communication) has pointed out that 
this restriction can be subtle. For example, if density is measured by the number 
of insects per twig, then the number of twigs in the region would need to be 
constant over sampling times. If it is not, then the population size might be 
estimated by (estimated number per twig) x (estimated number of twigs per tree) 
and estimated log(population) by estimated log(density) + estimated log(number 
of twigs), so that temporal variation would have two components, both subject 
to error, and to adjustments like those we have discussed. 

McArdle et al. (1990) also suggest that estimates of temporal variability of 
different species need to be based on samples taken at "biologically equivalent" 
spatial scales: samples from an area a few meters square may suffice to indicate 
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the temporal variability of soil mite populations but not of breeding bird popula- 
tions. We are not sure how to interpret this operationally, but it might be useful 
to relate the spatial scale of sampling to, say, the range of individual movement. 

In contrast to these population-level questions, those focused on the behavior 
of individuals or on evolutionary questions will be poorly served by averaging 
across space in the way we have suggested. The experience of an individual 
forager is determined by spatial variation on the scale of its ambit, compounded 
by temporal variation at each point in space. In such cases, averaging done to 
answer population-level questions suppresses the relevant information. 
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APPENDIX 
DEALING WITHI ZERO DATES 

EXISTING DATA SETS 

The following discussion presents six possible responses to the existence in a data set 
of dates on which no organisms were found. 

First, add a positive constant to all mean density estimates. This is the standard fix, but 
it has serious drawbacks. Large constants tend to linearize the values of the logs: ln(D,. 
+ c) approaches ln(c) + Dt./c, so the aims and advantages of transforming to logs may 
be lost. Small constants have a large effect on estimated temporal variance because they 
have very negative logs. These effects will differ among populations, especially between 
large populations (large Dt.) and small ones: the choice of constant may be a major factor 
in a comparison. 

This choice is little more than arbitrary. Formal transformation methods (see, e.g., Box 
and Cox 1964) do not work well in this case (Berry 1987). "Standard" constants, like 1, 
1/2, 1/6 (Mosteller and Tukey 1977), or 3/8 (Anscombe 1948) have ad hoc defenses and 
are sometimes ambiguous: for example, "c = 1" could mean ln(Dt. + 1) or ln(Dt. + 1/ 
rt) (adding one to the total number found, before averaging) or something else (if Dt. 
referred to an average density per cm2, or per m2, etc.). We would prefer to add the 
constant to the total, before averaging, partly to avoid linearizing and partly for ad hoc 
reasons like "pretend we saw half an extra animal." 

It may be helpful to calculate temporal variability with a range of constants (e.g., from 
0.1 to 1) to see whether the comparisons give about the same results. 

Second, add the constant only when Dt. = 0. An argument for this option is that, while 
D,. might be a sensible estimate of At in other cases, we often know (for certain) that At 
> 0 so Dt. = 0 is sure to be an underestimate. Again, a range of constants could be used 
to check consistency. 

Third, calculate temporal variance on the basis of a running average of dates taken two 
at a time (or more, depending on the maximum number of adjacent dates with zeros). 
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This method has obvious drawbacks. It will reduce the estimate of temporal variability, 
especially that owing to short-term variability. The existence of only one zero, or series 
of zeros, will require smoothing all the data over the entire time scale. 

Fourth, in some cases, it may be possible to assign a reasonable "prior" distribution to 
the possible values of A, (or of A,) and use Bayesian methods for the estimation (see 
Bishop et al. 1975, chap. 12). The prior distribution could include the possibility that A, 
= 0, but it will always lead to nonzero estimates provided it gives positive probability to 
some nonzero values of At that could lead (via sampling error) to zero values of Dt.. 

The prior distribution would be arbitrary to some extent, but not necessarily any more 
arbitrary than the added constant in the first or second responses, and it may correspond 
better with common sense. One possibility is to assume that the true A t's are independent 
and lognormally distributed and that the spatial variance of Dtl, Dt2, . . . is a function of 
At, with one or more parameters to be estimated. The parameters of the lognormal, includ- 
ing the temporal variance, could then be estimated directly from the Dti's (e.g., by maxi- 
mum likelihood). 

Fifth, when periods of true zero abundance are expected, the true variation of log(den- 
sity) is infinite, so a logarithmic measure in this case has no meaning. If the zero period 
is known, it could be omitted: it may be of no biological interest, as when we are comparing 
species of insects whose adults appear only in the summer months. 

