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Abstract. Here we present an equation for the estimation ofis essential for further production estimates estimates. Inter-
nitrate in surface waters of the North Atlantic Ocean’(®0  annual changes of the nitrate availability will directly influ-
to 52N, 10°W to 60° W). The equation was derived by ence new production and carbon drawdowiodve 2001).
multiple linear regression (MLR) from nitrate, sea surface But estimating nutrient fluxes into the upper ocean and their
temperature (SST) observational data and model mixed layesubsequent utilisation by marine primary production is still a
depth (MLD) data. The observational data were taken frombig challenge in oceanography. Even though there are con-
merchant vessels that have crossed the North Atlantic on &#nuous sampling programs at Bermuda Atlantic Time Series
regular basis in 2002/2003 and from 2005 to the present. I{BATS, Bates 2007 station in the western North Atlantic
is important to find a robust and realistic estimate of MLD and European Station for Time Series in the Ocean, Canary
because the deepening of the mixed layer is crucial for nidslands (ESTOCGonzlez-Chvila et al, 2007) in the eastern
trate supply to the surface. We compared model data fronpart of the subtropical North Atlantic, it is impossible to map
two models (FOAM and Mercator) with MLD derived from nutrient variability for the whole basin. The mechanism of
float data (using various criteria). The Mercator model givesnutrient supply is very different at the two stations: at BATS
a MLD estimate that is close to the MLD derived from floats. it is mainly driven by eddies and at ESTOC by winter con-
MLR was established using SST, MLD from Mercator, time vection Cianca et al.2007). Furthermore these two stations
and latitude as predictors. Additionally a neural network wasare located in the subtropical gyre where seasonality is low.
trained with the same dataset and the results were validatebh the temperate North Atlantic, between°30 and 60 N,
against both model data as a “ground truth” and an indepenthe coverage of surface nutrient data is sparse especially be-
dent observational dataset. This validation produced RMSause of very few wintertime observation&drtzinger et al.
errors of the same order for MLR and the neural network ap-(2008 andHartman et al(2010 reported the seasonal cycle
proach. We conclude that it is possible to estimate nitrateof nutrient data for the years 2003/2004 with data from a sin-
concentrations with an uncertainty #f1.4 pmol L= in the gle location, the Porcupine Abyssal Plain site (PAP), located
North Atlantic. in the temperate North East Atlantic Ocean{#D16.5 W).
Some work has been done to estimate winter nitrate
concentrations from nitrate-density relationshigzasside
and Garsidgl 999, nitrate-temperature/density relationships
(Kamykowski and Zentaral986 Sherlock et al.2007) or

Estimating seasonal new production is fundamental for ourto estimate nutrient fields from remotely sensed d@taes

; . . et al, 2000 Kamykowski et al. 2002 Switzer et al. 2003.
understanding of the global carbon cycle. Especially in re- . . K .
: . : . everal other attempts were made to estimate wintertime ni-
gions where nitrate is depleted during summer the amount o ;

nitrate that is available at the onset of the productive seaso%?ésvg?q%%rgrzg?; i%graz?g?szrgoit }igle?/seazg(l)c]))vzrsiﬂg

values at the onset of the productive season are crucial to as-
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Another possible application of predicting seasonal nutri-
ent cycles, that are not based on climatology, is the parame-
terization of CQ partial pressure in seawat@G0O,). Stud-
ies have been performed to relate g&0; in the North At-
lantic to remotely sensed dathefevre et al. 2005 Jamet
etal, 2007 Luger et al.2008 Chierici et al, 2009 Friedrich
and Oschlies2009ab; Telszewski et a).2009 as it is driven
by many factors: thermodynamics, biology, mixing and air-
sea gas exchange. Chlorophyl{chl-a) concentrations are
often employed to estimate the biological driver of g@&O,,
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but the utility of chl« for this purpose is rather limitedno
et al, 2004 Luger et al. 2008. Given that nitrate changes o o oty o 2%
are directly related to new production we believe that estima- sV 3 ‘ ‘ ‘
tion of the entire seasonal cycle of nitrate could also improve
pCO, predictions.

Here we present (and compare) two methods using obser-
vational data to estimate mixed-layer nitrate in the North At-  4s°n
lantic between 40N and 52 N and 10 W and 60 W. The
first method is a multi linear regression (MLR) and the sec-
ond method used the same data to train a neural network. |

However, the quality of any prediction depends on the 2
quality of the predictors. Therefore we chose the variables to  sox
be used in the prediction, sea surface temperature (SST) and ) !
MLD, very carefully. Reliable and well tested SST prod-
ucts are available (e.g. the Advanced Microwave Scanning
Radiometer-EOS (AMSR-E) on NASA EOS Aqua satellite, Fig. 1. (a) Location of samples used in this study. Triangles de-
Emery et al, 2006. The situation is more complicated for note samples taken in 2002 and 2003 and squares denote samples
MLD because there is no uniform criterion for its estimation. {@ken since 2005. For validation purpose we also used data from
Numerous criteria for the estimation of MLD can be found another VOS line (UK-Caribbean), that was sampled in 2002/2003
in the literature (e.gKara et al, 2003 de Boyer Monégut by the National Oceanographic Center (NOC), Southampton (cir-

