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We present a simple theory of electrical resistivity p(T) due to critical fluctuations in the vicinity of the Neel

point of antiferromagnets and the order-disorder transition temperature of binary alloys. In the disordered

phase, it is shown that the singular part of dp/3T varies as either plus or minus the singular part of the
+ ~ ~

specific heat for T~ T „.The sign is determined by Fermi-surface geometry and the superlattice vector Q of
the ordered state. The temperature range, somewhat above Tf„where short-range (R &() correlations are no

longer dominant is also considered. Numerical results are given for both the short-range and long-range

temperature regimes. In the ordered state, it is concluded that the long-range order does not enter p(T)
directly for T~ T„and that Bp/BT continues to reflect more closely the specific heat. The results are

compared with experiment in the representative cases of P-brass, Fe,A1, dysprosium, and holmium. Some

previously unsettled questions are answered and there is. good agreement with experiment.

I. INTRODUCTION

The study of electronic transport properties at
magnetic critical points has received a good deal
of experimental and theoretical attention. A Priori
the following interdependent points are required
for an understanding of the transport process: (i)
critical properties of the spin system against
which the electrons scatter, (ii) associated many-
body effects such as renormalization of electron
energies and velocities, and (iii) characteristic
solid-state effects such as Fermi-surface aniso-
tropy. The effect of critical fluctuations on the
electrical resistivity p(T) was first considered by
deGennes and Friedel' using a simple model in
which essentially free electrons are linearly cou-
pled to a set of localized spins. The spin cor-
relations were described in a conventional Orn-
stein- Zernicke approximation. With improved
treatments of the critical fluctuations in the spin
system, this s-f exchange model was widely used
to discuss resistive anomalies at ferromagnetic
critical points. " In particular, Fisher and Lang-
er' introduced the short-range expansion for the
correlation of spin fluctuations to show that dp(T)/
dT = p'(T) ~C(T) ~t ~ for T-T'c [t= (T —Tc)/Tc
and standard notation will be used for critical ex-
ponents~], where C(T) is the specific heat. The
conclusion that p'(T) ~C(T) was extended to T
-T~ by Richard and Geldart' who also clarified
some points concerning long-range correlations
of Ornstein-Zernicke (OZ) type. More recently,
Richard' and Geldart and Richard' showed that the
critical behavior of a variety of ferromagnets

could be understood by taking into account both
short-range' and long-range' correlations as well
as details of the Fermi surface.

The situation has been less clear in the case of
resistive anomalies at the Neel point T~ of anti-
ferromagnets and at the order-disorder tempera-
ture T, of binary alloys (which have critical prop-
erties formally equivalent to those of Ising anti-
ferromagnets'). The role of critical fluctuations
in antiferromagnets was first studied by Suezaki
and Mori' and later, but independently, by Geldart
and Richard. " The former authors concluded that
energy gaps in the electron dispersion relation"'
reflect the long-range order (o-~t ~8) with the re-
sult that" p'(T)-~t|8 ' for T-T~ and that long-
range correlations dominate throughout the para-
magnetic regime so that p'(T) -t'" " ' = t '~ ' if we
assume the scaling relations' 3v=2 —a and n+2P
+y=2. The latter authors also concluded that
long-range correlation play a role for T & T„(their
discussion was based on a conventional OZ ap-
proximation" for the spin correlations) but ex-
pressed the view that short-range correlations
dominate for T-T'„, in contrast to the prediction
of Suezaki and Mori. In the present paper, we
discuss in some detail the effect of critical fluctua-
tions on the electrical resistivity of antiferro-
magnets and binary alloys. The outline of the
paper is as follows.

In Sec. II, we outline a formulation of the prob-
lem of calculating the resistivity in the s fex--
change model based on the variational approach
to the Boltzmann equation. Appropriate choices
for the spin-correlation functions for various anti-
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ferromagnets are indicated. In Sec. III, we con-
sider p(T) for T -T'„. The reasons for the fa.ilure
of the arguments of Suezaki and Mori' are dis-
cussed and numerical results based on the short
range expansion' are given. The crossover from
short-range to long-range dominance with increa-
sing temperature is considered in Sec. IV and
numerical results are also given for the latter
region. In Sec. V, we briefly discuss the role of
energy gaps"'' and their effects on the tempera-
ture dependence of the resistivity for T -T„.
Finally, in Sec. VI, we compare the present theory
with experiment in the representative cases of the
binary alloys P-brass and Fe, Al and the helical
rare-earth antiferromagnets dysprosium and hol-
mium. Our basic objective in this work is to de-
termine how well a simple conventional descrip-
tion of transport properties can account for the
variety of observed properties and to indicate
where we expect that a more sophisticated treat-
ment will be required.

II. RESISTIVITY OF ANTIFERROMAGNETS IN s-f
EXCHANGE MODEL

I'(R, T) = (So ~ S„-)/S(S+1) (2)

and 4 '(R) is the Fourier transform of

[ (3v'/2k') (q',./q), q & 2k~,

[0, q&2k„.

