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OBSERVER EFFECTS AND AVIAN-CALL-COUNT SURVEY QUALITY: 

RARE-SPECIES BIASES AND OVERCONFIDENCE

ROBERT G. FARMER,1 MARTY L. LEONARD, AND ANDREW G. HORN

Department of Biology, Dalhousie University, 1355 Oxford Street, Halifax, Nova Scotia B3H 4J1, Canada

Abstract.—Wildlife monitoring surveys are prone to nondetection errors and false positives. To determine factors that affect 

the incidence of these errors, we built an Internet-based survey that simulated avian point counts, and measured error rates among 

volunteer observers. Using similar-sounding vocalizations from paired rare and common bird species, we measured the effects of 

species rarity and observer skill, and the influence of a reward system that explicitly encouraged the detection of rare species. Higher 

self-reported skill levels and common species independently predicted fewer nondetections (probability range: . [experts, common 

species] to . [moderates, rare species]). Overall proportions of detections that were false positives increased significantly as skill 

level declined (range: . [experts, common species] to . [moderates, rare species]). Moderately skilled observers were significantly 

more likely to report false-positive records of common species than of rare species, whereas experts were significantly more likely to 

report false-positives of rare species than of common species. The reward for correctly detecting rare species did not significantly affect 

these patterns. Because false positives can also result from observers overestimating their own abilities (“overconfidence”), we lastly 

tested whether observers’ beliefs that they had recorded error-free data (“confidence”) tended to be incorrect (“overconfident”), and 

whether this pattern varied with skill. Observer confidence increased significantly with observer skill, whereas overconfidence was 

uniformly high (overall mean proportion = .). Our results emphasize the value of controlling for observer skill in data collection 

and modeling and do not support the use of opinion-based (i.e., subjective) indications of observer confidence. Received  June , 
accepted  December .

Key words: acoustic survey, bias, birds, call count surveys, citizen science, detection, nondetection, observer effects.

Effets des observateurs et qualité des inventaires par le dénombrement des chants : biais sur les espèces rares 
et excès de confiance

Résumé.—Les inventaires fauniques sont sujets aux erreurs de non-détection et de faux positifs. Afin de déterminer les facteurs 

qui influent sur l’incidence de ces erreurs, nous avons effectué une enquête sur internet par simulation de points d’écoute d’oiseaux et 

mesuré les taux d’erreur parmi les observateurs volontaires. À l’aide de vocalisations similaires d’espèces d’oiseaux rares et communes, 

nous avons mesuré les effets de la rareté des espèces et des compétences des observateurs, ainsi que l’influence d’un système de 

récompenses qui encourage explicitement la détection des espèces rares. Les niveaux auto-déclarés de compétences plus élevés et les 

espèces communes ont indépendamment prédit moins de non-détections (étendue des probabilités : , [experts, espèces communes] 

à , [observateurs moyens, espèces rares]). Les proportions globales de détections qui étaient de faux positifs ont augmenté 

significativement alors que les niveaux de compétences diminuaient (étendue : , [experts, espèces communes] à , [observateurs 

moyens, espèces rares]). Les observateurs moyennement compétents étaient significativement moins susceptibles de rapporter de faux 

enregistrements positifs d’espèces rares que d’espèces communes, alors que les experts étaient significativement plus susceptibles de 

rapporter des faux positifs d’espèces rares que d’espèces communes. La récompense pour détecter correctement des espèces rares n’a 

pas influé significativement sur ces patrons. Parce que les faux positifs peuvent aussi résulter du fait que les observateurs surestiment 

leurs propres compétences (« excès de confiance »), nous avons finalement testé si les certitudes des observateurs d’avoir enregistré des 

données sans erreurs (« confiance ») tendaient à être incorrectes (« excès de confiance »), et si ce patron variait avec les compétences. 

La confiance des observateurs augmentait significativement avec les compétences de l’observateur, alors que l’excès de confiance 

était uniformément élevé (proportion moyenne globale = ,). Nos résultats soulignent l’importance de tester les compétences des 

observateurs lors de la collecte de données et de la modélisation et n’encouragent pas l’utilisation des indications de la confiance de 

l’observateur basées sur l’opinion (c’est-à-dire subjectives). 
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to be negligible (e.g., MacKenzie et al. ) and, therefore, have 

received less attention. There is growing evidence from studies of 

anurans and birds, however, that the frequency of false positives 

in auditory surveys can be appreciable. For instance, a controlled 

experiment measuring frog and toad call recognition errors found 

that % of all detection records were incorrect (McClintock et al. 

a). Similarly, a study that modeled the occupancy of five bird 

species using repeated field visits along a North American Breed-

ing Bird Survey (BBS) route estimated false-positive probabilities 

per detection event of up to . (Royle and Link ). Four other 

sets of controlled birdsong simulations showed that false positives 

comprised –% of the total number of detections (mean = .%; 

Bart , Simons et al. , Alldredge et al. , Campbell and 

Francis ). Mathematical simulations have shown that failing to 

account for false positives of these magnitudes can lead to substan-

tially biased estimates of species occupancy parameters (Royle and 

Link , McClintock et al. b, Miller et al. ).

At present, there are limited practical opportunities to 

correct for both false positives and nondetections simultane-

ously. Current published approaches that make such corrections 

(“misclassification models”) require data from replicated surveys 

(e.g., multiple visits made during the same season; Royle and Link 

, McClintock et al. b, Miller et al. ). Unfortunately, 

without some indication of the reliability of the observation 

(Miller et al. ), misclassification modeling may yield biased 

occupancy estimators in the presence of varying levels of observer 

skill (Fitzpatrick et al. ) and when error rates are not consis-

tent among sites (McClintock et al. b). By design, they are also 

not suitable for surveys that lack replicated data (e.g., most BBS 

routes, which are surveyed once annually). Collectively, most cur-

rent study designs and modeling approaches therefore have a lim-

ited ability to address important detection errors.

