
PHYSICAL REVIEW B VOLUME 21, NUMBER 8 15 APRIL 1980

Wave-vector decomposition of the exchange and correlation contributions
to a metallic surface energy
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We decompose the lowest-order nonlocal corrections to the local-density approximation to the exchange
and correlation component of the metallic surface energy in terms of its wave-vector components.
Comparison with the full exchange shows significant improvement over the local-density form. An
interpolation between the surface-plasmon-dominated small-wave-vector contributions and the nonlocal
correction for large q is suggested, and some of the difficulties inherent in this method are discussed.

I. INTRODUCTION

In a recent paper' (to be referred to as I)
Rasolt, Malmstrom, and Geldart have analyzed
in great detail the implication of a procedure"
which attempts to incorporate surface-plasmon
contributions in the exchange and correlation en-
ergy (E„)of a metallic surface. This scheme
[called the wave-vector interpolation (WVI)] which
relies on being exact for both small and large
wave-vector q fluctuations was shown (see I) to
fail quantitatively in the intermediate-q range,
precisely the range for which the WVI was de-
signed.

An approximation for E„was suggested by
Hohenberg and Kohn, ' which is referred to as the
local density approximation (LDA). In the LDA

E„is approximated by

E„=E„,= d'mr e (nr),

where e„(n( r)) is the exchange-correlation energy
per electron of a homogeneous electron gas of
density n(r). Equation (1) can be decomposed in
terms of its wave-vector components" (see also
I). Then

d' 1

E„", = —,', d'r dAv qn r
0

x[S "„(q,n( r)) —I],

unit area) required to cleave this uniform electron
gas. We therefore define this energy as'E„"dq'* =2A*'=

0 F

where A is the area of the cleaved surface.
Equation (1), or equivalently (2) is expected to

be adequate for large q. For q in the intermedi-
ate- or small-wave-vector region Hohenberg and
Kohn suggested a nonlocal correction E"„' of the
form:

d'r d'r'K„, (r- r', n r0 )

x [(n( r) —n( r'))'], (4)

CO —a 4)&

where

with K„related to the response function of the
uniform electron gas. ' Since both Eqs. (1) and (4)
are related to the uniform system they are not at
all likely to contain the contributions of surface
plasmons, contributions which are related to the
global surface geometry. Such terms which dom-
inate E„,(q) for small wave-vector fluctuations"'
have, however, rigorous q-0 limit' given by

(2)

where S„"(q,n(r)) is the structure factor of the
uniform electron gas with local density n( r) and
the integral over A. is the usual coupling-constant
integration. We will, in this paper, be interested
exclusively in the exchange-correlation contribu-
tion to the surface energy; i.e., the energy (per

n is the bulk density, and ~, the surface-plasmon
frequency &u, =&a~/vY. The WVI suggests a simple
interpolation (see also I) between Eqs. (2) and (5)
which turns out to be inadequate. In this paper
we suggest one possible improvement by approxi-
mately including the contribution of Eq. (4) in the
%VI.
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FIG. 3. Same as Fig. 2 but with a Yukawa interparticle
interaction 4xe /(q + A, ). The screening length A, is set
equal to 2+F and the density corresponds to r =2.

where 8'(x)= 1 for x& 0 and 0 for x& 0 with kr(r)
=[3w'n(r)]'~'. The metal surface considered was
that of the infinite-barrier model (IBM), where

n( r) = n(z) = no[1+ (3/y')[ y cos( y) —sin( y)] }

of Eq. (6}. Our task is to decompose Eq. (6}into
its q-vector fluctuations within exchange alone;
we reserve the calculation of correlation for the
following section. The sum of E,"'(q) and the LDA
will then be compared with the fuQ IBM-HF sur-
face energy (Figs. 2 and 3).

