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ABSTRACT

A computationally efficient scheme is described for assimilating sea level measured by altimeters and

vertical profiles of temperature and salinity measured by Argo floats. The scheme is based on a transfor-

mation of temperature, salinity, and sea level into a set of physically meaningful variables for which it is easier

to specify spatial covariance functions. The scheme also allows for sequential correction of temperature and

salinity biases and online estimation of background error covariance parameters. Two North Atlantic ap-

plications, both focused on predicting mesoscale variability, are used to assess the effectiveness of the

scheme. In the first application the background is a monthly temperature and salinity climatology and skill is

assessed by how well the scheme recovers Argo profiles that were not assimilated. In the second application

the backgrounds are short-term forecasts made by an eddy-permitting model of the North Atlantic. Skill is

assessed by the quality of forecasts with lead times of 1–60 days. Both applications show that the scheme has

useful skill.

1. Introduction

Observations of sea surface height by altimeters, and

the vertical structure of temperature and salinity by

Argo floats, are leading to new insights into the varia-

bility and physics of the world’s oceans. Even though

the global coverage of these observations is unprece-

dented, their use in mapping the ocean, and initializing

forecast models, remains problematic because altime-

ters provide no direct information on vertical structure

of the ocean and the horizontal spacing of Argo floats

aliases mesoscale variability. It is generally accepted

that such data have to be assimilated into dynamically

based models in order to map ocean states, and also to

physically interpret the observed variability.

Many practical schemes for sequentially assimilating

ocean data are variants of the Kalman filter. For ex-

ample the ensemble Kalman filter (e.g., Evensen 2006)

is being used to make 10-day forecasts of the North

Atlantic and Arctic Ocean on a weekly schedule (more

information is available online at http://topaz.nersc.no/).

In general however the computational cost of the en-

semble Kalman filter is high and so simplifications have

been developed for many operational applications. For

example, Fukumori (2006) has constructed a simplified

Kalman filter to forecast the large-scale global ocean

circulation. To reduce the computational cost, the error

covariance matrices are assumed time invariant, and the

Kalman filtering is performed in distinct geographical

regions each with its own reduced error subspace. To

initialize the ocean component of a coupled atmosphere–

ocean forecast system, Behringer (2007) and Sun et al.

(2007) use simplified Kalman filters (based on three-

dimensional variational assimilation and optimal inter-

polation) to assimilate sea level and in situ data. De Mey

and Benkiran (2002) developed a reduced-order opti-

mal interpolation scheme that has been used success-

fully to operationally forecast mesoscale variability in

the Mediterranean (see also Demirov et al. 2003) and

the North Atlantic (e.g., Brasseur et al. 2005).

In an independent line of research, Cooper and

Haines (1996) used simple physical principles to design

an effective scheme for assimilating altimeter data into

ocean circulation models. Their idea was to account for

differences between observed and forecast sea level

by raising or lowering isopycnals until the associated

dynamic height perturbation matched the sea level
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difference. In addition to ease of implementation and

low computational cost, this scheme has the major ad-

vantage that it conserves local temperature and salinity

relationships. The scheme has proved very useful in the

development of practical operational ocean forecast

schemes (e.g., Brasseur et al. 2005).

The study of Cooper and Haines (1996) has been

extended in several ways. For example, Troccoli and

Haines (1999) used the idea of vertical advection of water

parcels to develop a practical method for updating

salinity when assimilating temperature profiles. Haines

et al. (2006) subsequently showed how to assimilate

both temperature and salinity profiles in a way that

allows salinity to vary on isotherms. Balmaseda et al.

(2008) combined the above approaches into a practi-

cal, multistep scheme for assimilating ocean data into a

global ocean model. Ricci et al. (2005) and Weaver et al.

(2005) have shown how to construct background error

covariance matrices for use in three- and four-dimensional

variational assimilation schemes, using balance oper-

ators based in part on the ideas of Troccoli and Haines

(1999).

A major difficulty with the implementation of se-

quential schemes, such as those mentioned above, is the

specification of the background error covariance. Dee

(1995) outlined an interesting scheme for sequentially

estimating the parameters that define the covariance

structure of the observation and background errors

(e.g., their regional variances and correlation length

scales). By allowing the parameters to be estimated

online, the error covariances could change with time

(and indeed the state of the physical system) thereby

adding more realism, flexibility, and robustness to the

assimilation scheme. [Dee and da Silva (1999) provide

further information on the practical implementation of

the approach, and Dee et al. (1999) describe several

applications.]

In this study we present a computationally efficient

method for assimilating sea level measured by altime-

ters and vertical profiles of temperature and salinity

measured by Argo floats. The scheme is sequential,

multivariate, and the update of the background is

completed in a single step. The scheme allows for the

online estimation of background error covariance pa-

rameters and also the online correction of temperature

and salinity biases. The development of the scheme is

strongly influenced by, and builds upon, the work of

Derber and Rosati (1989), Dee (1995), Cooper and

Haines (1996), Troccoli and Haines (1999), Ricci et al.,

(2005), and Weaver et al. (2005). The heart of the

method is a transformation of sea level, temperature,

and salinity into three variables that are associated with

physical processes such as vertical displacement of wa-

ter parcels, fluxes of heat and freshwater across the air–

sea interface, turbulent mixing, and convection. The

transformation simplifies the specification of the back-

ground error covariance matrices. The online estima-

tion of background error covariance parameters is

similar in philosophy to Dee (1995) although some

technical modifications lead to significant computa-

tional savings. The online correction of model temper-

ature and salinity bias is achieved using the simple

spectral nudging approach of Thompson et al. (2006).

Two applications illustrate the effectiveness of the new

scheme. For the first application, the background is a

monthly climatology of observed temperature and salin-

ity and the scheme is used to reconstruct mesoscale var-

iability of the upper 1000 m of the northwest Atlantic for

2004 and 2005. The effectiveness of the scheme is assessed

by how well it can recover contemporaneous Argo pro-

files that were not assimilated. In the second application

the backgrounds are forecasts from an eddy-permitting

model of the North Atlantic. The effectiveness of the

scheme is assessed by comparing forecasts of tempera-

ture, salinity, and sea level to observations made at the

verifying time (and thus not assimilated). Both applica-

tions show that the assimilation scheme has useful skill.

