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Return Periods of Extreme Sea Levels From Short Records 

JOHN F. MIDDLETON 1 AND KEITH R. THOMPSON 

Department of Oceano•7raphy, Dalhousie University, Halifax, Nova Scotia, Canada 

Extreme sea levels usually arise from a combination of the tides (assumed here to be deterministic) and 
storm surges (assumed stochastic). We show in this paper how tide and surge statistics derived from 
short (• 1 year) records can be used to predict the occurrence of extremes with much longer return 
periods (• 50 years). The method is based on an extension of the exceedance theory originally developed 
by Rice (1954) to study noise in electrical circuits• A comparison of predicted return periods with those 
obtained directly from a 50-year Markovian simulation of surge is used to validate the exceedance 
probability method. The method is next applied to the Canadian ports of Halifax and Victoria, which are 
dominated by semidiurnal and diurnal tides, respectively. To provide a stringent test of the method, just 
1 year's data from each port are used to estimate the tide, surge statistics, and hence return periods. The 
predictions are found to compare well with the results of a conventional (Gumbel) extremal analysis 
based on more than 60 years of data provided allowance is made for (1) the anormality of the surge 
distribution and (2) seasonal changes of surge variance. The agreement suggests that the method may be 
successfully applied to other short sea level records or indeed to any partly deterministic process where 
return periods are of interest. 

1. INTRODUCTION 

The frequency of extremes in sea level, and its reciprocal, 
the return period, are of obvious practical importance to those 
coastal cities subject to flooding. Where many years of sea 
level data are available, the extremal analysis of Gumbel 
[1958] has proved to be of great use in deriving decadal scale 
return periods [e.g., Graff, 1981]. However, for many coastal 
regions the available sea level records are relatively short, and 
a conventional extremal analysis based on annual maxima is 
precluded. 

Here it will be shown how return periods may be estimated 
from short records. The method is based on the probability of 
sea level exceedance in a given interval of time. The derivation 
of this exceedance probability for a normally distributed, 
stationary process was given originally by Rice [1954] in an 
analysis of noise in electrical circuits. This probability, and a 
related distribution of maxima, have appeared in a variety of 
oceanographic contexts. Cartwright [1958] has applied the 
probability of maxima to ocean wave studies, while Garrett 
and Munk [1972] have parameterized mixing due to internal 
wave breaking using an exceedance probability for wave 
shear. Lumley [1962] has also used an exceedance probability 
to relate Eulerian and Lagrangian fluid velocity statistics. In 
this study, the exceedance probability due to Rice [1954] will 
be extended to the nonstationary process of sea level where we 
assume the tide is deterministic and the surge is stochastic. We 
will refer to this exceedance probability method as the EPM. 

While the focus of this paper is primarily on extreme sea 
levels, it will become clear that the EPM may be usefully 
applied to extreme currents, wave-tide action on sediment 
transport, or any other process that is in part deterministic 
and part stochastic. In this paper the deterministic component 
will be tides. However, it could equally well include a predict- 
able trend, and we anticipate that the EPM may prove useful 
in the estimation of return periods for coastal sites subject to 
pronounced vertical crustal movement. 
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In section 2 the EPM is outlined, and summaries are given 
of Gumbel's [1958] extremal analysis procedure and an alter- 
native method for estimating return periods from short re- 
cords due to Pugh and Vassie [1980]. The latter is based on 
the joint probability of tide and surge and is henceforth re- 
ferred to as the JPM. A 50-year Markovian surge simulation 
is used to validate the EPM and compare return periods pre- 
dicted from a Gumbel analysis and the JPM (section 3). The 
surge statistics and tidal component required for return period 
prediction at Halifax and Victoria are obtained in section 4 
from 1 year of sea level data. Predictions are made in section 5 
using the EPM and JPM and finally compared with bench- 
mark extremal results obtained from a Gumbel analysis of 
more than 60 years of sea level data from each site. 

2. THEORY 

The purpose of this section is to outline the extension of the 
exceedance probability approach of Rice [1954] and review 
two alternative methods which are used later for comparison, 
i.e., the Gumbel [1958] type analysis of annual maxima and 
the joint probability approach of Pugh and Vassie [1980]. 

2.1. Gumbel's Method 

Consider a record of length NAT where N is an integer 
(typically greater than 25) and AT is a subrecord length (typi- 
cally 1 year) assumed to contain many independent extreme 
events. From each subrecord the largest extreme is extracted, 
and the resultant set ordered in an ascending sequence (r/m*; 
rn'•= 1, N). The probability that an (annual) extreme is greater 
than or equal to the rnth exceedance is then estimated to be 
tb(rlm*) = (N + 1 --m)/(N + 1), with a return period (in years) 

Te = A T/c•(rlm* ) (1) 

Now if sea level follows a type 1 distribution (see below), then 
Gumbel [1958-1 has shown that the extremal probability is 
given asymptotically by 

•(r/*) - 1 - exp [-- exp (--y)] (2) 

where y = (r/* -•)//• is the "reduced variate" and • and 0.78/• 
denote the mode and standard deviation of the extremes. (A 

• ,• cumulative distribution t,,,•,, • distribution is defined to be •n., %,, 1•,•, • 

(e.g., normal) which converges, with increasing r/*, toward 
unity at least as quickly as the exponential distribution, 
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1- exp (-r/*).) Results for extremal return periods are then 
generally presented as a plot of r/,•* versus the reduced variate 
estimated from y = -In [-ln (1 - (I))]. This often results in a 
straight line suitable for extrapolation; the return period (1) is 
associated with the abscissa. 