To calculate the contribution to the electrical
resistivity due to spin fluctuations p, (T) when the
current is in the ith crystal direction, the follow-
ing standard assumptions are made: (i) Matthies-
sen's rule is valid. (ii) The s fexchange i-nterac-
tion is weak enough to treat by the lowest-order
Born approximation. (iii) The spin-fluctuation
lifetime is long enough near the critical point so
that the scattering is quasielastic. (iv) The re-
sulting resistivity is adequately described by a
simple variational estimate based on the Boltz-
mann equation. With these assumptions, the de-
rivation of p', (T) proceeds precisely as in the ca.se
of ferromagnets' and can be given for a fairly
general class of band structures [see Sec. II of Ref.
7]. For our immediate purposes, it is sufficient to
describe the current carriers (electrons or holes)
by a spherical Fermi surface. It is convenient to
normalize the spin-fluctuation resistivity to its
high-temperature (spin-disorder) limit po, = p,'(T
»T„). Then, we have"'

R;(T)=",T = Zr(R, T)C'(R), (1)
Os B

where

so Eq. (1) becomes

d
R,'(T)=,C '(q)r~(- q, T)

We must now prescribe the type of spin-corre-
lation function to be used in Eq. (1). Consider two

interpenetrating sublattices with classical Heisen-
berg or Ising ferromagnetic coupling between all
spins. The effect of changing the sign of all inter-
sublattice interactions is to change the sign of the
intersublattice correlation function and to leave
the intrasublattice correlation functions un-
changed. ' For example, letting J--J in a near-
est-neighbor Ising model on a simple cubic lattice
with basis vectors (ax, ay, ae) leads to the re-
placement I', (R, T) - (cosQ ~ R)I', (R, T), where
1,(R, T) is the spin-correlation function for the
corresponding ferromagnet and Q = (x+y+a)w/a
with the consequence that cosQ R=+1 as appro-
priate. In the case of order-disorder transitions
(Ising-model antiferromagnet), we shall thus use

I'(R, T) = (cosQ ~ R)I', (R, T), (6)

where Q is to determined from the crystal struc-
ture and the symmetry of the ordered state (see
also Sec. VI). For more complex magnetic sys-
tems and for nonclassical spins, we shall continue
to use Eq. (6) for the following reasons. (i) Spe-
cifically quantum effects are believed to play a
relatively minor role in determining the spin-
correlation function near the critical point. " This
is related to the "universality hypothesis" for
systems of a given symmetry class. " (ii) Equa-
tion (6) satisfies the "equal-site sum rule" exactly

I"(R = 0, T) = I' (R = 0, T) = 1, all T. (7)

In spite of the innocent appearance of Eq. (7), it
will be seen to play a.n important role. (iii) It is
well known from neutron scattering'"" that spin
correlations of wave number +Q (and vectors ob-
tained by translation through reciprocal-lattice
vectors) are very large and strongly temperature
dependent near T„. Clearly, r~(q, T) must be
reasonably treated for q=+Q. From Eqs. (4) and

(6), we find

r~(q T) =-'[r.,(q+Q, T)+ r.,(q - Q, T)], (8)

which adequately describes the critical spin fluc-

Generalizations of these results to include aniso-
tropic Fermi surfaces' and the effect of the finite
electron mean free path" will be indicated sub-
sequently as required. For some purposes, it is
convenient to introduce the Fourier lattice trans-
form of Eq. (2),

I' (q, T) = Ze "ar(R, T),
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tuations of antiferromagnets near +Q since the
ferromagnetic correlation function peaks at zero
wave number. For the helical rare-earth anti-
ferromagnets (helimagnets) which we shall con-
sider, the axis of the helix is along the c axis of
the hcp structure and the appropriate magnetic
ordering vector is seen to be

q= (2~/J )c, (9)

r, (R, T) =D(»R)(a/R)"", (10)

where, for sma. ll x=»R, D(x) may be expanded
as3, 19

D(x) =Do —D, x" "'i" Dx' "+- (11)

Quantitative statements concerning the coeffi-
cients D, can be made using the c expansion and

renormalization-group methods. " The conclusions
which we draw in the following are independent of
the precise values of these coefficients and (with-
in reasonable limits) of the critical exponents so it
is sufficient to take their values from, for ex-
ample, numerical work on Ising""'" or Heisen-
berg" models.

As the temperature increases in the paramag-
netic regime, it is not clear that the convergence
of the expansion in Eq. (11) is adequate to permit
a continued description in terms of short-range
correlations. ' ' It is thus necessary, for con-
sistency, to be convinced of the possible role
played by long-range correlations [i.e. , KR « I
may not be satisfied for the relevant 8 (B,which
enter Eq. (I)]. Several approximate forms may be
suggested' ""of which the simplest which satis-
fies Eq. (7) and the criteria that I', (R, T) should
decrease as either 8 or T increases is' '"

�

R=0,
r, (H, T) =

(C, a/R)e "s, R &0,
(12)

where the magnetic period P is approximately gc,
4c, and 3.5c for terbium, dysprosium, and holmi-
um, respectively, near their Neel points. "

Some comments are in order concerning an ap-
propriate choice of the "corresponding" ferro-
magnetic correlation function in Eq. (6). We re-
strict present attention to T ~ T„. As will be shown
in Sec. III, short-range correlations are dominant
for T -T'„just as they are for ferromagnets. "'
It is therefore appropriate to note that sums such
as Eq. (I) contain implicit cutoffs so that their
major contribution came from B ~B„where B,
may be the finite-electron mean free path" or
other electronic length scales" such as k„'. Since
the length scale of the spin correlations $ = (,t "

increases indefinitely for T-T„, it is in-
evitable that the spin-correlation function must be
correctly described in the range R/$«1. This is
accomplished by the scaling representation

Finally, in the ordered state below T„, our
major concern is the resistivity only in the limit
T-TN. In this case, an appropriately modified
version of Eq. (11), which exhibits the specific-
heat singularity as the leading nonanalytical tem-
perature dependence, is assumed to be valid.

The above results are applied in Secs. III-VI to
study the critical behavior of the resistivity in
various temperature regimes.