One approach to reducing the influence of detection errors is 

to address factors that contribute to their occurrence (Raitt , 

Johnson , McClintock et al. a). We propose that an ob-

server’s “state of mind,” which we define here as being the sum of 

conscious and unconscious biases that can affect decision-making 

behavior (e.g., Croskerry , Lane et al. ), might constitute 

such a factor. Although previous authors have speculated that an 

observer’s “attitude” (Faanes and Bystrak ), “carelessness” 

(Robbins and Stallcup ), and preferences and expectations 

(Balph and Balph ) might lead to identification errors on call 

count surveys, to our knowledge, there has been little quantitative 

research addressing this overall theme in ecology.

Nonetheless, such sources of error could be quite important. 

For instance, birdwatchers—and possibly surveyors of other taxa—

are often motivated to detect and report the presence of rare species 

(Sullivan et al. ), and we hypothesize that such a preference might 

bias an observer to both detect more rare species under ambiguous 

circumstances (“observer expectancy effects”; Miller and Turn-

bull , Lane et al. ) and, similarly, to be more attentive to the 

sounds of rare species (“search-image” detection biases; Callahan et 

al. ). These biases might lead to correspondingly fewer nondetec-

tions and more false positives for rare species than for common spe-

cies. On the other hand, rarer species could instead be prone to more

nondetections than common species if an observer arbitrarily rules 

out the possibility of a given rare species being present at all, on the 

basis of its rarity (the “playing the odds” bias; Croskerry ).

Broad-scale and 

long-term eco-

logical data sets col-

lected by volunteers 

form an increasingly 

important compo-

nent of contemporary 

wildlife management 

(Silvertown ). Among their many uses, these data sets moni-

tor populations of birds (Link and Sauer , Julliard et al. , 

Kery and Schmid , Hewson et al. ), anurans (de Solla et al. 

, Lotz and Allen , North American Amphibian Monitor-

ing Program [see Acknowledgments]), invertebrates (Kremen et al. 

, Maritimes Butterfly Atlas  [see Acknowledgments]), and 

many marine organisms (e.g., Goffredo et al. , Ward-Paige et al. 

). Each survey typically records point-count or detection–non-

detection data, or both, from a given location over a known time 

interval, providing broad spatial and temporal data coverage at a 

minimal cost.

In surveys of birds and anurans, a substantial proportion 

of detections are made by ear, without visual confirmation of a 

species’ identity (Dawson and Efford ). Unfortunately, accu-

rate auditory identifications can be difficult because many spe-

cies sound alike (e.g., Robbins and Stallcup , McClintock 

et al. a). In field settings, different habitats and background 

noises also affect detection probability (Pacifici et al. ). Con-

sequently, data collected by auditory surveys generally incorpo-

rate some amount of unavoidable observation error.

In spite of such error, volunteer surveys can be scientifically 

valuable if analyzed appropriately (i.e., if uncontrolled variability 

in detectability can be reduced to less than that of population vari-

ability; Johnson ). The need among managers for good-quality, 

broad-scale, long-term ecological data is increasing because of 

recent and ongoing challenges to global ecosystem stability (e.g., 

U.S. North American Bird Conservation Initiative Committee 

). Hence, developing methods to extract such information from 

these surveys is a highly topical and active research concern (Elphick 

). Reducing the influence of observer error is an important 

component of this research.

Observer-level errors on detection–nondetection surveys 

can be divided into two main types: nondetections and false posi-

tives (Royle and Link ). Nondetections occur when a species 

is present but not recorded, whereas false positives occur when a 

species is absent but is nonetheless recorded. False positives are 

more serious errors because they usually result from the misiden-

tification of a species that is actually present; thus, they are of-

ten accompanied by concurrent nondetections (Bart ). Under 

most wildlife survey designs (including our own), the absence of 

a species is not explicitly recorded; hence, we refer to “nondetec-

tions” instead of “false negatives,” because the latter term implies 

a declaration-of-absence.

The problem of incomplete detection (i.e., nondetection) 

in animal surveys has been studied for decades, particularly in 

the avian literature (e.g., Bart , Marsden ), and direct 

estimation of corresponding probabilities is becoming routine 

(e.g., Diefenbach et al. , Pellet and Schmidt , Etterson 

et al. ; but see Rosenstock et al. , Johnson ). False-

positive probabilities, on the other hand, are typically assumed 

This article contains sound 

files that may be accessed by 

reading the full-text version 

of this article online at dx.doi.

org/10.1525/auk.2012.11129. 
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Exploring this theme, Bart () reanalyzed an experi-

mental call-count survey data set, in part to determine whether 

observers tend to detect particular species more often than 

others. He indeed found that detection error rates varied among 

species; however, his focus was not on the detection of rare versus 

common species specifically. Two recent studies have shown 

that detection error rates vary among rare and common species: 

species that call less often on field recordings of bird choruses 

tend to be associated with greater numbers of detection errors 

than frequently calling species (Rempel et al. , Campbell and 

Francis ). However, those studies did not test for mechanisms 

underlying this pattern, for instance whether these errors tend to 

arise from a lack of observer knowledge or confusion with com-

mon species. Further research is thus needed that specifically 

controls for the effects of observer skill and the potential for rare 

and common species to sound alike.