Before we turn to the treatment of Eq. (6) we
make a brief comment concerning the convergence
of Eqs. (1}and (6). The IBM density when in-
serted in Eq. (6}results in a very poor conver-
gence for the surface energy for a wide range of
Yukawa screening lengths. " When the full HF
surface-energy calculation was carried out for a,

finite barrie-r model (in which a realistic density
profile similar to that of Lang and Kohn" can be
achieved"), the convergence was found to be very
adequate (Fig. 1}. It would therefore be prefer-
able to examine E,"'(q) within the finite-barrier
model. Unfortunately, no wave- vector decompo-
sition has been carried out for such a model.
Nevertheless, some interesting conclusions can
still be drawn from the decomposition of Eq. (6)
within the IBM (see below).

The coefficient 8„in Eq. (6}is related to the
response function F(tt) (Ref. 14) through

(6)
&„=z(a'k —a,'b, ) (10)

with y =2k~z and z the axis perpendicular to the
surface. This density was introduced in Eq. (7)
and v(q) was set equal to the bare Coulomb inter-
action (4we'/q') in Fig. 2 and to v(q) = 4ve'/(q'+ X')

in Fig. 3. The bulk density no=I/[(4w/3)r~] was
set equal to r,=2, and X= 2K.» with Xrr = 4kr/va,
and a~ = g /me

The full HF-IBM results (ysr) are also presented
in Figs. 2 and 3 for the bare and Yukawa interac-
tions. These results correspond to the surface-
energy contribution from a single Fourier compo-
nent q of the well-known form for the exchange
energy, i.e.,

d'r d'r'v q e'~'~ ~'
p r, r'

(9)

where p( r, r') is the second-order density matrix.
The analyses of Eq. (9) leading to the results of

Figs. 2 and 3 are covered in considerable detail
in I.

Clearly, for the IBM, the LDA and the full HF
show significant deviations, and as shown in I
these differences cannot be accounted for by the
WVI even when correlations are included. Of
particular concern are the differences in the re-
gion of q around kr (see I). Therefore, any cor-
rection to the )VVI should be closely scrutinized
and with this in mind we turn to the contribution

and

F( k}= a '+ kk'+ 0(k')

where a and bo refer to the k expansion of the
static Lindhard screening function and a= -dp/dn,
where p denotes the exact chemical potential [we
use here for F(k) the convention of Ref. 14]. The
full exchange form of the undecomposed 8, has
been derived by Geldart and Rasolt" (to be re-
ferred to as II) for the ladder graphs in Fig. 1 of
II. To decompose it in terms of individual q-vec-
tor fluctuations immediately presents a consider-
able task for a number of reasons. We will there-
fore restrict our analysis in this work to the low-
est-order exchange [Fig. 3(a) of II] and correla-
tion [Figs. 3(b) and 3(c) of II] graphs. (We return
to this point in Sec. IV.}

Following standard analysis" the contribution
to a ' from the terms in Fig. 3 of II is written

a '= a, '+ 2 trp Z(p) G,(p)
~~O ~~0

(12)

with ao' the Lindhard contribution given by Qp'

=-mkr/v', p, 0=k+/2m, and for notational con-
venience we set 5=1. The contributions to b are
given in II and are summarized



%AVE-VECTOR DECOMPOSITION OF THE EXCHANGE AND. . . 3161

2
b= b()+ b'+ b" + b'" —I, , Z(kz, 0)

m k~
(13) and Z(p) the self-energy given by

Z(p) = -tr, [V(q)G, (p+ q)) . (18)
with b~ the Lindhard contribution given by 50
=gpss/12s2kz, and where

1 e 1 a' 1 a'b'= ——tr, E(p) 2, G,(p) —8eq, G,(p)
Bp, o 2 Bp.o 9 Bpo

(14)

The q in tr„V(q), and E,(q) is a four vector q
—= (q, qo) and V(q) = v(q) in the HF, and V(q)
= v(q)[I/q(q) —1] for correlation (see Sec. III).
Finally Fo(q) is the dynamic I indhard screening
function'k " related to e(q) by e(q) = 1 —4ve'/q'Fo(q)
and

k" =—k(k, ):(k) .G.(k)),
1 1 8

m 6 ' ap,' (15) d'
tr ( ) =

(2 )
( ~ ) . (19)

b'" =-- tr, [[3FO(q)/Bi). o] [V(q)v. V(q) —
l v. V(q) I']}.