BR,'(T) d'q, Bri(q, T)

Using a representation of Br+(qT)/, BT based on

scaling theory, it was concluded that its point
singularity at q=Q led to a divergence of the in-
tegral in Eq. (13) with the temperature dependence
t'" ' ' in the case of the electric field and net cur-
rent in the crystallographic direction parallel to
Q'. Their procedures would have been correct if
the integral actually did diverge at T = T~ due to the
point singularity at q =Q and if all strongly tem-
perature-dependent components of Bri(q, T)/BT
had been adequately approximated over the re-
quired range of q. To see why this procedure
fails, note first that the domain of integration in
Eq. (13) may be taken to be the first Brillouin
zone (BZ) since 2k»(iG, i

is the magnitude of the
first reciprocal-lattice vector for any free-elec-
tron-like model to which Eq. (3) may be reasonably
expected to apply. " Also, from Eq. (7), we see
that

d ' q Br~(q, T)
8m BT (14)

In spite of the innocent appearance of this result,
its importance should not be underestimated. In
particular, it shows that the point singularity at q
=Q does not dominate the q integral. To appreci-

III. SPIN-FLUCTUATION RESISTIVITY FOR T~ T~

As mentioned in Sec. II, sums such as Eq. (1)
contain an implicit cutoff R, due to the finite-elec-
tron mean free path (or other electronic length
scales such as k»') limiting the range of the elec-
tronic coherence function 4'(Il). For this reason
alone, one should anticipate that in the limit of T
-T'„, the important terms in Eq. (I) are those for
which R,/$«1 since $-~ as T-T». Thus, short-
range correlations"" rather than long-range cor-
relations' should dominate resistive anomalies
sufficiently close to the critical points of anti-
ferromagnets just as in the case of ferromag-
nets."

The conclusion of Suezaki and Mori' was based
on an evaluation of Eq. (5), using Eq. (3) for C '(q),
in the form"
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ate this in more detail, recall that I'z(q, T) is
periodic in reciprocal space and, by symmetry,
the singularities of SI"z(q, T) a.re symmetrica. lly
located in the BZ so the volume of integration in
Eqs. (13) and (14) can be divided into a set of non-
overlapping "partial" Brillouin zones ( j-PBZ)
such that there is just one critical wave number

Q,. in j-PBZ with Eq. (14) applying to each j-PBZ.
We can write Eq. (13) as

BR,'(T) ~;( ' r z d'q 81"z(q, T)
8m' 8Td'q;; -

]
BI' (q, T)

j 8g'

(15)
The first term is identically zero, rather than
singular, ' by virtue of the equal-site sum rule and,
after angular integration, the contribution of the
second term in Eq. (15) from the region ~q —Q,. ~«&
is easily seen to be of order t '" ' ' which is not
singular. We conclude, from the equal-site sum
rule and phase-space considerations, that any
singular temperature dependence of Eq. (13) arises
from ~q —Q ~» «so that a. short-range representa-
tion of the spin-correlation function is required
for T Tg.

From the above discussion, it is clear that
short-range correlations dominate for T —T'„so
that, from Eqs. (6) and (ll), the appropriate cor-
relation function may be taken to be"

F(R, T) =(cosQ R)(a/R)"'"

replacing C(R) by C (R)e R~'. More-refined treat-
ments are possible, "but this approximation pro-
vides a qualitatively correct description of the re-
duction of electronic coherence at large R due to
the inherent disorder of the system. For the bcc
simple antiferromagnet, the appropriate Q to use
in Eq. (16) is easily seen to be either Q = (2v/a)x
or (2&&/a)y or (2&&/a)z and the spin-correlation func-
tion has the required cubic symmetry. Using these
results, we obtain from Eq. (I) for T = T»

T„8R,(T) =+ (I —o&)Af "+B-+ ~ ~ ~,
BT

(19)

~R'
(cosQ R)C (R)e

RWO

(20)

and B is given by a similar form with n-0 and

~D, ~-D, . The lattice sum in Eq. (20) has been
evaluated numerically for a range of the parame-
ters I/a, kza, and Q. The results are quite in-
sensitive to I/a and to &b and typical results are
given in Fig. I, for l/a =8 and P =0.5, as a. func
tion of 2k~. It is seen that A (which determines
the slope of the resistivity at T = T'„) is positive
for 2kF & q, whereas A is negative for Q &2kF.
Thus, close to T'„, the singular part of the deriva-
tive of the resistivity has temperature dependence
which reflects the specific-heat singularity and the
resistivity slope may be either positive ox negative

where the positive (negative) sign is to be used for
o&&0 (o. &0),&9 P = (I —c&)/v —(I+q),

A = —~D, ~
(«, a)"

)& [D D (&&R)&'-0'&~" D, (&&R)'~" y ~ ~ ~ ]

(16)

Using this result and the Fourier transform of Eq.
(3), the lattice sum in Eq. (1) has been evaluated,
numerically for several crystal structures and for
a range of the relevant parameters. Illustrative
examples of these results will now be given.

Consider a body-centered-cubic simple anti-
ferromagnet for which, in the ordered state, ions
tend to have spins up on body centers and spin
down on the corners of the unit cell (or vice versa).
Since there is cubic symmetry, Eq. (3) may be
replaced by its average over crystallographic di-
rections

C (q) = (~'q/2u;)e(2a, —q)

4.0-

2.0

0.0

- 2.0-

—4.0

-6.0-
2TT
0

2k,
for which'

82
C (R.) = (4u', R)-' (18)

In order to discuss the effect of the finite electron
mean free path, we follow Fisher and I anger' in

FIG. 1. Short-range expansion coefficients A plotted
as a function of 2i]I'F. Note that the abrupt change of
sign occurs as the Fermi surface is spanned by Q, of
magnitude (2&/a) in this case of a bcc simple antiferro-
magnet. See text of Sec. III for details. Also note that
the scale of the abscissa would be linear in the effective
valence if the indicated values of 2kF are cubed.
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depending on the ratio of the Fermi surface cali-
per and Q. This result will be utilized in Sec. VI
in the discussion of binary alloys at their order-
disorder temperature.