Along with biases for or against the detection of rare spe-

cies, unfounded observer confidence (“overconfidence”; Moore 

and Healy ) in a particular species identification might also 

be an important source of detection errors. An overconfident 

observer tends to overestimate his or her performance on a given 

task and, thus, is more prone to making detection errors than less 

overconfident observers, all else being equal. Given that over-

confidence tends to occur more commonly among self-assessed 

experts than among novices (Larrick et al. ), and that many 

call count surveys involve expert volunteers (e.g., Sauer et al. , 

Genet and Sargent ), overconfidence might explain a num-

ber of false-positive errors in survey data sets. However, we are 

not aware of research that has quantified its prevalence in this 

ecological context.

We used an Internet-based survey that mimicked an avian 

field point count to address these knowledge gaps. We determined 

rates of nondetections, false positives, and overconfidence among 

a set of volunteer observers to determine () whether observers 

of varying skill levels are more or less prone to detect rare spe-

cies more or less often than similar-sounding common species; () 

whether an explicit incentive to correctly detect rare species af-

fects error rates; and lastly, () whether overconfidence is common 

among observers of different skill levels.

METHODS

We created an Internet-based survey designed to mimic what observ-

ers might hear during an avian point count. The survey was composed 

of  simulated bird choruses (“scenarios”) of known species, each 

lasting  s. We recruited volunteer observers to participate in the 

survey using e-mails sent to rare-bird and natural-history e-mail list-

servers in the Maritimes provinces, Canada (n =  listservers), and the 

northeastern United States (hereafter “New England”; n =  listserv-

ers; see Acknowledgments), and by word-of-mouth. Upon visiting the 

survey website, observers were first presented with an introductory 

page asking that they have a basic familiarity with the vocalizations 

of  candidate bird species, which we indicated might be presented 

in the survey. Only  species were actually used. We provided hyper-

links to examples of each candidate species’ vocalizations. Observers 

were told that the featured choruses typified birds found in mixed 

or predominantly coniferous forest habitats (including wet brush) of 

eastern North America, but they were given no further information 

about the structure or contents of the testing scenarios.

Following this initial screening, observers were asked to de-

clare their skill level from a list of five options (No Experience, Be-

ginner, Moderate, Advanced, and Expert) that were not defined 

further. They were then asked to listen to each of the  scenarios 

once, manually beginning playback of each new scenario when 

ready, and then to indicate which birds were heard in each scenario 

using only the checklist of  candidate species. Replaying the sce-

nario was possible but explicitly discouraged. Observers were not 

asked to count the number of individuals calling. Finally, to gauge 

their confidence and test for overconfidence, the survey asked ob-

servers to indicate at the end of each scenario whether they believed 

that they had correctly identified all species that were present.

We created all scenarios using audio samples of vocalizations 

(i.e., calls and songs) collected with permission from the Macaulay 

Library of the Cornell Laboratory of Ornithology and modified to 

remove background noises and normalize volume levels using the free 

audio manipulation software AUDACITY (see Acknowledgments). 

Each scenario featured the vocalizations of  species sampled with re-

placement from a pool of  species (consisting of  similar-sounding 

species pairs of opposing rarities; Table ). With the exception of the 

TABLE 1. Species used in the survey scenario recordings, grouped by species pairs (A–F) and rarity 
classes (common or rare), assigned according to the number of Maritimes Breeding Bird Atlas 
squares in which each species was present (percentage of 1,499 possible squares, in parentheses).

Species pair Common name Scientific name Rarity

A Alder Flycatcher Empidonax alnorum Common (65.7)
A Olive-sided Flycatcher Contopus cooperi Rare (30.2)
B American Robin Turdus migratorius Common (84.5)
B Rose-breasted Grosbeak Pheucticus ludovicianus Rare (26.6)
C Black-capped Chickadee Poecile atricapillus Common (77.6)
C Boreal Chickadee P. hudsonicus Rare (38.8)
D Dark-eyed Junco Junco hyemalis Common (70.2)
D Palm Warbler Setophaga palmarum Rare (37.6)
E Swainson’s Thrush Catharus ustulatus Common (60.4)
E Veery C. fuscescens Rare (37.0; M only)a

F Song Sparrow Melospiza melodia Common (73.2)
F Lincoln’s Sparrow M. lincolnii Rare (27.0)

a“M only” indicates species that are relatively rare in the Maritimes but common in New England and, thus, 
were scored as “Common” for New England survey results.
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Black-capped and Boreal chickadees (for which we used chick-a-dee–
type calls), all vocalizations used in the scenarios were songs. Vocal-

izations ranged in length from . s (Alder Flycatcher) to . s (Song 

Sparrow) and were repeated three times per species, arranged arbi-

trarily within the scenarios.

We overlapped the transitions between ~% of successive vo-

calizations to make scenarios comparable to a natural field situation. 

The maximum length of time between the remaining nonoverlap-

ping vocalizations was ~ s. To add standardized natural background 

noise to each scenario, we also superimposed a sequence of ambient 

cricket noises taken from a Macaulay audio sample on the sequence of 

bird vocalizations (maximum cricket amplitude [dB] was <% of peak 

birdsong amplitude). The loudness of each vocalization was consis-

tent among all species (sound files  and ; listen to audio files by read-

ing the full-text version of this article online at dx.doi. org/./

auk..).

One member of each species pair was randomly assigned to 

half of the scenarios; the second half of the scenarios featured the 

other member. In this way, no two members of a species pair ap-

peared together simultaneously. Hence, false positives involving 

the species pairs could largely be interpreted as mistakes for the 

rarer or for the common variant. All scenarios had six distinct vo-

calizations (representing one member of each of the six species 

pairs), repeated three times each (Table ).

We duplicated each scenario and alternated the duplicates 

randomly alongside the originals, for a total of  scenarios pre-

sented to each observer (Table ). We informed observers that 

every second scenario would be “scored” and that correctly de-

tecting rarer species was worth more points than correctly detect-

ing common species. We then posted and regularly updated the 

top five high scores alongside user ID codes on the survey website. 