The assimilation scheme is described, and related to

earlier studies, in section 2. The climatology application

is described in section 3 and the forecasting application

is described in 4. Results are summarized and sugges-

tions are made for future work in section 5. Details

of the assimilation procedure are given in the two

appendixes.

2. The assimilation scheme

To motivate the development of the assimilation

scheme, the local temperature and salinity relationship

is plotted in Fig. 1 at four depths for a location in the

northwest Atlantic (Fig. 2). It is clear that the rela-

tionship is strongly dependent on depth: in the deep

ocean temperature and salinity covary almost linearly,

but the strength of the relationship weakens signifi-

cantly as the surface is approached. To explain the

depth-dependent covariance structure, climatological

temperature and salinity profiles for March, June, Sep-

tember, and December have been added to the figure.

Clearly the temperature and salinity covariation at a

fixed depth is closely aligned with the climatological

temperature–salinity relationship, consistent with the

effect of vertical advection of water parcels past a fixed

level (e.g., Troccoli and Haines 1999). The weakening of

the temperature and salinity relationship near the sur-

face is presumably due in part to heat and freshwater

fluxes across the air–sea interface and turbulent mixing.
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A strong relationship also exists between observa-

tions of sea level and hydrographic properties. To il-

lustrate, dynamics heights were calculated for 1546

Argo profiles that surfaced during 2003–05 between

26.68–458N and 758–288W. (The monthly climatology of

Yashayaev was the reference state and a level of no

motion of 1160 m was assumed. Details on the clima-

tology are available online at www.mar.dfo-mpo.gc.

ca/science/ocean/woce/climatology/naclimatology.htm.)

The correlation between the dynamic heights and the

corresponding sea level measured by altimeters was 0.75

and a scatterplot suggests a near linear relationship, close

to the 1:1 line. Thus, for this region at least much of the

observed sea level variability is simply due to changes

in temperature and salinity through their effect on the

vertical integral of water density.

The assimilation scheme described below is based on

simple physical processes (e.g., vertical advection of

water parcels, turbulent mixing, and air–sea exchange)

and simple physical balances (e.g., dynamic heights

based on an assumed level of no motion). It will be

shown that this simplifies the specification of the back-

ground error covariance and reduces the computational

cost of the assimilation scheme.

a. A physically motivated transformation

Let T and S denote the true temperature and salinity

at a fixed time, depth, and horizontal location. Let h

denote the true sea level at the same time and hori-

zontal location. Similarly let Tb, Sb, and hb denote the

corresponding background values (e.g., a climatology or

forecast from an ocean model). The relationship be-

tween true and background states is modeled as follows:

T 5 Tb � T9b jD 1 jT , (1)

S 5 Sb � S9b jD 1 jS, (2)

h 5 hb 1 DrjD 1

ð0

�h

(aTjT 1 aSjS) dz, (3)

where T9b and S9b denote vertical gradients of Tb and Sb,

Dr 5 (r0 2 rh)/r0 and r0, rh are the background density

at the surface and reference depth h, respectively. (The

reference depth was taken to be 1160 m.) The variables

jD, jT, and jS define the uncertainty in the background

and correspond physically to interface displacement, and

sources and sinks of heat and salt, respectively. The con-

stants aT and aS relate changes in T and S to changes in

density. It is assumed that jT, jS, and jD vary with hori-

zontal position and time; jT and jS also vary with depth.

Equation (1) models the difference between the

background and true temperature (i.e., the background

error) in terms of an advective contribution, based on

FIG. 1. Statistical relationship between observed temperature

and salinity. Potential temperature and salinity pairs (crosses)

observed by Argo floats surfacing within 6116 km of 38.48N,

55.28W between 2003 and 2005 are shown. (The center of the box is

shown by the cross in Fig. 2.) The depth (m) is shown in the upper

left of each panel. The lines trace the climatological temperature

and salinity for March, June, September, and December according

to Yashayaev for this location. The dots on the lines mark the first

13 depths given in Table 1. The lines coincide for depths exceeding

600 m because the Yashavev climatology does not vary seasonally

at these depths.

FIG. 2. The domains used to test the assimilation scheme. The

northwest Atlantic box (26.68–458N, 758–288W) defines the domain

used for the climatological application. The whole map (excluding

Hudson Bay, the Mediterranean, and the Pacific Ocean) defines

the domain of the ocean model used for the forecasting applica-

tion. The cross at 38.48N, 55.28W is the center of the box from

which Argo profiles were used to make Fig. 1. The fine lines are the

2000- and 4000-m depths contours.
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vertically displacing the background temperature pro-

file by jD, and a diabatic forcing term, jT. A similar

interpretation can be given to (2), the corresponding

equation for salinity. Equation (3) relates sea level to

changes in dynamic height driven by (i) vertical advec-

tion of water parcels and (ii) the effect of jT and jS on

the depth integral of water density.

Equations (1)–(3) define a linear relationship be-

tween (T, S, h) and (jT, jS, jD). The important point

to note is that even though the covariance structure of

the j variables may be simple, the covariances of the

background errors can be quite complex because of

their dependence on T9b and S9b. This is illustrated in

Fig. 3, which shows the theoretical correlation between

temperature at a given depth with neighboring tem-

peratures and salinities, assuming Gaussian covariances

for the independent variables jT, jS, and jD (see caption

of Fig. 3). Note that the correlations are spatially com-

plex and, in general, the maximum T–S correlation does

not occur for collocated temperature and salinity. This

figure also shows that the correlation functions for the

background errors will not, in general, be separable

functions of depth and horizontal position.

b. Background error covariance matrix

Let x denote a column vector that defines the true

ocean state at a given time. In the present setting x has

three subvectors. The first two subvectors define the

vertical structure of temperature and salinity at the

Argo locations and the third subvector defines the sea

level on a horizontal grid that spans the study area.