We now consider the case of helical (uniaxial)
antiferromagnets on a hexagonal-close-packed
lattice. Since there is no longer cubic system,
we must distinguish between the c-axis resistivity
8;(T) (i.e. , the applied field and current flow are
along the c axis of the hcp crystal and the c axis
is parallel to Q [see Eq. (9)]], and the basal pla, ne

resistivity ft,'(T}, where the current is perpendicu-
lar to Q. Also, the Fermi surfaces of the rare-
earth helimagnets are very anisotropic. " As a
simple model we take the dispersion relation of
the current carriers (holes) to be described by

Eg = + k
' [k',/2m, + (k', +k,')/2m, ]+const. (21)

For this dispersion law, Eq. (3) is replaced by
(see Ref. 7 for details)

@i( )

0, q &2k„„
(22)

where kz, (k») is half the Fermi-surface caliper
along the c axis (in the ba.sal plane) and q*=[q',
+(q„'+q,')m, /m„]' '. The corresponding 4'(R) can
be evaluated' and used in the short-range expan-
sion to obtain" (i =c, b)

(23)

with

Ai ~D ~(~ g)(x n&/v-

Rx Q — (cosQz)C '(R)e ~/'.
RWO

(24)

This hcp lattice sum was also evaluated numeri-
cally to obtain bothA' and A" for a wide range of
the model parameters l, Q, kz„and k» (with kzi,
&k~,). The results were not overly sensitive to l

or Q but were sensitive to the Fermi-surface cali-
pers. It was found that (i}A~&0, (ii) A'&0 for 2k+,
&Q, and (iii) A'&0 for Q &2k~, except for very
sma. ll va.luce of the ratio Q/2k+, . The limit of
small Q/2k~, corresponds simply to the case of a
ferromagnet. ' These results are as anticipated.
To appreciate the role played by the Fermi-sur-
fa.ce anisotropy, we have plotted A' and A" in Fig.
2 as a function of the anisotropy parameter
log~(m~/m, ) =21og, (kz~/kz, ) for the typical ca,se of
1/a=6, &f&=0.5, and Q=2v/5c. When evaluating
Eq. (24) for different values of k»/k», the volume
of the Fermi surface was held constant so as not
to be comparing systems with different densities
of current carriers. The results shown in Fig. 2

IO. -

20.

FIG. 2. Upper (lower) curve shows a plot of A (A~)
as a function of Fermi surface anisotropy, measured in

terms of log2(kq~/4'~, ). The volume of the Fermi sur-
face is held constant for different values of the aniso-
tropy. The tendency of A to rise for &zp/&&~& 4 is due
to the Fermi surface approaching the Brillouin-zone
boundary of the hcp structure.

correspond to (k2~, k~,)'/'=1. 28. It is seen that A"
tends to be relatively small, positive and insensi-
tive to anisotropy while A' tends to be relatively
large, negative and sensitive to anisotropy. The
structure in A' is a direct reflection of the role
played by Q/2k». For example, A' rises for large
anisotropy because Q/2k» approaches unity which
is roughly where A' should become positive (see
above). We shall refer to these results in Sec. VI.

Finally, it should be pointed out that the conclu-
sion that BR,(T)BT&0 for T-T'„can be demon-
strated analytically' by methods similar to those
employed in the corresponding discussion of ferro-
ma. gnets. ' These methods also verify that BR'(T)/
BT may be either positive or negative (depending
on the Fermi surface and Q) but do not permit
simple but reliable estimates of the mqgnitude of
A' or A'.

IV. LONG-RANGE CORRELATIONS AND SPIN-

FLUCTUATION RESISTIVITY FOR T) T~

The results of Sec. III are valid for T = T'„. As
pointed out in Sec. II, sums such as Eq. (1) con-
tain an implicit cutoff R„which is of order l or
k~'. As the temperature increases above T„, the
correlation length decreases and the values of x
&x, =I(.R, which will be required in the short-range
expansion, Eq. (11), increase correspondingly.
Consequently, with increasing temperature, high-
er-order terms in the short-range expansion be-
come significant and it is not at all clear that D(x)
continues to be adequately represented by only the
first few terms in Eq. (11). In the absence of a de-
tailed knowledge of D(x} for the la, rger values of x
= wR which a,re required, it is useful to consider
alternative forms for I', (R, T) [see Eq. (10)] which
have a regime of approximate validity for inter-
mediate or large values of yR and which might
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therefore complement the short-range expansion
of Sec. II. To this end, Ferer, Moore, and Wor-
tis" introduced an Ornstein-Zernicke-like ap-
proximation

1, R=O,
r, (R, T) =

R a'
(25)

which was estimated to be valid, on the basis of
numerical analysis of Ising-model data, for va
& 0.1. An alternative and simpler approximation
which is also of OZ type is' '

1, R=O
ro(R, T) = e-.R (26)

which can be rewritten

Apart from the obvious but important fact that the
equal-site sum rule is satisfied, the validity of
Eq. (26) is otherwise limited, strictly speaking,
to large values of ~R." For the rationale of using
Eq. (25) or (26), with a view toward verifying that
the essential physical features of the problem are
described by either short-range or long-range
(i.e. , tcR not necessarily small) spin correla-
tions, see the discussion in Ref. 7.