(16)
In Eqs. (12)-(15)p is a four energy-momentum
vector p =(p,po), e; =p'/m, Go(p) is the single-
particle propagator given by

G.(p) =
p, —e, + p, +ibsgn(e. —p, ) '

Restricting the analysis of Eqs. (12)-(16)to the
HF approximation, only 5' and b" contribute to b„
and the decomposed form for (a, + a„) ' and b, can
be evaluated to yield

(a, + a, ) '= a, '—,, v(q) —,, 6)'(2k —q)2v)' 4v'kr'

(20)

k=k, + , . . .v(q) — k'(kk —k)+k, k Iltk —kk )+—k'(q —kk )).
Combining Eqs. (3), (6}, (10), (20), and (21) we get the following form for the gradient contribution to
y(q} in the HF approximation:

y (k)= —'k k' (k) fd*, [-—'kk'(kk ( ) —k)+Lk'( )k(k —kk ( ))k-', k'(r)lt'(k —kk (r))]. (22)

It is this term we evaluate next for a range of q
for two densities and two different interparticle
interactions [v(q)]. We then combine it with the
local-density term (Eq. 7) and compare the re-
sult with the full HF expression.

The first density we consider is the IBM density
Eq. (8). Inserting it into Eq. (22} and integrating
over z for two different v(q) and cambining it with
Eq. (7}, we get the results displayed in Figs. 2
and 3 by the curve labeled y~~o. Clearly the ad-
dition of y~ does not bring the exact HF and y~DG
to full agreement for bare or Yukawa v(q}. Never-
theless, it is also clear that the addition of y~
brings r„no and &sr to closer agreement (espe-
cially in the range of q around k~). Since the
&VI is designed to correct primarily for the re-
gion of q & kE this is an important change. While
the interpolation fram y~(q) to the small-q region
suggested by the %VI is invalid, the interpolation
from z„DG could be a considerable improvement,
particularly for a realistic density; we return to
this point shortly.

In Fig. 3, X was set equal to 2)». The motiva-
tion is that for large A. the full IBM HF and the
LDA and the LDA plus gradient all agree closely. "
Figure 3 demonstrates that close agreement be-
tween the total surface energy does not imply
similar agreement between individual q vectors,

The excellent convergence for the finite-barrier
density' (Fig. 1) strongly suggests that the agree-
ment between y~no and y„r (Figs. 2 and 3) is likely
to improve further for realistic density variation.
Unfortunately, no exact decomposition of y„F for
a finite-barrier model exists to enable such a
comparison (see Sec. IV). To get a feeling for the
effect of a realistic density on y~ we evaluate Eq.
(22) with a model density profile of the form

n(z) = n, /(I + e ~) (23)

with y=2k~z and P=O.5 adjusted to fit the alumi-
num density variation. " The results are presented
in Fig. 4 for X=O and X=23,». The most striking
feature is that the exaggerated behavior of y~ at
small q (Figs. 2 and 3) is strongly damped. Cou-
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FIG. 4. Wave-vector decomposition of the gradient
contributions alone fEq. (22)j for a realistic density pro-
file [Eq. (23)]. The curves labeled && and &~& are for a
bare Coulomb and a Yukawa interparticle interaction
(with A= 2ATF), respectively.

pled with the excellent overall agreement observed
in Fig. 1 this leads us to conclude that the agree-
ment between y„DG and y„~ for real surface den-
sity" is likely to improve significantly.

In the following section we include the effect of
correlation in y~ and introduce the effect of sur-
face-plasmon fluctuations at small q. In Sec. IV
we return to the results presented above and draw
some additional conclusions concerning the treat-
ment of metallic surface energies.

e'm'
y, /(

-2v)' ks,
(24)

III. q-VECTOR DECOMPOSITION FOR THE CORRELATION

PART OF THE SURFACE ENERGY

The lowest-order contributions to the correla-
tion part of a ' and b are given also by Eqs. (12)-
(16), the only change being that the static inter-
particle interaction now is replaced by V(q)
= v(q}[1/o(q) —1]. In addition the contribution of
b'" (Eq. 16) is now present. This change of course
greatly complicates the calculation, but fortunately
most of the terms have been presented elsewhere
(see II). We will therefore present only the final
results below. For the term b' where the analysis
deviates substantially from any previous calcula-
tions (see below) we will detail the key points of
the derivation.