Our intent was to create and measure the effect of an explicit in-

centive to detect rare species on detection error rates. Observers 

were not told that the scenarios were duplicated, and we assumed 

that the scenarios were too similar-sounding and complex to be 

recognized as such. We did not expect this randomized, alternat-

ing design to show any important learning-effects biases; none-

theless, we controlled for any such systematic differences between 

earlier and later scenarios (see below).

We traded off the statistical need to present a large number of 

scenario replicates to our observers against the need to present re-

alistic (longer) survey lengths. Our survey length of  s was sub-

stantially shorter than that of typical roadside point counts, which 

tend to last for – min, but roadside anuran survey research has 

shown that most species detections occur within the first  s 

(Shirose et al. ). Also, the species richness we presented was 

small per scenario (n = ) and, thus, arguably manageable under 

these constraints. Hence, we assume that the challenge posed to 

our volunteer observers was appreciable, but not unreasonable.

Modeling details.—We defined a correct detection as occur-

ring when a species that was present in a scenario was reported 

as such, and false-positive detection as occurring when a species 

that was not present in a scenario was similarly reported as being 

present. The probability of making a correct detection for a given 

species is equivalent to  minus the probability of making a non-

detection error; here, we modeled correct detections in place of 

nondetections because the conceptual interpretation is more in-

tuitive. Rates of correct (and non-) detections vary independently 

of false positives.

To determine the effect of species rarity on the incidence of 

false positives, we first recognized that many “phantom” species 

(sensu Bart and Schoultz , McClintock et al. b) that did 

not appear in any scenario were nonetheless identified repeatedly 

from the survey’s list of  candidate species (Table ). As with 

the “playback” (i.e., non-phantom) species pairs, we defined each 

phantom species as being either rare or common so that their data 

records could be modeled. Here, we determined the relative rar-

ity values for each phantom species again using the Maritimes 

Breeding Bird Atlas detection records (–), but using 

the percentage of atlas squares occupied by the most abundant of 

the “rare” playback species (.%) as the threshold value distin-

guishing “rare” phantom species from “common” phantom spe-

cies (Table ). The maximum percentage of atlas squares occupied 

by “rare” phantom species was .%; the minimum percentage of 

atlas squares occupied by a “common” phantom species was .% 

(Table ).

One phantom species (Eastern Phoebe) was common in the 

northeastern United States compared with most Maritimes re-

gions (Weeks and Harmon ). Hence, we scored its detection 

records as “rare” if observations came from Maritimes survey par-

ticipants and “common” if they came from New England survey 

participants. To simplify statistical analyses, we also arbitrarily 

discarded detection records for phantom species detected < 

times out of , total detection records (Table ). We also dis-

carded records from the single “Beginner” because there was no 

replication of this skill level.

We used generalized linear mixed models (GLMMs) to de-

termine expected probabilities of correct detections and ex-

pected proportions of all detections that were false positives. 

Generalized linear mixed models incorporate random effects 

structures that recognize group-level deviations from over-

all patterns (Venables and Ripley ). We modeled correct 

TABLE 2. Summary of experimental design of our Internet-based survey. “Scenarios” are the separate audio tracks 
played sequentially to the observers.

Item n

Scenarios 16 (8 unique × 2 for incentive treatment)
Total species 12 (6 vocalization group pairs × 2) 
Number of scenarios in which a given species is present 8 (4 × 2 for incentive treatment)
Species vocalizing per scenario 6
Discrete vocalizations per species, per scenario 3
Discrete vocalizations per scenario (all species) 18
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() the chronological scenario number and its interaction with 

observer skill as additional covariates.

To predict the probability of making a correct detection for 

a given species rarity class and scenario, we built a data set con-

sisting of a record for each correct detection ( = the species was 

present and detected) and each nondetection ( = the species was 

present but not detected) and excluding all false positives. We 

used a total of , records of correct detections (n = ,) and 

nondetections (n = ,).

We modeled the expected probability of making a correct de-

tection for a given species on a given scenario as a mixed-effects 

Bernoulli process using the package lme in R, version .. 

(Bates and Maechler , R Development Core Team ). In 

this model, in addition to recognizing differences in correct de-

tection probability among observers as random intercepts, we also 

recognized variation in mean correct detection probability be-

tween species pair-groups, given that some species’ calls are more 

easily detected than others (Alldredge et al. ):

logit[P(Yijkl = )] = β

 + β


 × rarityi + β


 × skillj + β


 × scenariok

+ β

 × skillj : scenariok + β


 × skillj : rarityi + β


 × incentivek

+ β

 × rarityi : incentivek + b

j + b
l ()

where Yijkl =  when a species is correctly scored as being present; 

i =  of  rarity classes; j = ,…,  observers; k = ,…, nj scenarios 

completed per observer; and l = ,…,  species pairs. Random ef-

fects b
j and b

l are independently and normally distributed inter-

cepts for observers and for species pairs, respectively, with means 

zero and with standard deviations estimated from the data.

We then constructed a second data set to model the expected 

proportion of all detections for each observer-within-scenario 

that were false positives for each of the rare and common species 

groups. For instance, if observer A, listening to scenario , incor-

rectly reported the presence of two rare species and one common 

species and correctly reported four common species and three 

rare species, his false-positive proportion would be . and . for 

rare and common species, respectively. In total, we modeled , 

false positive proportions. We estimated the proportion of false 

positives per rarity class per scenario as a mixed-effects binomial 

process with the same predictors as equation , but with a simpler 

random-effects structure, as follows:

logit[P(Yijk = )] = β

 + β


 × rarityi + β


 × skillj + β


 × scenariok

+ β

 × skillj : scenariok + β


 × skillj : rarityi + β


 × incentivek

+ β

 × rarityi : incentivek + b

j ()

where Y
ijk

is the proportion of all detections that were incorrect 

(false-positive) for a given observer, scenario, and species rarity 

class; i =  of  rarity classes; j = ,…,  observers; k = ,…, nj sce-

narios completed per observer; and b
j is a normally distributed 

random intercept for observers with mean zero and standard de-

viation estimated from the data.