L . cles). The diamonds denote the position of the three time series sta-
et al, 2004 and often the criteria need to be adjusted re- tions BATS, ESTOC and PAP, as well as one location that is used

gionally. The proposed criteria vary from simple temper- ¢, qemonstration (refer to Fig). (b) Number of month sampled
ature difference criteria to advanced methods such as thgjithin a 22 Latitude x 2.5 Longitude box.

curvature criterion oLorbacher et al(2006 that uses the

shape of vertical profiles (temperature or density). For all

these criteria temperature/density profiles are required for

the MLD estimation. Alternatively, MLD climatologies or Lines, Stockholm, Sweden). The M/V Falstaff was also used
MLD estimates from models can be used. In this study weat the onset of CARBOOCEAN in 2005 but was changed
compare MLD calculated from in-situ measured profiles (i.e.to a new ship, the M/V Atlantic Companion (Atlantic Con-
by ARGO floats), MLD climatology oMonterey and Lev- tainer Lines, New Jersey, USA), in 2006. Both ships were
itus (1997, and MLD estimates from two different models outfitted with autonomous instruments that meaquCe®,
(FOAM and Mercator). (Luger et al. 2004. At the same time sea surface tempera-
ture (SST) and salinity (SSS) were measured using Seabird
thermosalinographs (SBE21 or SBE45) with external SBE38
temperature sensors that were located near the seawater in-
take. The setup of the sampling line were different on both
ships. Onboard M/V Falstaff a 4 m insulated pipe was con-
nected to the small starboard side sea chest, used for the evap-
We used data from water samples taken on “Volunteer Ob-orator of the ship, leading to the SBE21. The manifold of the
serving Ships” (VOS) along a trans-Atlantic route betweenSBE21 was used to divide the water and one line was used
Europe and North America (Figla). The studies were for discrete water samples (i.e. nutrients). During CAVAS-
part of two European research projects: CArbon VAriability SOO the water flowed to the manifold just by hydrostatic
Studies by Ships Of Opportunity (CAVASSOO) and CAR- pressure. During CARBOOCEAN a torque-flow pump was
BOOCEAN. During CAVASSOO (2002/2003) samples were installed before the SBE21. Onboard M/V Atlantic Compan-
collected from the merchant vessel M/V Falstaff (Wallenius ion a 15 m insulated pipe was connected to a rear starboard

2 Data and calculations

2.1 Discrete water samples
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side seachest, that was used only by us. A torque-flow pumgan be different from the MLDKara et al, 2003, but we
was installed near the seachest to pump the water to the samassume this difference to be negligible for our comparison
pling site. The water depth of both seachests varied betweestudy. Thomson and Fin€002 have shown that using tem-
4 and 8 m depending on the draught of the ship. perature related MLD estimates are preferable for biologi-
On both ships samples were taken by trained IFM-cal applications. We used only profiles with at least 10 data
GEOMAR personnel and we employed the same samplingpoints, with the uppermost data points shallower than 15m.
procedure for the nitrate samples: seawater was drawiror the specified time period we found more than 23 000 pro-
into 60 mL plastic bottles that were immediately frozen at files. The MLD was calculated using the commonly used
—18°C. The storage and transportation of the samples was nthreshold difference method with varions” (AT =0.2°C,
problem because the freezer was next to the sampling poird.5°C and 1°C). We used the uppermost data point of each
and samples were removed when the ships stopped in Geprofile (<15m) as the surface reference temperature. In ad-
many. They were transported in cooling boxes to the laboradition to these simple difference criteria, we also applied the
tory and analyzed at the IFM-GEOMAR, Kiel, following the curvature criterion of.orbacher et al(2009 that defines the
method ofHansen and Koroleff1999. The overall accuracy MLD by the curvature of the given profile (temperature or
of these samples i&3% in the range of 0-10 ymofil. The  density). We used a Matl/&broutine that was provided by
data were manually inspected for each cruise seperately anighe authors for the calculation.
data were flagged (good, suspicious or bad). In this study ) )
we used only data that were flagged “good” and that were2-2.2  Climatological MLD
taken at water depths deeper than 1000 m, in order to exclud . .
any influence by shelf waters. We used 413 samples (sprea he MLD chmatology ofMonterey arld LgV|tu$1997) con-
over 4 years) from 28 different cruises for our calculation. tains monthly. MLD fields on a Ix1° grid for_ the glob_al .
Figure 1a shows the positions of the samples. The earlier°¢€an: MLD s palculated baseq on'three different crltgrla:
data taken on the M/V Falstaff (black triangles) are located® temperature difference, a density difference, and a variable

closer to the southern end of the study region, covering a IatfjerISIty change. As previous stated, we used only the data

itudinal band between 40N and 56 N. The data from the calculated with the temperature difference criterion, which

M/V Atlantic Companion (grey squares) are located furtherernploys a surface-to-depth difference of 0G5
to the north between 4™ and 53 N. Figure1b shows the
number of month where data were available driLatitude x