Although Gumbel's method has proved very useful in the 
past, it is clear that a long sea level record is required if we are 
interested in (say) 50-year return periods; it is certainly inap- 
propriate for records of 1 or 2 years duration. Another poten- 
tial problem with this method, when applied to tidally domi- 
nated records, is in the common choice of 1 year for AT. The 
subrecord length should be long enough that the maxima can 
be considered a stationary process. Unfortunately, this is not 
the case when strong nodal modulations are present, and a 
better choice for A T would be 18.6 years. 

2.2. Joint Probability Method (JPM) 

For sea level records of only a few years duration, Pugh and 
Vassie [1980] have suggested that the extremal probability (2), 
and hence return period, may be estimated from the instanta- 
neous probability that sea level exceeds r/* 

Q,(r/*) = P•,(•) d• (3) 

where P•s denotes the distribution of sea level r/s. Pugh and 
Vassie argue that at extreme levels the sea level process be- 
comes independent over the sampling interval (taken to be 1 
hour) and so the probability of the largest annual extreme 
exceeding r/* is given by 

(I)(r/*) = 1 - [1 - Q,]" _• nQ, (4) 

where n is the number of samples in one year. (Pugh and 
Vassie [1980] assume a sampling interval of 1 hour and hence 
n = 8766.) Return periods in years are then recovered from (1). 

The main advantage of the JPM is that the distribution of 
sea level used to estimate Q• is obtained from 

?d0 = ?.(•- u)?.½u) du 

where P, and P,•r denote distributions of surge r/and tide r/T; 
the convolution permits estimation of P,s(•) at sea level 
heights ( that exceed those in the available data. 

The main deficiency of the above approach involves the 
assumption of independence over the sampling interval. In 
fact the explicit dependence of return periods on the sampling 
interval is evident from (4), where halving the number of sam- 
ples in a year, n, doubles TR. This arbitrary feature of the JPM 
in part motivates the following exact treatment of return 
period prediction where the appropriate independence time 
will be obtained from the statistics of the sea level process. 

2.3. Exceedance Probability Method (EPM) 

The prediction of return periods here will involve determi- 
nation of the probability that an exccedance occurs in a specif- 
ic small interval (t, t + dr). (In the context of the EPM we 
define an exceedance of r/* to occur when r/s = r/* and 
d•l,,/dt > 0.) This probability, originally discussed by Rice 
[1954], is denoted by 

Q dt (6) 

and may be interpreted as the expected number of exceed- 
ances in (t, t + dt). In our case the surge statistics may vary 
seasonally, and tides are assumed deterministic, and so the 
exceedance probability will be parametrically dependent on 

time; we thus write Q = Q(t). A return period may be obtained 
from (6) by integrating forward in time until the expected 
number of exceedances 

•t t+ T M = Q(r) d'r (7) 

equals unity. The integration interval then defines the return 
period. Note that if the (sea level) process contains significant 
trends or periodicities in either the deterministic component 
or the statistics of the stochastic component then the return 
period will depend on the lower limit of integration. This is to 
be expected, and the ability to handle such nonstationarity is 
one of the advantages of the EPM. 

In situations where the surge statistics, tide, and hence Q 
can be considered periodic in time, it is possible to obtain 
approximate return periods which avoid the long integrations 
required by the above definition. Taking the integration time 
T to equal the period of the tide-surge variability, then an 
approximate return period may be obtained from 

T• = T/M (8) 

with M given by (7). The approximate return period will gen- 
erally differ from the exact (M = 1) definition by a small frac- 
tion of T and will be negligible for TR >> T. It will be shown in 
section 4 that for Halifax at least, the appropriate choice for T 
is 1 year and so the approximate return period definition (8) 
will be adequate for decadal scale return period predictions. 
We note that this approximate return period is more com- 
parable with results from a Gumbel type analysis or the JPM, 
both of which assume a subrecord length that covers any 
significant periodicities in the statistics of the process. How- 
ever, we stress that the exact return period from (7) should be 
used if there are significant trends or periodicities in the pro- 
cess that are comparable to the required return period. 

The outstanding question is how to determine Q. The analy- 
sis of Rice [1954] shows that the exceedance probability of a 
purely stochastic process may be written as 

;0 © Q= P ( * v)v dv (9) •s,qsrl , 

where P,s,,• denotes the joint distribution of sea level r/$ with 
its derivative 05- dr!•/dt. Here, we regard surge as stochastic 
and tides as deterministic so (9) may be extended to 

Q(t) - P,,, (rl* - ri r, v - 0 r)v dv (1 O) 

where P•,0 denotes the joint distribution of surge and its de- 
rivative. Assuming surge to have zero mean, the moments of 
P,t,o are defined by 

a2= (q2) (11) 

v 2= (02) (12) 

p = (r•q)(av)- • = v- • da/dt (13) 

where the angle brackets denote expectation. Anticipating a 
seasonal variation in the surge variance, it is assumed that 

62 = 602(1 + c COS •t) (14) 

where rr02 denotes the yearly average of rt 2, 2/r/• is 1 year, 
and e is a site-dependent parameter. A Taylor micro-time 
scale of surge variability may be defined by 

;. = o/v (•5) 

and estimates (obtained in section 4) indicate 2 to be reason- 
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ably constant throughout the year and of order 1 day. The 
correlation p is, in the context of the seasonal model (14), of 
order eif• and thus effectively zero. Indeed, from the defini- 
tions (13) and (15) the correlation p should in general be near 
zero as it will be of order ;•f• where f•-• ,-, o/(do/dt) is typi- 
cally 1 year. 