In order to illustrate the above point, it is in-
structive to apply Eq. (26) to calculate the slope of
the resistivity and the specific heat. From Eqs.
(1), (6), and (26), we easily find

BR,'(T) = —C, av'(T) g(cosQ R)C '(R)e "~, (27)
RWO

sum in Eq. (31) and that the G =0 term is (for Q
&2a,)

Q; ~, Q 1, t=c,
2Qz Q o 2k (32)

= C, av'(T)( ,' k~T «), —

where T„, is the mean-field approximation to the
Neel temperature. Comparison of Eqs. (28) and
(34) suggests that BR,'(T)/BT and C, (T)/N have the
same temperature dependence and that their ratio
is given approximately by

where Q, =3v'/0'„ is the volume per electron (hole)
associated with the pocket of current carriers and
can be considerably larger than 0,. From this
simple argument, it becomes clear that the sign
of BR'(T)/BT will be determined by Fermi-sur-
face features in the regime of long-range correla-
tions just as in the case of short-range correla-
tions. A more quantitative evaluation of Eq. (27)
is given below.

Consider now the corresponding treatment of the
specific heat. We assume that the internal energy
is given by a Heisenberg model with pair interac-
tions between spins. The heat capacity per spin
is, in the same OZ spirit,

C, (T) B e-vR
= ——gJ'(R) S(s+1)C,a (cosQ R),

R/0

(33}

which reduces, for small v, to

C,(T) -C, aa'(T)S(S+1)g J(R) cosQ ~ R
R&

(28) Bft,'(T) C, (T) 2S'(Q, 0)
&T N 3k~T~O

(35}

where

(30)S'(Q, o) = 1 —C'g(Q),

where C~(Q) is the Qth component of the Fourier
lattice transform of O'(R) and is given by

4",(Q) =fl,'2 4"(Q+G), (31)

where the sum is over reciprocal-lattice vectors,
Qo is the volume per ion, and C '(Q+G) is given by
Eq. (3) or (22). For simplicity, we consider a
Bravais lattice and an isotropic Fermi surface.
Note that there are no negative contributions to the

S'(Q, v) = 1 g e "s(cosQ R)C '(R). (29)
R

Consider first the case of "small" v [e.g. , x R
-0.1 for the dominant terms in Eq. (29)] so Eq. (29)
becomes

This point will be returned to in Sec. VI.
To obtain quantitative estimates of BR,'(T)/BT in

the regime where long-range correlations may be
relevant, we have evaluated numerically the re-
levant lattice sums using the generalized OZ re-
presentation, Eq. (25), of Ferer, Moore, and
Wortis" for various temperatures in the range
where &ca &O. l [due to the fact that q is small, the
factor of (va)" in Eq. (26) has only minor influence
and essentially identical results are obtained using
Eq. (25)]. The finite mean-free-path modification
of Fisher and Langer' was also included. In Fig.
3, we plot typical results for S'(Q, z) -=C, 'BR,'(T)/
B(va) [see also Eq. (28)] for the bcc simple anti-
ferromagnet, for ra=0. 2 and f/a =8, as a function
of the caliper 2k~ of the isotropic Fermi surface.
In Fig. 4, we have plotted typical results for
S'(Q, K) and S (Q, K) for a helical antiferromagnet
on a hcp lattice, also for va =0.2, as a function of
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- I.G—

2TT
Q

FIG. 3. Coefficient S(Q, ff;), which determines BA~(T)/
&& in the regime of long-range correlations (see Sec.
IV for details) for a bcc antiferromagnet, as a function
of 2&+ for ~a = 0.2.
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FIG. 4. Upper (lower) curve shows S'(Q, K) for & =b
(&) for a helical antiferromagnet as a function of the
ratio of the Fermi surface calipers {see text in Sec. IV
for further details). The Fermi surface is spanned by
Q for all model parameters in the figure.

the anisotropy parameter log, k»/k~, . The model
pa. rameters were taken to be I/a = 8, Q = 2ii/5c, and

(k2r, kr, )'~'=1.28 as in the corresponding discussion
in Sec. III of short-range correlations. Compari-
son of Figs. 1 and 3 and of Figs. 2 and 4 make it
clear that the overall qualitative features of
BR,'(T)/BT are very similar for both long- and
short. -range correlations so far as the role played
by the Fermi surface is concerned. Of course,
the precise temperature dependence in the two

regimes will be different. This raises the fol-
lowing important questions:

(i) Which are the relevant features of the above
model systems which are responsible for the
"crossover" from short-range to long-range be-
havior and are these features to be found in any
real materials?

(ii) In view of the expected similarity of the

gross features of BR,'(T)/BT in the short-range
and long-range regimes, how is the crossover to
be verified experimentally in a given system'P