2.5 Longitude boxes. The maximum number of month with £or the modelled MLD we chose the output from

samples per pixel is 6. The cruises are equally distributedyyo models: (a) Forecasting Ocean Assimilation Model
over the seasons, so that the linear interpolation approach iGFOAM) from the Met Office, UK http://www.ncof.co.uk/
an adequate method to fill the gaps between the measurgepoaM-System-Description.htand (b) Mercator Project,

2.2.3 Modelled MLD

locations. France {www.mercator-ocean)r The two models provide
) daily MLD from 2002 with a spatial resolution of 178 1/8°
2.2 Mixed layer depth and 1/6 x1/6°, for FOAM and Mercator, respectively. A dif-

ference criterion of $C for temperature and 0.05 kgthfor

We compared MLD estimations from the climatology of gensity is used in the FOAM model while difference criteria
Monterey and Levitu§1997), the output of two ocean mod- 4t 2°C and 0.01 kgm? are used for Mercator.
els, and calculated by applying different criteria on vertical

temperature profiles measured by the ARGO float network in2 2.4 Comparison of MLD estimates

order to identify the most suitable MLD estimate. The data

from the ARGO floats were collected and made freely avail-We randomly chose 31 temperature profiles from ARGO
able by the Coriolis project and programmes that contributefloats for the comparison, for which we calculated the MLD

to it (http://www.coriolis.eu.orj using the different criteria mentioned above. FigRihows
two typical examples of temperature profiles with the various
2.2.1 MLD calculated from ARGO data MLD estimates. We also tried to manually identify a best

MLD estimate as a reference point by the “eyeball” method,
We downloaded all profile data available for the time periodi.e. a phenomenological identification of the MLD. We de-
2002-2007 in our study region from the ARGO website. All termined the climatological value and the model data for this
profiles were linearly interpolated onto 5m depth intervals. specific time and position and calculated the difference be-
MLD was calculated only from temperature profiles for this tween the various MLD estimates and the “eyeball” refer-
comparison, because the number of profiles including bottence MLD. The mean values for these 31 profiles are shown
temperature and salinity is less than the number of temperin Fig. 3. Although the criterion oLorbacher et al(20069
ature profiles. We note that calculations based on a tempeiappears to yield the best MLD estimate, we decided to use
ature criterion represent the iso-thermal layer (ILD) which the MLD output from a model for further calculations for the
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Fig. 2. Two examples of vertical temperature profiles from ARGO
floats with the MLD assigned using various techniques or sources. . . .
The orange Xs denote the eyeball reference MLD. Top: summer _We empl(_)yed acommon logarithmic expression of S_ST_'
temperature profile. Bottom: winter temperature profile. nitrate relationship because SST shows rather large variabil-
ity when the nitrate concentration is low (i.e. during summer
time). The logarithmic formulation results in a drecrease of
following reasons: 1) despite the huge number of floats in thethis non-linear character of the SST. We explicitly used in
ocean (3190 floats in October 2008) the coverage is spatiallgitu SST and not remotely sensed data to keep the errors as-
and temporally sparse compared to the model, 2) existenceociated with the establishment of the algorithm as small as
of a diel cycle in the MLD Price et al.1986 may bias MLD  possible. The use of different SST products derived for ex-
estimation when using real profiles. We calculated the dif-ample from satellites is discussed below.
ference between the MLD computed with the Lorbacher cri-  All MLRs were calculated using the STATISTIGAsoft-
terion and the MLD estimations from Mercator and FOAM, ware package (StatSoft, Tulsa, USA). In the first step we used
respectively AMLD = MLD | grh, — MLD pogel). The mean  all variables for the MLR (Lat, Lon, log(SST), MLD arrdl
difference was—24.2£104.2m (RMSE) for Mercator and The longitudinal information turned out to be statistically in-
117.5:405.2 m (RMSE) for FOAM and therefore we opted significant and we repeated the MLR without longitude. Now

for the MLD from Mercator. all residing variables turned out to be statistically significant.
_ _ _ This procedure ensured that the resulting equation includes
2.3 Multiple Linear Regression (MLR) only a minimum of the available parameters that are neces-

) o ) sary to estimate the nitrate cycle. Our set of predictive vari-
Our ultimate goal was to develop a predictive equation forgpes results in the following best-fit equation:

mixed layer nitrate on the basis of a minimum number of

variables that are publicly available. Our initial list of pre- NO3=0.274x Lat—5.445x log(SST) +0.006x MLD
dictors were the following parameters: SST, MLD, latitude
(Lat), longitude (Lon) and timer), wherer is the day of the
year. To take into account that the first and the last day of a : o - ,
year have nearly the same influence on our dataset we peyyhere nitrate is in pmolt?, SST in°C, MLD in m andt .
formed a sinusoidal transformation to the actual day of thedenotes the day of the year. The MLR used 413 datapoints

year analogous thlojiri et al. (1999. and the adjuste& value is 0.82.