To proceed further, it will be assumed that the surge and its 
derivative are jointly normal in distribution. (The devel- 
opment of a more realistic model for Po,,/which includes skew- 
ness and kurtosis is deferred until section 5. The following 
normal model, however, is valuable in illuminating the relative 
importance of surge and tide in return period prediction.) Put- 
ting p = 0, it follows that r/and rj are statistically independent 
and the exceedance probability (10) is given by 

Q(t) = [2(2rc)•/2] - •oP,(rl* - r/r){exp (-02/2) 

+ 0(rr/2)•/211 + erf (0/2•/2)]) (16) 

where O(t) = Or/v and 

P•(u) = [o(2rc)•/2] - • exp (-u2/2o •) (17) 

The expressions (16) and (17) represent a normal model 
from which return periods may be obtained for specified surge 
variance, microscale, and tide. 

3. DISCUSSION AND COMPARISON OF METHODS 

In order to focus our comparison of the three methods, 50 
years of hourly surge data were first simulated as the second- 
order Markov process 

•l(t) = a•l(t- A) + b•l(t- 2A) + z(t) 

where A is 1 hour and z(t) was chosen at random from a 
normal N(0, c) distribution. The parameters a, b, c were 
chosen I-,lenkins and Watts, 1968] to yield a normally distrib- 
uted surge time series that crudely corresponds to that found 
at Halifax in section 4 below; integral and microscales are 
near 40 and 10 hours, respectively, with a constant (e- 0) 
surge variance of Oo2= 124.9 cm 2. The three methods were 
then used to determine return periods when (1) the simulated 
surge dominates the tide (the strong surge limit) and (2) the 
tide dominates the simulated surge (the strong tide limit). 

3.1. Strong Surge Limit 

To test the methods in the strong surge limit, we have as- 
sumed for simplicity that git '• 0, i.e., the sea level is just the 
simulated surge. Exceedances above a prescribed r/* (r/= r/*, 
rj > 0) were then counted in the 50-year simulated surge 
record, and the frequency and hence return period of such 
events were determined. A plot of exceedance r/* versus return 
period is given in Figure 1. This provides a point of compari- 
son for the three methods in the strong surge limit. 

EPM. The parameter which determines the relative im- 
portance of tidal and surge variability in (16) is simply the 
amplitude of 0, the ratio of time derivatives Owl(02) 1/2. In a 
time-averaged sense, the amplitude of 0 may be estimated by 

1-' = OTC02/O (18) 

where or and co denote the rms tidal amplitude and frequency 
of the dominant tidal constituent. 

For strong surge and weak tides, F is generally small, and 
the exceedance probability (16) asymptotes to that given by 
Rice [ 1954], 

Q = o[(2•r)•/22] - •P,(r/*) (19) 

If the surge variance is constant through time (e = 0), (19) 

-2.0 0.0 

y 
2.0 4.0 6.0 
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Fig. 1. Critical level r/* against return period T R for the 50-year 
simulated surge process (i.e., r/T = 0). The circles denote the mean time 
between r/* exceedances calculated directly from the 50 years of 
hourly surge data. The solid and dashed curves show predictions 
from the EPM, (20), and the JPM, (21). The crosses denote return 
periods associated with monthly maxima which were estimated using 
the Gumbel approach, (1). The horizontal arrow indicates •, the most 
likely (or modal) monthly extreme. 

results in the return period 

TR = 2rr2 exp (r/'2/2o 2) (20) 

for exceedance of r/* which clearly scales with the microscale 
2. (Note that the return period of zero exceedances, r/* = 0, is 
simply 2rr;, so that ;•-• may be interpreted as the dominant 
frequency of a narrow-band surge process. See also Rice 
[1954, p. 193] for further discussion.) 

Return periods have been predicted using Rice's formula 
(20) and the appropriate values of o and 2 for the simulated 
MarkovJan surge. The results are generally in very good 
agreement with the direct estimates described above (Figure 
1), thus confirming (20). This is perhaps not surprising, as both 
sets of return periods are based on a normally distributed 
surge with identical statistics. (The increased scatter at large 
r/* is presumably due to the few exceedances recorded at such 
levels, leading to poor direct estimates of TR. ) The more in- 
teresting question is how successful are the other two meth- 
ods ? 

Gumbel. Six hundred monthly extremes were extracted 
from the 50-year simulated data and ordered to permit esti- 
mation of (I) and return periods (see (1)). At high r/* the return 
periods of the monthly extrema agree well with the exceedance 
return periods. At r/* below the most likely monthly extreme 
(cz), the return period of the exceedances is shorter than that of 
the monthly extremes. This is to be expected, as while exceed- 
ances of low r/* may be quite frequent, an extreme at low r/* 
must by definition be the highest level in the given time AT 
and possibly a rare event. We note that in certain practical 
applications (e.g., overtopping of sea defences) this difference 
could be important and the return period of exceedances more 
relevant. 

.IPM. Return periods may also be obtained from the 
JPM, although strictly the JPM was developed for the strong 
tide limit. The instantaneous exceedance probability (4) may 
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Fig. 2. Critical level •/* against return period T R for the simulated 

sea level process at Halifax. (The 50-year simulated surge record was 
added to the 1970 predicted tide at Halifax, which was assumed to 
repeat over each of the 50 years.) The circles denote the mean time 
between •/* exceedances calculated directly from the 50 years of simu- 
lated Halifax sea level. The solid and dashed curves show predictions 
from the EPM, (22), and the JPM, (3)-(5). (The former were based on 
an integration time T (see (8)) of 1 year.) The crosses denote return 
periods associated with annual maxima which were estimated using 
the Gumbel approach, (1). The horizontal arrow indicates •, the most 
likely (or modal) annual extreme. 

be integrated analytically for a normal surge distribution to 
give 

TR = 2At/[erfc (rl*/a(2) •/2] (21) 

where At is an "independence time" over which extremes de- 
correlate and is taken by Pugh and Vassie [1980] to be the 
sampling interval of 1 hour. Results from (21) seriously under- 
estimate the return periods if we take At = 1 hour (Figure 1). 
By equating (20) and (21) the correct independence time is 
given by At _• a,;c(2zr)•/2/rl *, which is nearer to 6 hours for 
r!*/a = 4 at Halifax. The dependence of At on a2/rl* shows 
that the JPM is not applicable in the strong surge limit. 