Thus, the first two subvectors are defined in observation

space (e.g., Kalnay 2003). The column vector j defines

the three j variables at the same locations as the ele-

ments of x and thus has the same structure as x. Ac-

cording to (1)–(3) the ocean state and auxiliary varia-

bles are related by

x 5 xb 1 M(xb)j, (4)

where xb is the vector of corresponding background

values and the elements of the square matrix M depend

on quantities appearing in (1)–(3) including T9b and S9b.

The quantity Mj is the background error and its co-

variance matrix is MBMT where B is the variance of j.

We will assume that the covariance structure of j is

given by

B 5

Bh � BTT Bh � BTS 0
Bh � BST Bh � BSS 0

0 0 BD

2
4

3
5. (5)

The direct product 5 arises from the assumption that

the covariance of jT and jS are separable functions of

horizontal and vertical position. It has also been as-

sumed that jD is uncorrelated with jT and jS.

The horizontal covariance structure of jT and jS is

defined by Bh. The (i, j) element of Bh is the covariance

between jT (or jS) at the ith and jth Argo float position.

It is assumed to be of the form

Bh,ij 5 g2 exp(�D2
ij/L

2
2), (6)

where Dij is the horizontal distance between the two

Argo positions and L2 is a correlation length scale. Here

BTT and BSS define the vertical covariance structure of

jT and jS. The dimension of these matrices depends on

the number of levels used to define the ocean state

vector. The matrix BTS allows for correlations between

jT and jS at different levels. The overall variance level

of jT and jS is set by the parameter g2.

The matrix BD defines the covariance of jD. The (i, j)

element of BD is assumed to be

BD,ij 5 g1sD(xi, yi)sD(xj, yj) exp (�D2
ij/L

2
1). (7)

The variance of jD varies with position according to the

nonnegative function sD. This allows the variance of

isopycnal displacements to increase in regions with

strong eddy activity (e.g., the vicinity of the Gulf Stream).

The correlation length scale is set by L1 and the overall

variance of the isopycnal displacements is set by g1.

The background error covariance matrix depends on

four parameters that set the variance levels (g1 and g2)

and length scales (L1 and L2) of j. For convenience we

stack these parameters in the vector u 5 (g1, g2, L1, L2)

and write B 5 B(u). In general it is difficult to specify u a

priori and so it will be estimated, along with the ocean

state vector x, at each analysis time as explained in

section 2c.

c. Simultaneous state and parameter estimation

Let y denote the vector of observations. In the present

setting it is made up of temperature and salinity profiles

and along-track altimeter observations. The relation-

ship between the observations and the true state x is

y 5 Hx 1 e, (8)

where H defines the (linear) interpolation of x to the ob-

servation locations, and e denotes the observation error.

To estimate the ocean state and unknown parameters

the posterior probability density function for x and u,

given the observations, is written as

p(x, ujy) } p(yjx)p(xju)p(u). (9)

This posterior density function contains all the infor-

mation on the state of the ocean and the unknown pa-

rameters given the observations and the prior density
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p(u). [See Wikle and Berliner (2007) for a discussion of

how this approach relates to hierarchical Bayesian

modeling.] If we assume j ; N(0, B) and e ; N(0, R),

where R is the covariance matrix of observation errors,

the posterior density is proportional to

p(x, ujy) }
p(u)

jMBMTj1/2
exp (�J/2), (10)

where

J(x, u) 5 (y� Hx)TR�1(y� Hx)

1 (xb � x)T(MBMT)�1(xb � x). (11)

Estimates of x and u at each analysis time were found

by maximizing p(x, u|y). As noted above, the state vec-

tor is not defined at every model grid point (e.g., the

elements corresponding to temperature and salinity are

defined at observed Argo locations). To estimate gridded

fields of temperature, salinity, and sea level we opti-

mally interpolate the estimates of x to the full model

grid [in accord with the second step of Physical Space

Analysis System (PSAS) as reviewed, e.g., by Kalnay

(2003), p. 172]. More details on the optimization algo-

rithm are given in appendix A.

d. Relationship to previous studies

The idea for the vertical displacement variable, jD,

comes directly from Cooper and Haines (1996). If jT

and jS are zero, and error-free sea levels are assimilated,

the scheme reduces to that of Cooper and Haines

(1996). More specifically from (3) it follows that the

water column will be raised or lowered such that the

change in dynamic height matches the difference be-

tween the observed sea level and the background.

Equations (1) and (2) imply updates to temperature and

salinity that preserve local water properties. If error-

free temperature observations are assimilated then (1)

gives the vertical displacement required to bring the

model temperature into agreement with observations,

and this displacement can then be used in (2) to update

salinity. This is equivalent to the linearized version of

Troccoli and Haines (1999) proposed by Ricci et al.

(2005). If error-free temperature and salinities are as-

similated, and jT 5 0, the scheme is similar to Haines

et al. (2006) in that (i) the temperature observations

give the vertical displacement from (1), and (ii) the sa-

linity innovations, after adjustment for vertical dis-

placement, are mapped horizontally using optimal in-

terpolation based on the covariance structure of jS.

De Mey and Benkiran (2002) described a reduced-

order optimal interpolation scheme that has been used

extensively to assimilate vertical profiles of temperature

and salinity, and sea level, into eddy-resolving models

(e.g., Demirov et al. 2003; Brasseur et al. 2005). They

assume that the background error covariance is a sep-

arable function of horizontal and vertical position, and

reduced the dimension of the state vector by projecting

it onto a set of multivariate EOFs defined in the vertical

at each horizontal location. In the present study the

background error covariance is not assumed a separable

function of horizontal and vertical position, rather it is

allowed to change with location and time through the

vertical gradients in the background state. There is also

no need to calculate the EOF in the present scheme and

thus the problem of scaling multivariate data prior to

EOF analysis is circumvented.

Weaver et al. (2005) used the concept ‘‘balance op-

erators’’ to construct the background error covariance

matrix as a prelude to variational data assimilation.

Assuming temperature is given, they obtain the bal-

anced component of salinity using the vertical displace-

ment approach of Troccoli and Haines (1999). Balanced

sea level is then obtained from dynamic height (calcu-

lated from temperature and salinity), and balanced

horizontal velocity is calculated assuming geostrophy.