The calculation of the correlation contribution
to a ' is straightforward, "and the final form is
given as

(ao+ a, + a, ) ' —(ao+ a, )
' = -a, /ao

where
' Q(s, y)g(s, y) +2 g(s, y) '+20(s, y) (I+s} (1-s}

(,y) (,y) (, ) (1+ )'+y' (1 — )'+ ' (25)

where

Q(s,y)=2+ g(s, y)(y +1-so)
(s,y )g(s, y ) (30)

r1+s
&

1-s
-2y tan +tan

~ y +(1+s)
g(s, y)=in o

, (26)

eon'
bo=(2 )ok4 (Zc+Zo') ~ (31)

The contributions from b" and b" in Eqs. (15)
and (16}were first evaluated in II, and we only
list the final results. We write

o(s y)=s + Q(s,y},7 4+
(28)

-m2 m'e4

12m k ' (2v) k
(29)

s -=q/2kF, and kzao=l/nr, .
We next turn to the correlation contribution of

Eqs. (13)-(16), to b, which is the most difficult
part of the analysis. We begin with the last term
of Eq. (13) which has been widely treated before, "
and we write the final answer

-v E(q, 0)
Z,"= dq

(
'

)
6(kr--, q) (32)

with E(q, 0) the static Lindhard screening function
and o(q, O) =1 —(4ve /q )Ji($, 0). Z,"is given by the
first term of Eq. (60) of II and is

The term Z," represents delta-function contribu-
tions [see Eq. (C16}of II] before their integration
over q [the integration over q yields the last term
in Eq. (60) of II]. It is

where o o os~iy
(33)
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where

H s
1 (3+2s2)(-y +s2 —1)+4s y2

2( sy} 8&zs2 ( z+1 s2)2+4 Zsp

(3 —4s )[(y +1-s ) —4s y ]+16y (y +1 —s )(4+s )

[ $2 + 1 sz)z @zsz]z + 16z zgz + j sz)z (34)

b"' is given in Eq. (61) of II (where a typographical error was made in the overall sign of b") and is written
below as

with

4 3
rrr e m
c (2 }Zk4 c (35)

S- gsr
7 (s'+y2)l
4 s

+ ' 4+Q(s, q) 4
Q(s,q)-6+ — d(,V))Bv js,y) 4 ' 2 s

s2+ 2s +yZ
+g(s, y) 2 g(s, y }— (36)

The b' term of Eq. (14} is by far the most diffi-
cult contribution of b to calculate. The results
presented in Eq. (59}of 11 unfortunately cannot be
used for the decomposed structure of b. The rea-
son is that to simplify the evaluation of b' the dif-
ferentiation with respect to p. pwas taken outside

f

the trc. A careful inspection of Eq. (59) will con-
vince the reader that the results no longer corre-
spond to the proper q-vector decomposition. To
properly decompose b the direct differentiation of
b' with the respect to pp must be performed inside
the integral to yield

(37)
1 Bp(q) 1, , 1 1 1 3 1 sb' = ——tr,v(q)

&]2p [p(q)] 2 2 m ' &(q) 2 &p, p 9 8[4, [-'l, (q) —-'l, (q)]+—Iv.v(4) —4 — l, (q}— l, (q I) .
'

the functions I](q), IZ(q), and Iz(q) are the same as
used in II. The additional difficulty arises from
the last term in Eq. (37}which contains yet one
higher derivative of I[(q) and Iz(q) with respect to
p. p The calculation is very lengthy. Particular
attention should be paid to the higher-order delta-

l

then,

m'e4
b —

(2 }zk4 (Zc + +4) 4 (38)

f

function contributions originating in ((]/8]44)I[(q)
and (3/8]4p)Iz(q). We present only the final results,
writing

6,'= Jl dq —,4 ', '5(k ——,'6) —4
' [75(k ——,'q) —-', k 5'(k --'q}])2v k4 &I (q, 0}/8]4p, 4v kz I (q, O)