The answer to question (i), briefly stated, is
tha. t for temperatures not too close to T~ (see Sec.
III) but still in the "critical" range (e.g. , t &0.1),
the inverse correlation length I(. must become corn-
parable to other relevant inverse length scales of
the problem. For materials to which the present
discussion might apply, the salient inverse length
scale is k~'. Consequently, a crossover to long-
range dominance can be anticipated only in sys-
tems where (a) the current ca.rriers's Fermi sur-
face consists of sma, ll pockets, or where (b) the
Fermi-surface caliper in a given direction is
small. Case (a) may be applicable to certain fer-
rimagnets (subject to further details of their Fermi
surface) while case (b) seems applicable to the c-
axis resistivity of the heavy rare-earth helimag-
nets. This will be discussed in Sec. VI. As re-
gards question (ii), recall that a vigorous power
law should be expected only in the asymptotic limit
of T —T~. Otherwise, a strict power law is con-
taminated to some degree by various higher-order
correction terms. The possibility of smearing or
"contamination" of the transition due to sample
imperfections and/or alternative competing cross-
overs due to, for example, long-range dipole-di-
pole interactions adds further complications. "
The matter is clearly delicate and a convincing
demonstration of any short range to long range
crossover (which will not be sharp) will require
careful analysis of high quality data. It is there-
fore useful to use the numerical results obtained
in this work to make a quantitative comparison of
the "power laws" to be expected in the two re-
gimes. The most interesting case is that of the c-
axis helimagnet with @&2k~,. For T =T'„, from
Eqs. (23) and (24), we find T~BR,'(T)/BT =+Cant
+Cs„, where Csa= (1 —n)A'= —25 for the model
parameters used in Fig. 2. Similarly, taking D, /
D, from Ref. 20, we may use Fig. 2 which is quite
insensitive to critical exponents to obtain the rough
estimate Cs„=—10. In the long-range regime, use
of the generalized OZ approximation" [which is
adequately represented in its domain of validity
by introducing a factor (tea)" in Eqs. (27) and (28)J
leads to T„BR;(T)/BT =C» t ', where C»
= C, (v,a)"""S'(Q,0) and & = 1 —(1+i))v. Estimating
the various parameters from numerical data on
Ising or Heisenberg models and from Fig. 4, we
have C„~=—0.3. This suggests that C» should be
a factor of 10 or so larger in magnitude than C„R.
On the other hand, the short-range temperature
dependence is weaker than the long-range temper-
ature dependence since n &X follows if we assume
the scaling relations~ y = (2 —t))v and 3v = 2 —o. to
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write

X= —(1yri)v+1= —3v+ (2 —rl)v+1

= —2 + o. + y + 1 = o. + (y —1).

This also shows that the long range exponent can
be written —A. = Sv —y —1 which is precisely the
exponent which follows from evaluating Eq. (13) in
the regime where long-range correlations dom-
inate. '" We return to these points in Sec. VI.

V. MODIFICATION OF ELECTRON ENERGIES AND

RESISTIVITY FOR T~ T~

In Secs. I-IV, we calculated the resistivity in the
lowest-order Born approximation due to coupling
of electrons a,nd localized spins via the s f ex--
change interaction

Hf= d x J,~ r —Rs r ~ SR~ (36)
R

where s(r) is the electron spin density. Even
though the coupling energy J,&

is weak on the scale
of the Fermi energy, it is clear that H,f plays an
important role in determining effective interac-
tions in the system and thus influences the phase
transition. Consequently, in spite of the small-
ness of J',t/e„, it is not necessarily adequate to
treat H,& by the simplest form of low-order per-
turbation theory. In particular, it is necessary,
among other things, to consider possible modifica-
tions of the electronic energies (and velocities)
due to the long-range order which gives rise to a
new periodic average potential below the Neel
point.

To be definite, consider the case of the c-axis
resistivity of a helimagnet with Q &2k~. The c-
axis resistivity of such systems (see Sec. VI) for
T &TN shows a broad maximum at a temperature
T &T~. This characteristic feature is usually
associated with energy gaps introduced in the elec-
tron energy spectrum by the long-range order""
and can be described as follows. Assuming (S„-)
0, its effect on the electrons is to give rise to an
additional Bloch potential

o' (rather than o) appearing in the "effective"
density of current carriers. This would result in
BR.'(T)/BT-- lt I" '

~

We disagree with this conclusion. Briefly stated,
the "decoupling" of electronic and localized spins
in Eq. (36) is an average field approximation which
is particularly bad very close to T~ where fluctua-
tions play the dominant role. For example, if this
procedure were used to calculate the contribution
of II,f to the internal energy, the resulting spe-
cific heat would vary as C(T)-lt l'~ ' rather than

ltl '. This obviously incorrect result is a con-
sequence of the mean-field approximation and its
consequent symmetry breaking. Although transport
processes are much more delicate, we see no rea-
son why such methods should not lead to equally
incorrect results for the resistivity. From our
considerations, we feel that the spin correlations
which determine the appropriate electron self-
energy and thereby the modified "dispersion rela-
tion" are more likely to be of short range for T-T„as a consequence of the finite range of the
relevant electronic coherence factors. We there-
fore expect that the electrical resistivity will re-
flect the short-range temperature dependence of
the internal energy and that the singular part of
the temperature dependence of BR,'(T)/BT will vary
more closely as ltl "for both i=c and i =b We.
shall return to this point in the following section
where the present results are compared with ex-
periment. Finally, it should be pointed out that
the effects of the "renormalization" of the elec-
tronic spectrum must also be present above T~
just as the effects of direct spin-fluctuation scat-
tering will certainly persist below T„. In the
neighborhood of T~, both effects reflect the tem-
perature dependence of short-range correlations.
As the temperature decreases, the effects of in-
elastic scattering from magnons and phonons be-
come relevant and the additional Bloch potential
becomes more stable; the net effect is the "anti-
ferromagnetic hump" with its maximum located
somewhat below T„.