The unbalanced components of salinity, temperature,

and current are obtained by subtraction of their bal-

anced counterparts. By conditioning on temperature in

this way, and using some simple physical constraints,

Weaver et al. (2005) transformed the salinity, sea level,

and current into four unbalanced variables. By assum-

ing the temperature and unbalanced variables are mu-

tually uncorrelated, they constructed a background error

covariance matrix in the original state variables that

reflected the assumed physical balances. A similar type

of construction is used in this study. The main differ-

ences are essentially technical but lead to different

background error covariance matrices. For example the

present scheme does not condition on a single variable

when constructing the background error covariance

matrix; the three j variables appear on an equal footing

(i.e., the balance operator matrix is not required to be

lower diagonal as in Weaver et al. 2005). Another dif-

ference is that the effect of vertical displacement ap-

pears explicitly in the present scheme (through the jD

variable) and this significantly affects the structure of

the background error covariance matrix.

The online updating of the background error covari-

ance parameters is similar in philosophy to that of Dee

(1995). Some technical modifications have been made,

however, that reduce significantly the computational

cost of the online parameter estimation. Details are

given in appendix A.

There are similarities between our assimilation scheme

and the operational scheme of Balmaseda et al. (2007,
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2008) used to initialize the ocean component of a cou-

pled model for seasonal forecasting. Both schemes are

motivated by the physical principles mentioned above.

There are, however, some important technical differ-

ences: (i) the Balmaseda scheme takes five steps to carry

out the assimilation, in contrast to the present scheme

that takes one step; (ii) horizontal velocity is not ex-

plicitly updated in the present scheme, rather it is up-

dated by the model (possible because of the frequent

updating); (iii) Balmaseda et al. (2007) assimilate trends

in global sea level to allow for secular changes in ocean

volume (no trends are assimilated here because the

focus is prediction of mesoscale variability); (iv) the

Balmaseda et al. (2007) model is global and its hori-

zontal grid spacing is 18 away from equatorial regions

(in contrast the present model is regional and has an

eddy-permitting resolution across the whole model do-

main); and (v) the present scheme uses a simple bias

correction scheme for temperature and salinity and an

online updating scheme for background error covari-

ance parameters.

3. Application 1: Ocean hindcasting

The assimilation scheme is now used to reconstruct the

daily, three-dimensional temperature and salinity fields

of the northwest Atlantic (see Fig. 2) from 2003 to 2005

using a monthly temperature and salinity climatology as

background. The grid has a longitudinal spacing of 1/68

and the latitudinal spacing decreases with latitude such

that the grid boxes are approximately square. Hori-

zontal distance will subsequently be specified in terms of

grid box widths (denoted by D). The vertical grid covers

the upper 1000 m of the ocean, corresponding to the

depth range best monitored by Argo floats. (See Table 1

for vertical levels.)

a. The temperature and salinity climatology

The monthly temperature and salinity climatology of

Yashayaev was used following spatial smoothing to

eliminate some high wavenumbers that did not appear

realistic. The resulting fields are henceforth referred to

as the smoothed climatology.

Comparison of the Argo observations with the smoothed

climatology suggested systematic differences that reached

0.78C and 0.1 psu close to the surface (see Table 1). The

reason for the difference is probably related to low-

frequency variability of the hydrographic properties of

the North Atlantic; there is no reason to expect the

mean of the Argo observations from 2003 to 2005 to

match the Yashayaev climatology, which is based on

observations covering most of the last century. To re-

move this bias, annual mean correction fields for tem-

perature and salinity, based on optimal interpolation

of the differences between Argo observations and the

smoothed climatology, were calculated for each level.

The bias-corrected and smoothed monthly climatology

is used in this section as the background for the new

assimilation scheme.

Visual inspection of T9b and S9b revealed that some

gradients were unrealistic near the surface. Hence, for

levels shallower than 222 m (level 9), the gradient at

222 m was used after scaling by a depth factor that de-

creased linearly from 0.9 to 0.3 as the surface was

TABLE 1. Vertical levels and statistics of the Argo observations. The first two columns specify the depths of the 14 levels. The remaining

columns give statistics calculated from observed Argo profiles. The two bias columns show the annual mean, spatially averaged dif-

ferences between the Argo observations and the smoothed climatology. Columns labeled r0 and t define the normalized signal variance,

and the e-folding times of the exponential autocorrelation function fit to the temperature and salinity innovations from the same Argo

float. The last two columns give the estimated standard deviation of the observation errors of the Argo temperatures and salinities. (See

text for details.)

Level Depth (m) T bias (8C) S bias (psu) r0T r0S tT (day) tS (day) sRT (8C) sRS (psu)

1 5.0 0.62 0.100 0.87 0.72 27.4 32.2 0.49 0.135

2 15.0 0.64 0.100 0.87 0.72 25.7 30.6 0.49 0.130

3 27.5 0.66 0.100 0.84 0.71 24.5 31.7 0.49 0.126

4 45.0 0.60 0.100 0.85 0.68 20.3 31.2 0.49 0.119

5 65.0 0.52 0.098 0.87 0.69 20.4 27.1 0.48 0.111

6 87.5 0.50 0.095 0.88 0.73 22.5 28.4 0.47 0.107

7 117.5 0.49 0.093 0.91 0.74 23.8 31.2 0.45 0.100

8 160.0 0.45 0.086 0.90 0.74 21.8 31.0 0.41 0.094

9 222.5 0.37 0.075 0.89 0.76 23.0 33.1 0.40 0.089

10 310.0 0.30 0.058 0.90 0.78 24.3 34.4 0.42 0.090

11 435.0 0.16 0.036 0.93 0.84 25.8 33.9 0.46 0.090

12 610.0 0.01 0.015 0.94 0.85 30.4 37.9 0.47 0.078

13 847.5 20.15 20.013 0.92 0.79 30.7 54.6 0.35 0.047

14 1165
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approached. Some unrealistic vertical gradients in

shallow water were also removed. These modifications

led to significant improvements in the skill of the as-

similation scheme.

b. Altimeter and Argo innovations

All available along-track altimeter observations were

obtained from Archiving, Validation, and Interpreta-

tion of Satellite Oceanographic data (AVISO) for the

period 1992–2002 in order to calculate a monthly mean

climatology. [Observations from the following missions

were used: Jason-1, Envisat, the European Remote

Sensing Satellite-1/2 (ERS-1/2), GFO, and the Ocean

Topography Experiment (TOPEX)/Poseidon (T/P).]