3.2. Strong Tide Limit 

To test the methods in the strong tide limit, the 50 years of 
simulated surge data were added to the Halifax predicted tide, 
assumed periodic over 1 year. (The details of the predicted tide 
are not important at this stage although we note it is predomi- 
nantly semidiurnal with an rms amplitude of ar- 46 cm. 
Given the rms surge is ao = 11 cm, the strong tide limit per- 
tains at Halifax.) Again the frequency of exceedance of a pre- 
scribed r/* was noted, and return periods were estimated. A 
plot of r/* versus return period is shown in Figure 2. 

EPM. In the strong tide limit, tidal variability dominates 
that due to surge, and over a tidal cycle F, the magnitude of 
O(t), may be made sufficiently large such that the exceedance 
probability (16) asymptotes to 

Q(t) = «{/•T -t-Ir)TI}P,(n* -- nT) (22) 
The return period (TR • Q-•) is now independent of 2 and 
scales with the dominant tidal period, 2zr/co. Note that exceed- 
ances will tend to occur at rising tide where, by (22), Q is 
nonzero. 

Return periods were estimated from the general expression 
(16) and the strong tide limit (22). (In both cases an integration 
time T of 1 year was used, which includes all significant 
periodicities in the Halifax record. The integrations were 
achieved by interpolating the tide to half hour intervals and 

estimating Or with a centered second-order finite difference 
scheme. The interpolation was necessary to ensure sufficient 
accuracy of the trapezoidal rule integration as Q varies sub- 
stantially for small changes in tidal height. Return periods 
were then obtained from (7) and (8).) The return periods from 
(16) and (22) were found to be indistinguishable, thus justifying 
(22) as a strong tide limit approximation. The exceedance 
return periods are presented in Figure 2, and again the agree- 
ment with those estimated directly from the simulated data is 
very good. 

Gumbel. Annual maxima of sea level (tide plus simulated 
surge) were again extracted, ordered in an ascending sequence, 
and plotted (Figure 2). For high r/* the return periods of the 
annual maxima agree well with those of the exceedances. As in 
the strong surge limit, exceedances occur more frequently than 
annual maxima at low r/*, as expected. 

JPM. Return periods were obtained from (3)-(5) by as- 
suming the surge distribution to be normal and estimating the 
distribution of the tide directly from a histogram of the 1 year 
of Halifax predicted tide. The results presented in Figure 2 
slightly underestimate the extremal return periods although 
the agreement is very good. 

The agreement is in part fortuitous. This is most easily dem- 
onstrated by assuming the tide to be of the form r/r = a sin cot, 
i.e., to have just one constituent. In this case the EPM, 
through use of (22), predicts an exceedance return period of 

T• •_ 4zr/{co erfc [(r/* - a)/a(2)i/2]} (23) 

assuming r/* > a. The return period from the JPM may also 
be obtained from the distribution of the single tidal constit- 
uent, i.e., 

P,T = zr-l(a 2 - •2)-1/2 I•1 < a 

P,T = 0 other 

and the normal surge distribution, which together imply 

(24) 

Q, -• ¬ erfc [(r/* - a)/a(2) •/2] 

1 ffl P.(r/* •) sin -• (•/a) d• (25) 

2/1' 
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0.00 
1.0 

, I i I 
3.0 5.0 

( r/*-a)/a 

Fig. 3. The "correct" independence time At for the JPM as a 
function of critical level •/*, tidal amplitude a, and surge standard 
deviation a. The independence time is scaled by the period of the 
single constituent tide (2•/w). Curves 1 and 2 correspond to a/a- 5 
and a/a = 10, respectively. The dashed line shows At = 1 hour for a 
semidiurnal tide. 
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To obtain a return period, it is necessary to multiply Q•-• by 
some independence time scale, At, which Pugh and Vassie 
[1980] take to be the sampling interval of I hour. However, 
by equating the JPM return period of At/Q• with T a from (23) 
it is clear that the correct independence time should be 

At = Q,T• (26) 

which will depend on co, a, a, and r/*. This dependence is 
illustrated in Figure 3, where the independence time, scaled by 
the tidal period, is plotted against (r/* - a)/a for the a/a ratios 
of 5 and 10 that crudely correspond to those found below for 
Halifax and Victoria. The dashed horizontal line represents 
the 1-hour independence time for a semidiurnal tide. 

These results show why the JPM and exceedance return 
periods in Figure 2 are in reasonable agreement. For exceed- 
ance levels that are several a above the tidal amplitude, the 
correct independence time for Halifax is of order 1 hour. How- 
ever, for exceedance levels below or above about 5a + a, the 
correct independence time will be larger or smaller than 1 
hour, and so the JPM will underestimate and overestimate T•. 
Further, for a diurnal tide the correct independence time and 
return period will double and hence differ from those of the 
JPM by an additional factor of 2. 

To summarize the results of the Markovian simulations, the 
EPM gives accurate estimates of exceedance return periods in 
both strong surge and strong tide limits. Further, for large r/* 
the EPM can also provide good estimates of the return period 
of annual extremes (which approach those of exceedances as 
r/* increases). The JPM can provide good results in the strong 
tide limit if At is chosen correctly; the JPM is inappropriate in 
the strong surge limit. 