. t t
+3.142x SN2 20 +1.110x cOS2r ) -3345 (1)
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To study possible improvements by adding ehata

from SeaWifs [ittp://oceancolor.gsfc.nasa.gde the initial 217 R

dataset we performed a MLR with SST, MLD, Lat, Lon, time . 43 a

and chla as predictors. The chl-data were 8 day composites 10 {— W :

with 9km resolution (at the equator). The adjusRivalue ’g ¢ i

of the resulting equation is also 0.82. A major drawback of ~sl & ik

adding chle is the reduction of datapoints for the MLR. Due - P i S ',

to the typical clouds above the North Atlantic the cases were g ¢ I i

we had data for nitrate, MLD and chlwere reduced to 230. % 6 U L.

Therefore we did not include clalin the algorithm. g Z . T ;3
41y ot T

2.4 Self-Organizing Map (SOM) £ . i ¥ g i

The regression coefficients provide information about physi- 2 ' . . . ; jit

cal relationships between nitrate and SST or MLD, respec- ‘ R T !

tively, if the predictors of a MLR are independent. The 0

drawback of this method is the limitation to a linear relation 0 &0 12[;’ f1:‘° 240 300 360

and (even for a polynomial regression) the fitting to a pre- 6 Yo e

defined function. Therefore, a neural network approach was
additionally employed using a self-organizing map. SOMs
were introduced to science kigohonen (1982 and suc-
cessfully applied to oceanographic data lbgfévre et al.
(2005, Friedrich and Oschlie§2009gb) and Telszewski

et al.(2009. SOMs are able to estimate a target value (e.g.
nitrate) from related parameters (e.g. MLD, SST) without
fitting to a predefined function by recognizing relationships
in the observational data during the training process. The
same predictive parameters used in the MLR (Bgwere
employed in the SOM.

ANitrateimeas. - calc.) [umol L'1]

K¢

2.5 Algorithm validation

2.5.1 Validation against observational data 0 60 120 180 240 300 360
Day of the year

We performed several tests to evaluate the predictive power
of the algorithm for mixed layer nitrate (EQ) and for the  Fig. 4. (a) Surface nitrate concentration versus day of the year for
SOM estimations. Figurd shows that the calculated data all data taken between 2002 and 2007. Black dots are the measured
(MLR) are generally in good agreement with the measure-concentrations and grey triangles denote predicted concentrations.
ments, although there are obvious differences in spring andb) Difference between measured and calculated nitrate data. Neg-
autumn. Negative nitrate values are predicted during theative values_ show over_estimation of the MLR with respect to the
summer when nitrate is depleted but for a simple linear ap-measured nitrate and vice versa.
proach allowing for random error the prediction of nega-
tive values is the only way to produce a period of zero ni-
trate. All predicted negative values were set to zero forthe remaining data. The coefficients of the resulting equa-
further calculations. The higher deviations in spring andtion were of the same order as the ones in B}. (Ve used
autumn may arise from small scale variability (patchiness)this equation to estimate the nitrate concentration for the 100
and cannot be reproduced through our Simpie MLR ap_data points we deleted for the MLR. We performed this test
proach_ By Comparing the measured training data with théhree times and calculated the mean deviation for the cho-
estimated data it results in a mean underestimation of nitraté€n data points each time. The resulting deviations were be-
of 0.141.4umol L (RMSE). The same comparison with tween—0.4umolL™! and 0.0 umol * with an RMSE of
the algorithm that includes the chiterm leads to an overes- 1.4 pmol L™* for all runs.
timation of 8.2£8.3 pmol -1 (RMSE), which might be due We also employed a completely independent data set for
to the sparse data coverage. comparison. During CAVASSOO the National Oceanog-

In addition, we randomly chose 100 data points to ex-raphy Center, Southampton, UK (NOC) took nitrate sam-
clude from the entire dataset and performed a MLR with ples onboard the VOS M/V Santa Lucia and M/V Santa