Innovations for the period 2003–05 inclusive were ob-

tained by subtracting the monthly climatology from

along track data from the Envisat, Jason-1, and updated

T/P missions.

The Argo profiles are made from a moving platform

at irregular times. To simplify the temporal structure of

the Argo data, they were interpolated to regular anal-

ysis times using observations from the same platform.

The rationale for such Lagrangian interpolation is that

Argo floats tend to follow the same water parcel and

thus their hydrographic properties will change more

slowly in a Lagrangian frame of reference. Note that

this approach assumes the flow at the float’s parking

depth is representative of flow throughout the water

column. The details of the temporal interpolation are as

follows. First the horizontal position of the float at the

analysis time was estimated by linear interpolation of

the two closest fixes from either side of the analysis

time. Temperature and salinity innovations were next

calculated by removing the smoothed, bias-corrected

climatology from the observations. Innovations at the

analysis time were estimated by optimal interpolation of

innovations from the same float and same level. The

autocorrelation function needed for the optimal inter-

polation was an exponential function of time lag fit to

pairs of innovations from the same float, binned by time

lag and depth. The exponential decay times (tT and tS)

and the autocorrelation extrapolated to zero time lag

(r0T and r0S) are listed in Table 1. [Daley (1991) pro-

vides details on the calculation and interpretation of

autocorrelation extrapolated to zero lag.]

c. Observation and background error covariances

To estimate the observation error variance, a spatial

autocorrelation function was fit to pairs of altimeter

innovations from the same track, binned by spatial

FIG. 3. Correlation between temperature and salinity predicted by (1)–(3). (left) The ideal-

ized background (top) temperature and (bottom) salinity as a function of depth and horizontal

position. (right) The correlation between temperature at the position marked by the square,

with (top right) temperature and (bottom right) salinity. It was assumed that jT, jS, and jD are

uncorrelated, cov[jD(x1), jD(x2)] 5 1002exp[2(x12x2)2/5002], and cov[jT(x1, z1), jT(x2, z2)] and

cov[jS(x1, z1), jS(x2, z2)] both equal exp[2(x12x2)2/20022(z22z2)2/3002].
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separation, and then extrapolated to zero time lag as

above. Based on this calculation, and an estimate of the

error of representativeness, we took the standard devi-

ation of the altimeter observation errors to be 2.5 cm.

To assimilate the Argo temperature and salinity it is

necessary to specify the observation and background

error variances in an Eulerian frame of reference. The

observation error variance of the Argo observations

were estimated from a spatial autocorrelation function fit

to Argo innovations at the same analysis time, binned by

spatial separation. The standard deviation of the obser-

vation errors, estimated from the extrapolation of the

autocorrelation to zero separation, was between 0.38 and

0.58C for temperature and 0.04 and 0.14 psu for salinity

with the largest errors close to the surface (Table 1).

The vertical structure of background error covariance

at Argo data locations (i.e., the 13 3 13 BTT, BSS, and

BTS matrices) were calculated for each season by (i)

estimating jD from the altimeter observations using the

approach of Cooper and Haines, (ii) calculating the

effect of the vertical advection on temperature and sa-

linity using T9b jD and S9b jD and subtracting it from each

Argo profile to give a residual profile, and (iii) calcu-

lating BTT, BSS, and BTS from the covariance of these

residual profiles.

d. Time-varying parameter estimates

The assimilation scheme, monthly climatology, and

covariance structures described above are now used to

provide daily estimates of the four background covari-

ance parameters (g1, g2, L1, and L2) and the ocean state

from November 2003 to December 2005. The Argo

temperature and salinity data were mapped to the

analysis day using Lagrangian interpolation; the altim-

eter data were assimilated using a sliding window (e.g.,

Derber and Rosati 1989) of 67 days centered on the

analysis time. [The altimeter data were weighted by exp

(2|tobs 2 ta|/15) where the observation and analysis

times are in days.]

The overall magnitudes of the correlation length

scales (L1 and L2) are stable through time and reason-

able in magnitude (between 100 and 120 km in the

middle of the domain, see Fig. 4). The typical value of

g1 corresponds to an rms of jD of about 20 m; g2 cor-

responds to an rms of near surface jT and jS of about

0.58C and 0.15 psu, respectively.

There is a clear seasonal cycle in the time variation of

g1, g2, and L2. One explanation for the strong seasonal

cycle of g1 is that the vertical stratification (evident in

Dr, not shown) has a strong seasonal cycle and this could

suppress isopycnal variability at certain times of the

year. A possible explanation for the seasonal variation

in g2 and L2 is that the bias correction of the climatology

was only made to the annual mean (due to paucity of

Argo observations) and so the temperature and salinity

innovations may still include a seasonal cycle that

should have been removed by the background. There is

a tendency for g1 to decrease from 2004 to 2005. We

have no simple explanation for this trend.

e. Effectiveness of the assimilation scheme

A simple comparison of an observed profile against

a prediction is not very informative if the profile has

been assimilated. In this section the effectiveness of

the scheme is assessed by its ability to recover tem-

perature and salinity profiles that were not assimilated.

A simple, but stringent, rule was used for withholding

observed Argo profiles. For each profile in turn, all

profiles within a circle of radius r centered on the

horizontal position of the profile of interest (henceforth

the analysis point) were excluded. This automatically

excludes the Argo profile of interest and all other

profiles in the exclusion zone, regardless of when they

were made. Note that Lagrangian interpolation is

still used to estimate profiles at the analysis time, but

none of the observed profiles used in the interpolation

were made within a distance r of the analysis point. By

subtracting the withheld observed profile at the anal-

ysis point from the corresponding prediction one ob-

tains a measure of the effectiveness of the assimilation

scheme. Repeating this procedure for each Argo

profile in turn allows statistics of the prediction errors

to be calculated.