H,q
d'x Q J',q-(r —H)s(r) ~ (S„). (31)

VI. COMPARISON OF THEORY AND EXPERIMENT AND

DISCUSSION

The net one-electron Hamiltonian [Eq. (3't) plus the
usual kinetic energy] is then diagonalized taking
account of the spiral character of (Sa) and in-
cluding mixing of states k and k+Q of appropriate
spin. The new electron-dispersion law then re-
flects the "sublattice" magnetization o(T)- lt l~,
so that BR;(T)/BT- —lt l~ ' would follow. ' More re-
cently, it has been suggested"'" that smearing ef-
fects due to gap fluctuations, normal scattering
processes and/or finite temperature would lead to

In Secs. I-V, we studied the effect of critical
spin fluctuations on the resistivity of binary alloys
and antiferromagnets within the context of sim-
ple models. We shall summarize the major con-
clusions. (i) Short-range correlations dominate
for both T-T„and T-T'„(ii) In the imm. ediate
vicinity of Ts, BR,(T)/BT &0 for uniaxia. l anti-
ferromagnets. (iii) The sign of BR,(T)/BT is not
universal but depends on matching of Q and fea-
tures of the Fermi surface. In particular, BR;(T)/
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BT &0 if Q is much less than Fermi-surface cali-
pers (i.e. , approaching the ferromagnetic limit)
or if Q does not spa. n the Fermi surface. (iv) In
the regime of long-range spin correlations in the
paramagnetic state, the same considerations apply.
(v) Rather generally, the singular pa, rt of the tem-
perature derivative of the resistivity varies as
(either plus or minus) the singular part of the spe-
cific heat. In this section, the above conclusions
are confronted with experimental results on a
variety of systems in order to appraise their valid-
ity for real materials.

We first consider the case of order-disorder
tra, nsitions in binary alloys (which can be formally
described by a, spin- —,

' simple Ising antiferromag-
net'). One well studied case"'" is that of P-brass
(CuZn at approximately the 50%-50% composition).
In the ordered phase (T &T, = 739 K), the struc-
ture is of the CsCI type (B2), i.e. , a bcc struc-
ture with Cu ions at body centers and Zn ions at
the corners of the unit cell of lattice constant a.
Critical fluctuations occur" just as in the case of
antiferromagnets and it is easy to see from the
structure in the ordered state that Q is given by
either of (2z/a)x or (2v/a)y or (2v/a)z [see also
Sec. II]. Next, one must be careful to see if Q
spans the Fermi surface. The appropriate Fermi
surface to consider is that of the disordered state.
Unfortunately, we know of no band-structure cal-
culations for this phase but one can resort (with
some confidence) to nearly-free-electron agru-
ments since the following discussion shows that
only rather gross symmetry considerations are
involved. We take Cu and Zn to contribute one a,nd

two electrons, respectively, to the conduction
band. Thus the average valence is —, and the aver-
age potential at each site in the disordered phase
is taken to be the average of the Cu and Zn poten-
tials in a type of virtual-crystal a.pproximation.
The reciprocal lattice is fcc and the first Brillouin
zone is a rhombic dodecahedron which is -& filled so
that the Fermi surface has substantial necks at
each of the 12 faces of the zone boundary (this is a
bit similar to the familiar picture of the Fermi
surface of Cu). A cross section of the Fermi sur-
f'a.ce and the Brillouin zone in the I'NG (100) plane
is illustrated in Fig. 5. Other cross sections can
be considered a,nd the important conclusion is that
there are not any segments of the Fermi surface
which are spanned by Q. In fact, those parts of the
Fermi surface which might have been candidates
a,re precisely those which are removed by the
necks. We conclude from these results that
BR,(T)/ST for P-brass should be positive and
should vary as the specific heat in the critical-
temperature region. This is in full agreement with
the experimental work of Simons a.nd Sa,lamon. "

K„

=kx

FIG. 5. Cross section of the Fermi surface of P-brass
in the I'NG plane in a virtual-crystal approximation for
the disordered state. There are no sections of the Fermi
surface which are spanned by Q .

We now consider the binary alloy Fe, Al which
undergoes an order-disorder transition" at T =T,
=530 K. With decreasing temperature, the transi-
tion is from the partially disordered L2, phase to
the ordered DO, phase. In order to appreciate the
structural considerations leading to the determina-
tion of Q, consider two interpenetrating simple
cubic sublattices, A and B, where the lattice points
of the B sublattice are at the body-centered sites
of the A sublattice. In the DO, structure, only Fe
atoms are on the A sublattice sites and Fe and Al
ions are evenly distributed on the B sublattice such
that they are not nearest neighbors on the B sub-
lattice. In the L2, phase, still only Fe ions are on
the A sublattice but there is now no long-range
order on the B sublattice. That is, the A. sub-
lattice oeeupancy is essentially static and tempera-
ture independent near T, and we need consider only
critical fluctuations on the B sublattice. For the
B sublattice, it is relatively easy to see that Q
can be ta.ken to be (x+y+z)w/a, where a is the
nearest-neighbor distance on the same sublattice.
We now turn to the description of the Fermi sur-
face. In the partially disordered L2, phase, the
crystal potential is due to Fe ions at corners and
the average Fe and Al potentials at body centers of
a, simple cubic lattice having basis vectors (0, 0, 0)a
and (~, ~, ~)a. The Brillouin zone is also simple
cubic. It is important to note that, unlike the case
of disordered P-brass, Q for Fe, Al does not con-
nect points of high symmetry on the Brillouin-
zone faces, and it appears very unlikely that any
symmetry imposed on the Fermi surface of Fe, AI
would be such that Q could not span the Fermi sur-
face. In view of this fact a, nd in the absence of de-
tailed band-structure calculations for Fe, Al, this
point can be illustrated by the following two sim-
ple-model calculations of the Fermi surface. We
take Fe and Al to contribute one and three elec-
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trons, respectively, to the conduction band so that
the average valence per ion is &. In the partially
disordered L2, phase, Fe, Al has an average crys-
tal potential with the same symmetry as ordered
p-brass. The band structure calculations of Ar-
linghaus'4 show that the above Q does indeed span
such a Fermi surface. The same conclusion fol-
lows if we use the virtual-crystal approximation
for the totally disordered state. In this case, the