4. ANALYSIS OF THE HALIFAX 

AND VICTORIA RECORDS 

The simulations of section 3 were based on idealized surge 
statistics, e.g., normal distribution, constant variance (e = 0), 
no trend, etc. The real world is obviously more complicated, 
and so, as a prelude to using the EPM on observations, we 
will now describe the Halifax and Victoria sea level variability. 

Hourly estimates of sea level were obtained at Victoria and 
Halifax for the years 1911-1982 and 1920-1982, respectively, 
from the Marine Environmental Data Service (Ottawa, 
Canada). The monthly extremes for Halifax (Figure 4) exhibit 
a clear linear trend of 0.375 cm yr-• which is identical to that 
found for the monthly means. These trends are thought due to 

liT1 

HAL/FAX 

19::)0 1940 1960 1980 

Fig. 4. Time series plot of monthly maxima based on all available 
hourly observations for Halifax and Victoria. Each series has zero 
mean. 

280 

OZ(cm z) 

140 

o 
JAN 

I • I • I 

MAY SEPT JAN 

Fig. 5. Estimates of the surge variance at Victoria for each month 
of 1970 (solid line) and the model a 2 = ao2(1 + e cos f•t) where ao = 
10.7 cm and e = 0.8 (dashed line). 

vertical crustal movement and eustatic changes [e.g., Vanicek, 
1976]. Over the 63 years of data the trend is responsible for a 
change of 23 cm that is comparable with the changes in ex- 
tremes (-•60 cm). Apart from this trend and a clear seasonal 
modulation the monthly extremes appear reasonably station- 
ary with no evidence of significant nodal variation. At Victoria 
the seasonal modulation is again present although the trend is 
much reduced (0.032 cm yr-•). However, there is now a clear 
nodal modulation which is responsible for an underlying 
change of about 24 cm in the extremes over an 18.6-year 
period. 

The purpose of this paper is to present a method for deter- 
mining return periods from short records. Therefore, as a 
severe test of the EPM, only I year of data will be analyzed to 
estimate the tidal signal and surge statistics necessary for 
return period prediction. The year 1970 was chosen arbi- 
trarily, and the tidal package of Foreman [1977] used to deter- 
mine the tidal constituents, predicted tide and "surge" (ob- 
served sea level minus predicted tide). At Halifax, apparent 
timing errors resulted in some 23% of the surge variance 
being due to residual tide. However, rather than choose an- 
other analysis year, we have persisted with the 1970 data so as 
to show how such errors affect predicted return periods. 
Indeed, where only short data records are available, timing 
errors may be unavoidable. Estimates of surge variance were 
obtained for each month of 1970 at Victoria and Halifax (Fig- 
ures 5 and 6). A strong seasonal dependence is apparent at 
both sites. At Victoria the cycle is well represented by the 
model, a 2 = 0'02(1 q- g COS •t), where the yearly averaged vari- 
ance (ao 2) is 113.6 cm and the parameter e is 0.8. For Halifax 
the model parameters ao 2= 124.9 cm and e = 0.8 lead to an 
underestimate of the December spike in surge variance; else- 
where the fit is reasonable. The spike in September is due to 
residual tide presumably unremoved due to timing errors. 

To determine the surge microscale ;t, the effect of residual 
tide must be considered because, in analogy with enstrophy, ;t 
is determined principally by the high-frequency components of 
the power spectrum of surge. This may be shown by first 
defining the normalized power spectrum 

;o © E(co) = 2a -2 (rl(z)rl(t + z)) exp (-2•icm:)dz (27) 

The microscale due to energy below some cutoff co may then 
be written as 

}t(6o) = {8rC2 •o•' •2E(•) d•} -•/2 (28) 
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Fig. 6. Estimates of the surge variance at Halifax for each month 
of 1970 (solid line) and the model o.2 = o.o2(1 + e cos f•t) where o.o = 
11.2 cm and e = 0.8 (dashed line). 

Formally, both (27) and (28) are nonstationary (dependent on 
season), and so estimates of E(co), •,(co), and the normalized 
surge variance, 

as2(co) = 2 E(•') d•' (29) 

were obtained for Victoria for "summer" (April-September 
1970) and "winter" (remainder of 1970). 

The seasonal estimates of •,(co) and aN2(co) are similar 
(Figure 7), indicating that the nonstationarity of the surge 
process is primarily contained in the variance. The seasonal 
estimates of E(co) were also similar but, for clarity, only the 
winter spectrum is presented (Figure 7). It is clear that while 
most (85%) of the reduced residual energy lies below the diur- 
nal peak, the tidal energy reduces •, from near 17 hours to 4 
hours. We shall therefore take 2 to be 17 hours and note that 

this estimate, as against that of 4 hours, is more compatible 
with the passage time of storms responsible for surges. The 

1.0 

wE(co) 

(cph) = 

0.6 

O 

10-3 IO-a i0-! i0 o 
(•(cph) 

Fig. 7. Summer (dashed curve) and winter (solid curve) estimates 
of normalized variance (aN2(co), (29)), microscale (•(m), (28)) and auto- 
spectrum (E(•), (27)) for Victoria, ]970. The summer E(m) is not pre- 
sented for clarity. The vcrtica! dashed linc marks the cutoff frcqucnc• 
chosen to lic just bdow the diurnal peak duc to residual tide. 