To measure and model confidence levels among survey par-

ticipants, we first asked observers at the end of each scenario 

whether they believed that they had correctly accounted for all 

species present. If they answered “yes,” we considered that sce-

nario and its responses to be “confident.” We then calculated the 

proportion of scenarios completed by each observer that were 

confident.

detections and false-positive proportions as binomial responses 

and incorporated random effects structures that accounted 

for differences in error rates among observers (both models) 

and species pairs (correct detection model only). Our choice to 

model false positives as proportions of all detections is consis-

tent with previous studies (e.g., Simons et al. , Alldredge et 

al. , McClintock et al. a).

Each of the models of correct detections and false posi-

tives allowed us to estimate error rates while measuring the 

influence of several predictors. We used the GLMMs to model 

() how the rates of each type of error varied among rare and 

common species; () the effect of the incentive treatment re-

warding the correct detection of rare species over common 

ones; () how observer skill was related to error rates; and () 

any skill- and incentive-dependent differences (interactions) in 

the detection of species of each rarity class. To correct for skill-

dependent changes in observer ability over the course of the 

survey (e.g., learning, changes in interest level), we also included 

TABLE 3. Species that were candidates for detection but not included in 
the scenario recordings (“phantom” species). Rarity classes (Common 
or Rare) were assigned to those species that were reported at least 
7 times among 4,025 species records (n = 19 records or <0.5% of the 
total). Rarity classes were assigned according to the number of Maritimes 
Breeding Bird Atlas (MBBA) squares in which each species was pres-
ent (percentage of 1,499 possible squares, in parentheses); “rare” species 
were found in <38.8% of atlas squares.

Common name Scientific name Raritya

American Woodcock Scolopax minor
Barred Owl Strix varia
Belted Kingfisher Ceryle alcyon
Black-and-white Warbler Mniotilta varia Common (61.4)
Black-throated Green 

Warbler
Setophaga virens

Common Grackle Quiscalus quiscula
Common Nighthawk Chordeiles minor
Common Yellowthroat Geothlypis trichas
Eastern Phoebe Sayornis phoebe Rare (18.3; M only)b

Eastern Towhee Pipilo erythrophthalmus
European Starling Sturnus vulgaris
Fox Sparrow Passerella iliaca Rare (11.1)
Great Horned Owl Bubo virginianus
Hairy Woodpecker Picoides villosus
Hermit Thrush Catharus guttatus Common (72.4)
Ovenbird Seiurus aurocapilla
Pine Warbler S. pinus Rare (4.8)
Red-eyed Vireo Vireo olivaceus Common (74.6)
Red-tailed Hawk Buteo jamaicensis
Rock Pigeon Columba livia
Scarlet Tanager Piranga olivacea Rare (6.2)
Eastern Whip-poor-will Caprimulgus vociferus
Willow Flycatcher Empidonax traillii Rare (1.9)
Wilson’s Warbler Cardellina pusilla Rare (14.3)
Yellow Warbler S. petechia
Yellow-rumped Warbler S. coronata Common (73.4)

aRarity and percent MBBA square values were calculated only for those phantom 
species detected 7 times or more among all observers and scenarios, because only 
data from these phantom species were included in the predictive models.
b“M only” indicates species that are relatively rare in the Maritimes but common 
in New England and, thus, scored as “Common” for New England survey results.
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largely did so in error, rather than out of fatigue or disinterest. This 

is because the survey was composed of four webpages contain-

ing four scenarios each, and most of the missed scenarios were in 

groups of four sequential scenarios located on the same webpage.

Observers with higher skill levels were significantly more likely 

to correctly detect any given species than observers of lower skill 

levels (Fig. A and Table ). Across all skill levels, all observers were 

also equally and significantly less likely to correctly detect rare spe-

cies than common ones (Fig. A and Table ). Neither the incentive 

nor the scenario number was significantly related to correct detec-

tion rates among and within observers and skill levels (Table ).

The expected proportion of species correctly detected per sce-

nario for each skill level ranged from . (% CI: .–.; Mod-

erate) to . (% CI: .–.; Expert) for common species, and 

from . (% CI: .–.; Moderate) to . (% CI: .–.; 

Expert) for rare species (Fig. A). Subtracting these values from . 

gives a set of nondetection probabilities that range from . (Ex-

pert skill, common species) to . (Moderate skill, rare species).

Summed across both species rarity groups, the proportion 

of false positives declined significantly with increasing skill level 

(Table ). However, skill level also interacted significantly with 

species rarity. Here, moderately skilled observers falsely detected 

common species more often than rare species, whereas experts 

falsely detected rare species more often than common ones (Fig. 

B and Table ). Again, neither the incentive nor the scenario 

number was significantly related to the occurrence of false posi-

tives across or within skill levels (Table ).

The expected proportion of false positives per scenario for 

each skill level ranged from . (% CI: .–.; Expert) to 

. (% CI: .–.; Moderate) for common species, and 

from . (% CI: .–.; Expert) to . (% CI: .–

.; Moderate) for rare species (Fig. B). A tabular summary of 

the correct detection and false-positive frequencies, indexed by 

species and observer skill level, is given in the Appendix.

We also calculated the proportion of overconfident scenarios. 

We defined an overconfident scenario as one in which an observer 

made at least one detection error while also declaring confidence. 

This measure thus indicated the probability that a given observer’s 

declaration of confidence was incorrect.