www.biogeosciences.net/7/795/2010/ Biogeosciences, 780952010
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Maria, respectively. Both ships were sailing between the2.5.2 Validation using a biogeochemical model
UK and Carribean (Figl) and produced more than 600 ni-
trate samples between May 2002 and December 2003 in thBredicted nitrate concentrations were also validated against
area north of 40N. We used the SST from their dataset nitrate concentrations predicted by a high-resolution
and the matching MLD from Mercator to estimate corre- nitrogen-based nitrate-phytoplankton-zooplankton-detritus
sponding nitrate data with both methods: SOM and MLR. model of the North Atlantic. All model details are described
Since we do not have the MLD for all 2002 dates we in- in Oschlies et al(2000 andEden and Oschlie®006. The
cluded only 344 datapoints. In average nitrate was underadvantage of this model-based validation is that the model
estimated by 0:1.2 pmol -1 (RMSE) with the MLR and  produces daily nitrate fields with a horizontal resolution of
overestimated by 041.5 pmol L1 (RMSE) with the SOM.  1/12° x1/12 latitude/longitude which can be used as a basin
Using only data between 10V and 50 W (the SOM was  wide “ground-truth” to assess the accuracy of the nitrate
trained only in this region) the MLR underestimates nitrate estimates generated by the MLR and the SOM, respectively.
by 0.5+1.1 umol L1 (RMSE) and the SOM overestimates it The model output of SST, MLD and nitrate was sampled
by 0.3+1.3 pmol L1 (RMSE). according to the time (day of the year) and position of the
Figure5 shows the intra and interannual variability of SST, actual nitrate measurements during the period of June 2002
MLD and nitrate concentration for the time period betweento May 2003, where error of nitrate measurements was not
2002 and 2007 for two example locations: easterr? {9  considered. This model-generated data set was then used to
16.5 W, PAP) and western (4N, 49° W) North Atlantic. calculate a MLR and to train a SOM. The input parameters
SST and nitrate are also available for a whole annual cycle irfor both approaches were the same as for the observational
2002/2003 at the PAP sit&prtzinger et al.2008, resulting  data: Lat, SST, MLD and time (day of the year). Monthly
in another independent dataset. The West Atlantic locatiormean model outputs of SST and MLD were used to generate
was chosen to illustrate the limitations of a MLR approach nitrate estimates from both methods. Fig@ieshows the
because the Labrador current may introduce short term variannual cycle of nitrate simulated by the model in the domain
ability on a daily timescale. The corresponding SST and ni-covered by the nitrate sampling 48 to 52 N, 10° W to
trate values measured onboard one of the VOS lines mens(® W) and the annual cycle of the nitrate estimates derived
tioned above were added to the plot if one of the VOS linefrom the model-generated data set by the MLR and the
crossed an area of ¥1° (2°x2°) latitude/longitude around SOM, respectively. The general pattern of the annual cycle
the location within one day. The annual amplitude of SSTcan be reproduced by the estimates. High winter nitrate
is more pronounced in the western region and the short ternconcentrations are underestimated. The SOM estimate has
variability is also higher. The VOS SST measurements are i higher accuracy in reproducing the late summer nitrate
good agreement with AMSR-E in the eastern region. Devia-minimum. It is apparent that the mapping fails in the
tions can be seen in the westerly region due to the high shomorth-western part of the basin because of the spatial and
term variability there, especially if data are from ax2° temporal distribution of the nitrate mapping error (Fég-—d
grid cell. This short term variability at the westerly location (MLR) and6e—h (SOM)). This applies for both the MLR and
also results in deviation of the VOS measured nitrate datdor the SOM. High nitrate values occurring in the Labrador
from the predicted concentrations. current cannot be reproduced by either estimate. This
The MLD amplitude is slightly higher at PAP station. The disparity may be due to the sparse observational coverage
instruments at PAP were deployed in approximately 30 mof the considered region or to the highly variable current
depth andKortzinger et al(2008 excluded data that were system in this region. The basin wide RMS-error for our
measured below the thermocline. The SST data measureshodel-based validation amounts to 2.1 umotLfor the
at PAP and from the VOS lines agree with the data fromSOM estimate and 2.2umofi for the MLR estimate
AMSR-E. This results in good agreement between measurewhich is significantly higher than the error derived from the
ments and predicted values of nitrate. In contrast to the meavalidation against independent observational data.
sured and SOM estimated nitrate data the (MLR) calculated
nitrate data show a smooth seasonality. A comparison of th&.5.3  Error estimation
latter two results in a RMS error of 0.9 umott. A compar-
ison of the SOM calculated data and the measured values &the uncertainty in nitrate estimation of 1.4 umof'Lappears
PAP results in a RMS error of 1.4 umotL. However, the for different validation approaches. Therefore we speculate
SOM estimates in the western part are in better agreemerthat this is the uncertainty within the training dataset itself
with the measured data. Figus¢second row) shows the dif- that arises for instance from sampling/measurement errors or
ference between MRL estimated nitrate and the other nitratgroblems in the water supply (e.g. biofouling). Thus it is im-
products. The SOM estimates and the VOS measuremenigossible to estimate nitrate with an uncertainty better than
deviate mostly in the same order and direction. +1.4 umol L= with the presented algorithm. Another error
source can be small scale variability that can not be covered
with a simple MLR approach, whereas mesoscale variability

Biogeosciences, 7, 79867, 2010 www.biogeosciences.net/7/795/2010/
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Fig. 5. Seasonality of nitrate, MLD and SST for the time period between 2002 and 2007 for a single location in the western and eastern parts
(PAP site) of the North Atlantic, respectively. The panels in the first row show the nitrate concentration calculated with the MLR and SOM,
respectively. Nitrate measurements from PAP mooring and VOS lines that passed withidi@aand 2 x2° grid cell, respectively, are

shown. The panels in the second row show the difference between measured and estimated nitrate using the same data as in the upper pane
Negative values show overestimation of the MLR and vice versa. The panels in the third row show the MLD taken from Mercator (mean
value of £0.5° Lat/Lon around the location). The lower two panels show the SST from AMSR-E (mean valt@®SfLat/Lon around the

location) and measured SST from VOS lines. Also shown are the SST measurements from the PAP site in the eastern part.