20 

(hrs) 
. 

o 

TABLE 1. Summary of the Surge and Tide Statistics for Halifax 
and Victoria Based on Hourly Data for 1970 

Statistic Halifax Victoria 

o'02, cm 2 124.9 113.6 
fO'o 2, cm 2 96.2 96.6 
O.T 2, cm 2 2080 4550 
e 0.8 0.8 

2, hours !0 17 
F 21 28 
S 0.3 0.1 
• 0.0 0.0 
K 3.8 3.3 
R 3.8 3.3 

significant amount of residual tidal energy also suggests that 
the observed surge variance should be reduced by some frac- 
tion f Assuming all energy above, and including, the diurnal 
peak in E(co) to be tidal, we find f to be 0.85 at Victoria and 
the reduced variance, fa02, to be 96.6 cm 2. This estimate corre- 
sponds to the lower 80% confidence bound for tr02 if we 
assume the independence time to be twice the surge integral 
time scale of 40 hours. We shall therefore make predictions of 
return period using both rr02 and the reduced value, fao 2. 
Note that for the predictions it will not be necessary to ampli- 
fy the tidal signal to account for the reduced residual tidal 
energy because the 1970 tidal variance, ar 2= 4550 cm 2, is 
much greater than (1-f)a 2. Inspection of the exceedance 
probability, (23), shows that it is the 15% change in a 2 rather 
than the 0.3% change in tidal energy which is most important 
in return period prediction. These variance estimates also 
imply that the estimated microscale for Victoria need not be 
exact as the parameter F = arCOiqa •- 28 is much larger than 
unity and the strong tide limit should pertain. 

Estimates of E(co), •.(co), and rr•v2(to) were also obtained for 
Halifax. Apparent timing errors caused about 23% of the 
surge variance to be due to residual tide. The resulting factor 
of f= 0.77 implies a reduced surge variance of fa02= 96.2 
cm 2. A microscale of 10 hours was estimated for energy below 
the dominant semidiurnal peak. Again the strong tide limit 
(F >> 1)should pertain at Halifax because or 2 - 2080 cm 2 and 
F is near 21 for the dominant semidiurnal tide. 

The 1970 surge statistics for Halifax and Victoria are sum- 
marized in Table 1 along with estimates of skewness and kur- 
tosis for r/ (S and K) and 0 (• and /(). The skewness and 
kurtosis suggest that the surge process at Halifax may be far 
from normal. 

5. RETURN PERIODS FOR HALIFAX 

AND VICTORIA 

The simulations demonstrated that accurate predictions of 
return periods may be obtained for a normally distributed 
surge process using the EPM. However, as noted above, the 
surge processes at Halifax and Victoria are not normal, exhib- 
iting both skewness and kurtosis. The influence of such anor- 
mality is explored below after predictions based on the normal 
model for 1970 surge statistics are found to be in poor agree- 
ment with those from a Gumbel type analysis of all available 
annual extrema from Halifax and Victoria. A contaminated 

normal model for surge is subsequently developed to allow for 
skewness and kurtosis. 

5.1. Normal Surge Model 

In order to compare predicted and extremal return periods 
at Halifax, the strong trend in sea level was first removed by 
adjusting all annual extremes to the mean level of the 1970 



MIDDLETON AND THOMPSON' RETURN PERIODS OF EXTREME SEA LEVEL 11,713 

y 
- 2.0 0.0 4.0 6.0 

326 ' i , , • , i ' 

+ 

294 + + + + -- 

•/*(cm) - 

262 - 

230 I 
1.001 2 I0 ,50 200 I100 

T• (yec•rs) 

Fig. 8. The crosses denote extremal return periods based on all 
annual extrema for Halifax. (The extremes were adjusted for the linear 
trend.) The horizontal arrow denotes the most likely (or modal) 
annual extreme. Curves marked 1 and 2 were obtained using the 
EPM with the normal surge model (i6). Curve 1 was based on the 
observed surge variance %2, and curve 2 was based on the reduced 
surge variance fao 2 (Table 1). Both curves were based on e = 0.8. 
Curve 3 was based on a constant surge variance throughout the year 
(e = 0) of •02. 

analysis year. Extremal return periods were then obtained fol- 
lowing Gumbel and are plotted in Figure 8. (Each annual 
extreme was extracted from a year beginning in July so as to 
ensure that each winte'r, when most surge events occur, would 
contribute only one annual extreme.) It is noted that the ad- 
justment for trend resulted in a significant decrease in the 
slope of the extremal q* - TR curve with the largest recorded 
extremes near 294 cm essentially unaltered, while those at 
return periods of 2 years increased by about 8 cm. 

Return periods of exceedance were also predicted by inte- 
grating (16) using the 1970 predicted Halifax tide and the 
normal surge parameters determined in section 4' o'02 = 124.9 
cm 2, e =0.8, and 2 = 10 hours. These results, plotted in 
Figure 8, were indistinguishable from those obtained by inte- 
grating the strong tide limit probability (22). Note, however, 
that the EPM seriously overestimates the extremal return 
periods for r/* above the extremal mode, • = 261 cm. 

Return periods were also obtained with the tidally reduced 
variance, fo'02 = 96.2 cm 2 (Figure 8). The reduction results in a 
nearly parallel shift of the predicted r/*-T R curve and does not 
lead to the steeper slope evident in the extremal results. The 
importance of modeling the seasonal nature of the surge is 
also illustrated in Figure 8 by the further increase in return 
periods when seasonality is excluded (e = 0). 

A similar set of calculations was made for Victoria. Extre- 

mal return periods from the EPM were obtained by inte- 
grating the strong tide approximation (22) over 19 years of 
predicted tide to allow for a full nodal modulation. The return 
periods of the annual maxima (defined over a surge year, July- 
June) were estimated using a Gumbel analysis. The results 
from the EPM again seriously overestimate the return periods 
from the Gumbel analysis (Figure 9). 

Given the agreement found with the simulations of nor- 
mally distributed surge, the above discrepancy was thought to 
be due to the positive skewness and kurtosis of surge, which 

would make large exceedances more frequent at the expense of 
intermediate exceedances. To account for such anormality, a 
contaminated normal model for surge was developed for in- 
clusion in the EPM. (While other distributions might be 
chosen to allow for skewness or kurtosis, the contaminated 
normal model developed below involves only a trivial exten- 
sion of the EPM.) 