Bm q pq0 9m q pq, O

and

(39)

(40)6 =-6
I

dq I dvs '
[ H)(*, ) ——Hvs(*, v)]+ [-H,(,v—)- Hs( v)]I-2' z(s y)

[p(s y)] 2 ' P p(s y)

where in Eq. (40)

1 (1 —2s )(-y + s2 —1) —2y (2s + 1) 1 1" '»}=8." (V*+}-4*)*+46'4' 4s ( '" ) (41)
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and

1 (p —2s )(-y +s —1) -2y (4 +2s )
3(s y) =4 3 3

(
3 ~1,3)3 ~ @3,3

3[4y s -(y +1-s )3+2(y +1 —sp)(y -s )] 3 1

(y +1- ) —4y j +16y (y +1- } 16

1 (s -y' —1}+sp(y'+sp —1)
4v sp [y +(s+1) j[y'+(s —1)3]

2y' —12y' '+2ss+4y —4s +2+(2 '+()((y'+s')(22' —ss)+2(y'+ ') —1))
[y'+(s+ 1) ] [y +(s —1) ]'

(42)

Finally

Hp(s, y }=Hp(S yy ) +H3(s, y ) +H4(s yy ) +Hp(s, y ), (44)

where

1 —', (y -s +1)+2s ( —sp-y +1)
4v's' [y'+(s + 1)'][yp+ (s —1}']

-'[y -6y s'+s +2(y -s )+1]-3s [(y +s )(3y'-s )+2(y'+s') —1]
[y'+(s+1)3] [y +(s-1}]

+ 3[-7y + 35y s —21y s +s -3(5y —10y s +s ) + 3(-3yp +st) —1]
[y

3 + (s + I}3][y3 + (s - I}3]3

4"(-(2"+*')(42' —122"'4*')+2(y'+ ')(-22'+*') —sb" +*')+1))
[y'+ (s + I)'][y'+ (s -1)']'

1 (4sp+-,')(s'+yp —1)
4v's' [y'+(s +1)'][y'+(s —1)']

4(y -yps +y )+3[yp —6y s +sp+2(y'-sp)+ I]
[y'+ (s +

I)3]gyp�+�

(s -1)']'
—,'(8s +3)[-(y +s }(-3yp+s'}+2(yp+sp} —1]

[y'+ (s + I)']'[y'+ (s —I)'j'

2[4y'(y'+s')'(-s +y )+6(y +s ) y —2y ] 3 1

[y'+ (s + I)']3[y'+ (s —1}']' 16 s

(45)

(46)

This completes the first wave-vector decompo-
sition of the correlation contribution to b. Com-
bining Eqs. (29), (31), (35), and (38) we write

m'e4
b, =( 3 4 (Z, +Z,), (47)

B: dq B (q r }=$3(3pb + 2bp(3pa, ]

2 2

P '(Z -y, ) + 4/3 8 "'
Zp I(48}

with p = /[2(1 ( 6p3)v'~3] The last .term in Eq. (48)

where Z, =Z,'+Z,"+Z,'"+Z," and Z, =Zo+Zo ~

write the final form of the correlation contribution

toys(q) we combine Eqs. (10), (24), and (47) to
give

IO

y, (q) =kr dz B,(q, r,(r))
~

vn(~) ~'. (49}

The kr multiplying the integral in Eq. (49) is the
bulk Fermi momentum. For all the other k„or
r, [including s =q/2k'(r) in Eqs. (24}-(27)] the
local value of kr at r given by kp(r) =[3v 33(P)]'~
must be used. In Figs. 5 and 6, Eq. (49) is eval-
uated for the IBM density (Eq. 8) and the more
realistic density [Eq. (23)]. In the small-q range

I

is the delta-function contribution to the q-vector
decomposition of B,(q). To evaluate the first term
of Eq. (48) for a fine mesh of q and r, is simple
since the integrals over y in Eqs. (25), (30}, (33),
(36), and (40) are straightforward except for a
point singularity at s =1 of zero measure (a dis-
continuity). The contribution from correlation to
yo(q) is now given by"