should only add random noise to the data. The effect could Olsen et al(2004 analysed the deviation between satel-
be seen when we tried to estimate nitrate in the area of thdite derived SST and in situ measured SST. They found dif-
Labrador current (Fig6): the uncertainty of the estimates ferences of up to 4C. The minimum and maximum SST
increases rapidly. A minor drawback of a MLR is the lin- within our dataset is 5.9C and 25.6C, respectively. The
ear correlation of the predictors itself. So it is clear that SSTmaximum error would be between 4% and 20%. An error
is corellated to Lat or time. In oceanography it is a gen-of 20% (4%) in SST would result in an error in nitrate of
eral problem that variables are correlated, but given that eacB.4 pmol L1 (0.1 pmol L=1). In contrastEmery et al(2006
variable influences the result in a different way it was accept-showed that the Advanced Microwave Scanning Radiometer-
able to use variables that are somehow correlated. EOS (AMSR-E) on NASA EOS Aqua satellite produces SST
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FEMS—error of MLRE estimate RMS—error of S0M estimate
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Fig. 6. RMS errors for nitrate estimates in umotft using a MLR (a—d) or SOM (e—h) technique in summer, fall, winter and spring,
respectively(i) Annual cycle of simulated “true” nitrate (black), and nitrate estimates using the SOM (red) or MLR (blue) technique for the
region shown in (a—h). RMS errors and annual cycles were calculated using a biogeochemical model.

data that are in good agreement with the in situ measure@ Discussion

SST. We suggest that using the temperature from AMSR-E

(http://www.ssmi.com/ampmwill introduce only a small er- 3 1 \MLD estimations and variability
ror.

The choice of MLD can lead to huge over- or
underestimations of MLD. To assess the influence o
over/underestimation of MLD, we calculated the error in ni-
trate that will arise from an uncertainty of 50 m in the MLD.
The resulting error is approximately 0.3 pmoii.

fOur results indicate that it is possible to find a robust MLD
estimate with a good temporal and spatial resolution. Al-
though using in-situ profiles results in the best estimation of
the MLD at a specific position and time the resolution of the
ARGO network is too sparse for reflecting an annual cycle
of MLD on the scale of the entire North Atlantic Ocean. In
contrast, climatological MLD estimates (elonterey and
Levitus 1997 de Boyer Mongégut et al. 2004 have uniform
resolution but do not reflect interannual changes and show

Biogeosciences, 7, 79867, 2010 www.biogeosciences.net/7/795/2010/


http://www.ssmi.com/amsr

T. Steinhoff et al.: Estimating nitrate in the North Atlantic 803

considerable deviations from observations (e.g. tend to sig-
nificantly overpredict MLD). Using MLD generated by mod-
els could be a compromise: data are produced on a daily ba:
sis, on a regular grid, and can be in good agreement with ob-
servations. Here we compare results from two models since
the model dependent differences are large.

For in-situ profiles, such as those measured by floats, the z 5
curvature criterion of.orbacher et al(2006 results in MLD
that are closest to those which are eyeball-defined @ig.
The model output from FOAM yields MLD that are sig-
nificantly deeper than in-situ observations. This finding is
in good agreement witlde Boyer Monégut et al.(2009 &)
who, among others, showed that a temperature criterion of 35§
1°C (see Fig2.2.3 is too large for the subpolar North At-
lantic. We chose the model output of the Mercator project, as 30 PN
this provides high resolution and MLD that are close to the ™ “gindemee
eyeball-defined MLD.

We examined the variability in the reliably estimated MLD Fig. 7. MLD for 10 March 2006 as calculated by Mercator.
during the entire time period to understand the dynamics in
the region. The mixed layer in the subpolar North Atlantic
shows a clear seasonality (F|: during summer the MLD  range of the predicting variables (Lat, day of the year, SST
may be only a few tens of meters while, in wintertime, depthsand MLD).
greater than 350 m can be reached. We carefully inspected As expected, the latitude and time in the MLR-algorithm
the dynamics of the winter MLD since its deepening suppliesexplain most of the nitrate variabilityGarcia et al. 2006.
nutrients to the sea surfac®gchlies 2002. This makes The latitudinal dependence was mentioned in various studies
the MLD one of the main forcing features in this region’s (e.g Koevg 2001 Kamykowski et al. 2002 and, together
biogeochemistry@schlies 2002. It is well known that the  with time, it represents nearly a climatological annual nitrate
maximum winter MLD increases with latitude and numerous cycle that is very stable within our study area.
studies have shown that a local maximum in the winter MLD ~ The algorithm can be adjusted to capture the interannu-
exists between 49\ and 50 N in the North Atlantic (e.g.  ally varying conditions by adding SST and MLD (provided
Koeve 2001, de Catlogon and Frankignop003. The re-  they are not taken from climatologies). They reflect the ac-
gion of occurrence of the maximum MLD is known to be a tual conditions that can drive biological production and can
region of most intense wintertime ocean heat Idgarghall change from year to year as well as from one place to an-
2005. Due to this rapid cooling at the surface the density other. The MLD appears to be a good indicator of the vari-
rapidly increases and the surface waters along the North Atable vertical supply of nitrate. Figur@ shows the differ-
lantic Drift (NAD) are mixed much deeper than to the north ence between measured nitrate and nitrate estimations that
and south of this region. Figuiéshows the MLD as calcu- were calculated from an equation that uses only Lat and time
lated by Mercator for 10 March, 2006. The maximum MLD and from Eq. {). For this purpose we performed a MLR

deep (350m)

mixed layer depth

Latitude in

shallow (10m)