Using generalized linear models (GLMs), we modeled both 

the incidence of declared confidence and the incidence of over-

confidence as functions of observer skill. Our confidence data 

were collected at a different resolution than our detection data; 

here, each observer contributed one confidence record per sce-

nario. Accordingly, we built the following models:

logit[P(Y
ij = )] = β


 + β


 × skilli ()

logit[P(Y
ik = )] = β


 + β


 × skilli ()

where Y
ij =  occurs when a participant declares that a particular sur-

vey scenario was scored entirely correctly (“declared confidence”) 

and Y
ik =  occurs when a declaration of confidence is incorrect 

(“overconfidence”); i = ,…,  observers; j = ,…, ni scenarios com-

pleted per observer; and k = ,…, mi confident scenarios per observer.

All models were checked for fit quality by examining conven-

tional or binned residual plots (Gelman and Hill ), and re-

sults were compared visually with plotted raw data to check for 

consistency. Unless otherwise specified, results are presented as 

means ± SD.

RESULTS

We modeled data from observers representing three self-reported 

skill levels: “Moderate” (n = ), “Advanced” (n = ), and “Expert” 

(n = ), from the Canadian provinces of New Brunswick, Nova Sco-

tia, and Prince Edward Island and the New England states of Maine, 

New Hampshire, and Vermont. Most observers (.%) completed 

all  scenarios (mean number of scenarios completed = . ± 

.). We suspect that those who failed to complete all  scenarios 

FIG. 1. Summary of (A) the predicted probability of correctly detecting a species and (B) the predicted proportion of false positives per scenario, 
grouped by both species rarity and whether the incentive to detect rare species was in effect, ordered by self-reported skill level. Error bars are 95% 
confidence intervals.
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The proportion of scenarios for which an observer declared 

confidence increased significantly with self-assessed observer skill 

(β

 = . ± ., P < .; Equation  and Fig. A), with model-

estimated values increasing from . (Moderate; % CI: .–

.) to . (Expert; % CI: .–.). Among those surveyors 

who declared confidence on at least one survey scenario (n = ), 

there was no significant difference in the amount of overconfidence 

among skill levels (β

 = −. ± ., P = .; Equation  and 

Fig. B). Model-estimated proportions of overconfident scenarios 

(overall mean = .) ranged from . (Moderate; % CI: .–

.) to . (Expert; % CI: .–.); this difference was not 

statistically significant.

DISCUSSION

We found significant relationships between detection error rates 

and each of observer skill and species rarity. In our models, the 

TABLE 4. Factors that affected the probability of correctly detecting a spe-
cies on a given scenario (Equation 1; n = 4,416 correct and nondetec-
tions distributed among 52 observers). In this binomial model, σb1, the 
standard deviation about the observer random effects, is 0.72; and σb2,
the standard deviation about the species-pair random effects, is 1.02. All 
values are on the logit scale.

Factor Estimate SE z P

(Intercept) –0.516 0.547 –0.943 0.345
Rarity –0.576 0.228 –2.531 0.011
Skill 0.820 0.198 4.143 <0.001
Scenario 0.017 0.023 0.727 0.467
Incentive –0.046 0.102 –0.454 0.650
Skill: scenario 0.001 0.012 0.115 0.908
Rarity: skill –0.039 0.115 –0.337 0.736
Rarity: incentive –0.045 0.147 –0.307 0.759

TABLE 5. Factors that affected the number of false positives for a given 
scenario and species rarity group (Equation 2, n = 1,429 counts of false 
positives distributed among 52 observers). In this binomial model, σb1,
the standard deviation about the observer random effects, is 0.41. All 
values are on the logit scale.

Factor Estimate SE t P

(Intercept) –0.893 0.287 –3.114 0.002
Rarity –1.228 0.224 –5.473 <0.001
Skill –0.598 0.149 –3.997 <0.001
Scenario 0.0003 0.022 0.016 0.987
Incentive 0.065 0.101 0.651 0.515
Skill: scenario –0.004 0.012 –0.370 0.711
Rarity: skill 0.632 0.112 5.649 <0.001
Rarity: incentive –0.044 0.147 –0.302 0.762

FIG. 2. Beanplot summary of the proportion of scenarios that were (A) “confident” or (B) “overconfident” (i.e., proportion of confident scenarios with 
at least one error), grouped by self-reported skill level. “Confident” scenarios were those in which an observer declared that he or she had correctly 
detected all species present. In each “bean,” small ticks correspond to individual values for a given skill level and are scaled by length according to 
their frequency. The longer solid lines are the mean values for each bean, and the dotted line is the overall mean. Note that these are raw data values; 
modeled predictions differ only slightly.
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alternative to quizzes or other more elaborate testing approaches 

(e.g., Genet and Sargent , McClintock et al. a).

Not surprisingly, we found that rare species were correctly 

identified less often than their common variants among all skill 

levels (Fig. A and Table ). Interestingly, more skilled observers 

tended to submit false-positive records of rare species more often 

than common ones, whereas the reverse was the case for moder-

ately skilled observers, who incorrectly detected common species 

more often than rare species (Fig. B and Table ). One explana-

tion for this interaction might be that more experienced observ-

ers have a greater familiarity with rarer species than novices and, 

therefore, may be aware of a greater number of alternatives for a 

given vocalization (e.g., Faanes and Bystrak ).

These results further suggest that naively modeled data col-

lected mostly from experts may overestimate the occupancy or 

abundance of rare species. Where similar-sounding rare and com-

mon species are not present simultaneously, the nondetection errors 

associated with these false positives would also underestimate 

occupancy or abundance of common species. Conversely, surveys 

using less-skilled volunteers would overestimate common species 

occupancy and underestimate occupancy for similar-sounding rare 

species. Hence, our data support existing evidence that heteroge-

neous mixtures of surveyor skill levels can lead to biased detection 

and occupancy estimates (e.g., Fitzpatrick et al. ).