The depth dependence of the temperature and sa-

linity variability is shown in Fig. 5. The line with circles

shows the standard deviation of the difference between

the observations and the smoothed, bias-corrected cli-

matology. As expected the highest variability is ob-

served near surface, and also around 600 m where the

thermocline and halocline are strongest in this part of

the North Atlantic. The continuous line shows the rms

when all of the profiles are assimilated (i.e., there is no

exclusion zone). As expected the assimilation scheme

reduces the observed rms significantly; it is approxi-

mately half that of the observations. The more inter-

esting results are shown by the dashed line showing the

rms error when the Argo profile of interest is withheld.

The rms prediction error falls about halfway between

the rms of the observations and the misfits resulting

from the assimilation of all profiles. The dashed line

clearly shows that the assimilation scheme does have

useful skill in terms of predicting temperature and sa-

linity in the North Atlantic.

The impact of increasing the radius of the exclusion

zone is shown in Fig. 6 for three representative depth

levels. The values at zero exclusion radius correspond to
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the values shown by the dashed line in Fig. 5. For all

curves there is a fairly rapid increase in the rms of the

prediction errors as the radius increases to about 8D.

This increase is the direct effect of losing the informa-

tion from the Argo profiles as the exclusion zone in-

creases. Beyond 8D the scheme still has skill resulting

from the assimilation of the altimeter data.

4. Application 2: Ocean forecasting

The scheme is now used to assimilate along-track al-

timeter and Argo profile data into an eddy-permitting

model of the North Atlantic. The effectiveness of the

scheme is assessed by comparing its forecast errors with

those resulting from using monthly climatology as a

predictor, and also a model with no assimilation.

a. The ocean model

The model configuration is similar to Thompson et al.

(2006) and Wright et al. (2006). The model is version 2.0

of the Parallel Ocean Program. It is a z-coordinate,

hydrostatic general ocean circulation model with an

implicit free surface. The model grid covers the North

Atlantic basin between 78 and 678N (see Fig. 2) and has

a horizontal resolution of 2D and 23 vertical levels. The

northern and southern boundaries of the model domain

are closed and temperature and salinity are strongly

restored to the monthly climatology of Yashayaev

within boundary sponge layers. To eliminate bias in the

interior, the model’s temperature and salinity for all

runs was restored to the smoothed seasonal climatology

using spectral nudging with a restoring time of 20 days

and k21 5 4 yr (see appendix B). The model was spun

up from 1 January 1990 driven by surface wind stress,

precipitation minus evaporation, latent and sensible

heat flux, and net radiative forcing derived from NCEP

daily reanalysis fields.

b. The model runs

The atmospheric forcing for all runs is based on the

same reanalysis fields. It is therefore important to note

that this application quantifies only the effect of ocean

FIG. 4. Time variation of the four parameters that determine the background error covari-

ance. (left) The parameters controlling the variance (specifically g1,2) and (right) the length

scales (L1,2).

FIG. 5. Depth dependence of the rms of (top) temperature and

(bottom) salinity before and after removal of predictions using the

new assimilation scheme with climatology as background. (line with

circles) The rms of observations relative to the smoothed, bias-

corrected monthly climatology. In this case rms corresponds to

standard deviation. (solid line) The rms of the difference between

observations and predictions based on assimilation of all observa-

tions, including the profile being predicted. (dashed line) As for the

solid line, but the Argo profile at the analysis point was withheld.
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data assimilation, through improved initial conditions,

on forecast skill.

1) CONTROL RUN (RUNC)

The model was initialized with the smoothed clima-

tology and integrated from 1990 to 2004. Apart from

spectral nudging to the smoothed seasonal climatology,

no other data were assimilated.

2) ASSIMILATION RUN (RUNA)

The model was initialized with results from RunC for

1 November 2002 and the model was run, with data

assimilation, to the end of 2004. The first two months

were used to spin up the estimates of u. The spatial

structure function sD(x, y) [see (7)] was estimated by

the rms of the difference between anomalies of ob-

served sea level and RunC from 1996 to 2002. This in-

creases the variance of the vertical displacements in the

eddy-rich Gulf Stream region. To assimilate the altim-

eter observations we first removed their monthly means

and then added back the seasonal mean of the model

sea level (calculated sequentially using the time filter

employed in spectral nudging). This ensures the altimeter

data do not affect the mean sea surface topography of the

model, or its seasonal cycle; the altimeter data only con-

tribute information on intraseasonal time scales.

The assimilation of the profile data requires specifi-

cation of the vertical gradients of background temper-

ature and salinity [see (1) and (2)]. Experimentation

showed the most realistic results were obtained by

taking a linear combination of the vertical gradients of

the model forecast (averaged over the last day) and the

smoothed climatology (with weights 1/4 and 3/4, re-

spectively). To minimize shocks to the model, and to

allow the velocity field to adjust slowly to changes in the

density field, the increment was evenly distributed over

the time steps between daily analysis times (e.g., Bloom

et al. 1996).

FIG. 6. Effect of increasing the size of the exclusion zone on the performance of the assim-

ilation scheme using climatology as background. The x axis is the radius of the exclusion zone

(in D) and the y axis is the rms of the prediction errors. The dashed line is the rms of the

observations relative to the smoothed, bias-corrected monthly climatology. (left) Temperature

and (right) salinity. Note the vertical scale changes with depth.
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3) FORECAST RUN: (RUNF)

Starting with an initial condition provided by RunA

for the beginning of each month, the model was run for

an additional 22 days with data assimilation but in such

a way that only data prior to day 22 were assimilated.

This required careful adjustment of the size of the

various time windows (including the windows for

Lagrangian interpolation and extrapolation of Argo

data) to make sure no observations from beyond day 22

were assimilated. The model was then run for 60 days

without data assimilation (i.e., in forecast mode). By

comparing the forecasts from days 22 to 82 against the

corresponding observations it is possible to assess the

true forecast skill of the ocean model as a function of

lead time. We stress that no observations past day 22 are

assimilated and, in this sense, the comparisons shed light

on how the assimilation scheme may perform in an

operational setting. This type of run was completed for

each month from January 2003 to December 2004 giv-

ing a total of 24 forecast runs, each 60 days long.

c. Description and comparison of runs

The u estimated from the assimilation run (not

shown) were similar to those described in the previous

section. The main differences are that u from RunA has

(i) more variability through time, (ii) weaker seasonal

cycles of g2 and L2, and (iii) smaller g1.