along the NAD is clearly visible. with the same dataset using only Lat and time as predictors.
Then the difference between the measured nitrate concentra-
3.2 Nitrate estimations tions of the independent dataset of the NOC and estimations

from the climatological approach and from Eg)) fvere cal-

The nitrate data show a clear seasonality (Hg), with culated. During most of the year the difference between the
nitrate depletion during summer and the highest values imalgorithm that uses only Lat and time and the one that uses
spring (8-12 umol L1). The data during summer show low also SST and MLD as predictors is small. But the most in-
variability due to depletion of nitrate in the whole study area. teresting time are the winter months (February—March) when
Higher scatter can be observed in the data during the rest d/ILD reaches its maximum and fresh nitrate is mixed into the
the year. This is probably due to small scale variability of surface. Figur® shows clearly that both algorithms overes-
the sampled surface water (patchiness) as well as to the largémate the winter nitrate concentration, but the error with the
latitudinal range of the cruise tracks (Fip). climatological approach is bigger compared to Hf. So we

The validation of the presented algorithm shows that 82%can state that inclusion of SST and MLD shows an improve-
of the nitrate variabilty is explained by EdL)( It turned out  ment that is of the order of the interannual variability. This
that it was a reasonable approach to use a MLR for the 41%ariability in the nitrate supply that is linked to variability in
datapoints that are spread over 4 years, because the data thaLD will result in interannual variations in biological pro-
were used for the algorithm are distributed over the wholeduction that will therefore influence the carbon drawdown.
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The overall uncertainty in predicting nitrate with the pre-

< ° sented MLR-algorithm and SOM is 1.4pumotL As this
E 07 e seg—8a uncertainty appears by different validation approaches we
Z 4 s ° ° believe that this is the internal uncertainty of the presented
S, ° °e ° dataset. Initially this does not appear to be better than al-
$ - o gorithms presented in former studies (&k@mykowski and
4 *] Zentara 1986 Garside and Garsid@995 Goes et al.200Q
g 41 Kamykowski et al. 2002 Switzer et al.2003. But some of
g 5 5:32::&::1::2385T'MLD) o them are preserlting algorithms only for other. regions than
3 the North Atlantic Goes et al.200Q Kamykowski and Zen-
UM AMJ JAS OND JFM  AWJ JAS OND tara 1986 or present gridded estimations on°XA0° grid
2002 2003 (Switzer et al. 2003. The algorithm presented garside

and Garsidg€1995 is based only on SST and they report a

Fig. 8. Monthly mean difference between measured and estimatedRMSE of 1.1 umol ™ for their North Atlantic dataset. Ap-
nitrate. The nitrate estimations were made (1) only from Lat andPlying their equation to our dataset leads to an overestimation
time and (2) with Eq.). The measured nitrate data are from the of 1.4+2.9 umol "* (RMSE). The algorithm used in this
NOC dataset that was not used for the establishment of the algostudy estimates nitrate with an uncertainty of 1.4 pmdi,L
rithm. both for the reproduction of the training dataset itself and

for the independent dataset from NOC. This gives confi-
N ddence in the presented equation. However, here we present

one simple algorithm for a whole region that is easy to use
; h L ) . and the desired input data (MLD, SST) can be accessed eas-
in an increase in nitrate concentrations. Fig8ae-c shows

ily. As an example we calculated the annual new produc-
averaggd values of the February/Mar_c h data of MLD’ SSTtion for 2004 at PAP station and compared it with the cal-
and estimated MLR nitrate concentration at PAP site.

. X . ) culations fromKortzinger et al.(2008. Using the same
Adding chl«a to the algorithm did not lead to improve- . A
ments of the result what might be caused by two factors: (i)MLD and C/N ratio axortzinger et al(2009 we calculated

. > Vthe new production to be 6#2.7 mol C nr2yr=1 (their re-
t_r_le reductl_on of number of_samples frqm 413 to 230; andSult from measurements was 4.1 mol C nr2yr-1). Us-
(i) The ratio of converted nitrate to clal-is not a constant

. o ing the MLD estimates from Mercator (the same as used
ratio (e.g.Hydes et al.2001, K?h'ef a_md .Koev,ezoo-]). At for nitrate estimation) the new production is estimated to be
the onset of a bloom where nitrate is high and el low

) J = ) . 2.6+1.3molCnr2yr~1. Note, that the difference between
the nitrate consumption is high and particulate organic mate-

. s ; this two calculations is only due to the different MLD esti-
rial has I(.)W CN val_uesl(ortzmger etal.2001). During the mations. A predictive accuracy of 1.4 umottis not better
bloom this conversion factor will change due to the reduced

L X . than the measurements itself but it offers the potential to esti-
availability of nitrate and this change can not be covered by b