5.2. A Contaminated Normal Model for Q 

Our contaminated normal model for the joint distribution 
of surge and its derivative is defined as the sum of two bi- 
variate normals, i.e., 

2 

P ,,,• = • alp %0, (30) 
i=1 

where a• + a 2 = 1, and the surge and its derivative are again 
assumed to be statistically independent. The moments of the 
two bivariate normals {#i, o'i, vi/i = 1, 2} are related to those 
of the surge by 

2 

# = • a,#• (31) 
i=1 

2 

o'2 = • ai(#i2 + o'i2)_ #2 (32) 
i=1 

2 

v 2 = • aivi 2 (33) 
i=1 

where we have introduced the surge mean # = (q), which is 
here assumed nonzero. (Although the surge data will generally 
have zero mean, the error accompanying the least squares fit 
of the contaminated normal model to data can lead to a prob- 
ability density function with nonzero mean. We could of 
course constrain the least squares fitting procedure to ensure 
# = 0, but this was not considered necessary; the real point of 
the contaminated normal model is to fit the observed surge 
distribution in the positive tail.) 

It is possible to substitute the contaminated normal distri- 
bution (30) into a suitably generalized form of (16), integrate, 

q#(cm) 

-2.0 
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Fig. 9. As for Figure 8 but for Victoria and without correction for 
a linear trend. The predictions were based on 19 years of predicted 
tide, so a full nodal modulation was included. 
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TABLE 2. Fitted and Tidally Reduced (f:/2) Surge Parameters for 
the Contaminated Normal Model of Surge Distribution 

Halifax Victoria 

Statistic Fitted Reduced Fitted Reduced 

ax 0.873 0.873 0.710 0.710 
#o, cm 0.48 0.42 0.78 0.72 
#o•, cm -0.81 -0.71 - 1.15 - 1.06 
#02, cm 9.33 8.19 5.50 5.07 
ero 2, cm 2 122.1 94.1 107.3 91.2 
ao•, cm 9.44 8.29 7.65 7.05 
ao2, cm 16.10 14.14 13.98 12.89 

Statistics were derived from hourly surge data from Halifax and 
Victoria for 1970. 

and thus find the return periods directly. However, it is fairly 
straightforward to show that at both Halifax and Victoria the 
strong tide limit applies to each of the bivariate normals in 
(30), i.e., 

arco/vi >> 1 i = 1, 2 (34) 

It then follows that in the strong tide limit, the exceedance 
probability will again be given by 

Q(t) = «{0r + 10rl}Pn(r/* -- r/T) 

but with P. now given by 
2 

Pn(r/* -- r/r)= • ai[(2rOx/2ai] -x 
i=1 

(35) 

exp E-(r/* - r/T- •li)2/20'i 2] (36) 

Note that the precise estimation of vi (or equivalently/•i) is not 
required in the strong tide limit. 

To model the seasonal variation in surge variance, each of 
the/& and ai 2 should seasonally modulate as follows: 

396 

364 

rl*(cm) 
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.0 0.0 2.0 4.0 6.0 

, 

[ I [ I ' I ' I 
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1.001 I0 50 200 I100 

TR(Years) 
Fig. 10. The crosses denote extremal return periods based on all 

annual maxima for Victoria. Curves marked 1 and 2 were obtained 

from the EPM with the contaminated normal model for surge, i.e., 
(35) and (36). Curve 1 was based on the observed surge distribution, 
and curve 2 was based on the reduced (f•/2) parameters (Table 2). 
Both curves were based on e- 0.8. The dashed curve shows predic- 
tions from the JPM using the observed surge distribution for 1970. 
All three predictions were based on 19 years of predicted tide, so a full 
nodal modulation was included. 
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Fig. 11. As in Figure 10 but for Halifax. (The annual extrema 
were adjusted for the linear trend, and the predictions were based on 
1 year of predicted tide.) 

//i = //0i( 1 + '• COS •t) 1/2 

ai 2 = a0i2(1 + ,• COS •t) 

(37) 

(38) 

Thus the contaminated normal model (36)-(38) involves 
seven parameters that are to be determined from the 1970 
surge data: {a•, #0i, ao•/i = 1, 2} and e. The value of e was set 
at 0.8 for both Halifax and Victoria (Table 1). The remaining 
six parameters were estimated by fitting a sum of two normal 
distributions to the histogram of 1970 surge data at Halifax 
and Victoria. (We used the nonlinear least squares program, 
NONLIN, of the SPSS suite of programs with the constraint 
that ax + a2 = 1. The positive tail was weighted most heavily 
in the fitting procedure because it is the extreme positive 
surges which cause the exceedances of interest. The bin size of 
the histogram of 1970 surge data was 5 cm.) The least squares 
estimates {a•, Po•, aoi/i = 1, 2} for Halifax and Victoria are 
given in Table 2; together with e they define the seasonal, 
anormal models for surge distribution. 

5.3. Contaminated Normal Results 

Return periods were predicted using the contaminated 
normal model (35)-(38), e = 0.8, and two sets of parameters: 
{a•, #o•, ao•/i = 1, 2} and {a•, fl/2btoi , fl/2aoi/i = 1, 2}. The 
latter are simply the least squares estimates after correction 
for residual tide, and both sets of parameters are given in 
Table 2. 

For Victoria the contaminated normal model results in a 

marked steepening of the r/*-TR curve over those obtained 
assuming normality (Figure 10). The best fit to the Gumbel 
analysis above the mode (•z = 33 ! cm) lies somewhere between 
those obtained from the fitted and reduced (fl/2) parameters. 
It is encouraging to note, however, that both curves, based on 
just 1 year of data, can reasonably reproduce the extremal 
return periods based on about 60 years of data. 