Sixth, if there are genuine but unpredictable zeros, then the logarithmic measure is 
inappropriate. McArdle et al. (1990) discuss in detail the clearest alternative, the coefficient 
of variation (CV) of the raw Dt. 's. They point out that this may not estimate the "true" 
time series CV, (TA/E{A}, as well as sA estimates its target, (A. If the At's are strongly 
skewed, as is common, then s2 will usually underestimate T2, compensating by occasional 
gross overestimates. This problem may be worth studying in more detail, since it may not 
be as bad as it seems: A. will also usually underestimate E{A}, and s2 and A. are positively 
correlated. 

In comparisons of species, it is possible to have CV, > CV2 while 4T2 < Cr2, where 
the 1 and 2 refer to the species. If the distribution (over time) of the At's is lognormal, 
then the CV is \/7ex7p(fA)- 1; if the distribution of the logs is uniform, the CV is 

(TAV3 coth(CrAV) - 1. Thus if two species are both lognormal or both "log 
uniform," then the one with the larger CV will have the larger CA. But this may not be 
true if the distributions are different, and the situation is still messier if the CV depends 
on the mean of the logs as well as on the variance. 

A third problem is that when the At's are not known and must be estimated, the coeffi- 
cient of variation still conflates spatial and temporal variability. The effect of spatial varia- 
tion on the CV may be complicated, because spatial variation affects both the numerator 
(estimated SD over time) and the denominator (estimated average over time). 

Of course, an existing data set may not have any zeros. Even here, however, there are 
complications. If it is being compared to a data set that does have zeros, it seems reason- 
able that whatever "fix" is used on the latter should be applied to both. A deeper problem 
is that most of the properties of tests, estimators, and other methods in frequentist statistics 
depend not only on what was observed but also on what could have been observed. For 
example, to decide whether an estimator is unbiased, we need to know what its value 
would be for every possible sample, even if that sample did not arise in a particular use. 
Thus, unless it is actually impossible to get Dt. = 0, we cannot describe the estimate of 
At as "ln(Dt.)" since this is undefined at zero. The second option above offers the simplest 
way out since it does not affect a data set without zeros, though it adds an arbitrary 
element to comparisons with data sets containing zeros, since the choice of constant will 
affect one set but not the other. 

FUTURE DATA SETS 

The sequential sampling scheme used in the simulations presented in figure 2 is to choose 
(1) a minimum sample size, r; (2) a required number of nonzero twigs, m (m - 2); and (3) 
a maximum sample size, R. Take a sample of r twigs; if this contains fewer than m nonzero 
twigs, continue sampling until m nonzero twigs are found or until a total of R twigs has 
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been chosen. The estimate of mean density per twig is D,s = Dt., the average number per 
twig, unless the sampling is stopped in its "sequential" phase-that is, if r < n = the 
number of twigs in the sample and m nonzero twigs are found; in this case, DtS =D,+ 
(m - 1)1(n - 1), where D,+ is the average number on the nonzero twigs. This estimate 
is unbiased; we modify it to avoid zeros by defining Dts = 1/2R if all R twigs are zeros. 

The estimated variance of Dts, 02s, is messier, though it is usually very similar to s2., 
in equation (19). It is given elsewhere (Stewart-Oaten 1995) and in more general form by 
Kim and Nachlas (1984) and Kremers (1987). We then estimate At ln(At) by Ltj = 
ln(Dts) + s2 /2D 2, following equation (21), and the variance of Ltj by s2t = sD2 
following equation (22). 

For each combination of a mean density and a clumping parameter in the simulations 
presented in figure 2, we calculated Lt = ln(Dts), Lt, and s2t for 10,000 samples and 
obtained the mean and variance of the L, and Ltj values, and the mean of the s 2 values. 
Taking these to be the true means and variances of these quantities, we then computed 
the means of the four estimates of S2 : S2 = ,(Lt - L.)2/(T - 1), SLJ = -(Ltj - L.J)2I 
(T - 1), S2 (adj) = Y(Lt - L.)2 - JSt,l and SLJ (adj) = (Ltj - L.J )2 - JS2,tT where 
the sums are over the densities (1, 2, 4, and 5). These means were then divided by ln(10)2 
to convert them to base 10. 
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