. ) mate nitrate with a sufficient accuracy within the whole study

an easy algorithm like the presented one. area

.The small mteraqnual variations of ca. 1.5 pmoﬂ(e.g. In this study, the SOM predicted nitrate data are not better
Fig. 5). can be exp_lalned by the fact t_hat the_data fallin nearlythan the MLR estimates, despite in the regions that were in-
one blogeogrgphlc province as defined gver and Irwin fluenced by the Labrador current. This is a clear limitaion
(2008: Following the classmcauo_n dfonghurst(2007), our of an easy MLR approach, as the MLR was trained with
sampling area covers three provinces (Gulf _Stream ((.;FST)data from a different biogeographic province and is not pos-
North Atlantic drift (NADR) and North Atlantlc §ubtrop|cal sible to extrapolate the presented equation to differnt regions.
gyre (NAST(E)) province). There are certain differences be-

hod h . but th logical This is the advantage of the SOM as it recognizes the rela-
een Inese provinces, but the ecological processes are prt'i'onship of the predictors at the specific position. We specu-
marily driven by the same physical processdsonghurst

; : . late that taking full advantage of the benefits of SOM would
;2r](;03 :Sgn:?egs;;azgig?g:gglmcgggg?,Lm?i'gzt(ﬁ;ig equire better data coverage. The basinscale validation of
. i i y i he MLR h M i i hemical | pro-
spring production peak”. NAST(E) is assigned to another © and the SOM against a biogeochemical model pro

1 1
case (“winter-spring production with nutrient limitation”) but duced RMS errors of 2.1 pmoft (SOM) and 2.2 umol b

) (MLR) respectively. These errors are considerably larger
these samples contribute only 5% of our dataset and are lo; : S o
cated at the northern border of the NAST(E) province. ASthan those obtained from the validation against independent

. : . observational data. In particular high nitrate values in win-
the borders between the certain provinces are not very stnc&, b g

we can state that our dataset also fits in one biogeographicebfEr and spring in the Labrador Current region could not have
province as defined byonghurst(2007. een reproduced by our estimation techniques. This clearly

shows the temporal and spatial limitations of the presented
method. The predictive potential of both techniques is mostly

The increase in winter time mixed layer between 2004 al
2007 (Fig.5, third row) in both basins, east and west, results

Biogeosciences, 7, 79867, 2010 www.biogeosciences.net/7/795/2010/
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Fig. 9. (a—c)Average values of wintertime (February, March) MLD, SST and nitrate estimates from MLR at the location of PAP site. Error

bars are standard deviations {1 (d) SeawatepCO; that is in equilibrium with the atmosphere and corrected for the extra amount of DIC
associated with the extra nitrate.

restricted to interpolation between lines of observations. For As mentioned above a lot of effort is being made to predict
the water masses that could be classified as nearly the sanseawatepCO; in the North Atlantic Ocean very precisely
biogeochemical province the interpolations works well, be-using remotely sensed data. One important driving force of
cause the training dataset contains data from all seasons e pCO; is the SST due to the thermodynamic effect, that
different years. This enabled us to find good estimation re-is well known (e.g.Takahashi et al1993. But thepCO; is
sults with an easy MLR approach. An extrapolation to wateralso affected by high biological activity\atson et a].1991,
masses not or barely covered by the variability range of the_liger et al. 2004 Kortzinger et al.2008 especially in the
measurements suffers from larger estimation errors. Thus wéemperate North Atlantic which is hard to assess by remote
can state that an extrapolation in time might work sufficiently sensing Ono et al, 2004 Luger et al. 2008 and references
well, but an extrapolation in space will not work, because of herein) as satellite chlorophyll data proved to be rather use-
different dependencies (e.g. main nutrient supply in the studyess as a predictor in their study. As the biological production
region by convection). in the world oceans follows a nearly constant stoichiome-
try (Redfield et al. 1963 it is easy to calculate the change
in DIC from a known nitrate change and subsequently the

. . effect onpCO, can be calculated. Following the MLR ap-
We calculated the increase pCO, that should result from o050 of other studies but substituting satellite chlorophyl

increased nitrate concentration as mentioned abovedB)g.  \yith calculated nitrate using the algorithm presented above

we assume that the nitrate concentration until 2005 constiy ¢ the potential to obtain betigE0, estimates. A residual
tutes a baseline and that the associated dissolved inorganig..o- o 1 4 umol £ in nitrate would still translate, however

carbon (DIC) supply will result ipCO, values that are in i apCo; error of >18 patm what is comparable to the

equilibrium with the atmosphere. We found that the in- pySE of the parameterization used®grbiere et al(2007)
creased nitrate and the associated increased DIC (calculatqq7_4 uatm). One could argue in favour of using the MLD

from C/N ratio of 7.2 Kortzinger et al.200]) will resultin 554 SST twice (first for the nitrate estimation and second for

pCO, values that are increasing faster than in the ('altmospherf,;hepco2 estimation) as the SST dependence®0; is dif-
(Fig. 9d). Both rates opCO; increase are within the range of o ant from the dependence of nitrate.

previous observation€prbiere et al, 2007 Takahashi et 3. This hypothesis has to be tested in future work and also the

2009 and references herein) and we speculate that the ol qinq research onboard VOS lines will produce more ni-

seryed chz_inges in rates pLo, increase may be due to the qte gata that could support and/or improve the presented al-

variable winter MLD and, thus, the nitrate supply. gorithm and especially the SOM approach will become more
important with a larger dataset.

3.3 Implications of nitrate estimation to pCO>
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