Typical snapshots of sea level from observations, and

results from RunA and RunF at the same verifying

time, are shown in Fig. 7. As expected the analysis (top-

right panel) is close to the observations because they

were assimilated into the model. It is encouraging to

note that forecast made 15 days earlier (bottom-left

panel) remains similar to the analysis (e.g., most of the

eddies evident in the analysis can be found in the 15-day

forecast). As expected the 45-day forecast (bottom-

right panel) for the verifying time is not as close to the

analysis; much of the forecast skill has been lost, par-

ticularly in the vicinity of the Gulf Stream.

To quantify the skill of the assimilation scheme, the

rms of the difference between the altimeter observa-

tions and the corresponding predictions made by RunC,

RunA, and RunF were calculated as a function of

forecast lead time. To allow for geographical differ-

ences in the effectiveness of the scheme, the rms were

calculated for three regions (see Fig. 8). As expected the

smallest rms differences were found for RunA and the

largest rms values for RunC. The rms of the observed

sea levels about the monthly climatology is also shown

FIG. 7. Snapshot of sea level (in cm) over part of the model domain for 7 Aug 2004. (top left) All along-

track altimeter data from a 65 day window centered on the analysis time. (top right) Calculated from

RunA and thus the assimilation of all available altimeter and Argo data. (bottom) Forecasts for the

analysis time made (left) 15 and (right) 45 days earlier.
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in Fig. 8; as expected it falls between the rms of the

errors for RunC and Run A. Note that these three rms

values do not change significantly with lead time; the

small differences reflect sampling variability. Clearly

the Gulf Stream region (area II) has the most energetic

observed sea level variations. RunC overestimates this

observed value, presumably because the model is gen-

erating eddies with strong sea level signatures but

they are not necessarily appearing at the right time or

location.

The most interesting information in Fig. 8 is the rate

at which the rms of forecast errors from RunF increases

with lead time. As expected the rms increases mono-

tonically from the RunA to RunF values as the effect of

the observations on the initial condition is forgotten. To

provide a simple measure of the effectiveness of the

assimilation scheme we define the lead time tP as

the time at which the rms of RunF equals the rms of the

altimeter innovations (i.e., for lead times less than tP the

forecast run outperforms climatology as a predictor of

future states). From Fig. 8 it can be seen that tP is about

9 days in the vicinity of the Gulf Stream area, and over

20 days for the rest of the North Atlantic.

The forecast skill time scale (tP) is shown in Fig. 9 for

temperature and salinity. Over most of the water col-

umn the assimilation scheme outperforms climatology

for about 15 days. Because of the paucity of Argo data it

was not possible to calculate tP in different regions as

for sea level. We expect, however, that tP will probably

be shortest in the eddy-rich Gulf Stream region. The

domain-averaged tP for temperature and salinity are

shorter than for sea level (cf. Figs. 8 and 9). One reason

is that the Argo observations have a mean separation

of over 10D that is comparable to L2. Thus, a signifi-

cant part of the prediction skill must come from just

the altimeter data. Another reason is that the mean

time between profiles made by the same Argo float is

about 10 days. This means that, on average, an ex-

trapolation of 5 days is required to move from the last

Argo observation to the analysis time. Finally, for this

application we have not removed the bias from the

temperature and salinity climatology and this may

contribute to the shorter tP.

5. Summary and discussion

A physically motivated, sequential scheme has been

described for assimilating altimeter and Argo observa-

tions. The assimilation is carried out in a single step and

each observation contributes to the simultaneous up-

date of the model’s temperature, salinity, and sea level

fields. The scheme allows for the online correction of

temperature and salinity biases (Thompson et al. 2006),

and the simultaneous estimation of background error

covariance parameters. The latter feature gives the

scheme some robustness with respect to covariance

choices. The development of the scheme is strongly

influenced by, and builds upon, the work of Derber and

Rosati (1989), Dee (1995), Cooper and Haines (1996),

Troccoli and Haines (1999), Ricci et al., (2005), Weaver

et al. (2005), and Haines et al. (2006). The scheme is

similar in philosophy to the operational scheme of

Balmaseda et al. (2007) used to initialize the ocean

component of a coupled model for seasonal forecasting.

To assess the effectiveness of the scheme, two appli-

cations were carried out, both focused on the prediction

of mesoscale variability of the North Atlantic. In the

first application the background temperature and sa-

linity fields were simply monthly climatologies. This was

essentially a ‘‘data-only’’ reconstruction of the sea level

and three-dimensional temperature and salinity fields of

the northwest Atlantic for 2003–05. In the second ap-

plication the background fields were model forecasts.

Both the estimated background error covariance pa-

rameters, and the reconstructed fields, from the two ap-

plications are reasonable; cross-validation studies based

on recovering observed Argo profiles that were withheld

FIG. 8. Forecast skill of the assimilation model. Each time series

panel shows the rms of the sea level forecast errors for RunC,

RunA, and RunF as a function of lead time. Also shown is the rms

of the altimeter observations relative to their monthly climatology.

Each time series panel corresponds to one of the three areas

defined in the bottom right panel. Note the vertical scale for the

Gulf Stream area differs significantly from the scales for the other

two areas.
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from the assimilation scheme, and also forecasting future

states, show that the scheme has useful skill.

The forecasting application allowed us to compare

the computational efficiency of the assimilation to that

of running an eddy-permitting model. For the North

Atlantic forecasting application the model has a hori-

zontal grid spacing of 1/38, 23 levels in the vertical, a free

surface, a time step of 1/20 day, daily assimilation up-

dates, and parameter updates every 2 days. The com-

putational cost of the assimilation was about 40% the

cost of running the ocean model. The memory require-

ment of the assimilation was about one-third that of the

model. The scheme is therefore relatively cheap compared

to other schemes such as the ensemble Kalman filter or the

singular evolutive extended Kalman (SEEK) filter.