In light of these detection biases, survey designers must con-

trol for skill level among participants (e.g., Kepler and Scott , 

Genet and Sargent ), incorporating rare-species interaction 

effects as appropriate. This is important when working with both 

single-visit and single-observer designs (present study) and re-

peated-sampling designs (the preferred approach; e.g., Fitzpatrick 

et al. ). Independent of any skill effects, the nontrivial nonde-

tection and false-positive rates we observed also emphasize that 

neither form of error can be ignored.

Contrary to our expectations, we found no evidence that an 

incentive to correctly detect rare species contributed to differ-

ences in detection error rates across or within skill levels (Tables  

and ). We therefore have no evidence that the intrinsically com-

petitive designs of surveys such as eBird (Sullivan et al. )—

which publishes observers’ names alongside their detection 

records and encourages the detection of rarities—could introduce 

bias and affect error rates. However, our survey design offered only 

a weak incentive—in particular, no guarantee of publicity among 

one’s peers. Hence, we suggest that these results be regarded as 

preliminary.

Finally, we found that observers of higher self-assessed skill 

levels tended to be more confident about the correctness of their 

identifications than less-skilled observers (Fig. A). These more-

skilled observers also tended to have fewer false-positive and more 

correct responses (Fig. ). Thus, the higher confidence of experts 

was justified in principle. However, our specific measurement of 

observer confidence was whether observers believed that they had 

made zero detection errors on a given survey scenario, and this spe-

cific outcome was actually quite rare. We found a consistent over-

confidence among observers of all skill levels (Fig. B). Thus, an 

apparent increase in the level of observer confidence with increas-

ing self-assessed skill seems to have outpaced the proportionately 

smaller increase in actual ability, causing the level of overconfi-

dence to remain consistent across observers of different skill levels.

probability of making a nondetection error decreased with ob-

server skill and among common species, as did the proportion of 

responses that were false positives. A significant interaction be-

tween skill and species rarity for false positives also indicated that 

among moderately skilled observers, the majority of false posi-

tives were of common species, and among experts, the majority of 

false positives were of rare species. We also found no evidence that 

an incentive to detect rare species affected error rates. Finally, ob-

servers of all skill levels were overconfident, with % of scenarios 

completed by confident observers of any skill level having at least 

one error. Below, we address each of these findings in turn.

The range of observed nondetection error probabilities (.–

.) is consistent with the results from similar experiments. For 

instance, Alldredge et al. () calculated values ranging from . 

to ., depending on the species and singing rate. Similarly, Simons 

et al. () found probabilities ranging from . to . overall, 

and Bart () reported a probability of . on average. Using 

unretouched field recordings, Campbell and Francis () also 

reported a value of .. Contributing to these errors were slower 

singing rates (Alldredge et al. ), louder background noise (Si-

mons et al. ), and increased local species rarity (Campbell and 

Francis ). Our research shows that, controlling for similarity in 

vocalizations, increasing rarity at the population scale and decreas-

ing observer skill are also important predictors of species detection.

The observed frequency of false positives (.–.) was 

also consistent with past research. For instance, Lotz and Allen 

() found similar proportions of scenarios that had at least one 

incorrectly detected anuran (in the absence of similar-sounding 

equivalents; . and ., two regions), and Campbell and Fran-

cis () found that ~% of bird detection records could not be 

confirmed from simultaneous field recordings, which suggests 

that they were false positives. Our results were, however, higher 

than some previously published rates—from Simons et al.  

(.–.), Alldredge et al.  (–.), and McClintock et al. 

a (.)—possibly because we had ambiguous candidate spe-

cies broadcast over a relatively short period (i.e., higher difficulty), 

and likely a lower average observer skill level. Although Royle and 

Link () also found the probabilities of detecting a bird species, 

given its absence (“p


”), to range from . to ., this statistic 

differs from what has been calculated from most studies, includ-

ing ours (i.e., proportion of all detections that are incorrect), and 

so is not directly comparable. Nonetheless, both our results and 

this related observation suggest that false-positive rates in avian 

field detection data are nontrivial.

Several previous studies have shown significant differences 

among individual observers in their ability to detect and iden-

tify animal sounds (e.g., Shirose et al. , Link and Sauer , 

McLaren and Cadman , Alldredge et al. ). However, few 

have found relationships specifically tied to observer skill, prob-

ably because most used a homogeneous group of expert partici-

pants, who are all highly competent in spite of differences in their 

amateur or professional status, or in their high absolute levels of 

experience (e.g., Genet and Sargent , Lotz and Allen , 

McClintock et al. a). Conversely, our more heterogeneous 

group demonstrated expected decreases in detection errors with 

increasing observer skill. Our use of self-assessment of observer 

skill therefore appeared to successfully capture real differences 

in ability; this suggests that self-assessment can be an efficient 
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A promising model-based approach to account for the non-

trivial instances of both nondetection errors and false positives in 

detection survey data requires that observers provide a measure 

of the reliability of each species detection (Miller et al. ). Be-

cause we found widespread levels of overconfidence in our data 

set, we believe that a subjective declaration of certainty (e.g., a rat-

ing of observer confidence from  to ; Larrick et al. ) for use 

as such a reliability measure may not be appropriate, and more ob-

jective measures such as the anuran chorus-intensity values used 

by Miller et al. () are preferable. For bird surveys, observers 

could also note the call type (e.g., the chick-burr call for a Scarlet 

Tanager, a highly confident identification, vs. its less distinctive, 

Robin-like song, a less confident identification) or, more generally, 

the type of detection method used (e.g., heard vs. seen; Miller et al. 