Brillouin zone and Fermi surface are similar to
those in the example of disordered P-brass con-
sidered in the above discussion and we again can
verify that Q spans the Fermi surface. On the

basis of these results, it follows from the con-
clusions of previous sections that the resistivity
of Fe, Al should have negative slope in the vicinity
of the order-disorder temperature. The resistivi-
ty of Fe, Al has been measured by Thomas, Giray,
and Parks" and is indeed found to have negative
slope from about 50 K below T, = 530 K to more
than 200 K above T,. The determination of the

precise temperature dependence is a bit difficult
and it was concluded that the data were consistent
with either long-range (2P —1=—0.375) or short-
range (- n = —0.1) Ising-model critical exponents
in the vicinity ( t

~

10 ') of T,. More precise
statements concerning the temperature dependence
might be possible with more-detailed numerical
analysis of the data. At any rate, it is clear that
the data are consistent with our results for the

case where Q spans the Fermi surface. Note that
the present theory provides a clear understanding
of the different behavior" of P-brass and Fe, Al.
Very many other intermetallic compounds exhibit
resistive anomalies at their order-disorder transi-
tion. " Those which we have studied appear to be
described by the above theory.

We shall now consider the rare-earth helimag-
nets. Detailed measurements of the electrical
resistivity of c-axis monocrystals of dysprosium
have been reported. "" Analysis of the data in

Ref. 37 showed R;(T) to be described by a power
law A +Bt + C t ~ in the ra, nge 2.5 & T —T~ & 60 K

(where T„=180.33) with the critical exponent g
—0.6 which seems characteristic of long-range
correlations. This power law did not extend into

the region 0 &T —T„&2.5 K. Qualitatively similar
results were given in Ref. 3S, although the break-
down. of the long-range power law was not reported.
These workers also suggested that the resistivity
below T„appeared to be dominated by (smeared)
super zone gaps. As described in Sec. V, this im-
plies that the critical exponents for the resistivity
should be g'=2P which is certainly expected to be
less than unity. On the other hand, the analysis
of data in Ref. 39 indicated rather strongly that g'

was substantially larger than unity (P' = 1.25 +0.12)

for both c-axis (negative slope) and basal-plane
(positive slope) monocrystals. It is evidently dif-
ficult to account for this rather weak temperature
dependence with the usual theories based on energy
gaps. ""However, the discussion of Sec. V im-
plies that p' = 1 —n'. This relation is consistent
with available specific heat and resistivity data for
Dy (see Ref. 39 for details).

Recently, a careful experimental study has been
made of the resistivity of holmium c-axis mono-
crystal in the vicinity of its Neel point. " The
slope is, as expected, negative near T„=130.15.
Below T~, the critical exponent describing the
singular part of the resistivity is g' =1.30+0.10.
In the immediate vicinity of T„(i.e. , for values
of t less than 10 '), the critical exponent is g
= 1.45 +0.25 with the large uncertainty due to the
small temperature range available. These values
of g' and g seem to be consistent with the rela-
tively weak temperature dependence expected when
short- range correlations are dominant. However,
the data for t ~ 2 && 10 ' were described by a power
law with critical exponent g = 0.55 + 0.10 which
seems more characteristic of long-range correla-
tions. The corresponding amplitudes [in the form
T„BR,'(T)/BT =Ct' "+C'] were C =60, C'=-20
for T -T~ a.nd C = —0.4, C'=1 for T —T„~2 K.
These results are consistent as regards both mag-
nitude (to within a factor of 2, which is acceptable
for such model calculations) and sign with those
given in Secs. III and IV for helimagnets with Q
&2k~ and with the suggestion that a crossover from
long- range to s hor t- range dominance occu rs with
decreasing temperature in the paramagnetic state.
It was also shown that TN BR,'(T)/BT was propor-
tional to C, (T)/Nhs in the parama. gnetic range with
the constant of proportionality [see Eq. (35)] being
approximately 3. The model calculations of Sec.
IV led to the corresponding constant 2$' (Q, v

=0)T„/3T„O being approximately 1. The precise
value of this constant is sensitive to details of the
anisotropic Fermi surface, of course, and we con-
sider the agreement to be quite satisfactory in
view of the simplicity of the model.

From the discussion of the above representative
examples, it is clear that experiment and the pre-
sent theory are in quite reasonable agreement in
spite of the simpli. city of the model calculations.
This is encouraging, of course, and indicates that
major physically relevant effects have been prop-
erly taken into account. We expect that the pre-
sent results will provide a useful starting point
in attempts to interpret resistive anomalies in a
variety of magnetic systems which are more com-
plex than those considered in this work. However,
it must also be emphasized that many simplifica-
tions have been made in the above discussion and
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that a number of points, such as the validity of the
quasielastic approximation for large momentum
transfer scattering processes and certain spe-
cifically solid-state effects associated with anis-
tropies of the system, merit further consideration.
Also, it would be particularly interesting to verify
in detail the extent to which the critical properties

of systems coupled by indirect exchange interac-
tions may be des cribed by the usual effective in-
teractions of Ising or Heisenberg type. Answers
to these questions will be required in order to pro-
ceed from the present semiquantitative but useful
model calculations to a fully rigorous and general
theory of resistive anomalies.
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