21 WAVE-UECTOR DECOMPOSITION OF THE EXCHANGE AND. . . 3165

20

15 —
I

I

I
I

I

1O

yrl ch
1

AQ I ~
5 —

g(
] e

"S1 O

A s

O

-4
0

]

0.5
]

1.0

FIG. 6. Same as Fig. 5 but for the model density of
Eq. (23).
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FIG. 5. Wave-vector decomposition for the sum of ex-
change and correlation gradient contributions [Eqs. (22)
and (49)j within the IBM. The dash-dot line is the sur-
face-plasmon contribution (Kq. (5)J and the two dashed
curves indicate two possible interpolations between
large- and smail-q regions.

the surface-plasmon contribution [Eq. (5)] is pre-
sented by the dash-dot line. Since y(q) is a con-
tinuous function of q the small- and large-q re-
gions of Eqs. (5) and (6) must join smoothly. Two
such possible interpolations are presented by the
dashed curves in Figs. 5 and 6. In the following
section we discuss some of the implications of the
above results.

IV. CONCLUSIONS

In Secs. II and III we have shown how to decom-
pose the nonlocal correction [8,",'(q}, Eq. (4)] to
the LDA in terms of its q-vector fluctuations. For
large q the gradient expansion [Eq. (6)] wss sug-
gested as an approximation for E,",'(q). For small
q, the surface-plasmon-dominated form'~'
[Eq. (5)] was used to approximate Eq. (4). Since
y(q) is a continuous function of q an interpolation
between the two regions is suggested (Figs. 5 and
6). It is the arbitrary nature of this interpolation
that is the core of the uncertainty inherent in this
procedure; we return to this shortly.

If this procedure is to produce any confidence
then it must be carefully examined in models
where the result is known. It is particularly im-
portant that above the point q, from which we start
the interpolation toward small q (Figs. 5 and 6),
the accuracy of the decomposed gradient expansion
is properly assessed. In Sec. II we examined this

question within the HF alone for the IBM (Figs. 2

and 3}. Although we discover a significant im-
provement over the LDA, major deviations do re-
main. These differences we argue will be further
reduced in the case of a realistic density profile
but a final conclusion must await a similar analy-
sis within the finite-barrier model. To argue that
correlation will correct these deviations is un-
founded as the results in Figs. 2 and 3 (see also I)
clearly demonstrate. Finally, we note that to in-
clude exchange and correlation contributions be-
yond the lowest-order corrections considered here
this method presents further problems which must
be overcome.

The interpolation between the surface plasmons
and the gradient contributions is the most serious
shortcoming of this scheme since the interpolation
must be very sensitive to the density profile. To
see this, consider a problem having a bulk-density
variation, modeled to be very similar to the sur-
face-density profile. The exact y(q) for the bulk
problem, however, will deviate in a major way at
small q from the y(q) of the surface problem,
since for a bulk density no surface plasmons exist.
Consequently, the two arbitrary inter polations
suggested in Figs. 5 and 6 might be totally wrong
and the correct small-q surface-plasmon behavior
might be to vary rapidly and join y~(q) at very
small q in Fig. 6. In addition note the fact that the
high-density limit (where local rather than global
effects become important) of yc(q) is dominated by
the small-q region and is not going to be repro-
duced properly by naive treatments. The correct
resolution of these very serious problems may
well have to await a wave-vector decomposition of
the exact exchange and correlation within the IBM
and more realistic models. Finally we note that
the developments presented in Secs. II and III are
not restricted to surface studies alone and could
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present some additional insight to the treatment of
E„for bulk systems as well in which inhomogene-
ities such as impurity centers (for example) play
a role.

In principle the structure of Eq. (4) can accomo-
date surface-plasmons contributions with appro-
priate extensions. The difficulty lies in discover-
ing the structure of such a universal functional
that contains and clearly exhibits these contribu-
tions. A key feature of such a functional must be
its ability to discern the distinction between sur-
face- and bulk-density profiles. The possibility

of constructing such a universal functional through
model calculations is currently being investigated.
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