Predicted return periods were also obtained for Halifax 
using the EPM, and the results are presented in Figure 11. 
Predictions from the fitted surge parameters again reasonably 
represent the extremal results although they are not as accu- 
rate as predictions for Victoria. This discrepancy may be due 
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to the inadequate modeling of the December spike in the 
surge variance at Halifax (Figure 6). Assuming this spike to be 
typical of the December surge variance, then perhaps a more 
elaborate model than a 2 = fro2(1 + • COS fit) would lead to the 
required shortening of return periods. The strong sensitivity of 
the return periods to the yearly averaged surge variance is also 
illustrated for Halifax, where reducing ao 2 by 23% to allow 
for residual tide leads to a twofold increase in the predicted 
return period for t1*= 278 cm. This reduced surge variance 
also corresponds to the lower 80% confidence bound for fro 2, 
and so the change in return period indicates the inherent pre- 
diction error associated with an analysis based on just 1 year 
of data. If longer time series of sea level were used, better 
estimates of the surge distribution, skewness, kurtosis, and 
variance would be obtained, presumably leading to improved 
predictions. 

Finally, return period estimates were obtained from the 
JPM using the 1970 observed surge distribution (unadjusted 
for residual tide) and the predicted tide at Halifax and Victo- 
ria. (Nineteen years of predicted tide were used to estimate the 
tidal distribution at Victoria.) The results for each site are 
presented in Figures 10 and 11. The predicted return periods 
near 10 years are in reasonable agreement with those obtained 
from the extremal analysis. At longer or shorter return 
periods, however, the JPM overestimates or underestimates 
the extremal results more seriously than those predicted from 
the contaminated normal model. Indeed, such behavior of the 
JPM return period predictions was demonstrated for a single 
constituent tide in section 3.2. 

6. SUMMARY AND DISCUSSION 

By assuming tides to be deterministic and surges to be sto- 
chastic, the analysis of Rice [1954] was extended to allow 
prediction of return periods for sea level exceedances. In the 
strong surge limit the general expression for exceedance prob- 
ability (16) was shown to asymptote to that given by Rice 
[1954], and the return periods were shown to scale with the 
surge microscale ;•, a time scale of surge variability. Of more 
interest, perhaps, is the case where tidal variability dominates 
the sea level process and for which the probability of exceed- 
ance is approximately given by 

Q(t) = «{OT q-IOTI}P.(•* -- r•T) (39) 
so that return periods now scale with the dominant tidal 
period and are independent of 2. 

This extension of the Rice method (which we referred to as 
the exceedance probability method, or EPM) was validated in 
both strong surge and strong tide limits using a 50-year simu- 
lation of hourly surge data. In addition, this analysis showed 
that return periods of exceedances and extremes are almost 
identical for heights above the most likely extreme. Below the 
modal extreme, exceedances occur more frequently because 
extremes, by definition, must be the largest event in a chosen 
time interval. 

For Halifax and Victoria more than 60 years of sea level 
data were analyzed following Gumbel in order to obtain a 
benchmark of extremal return periods. For these sites the 
strong tide limit was found to pertain, and return periods were 
predicted from (39) using a normal and contaminated normal 
model fitted to just 1 year of surge data. The results indicated 
that reasonable return periods may be predicted if allowance 
is made for (1) the positive kurtosis and skewness of the surge, 
which acts to make extreme exceedances more probable, and 
(2) the seasonal variation in the surge variance, which results 

in an effective variance which is larger than the annual 
average, ao 2. 

More accurate return periods may well be obtained by 
using several years of data and through the development and 
fitting of more elaborate models for the surge statistics. Here, 
however, we have confined ourselves to relatively simple 
models, i.e., a contaminated normal and a2= fro2(1 + • cos 
fit). Even though many years of sea level data were available 
to us, only 1 year was chosen in order to provide a stringent 
test of the EPM. The reasonable results suggest that the EPM 
may be usefully employed in those regions where only short 
records are available and a Gumbel type of extremal analysis 
is precluded. Such predictions might well be made using the 
strong-tide exceedance probability (39) which will pertain pro- 
vided the rms tide, at, is much greater than the surge variance. 
(We expect that in general, to2 will be of order 1 or greater so 
that aria >> 1 implies F = to;tar/a >> 1.) At sites where the 
tide and surge variance are of comparable magnitude, the gen- 
eral exceedance probability (16) might also be used to predict 
return periods. However, a contaminated normal model would 
most likely be required in order to account for possible skew- 
ness and kurtosis of the surge distribution. 

The EPM was also used to examine the prediction method 
suggested by Pugh and Vassie [1980]. In the strong tide limit, 
the independence time At required to make their method 
(JPM) exact was shown to differ significantly from 1 hour 
because of its dependence on the surge variance, tidal period 
and amplitude, and exceedance level. It was also shown that 
the JPM is totally inappropriate in the strong surge limit 
(although we recognize that the method was not designed to 
be employed in such circumstances). This will presumably in- 
hibit the use of the JPM in extreme current studies where the 

nontidal variance is often a significant proportion of the ob- 
served current variance. 

One of the advantages of the EPM is that the return 
periods can be estimated with respect to a given time origin 
(usually the present) if the process under study exhibits signifi- 
cant nonstationarity. For example, the influence of trends in 
sea level, due to climate changes or vertical crustal movement, 
may be evaluated with a simple integration forward in time. 
Changes in storm severity on the incidence of flooding may 
also be evaluated by postulating an annual increase in surge 
variance. The exceedance probability might also be used in 
predicting return periods of extreme ocean currents or indeed 
of any geophysical process made up of a stochastic and a 
deterministic component. 
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