). Recording such detailed detection evidence is not an im-

practical option, because it has already been successfully imple-

mented on broad scales in several Canadian breeding bird atlases 

(e.g., Maritimes Breeding Bird Atlas –), which require 

observers to classify detections using a range of breeding evidence 

codes. Another important complementary strategy is to empha-

size to volunteers the value of being conservative with one’s spe-

cies identifications, for instance recording no observations when 

in doubt (sensu McClintock et al. a), which can reduce the in-

cidence of false positives arising from overconfidence.

In sum, our results show that an observer’s state of mind has 

important implications for detection errors. Rates of nondetec-

tions and false positives vary with species rarity and with observer 

skill, indicating skill-dependent biases in the detection of rare 

species. Furthermore, overconfidence may be an important factor 

contributing to these errors. Therefore, approaches to managing 

these differences that focus on controlling for differences in ob-

server skill and encouraging observer objectivity should improve 

survey data quality. We hope that this research leads to increas-

ingly fruitful use of the valuable, ongoing contributions of thou-

sands of volunteers.
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APPENDIX. Summary of correct-detection and false-positive data, grouped by species and observer skill level. “Correct” 
count data are the total number of correct detections for a given species among all observers and scenarios (“observer-sce-
narios”). The proportion correct (in parentheses) is the number of correct detections divided by the total number of times 
that species was played among all observer-scenarios. “False-positive” count data are the total number of false positives for 
a given species among all observer-scenarios. The proportion of false positives per scenario (in parentheses) is the number 
of false positives divided by the total number of observer-scenarios. This value is different from the modeled proportion of 
false positives per scenario (results here are summarized across multiple observers and scenarios).

Moderate
(248 observer-scenarios)

Advanced
(372 observer-scenarios)

Expert
(116 observer-scenarios)

Group Speciesa Rarity

Correct
(proportion 

correct)
False positive
(per scenario)

Correct
(proportion 

correct)
False positive
(per scenario)

Correct
(proportion 

correct)
False positive
(per scenario)

A ALFL C 89 (0.7) 17 (0.07)   167 (0.86)     3 (0.01) 53 (0.95) 0 (0)
A OSFL R 96 (0.8)   8 (0.03)  171 (0.97)   7 (0.02) 60 (1)   4 (0.03)
B AMRO C   87 (0.69) 48 (0.19) 134 (0.71) 55 (0.15) 57 (0.92) 12 (0.1)
B RBGR R   55 (0.45)   8 (0.03)   88 (0.48)   9 (0.02)  41 (0.76)   2 (0.02)
C BCCH C 116 (0.92) 34 (0.14) 179 (0.95) 35 (0.09) 56 (0.9)    1 (0.01)
C BOCH R   52 (0.43)   6 (0.02) 100 (0.55)   2 (0.01) 39 (0.72)   3 (0.03)
D DEJU C   32 (0.25) 28 (0.11)   70 (0.37) 39 (0.1) 26 (0.42)   21 (0.18)
D PAWA R 25 (0.2) 14 (0.06)    62 (0.34) 25 (0.07)  21 (0.39) 13 (0.11)
E SWTH C 63 (0.5)   8 (0.03) 146 (0.76) 20 (0.05) 54 (0.95) 0 (0)
E VEER Rb   89 (0.73) 19 (0.08) 153 (0.85) 16 (0.04) 59 (1)      1 (0.01)
F SOSP C   53 (0.44)   5 (0.02)    118 (0.65)   6 (0.02) 48 (0.92)   3 (0.03)
F LISP R   50 (0.39) 16 (0.06)        101 (0.53) 36 (0.1) 54 (0.84) 15 (0.13)
Phantom BAWW C   2 (0.01) 1 (0) 0
Phantom EAPH Rb 22 (0.09)   5 (0.01) 0
Phantom FOSP R   3 (0.01)   32 (0.09)    1 (0.01)
Phantom HETH C 34 (0.14)   12 (0.03) 0
Phantom PIWA R 23 (0.09) 34 (0.09) 10 (0.09)
Phantom REVI C   4 (0.02) 14 (0.04) 0
Phantom SCTA R 14 (0.06) 26 (0.07)   7 (0.06)
Phantom WIFL R 11 (0.04) 14 (0.04)    1 (0.01)
Phantom WIWA R   5 (0.02) 23 (0.06) 12 (0.1)
Phantom YRWA C   7 (0.03) 13 (0.03)   5 (0.04)

aAbbreviations: ALFL = Alder Flycatcher (Empidonax alnorum); OSFL = Olive-sided Flycatcher (Contopus cooperi); AMRO = American 
Robin (Turdus migratorius); RBGR = Rose-breasted Grosbeak (Pheucticus ludovicianus); BCCH = Black-capped Chickadee (Poecile atricapil-
lus); BOCH = Boreal Chickadee (P. hudsonicus); DEJU = Dark-eyed Junco (Junco hyemalis); PAWA = Palm Warbler (Setophaga palmarum); 
SWTH = Swainson’s Thrush (Catharus ustulatus); VEER = Veery (C. fuscescens); SOSP = Song Sparrow (Melospiza melodia); and LISP = Lin-
coln’s Sparrow (M. lincolnii); BAWW = Black-and-white Warbler (Mniotilta varia); EAPH = Eastern Phoebe (Sayornia phoebe); FOSP = Fox 
Sparrow (Passerella iliaca); HETH = Hermit Thrush (C.  guttatus); PIWA = Pine Warbler (S. pinus); REVI = Red-eyed Vireo (Vireo olivaceus); 
SCTA = Scarlet Tanager (Piranga olivacea); WIFL = Willow Flycatcher (E. traillii); YRWA = Yellow-rumped Warbler (S. coronata).
bRare only in the Maritimes provinces