There are several ways in which the scheme could be

improved and extended. At present only profiles with

matching temperature and salinity profiles have been

assimilated. In principle it should be straightforward to

assimilate temperature profiles alone (e.g., expendable

bathythermographs). This will add a significant amount

of extra information to the model. Ricci et al. (2005)

point to a straightforward extension of the present

scheme that could introduce some of the advantages of

four-dimensional variational assimilation. Their idea is

to calculate innovations over a sliding time window

using model forecasts made at the exact time and lo-

cation of the observations [i.e., first guess at appro-

priate time (FGAT)]. We plan to compare FGAT to the

Lagrangian approach used to assimilate Argo profiles in

the near future.

We also plan to compare the skill of the new assimi-

lation scheme to existing schemes such as the SEEK

filter. The focus will remain on mesoscale variability in

the North Atlantic and the skill metrics will be the

variance of forecast error as a function of lead time, and

statistics such as tP. We also plan to use the new mean

sea surface topographies resulting from the Gravity

Recovery and Climate Experiment (GRACE) satellite

mission (e.g., Thompson et al. 2009) to improve the

prediction of the mesoscale through the correction of

model biases.
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APPENDIX A

Estimation of State and Background Error
Covariance

To estimate the true ocean state vector (x) and the

covariance parameter vector (u) we maximize the pos-

terior density p(x, u|y). This is equivalent to minimizing

[see (10)]:

L(x, u) 5 logjB(u)j1 J(x, u)� 2 log p(u). (A1)

In general L(x, u) is a complicated function of x and u

and its minimum must be found numerically. We first

assume u is known. The optimal value of x is unique and

given by

xu 5 xb 1 MBMTHT(R 1 HMBMTHT)�1(y� Hxb).

(A2)

In practice, xu is found numerically using a precondi-

tioned, conjugate gradient descent algorithm. (To im-

prove the condition of the background error covariance

matrix a small positive number was added to its diago-

nal elements.) We then substitute (A2) into (A1) and

minimize the following function of u:

L(xu, u) 5 log jB(u)j1 J(xu, u)� 2 log p(u). (A3)

FIG. 9. Forecast skill of the assimilation model for temperature

and salinity. The solid (dashed) line shows tP for temperature

(salinity) as a function of depth. Each tP value was estimated by

equating the rms of the error in RunF to the rms of the Argo

observations relative to the smoothed climatology. The data were

not binned by season or region and thus are annual mean statistics

for the whole North Atlantic.
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One of the benefits of the assumed form of B [see (5)] is

that the determinant can be written as

log jBj 5 log jBDj1 2nz log jBhj1 nh log jBVVj, (A4)

where nz is the number of vertical levels, nh is the

number of Argo profiles, and

BVV 5
BTT BTS

BST BSS

� �
.

Further simplifications are possible because, from (7),

it is clear that covariance function for is jD separable

in the east and north coordinate directions. It is thus

possible to write BD 5 B1 5 B2 where B1 and B2 are

n1 3 n1 and n2 3 n2 covariance matrices, and thus

log |BD| 5 n2 log|B1| 1 n1log|B2|. The last term in (A3)

comes from the prior for u.

Although L(x, u) is relatively inexpensive to calculate

using the above simplifications of the determinant, it is

still a complicated function of x and u and the minimum

must be found numerically. We used the quasi-Newton

method following careful preconditioning. (The Hessian

was updated using the BFGS algorithm.)

Standard optimal interpolation, based on B(u) eval-

uated using the optimal value of u, was used to propa-

gate the estimates of x to any chosen set of points (e.g., a

high-resolution spatial grid). In practice the quantity

B21ju is calculated in the first step of the above mini-

mization procedure and this greatly reduces the com-

putational cost of propagating the estimates of x to the

chosen points. For the present study the displacement

vector jD was defined on a regular grid with a spacing

of 3D and 2D for the applications in sections 2 and 3,

respectively.

Maximizing the marginal posterior density

Another way of estimating the parameter vector u is

to maximize the marginal posterior density, p(ujy) 5Ð
p(x, ujy) dx. This is equivalent to the approach of Dee

(1995) and requires the minimization of

L(u) 5 log jR 1 HMB(u)MTHTj1 J(xu, u)� 2 log p(u).

(A5)

In general the maximization of the joint and marginal

posterior distributions will give different results. This

result is not really surprising because any choice of a

single estimate derived from the joint posterior proba-

bility density (e.g., mode or median of marginal density)

is in some sense subjective. We have chosen to estimate

u by maximizing the joint posterior density for the state

and parameters. One advantage is that this approach

leads to significant computational savings because it is

much easier to evaluate |B| than |R 1 HMBMTHT| using

the procedure given above.

APPENDIX B

Outline of Spectral Nudging

Eddy-permitting ocean models often drift away from

the observed state when integrated for long periods of

time leading to significant bias errors. The model used in

this study is no exception and significant biases were

noted in the northwest Atlantic, particularly in the

mean path of the Gulf Stream. To suppress drift and

bias, we restored the model’s temperature and salinity

at all grid points to the observed monthly climatology

of Yashayaev. To avoid damping the mesoscale vari-

ability, we used the spectral nudging technique of

Thompson et al. (2006), which restricts the nudging

of the model to specified frequency and wavenumber

bands; outside of these bands the model is free to evolve

prognostically.

Spectral nudging is implemented by adding a re-

storing term of the form lhX c
t 2 X f

t i to the model’s

temperature and salinity update equations, where X c
t

is the observed climatology at time t and X f
t is the

corresponding model forecast. The restoring time is

proportional to l21. The angle brackets denote a fil-

tered quantity that is close to zero for wavenumbers

above a specified cutoff and frequencies beyond k of

the climatological frequencies of 0 and 1 cycles per

year. Note that the time filter used to calculate the

spectral nudges has a zero phase shift at the climato-

logical frequencies. Reducing k reduces the width of

the nudged frequency bands but increases the time for

the filter, and the model, to spin up. (The spinup time

scales with k21.) The advantages of spectral nudging

are that it suppresses seasonal biases in the model’s

temperature and salinity fields and leaves the meso-

scale variability free to evolve prognostically. For more

details on the technique, including the spectral charac-

teristic of the fourth-order Butterworth filter used to

spatially smooth the nudges, see Thompson et al. (2006).
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