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pling case, for it is generally agreed that for U=I'
no particular subset of diagrams is dominant.
Furthermore, having obtained a Kondo-like log-
arithmic divergence, it is not clear how to re-
normalize such that a well-behaved local moment
susceptibility, consistent with experiment, results.

Hamann's scheme, less formalistic and perhaps
on firmer ground than Keiter's in terms of physical
insight, suffers from the two difficulties discussed
in Sec. III; the extremal approximation to the y
field does not appear to be as innocuous as previ-
ously thought, and the ND approximation may be
only marginally adequate for the calculation of the
d-state Green's function for the "time"-dependent
problem.

The 2-field formalism without extremal approx-

imation thus appears to us to be the best frame-
work for more powerful schemes. Furthermore,
the limitations of the ND approximation can per-
haps be overcome or shown to be unimportant. Al-
though one can hope for a new breakthrough, for
the present we must conclude that the FI method
as applied to the Anderson model has proven more
exotic than effective.
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Electron Distribution around a Magnetic Impurity in a Nonmagnetic Host*
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The spatial dependence of the electron density polarization per spin pn (z), produced by a
magnetic ion in a nonmagnetic host, has been calculated in terms of the Friedel —Anderson model.
The numerical results are found to be rather insensitive to variations of the model parameters
describing the virtual bound state provided self-consistency is maintained. Our numerical re-
sults differ considerably, even in sign, from the well-known asymptotic form at first-nearest-
neighbor distances and the asymptotic form is not adequate until x 10k+. An interpolation
formula, incorporating lowest-order preasymptotic corrections, has also been given.

I. INTRODUCTION

It is well known that Mossbauer and nuclear-
magnetic-resonance experiments probe local elec-
tronic spin and charge polarization at selected nu-
clear sites in alloys. The results of such experi-

ments yield very sensitive tests of current theories
of the electronic structure of alloys. For a. brief
review, we refer to the articles of Daniel and
Friedel and Blandin. In almost all theoretical
work to date, two assumptions have been made.
First, the magnetic impurity ions are considered
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to be sufficiently dilute so that their eQects are ad-
ditive. Thus, there is no correlation or interfer-
ence between magnetic ions. Second, the change
in electron density of spin o induced by a single
magnetic ion located at r = 0 is assumed to be ade-
quately represented by the asymptotic form, valid
for sufficiently large y,

5n'(r) = —
4 2 ~ sin5~(e~) cos[2k~r+6~(er)j, (I)5

where only the l = 2 or d-wave resonance is taken
into account as we shall consider magnetic impuri-
ties of the Sd transition series. In Eg. (1), kr is
the Fermi wave number of the host metal and
0„'(qz)is the I = 2 phase shift for the scattering of
electrons of spin g at the Fermi energy. '

In this work, we consider the idealized limiting
case of a single magnetic ion in a noble-metal host
in order to avoid the question of correlations be-
tween magnetic ions. To be specific, we shall re-
fer to a Mn ion in a Cu host.

Although the asymptotic form of 5n'(r) is valid
for "suQiciently" large z, it is not obvious that the
use of Eg. (I) is justified for the first few nearest-
neighbor shells. This point can be quite significant
for some problems because it is precisely the near-
neighbor shells at which the induced polarization is
largest and must therefore be treated accurately.
In order to calculate 6 '(nr) for these smaller values
of z, it is necessary to specify the full wave-num-
ber and energy dependence of the conduction-elec-
tron scattering amplitude. Although the energy-
shell scattering amplitude is essentially fixed by
the Friedel sum rule

Z', = 5~;(~,)/v,

the off-energy-shell scattering amplitude is sensi-
tive to details of the electron wave functions and the
bare impurity potential and can therefore be ex-
pected to be somewhat model dependent. Our ob-
jective has been the numerical calculation of 6n'(r)
for three somewhat different, but reasonable, mod-
els for the electron-ion interaction. The encourag-
ing conclusion which we have drawn is that the
model dependence of the results is quite minimal
provided physical self-consistency restrictions are
maintained. On the other hand, the calculated re-
sults are found to differ not only in magnitude but
also in sjgz from those predicted by use of the
simple asymptotic form at the first-nearest-neigh-
bor shells.

In Sec. II the required details of the calculation
of 5n'(r) are formulated in terms of the Anderson
model. The models used for the d-wave-reso-
nance scattering are specified in Sec. III and nu-
merical results for the computed spin and charge
polarizations are given in Sec. IU. Based on an
analysis of the lowest-order preasymptotic correc-

tions to Eq. (I), we propose a simple interpolation
formula for bn'(r) in Sec. V which is reasonably
accurate even at the first-nearest-neighbor dis-
tance. Finally, Sec. UI consists of a summary of
our conclusions.

+ Z (v„;.c„-.c„..+ v,.„-c...c„-.) . (3)
km'

The notation is standard. The host conduction-band
(4S) energies will be taken to be 5 k /2m, the lo-
calized-state energies Pp will be specified later in
this section, and the mixing matrix element is

&f,„=f d rg (r)v(r)C, (r) . (4)

The average eQective potential is taken to be of
screened Coulomb form and spherically symmetri-
cal:

v(r) = We'e '»"/r
where ~ is an "effective" charge of the impurity
ion and q» is taken as the Thomas-Fermi screen-
ing constant. The wave function describing the
resonance is basically a l= 2 atomic function,

y„(r)~r'e ,I„()r, (6a)

where X is chosen to fit approximately the form
factor of a Mn ion. However, to avoid an over-
complete set of functions in the range of conduc-
tion-electron energies, the atomic function should
be orthogonalized to the host Bloch functions so
that'""

o,.g)=i~,.( )-& @(R(~;le,.)) . , (6b)

where the normalization constant

With the set of functions JC~, 8-„'betaken as a
basis, the electron density of spin o at the point r
(measured from the Mn ion at the origin) is given
by

n'(r) = n'„(r)+n'„(r)+n'„(r)+n'„(r),
where the various terms are given by

n'„(r)=24' (r)c, (r)(C'„C,, ),
n', e(r) =BCf„(r)B-„(r)(C'„,C„-.),

mk

(8a)

(sb)

II. FORM OF 5n (r) IN ANDERSON MODEL

Our calculation of the charge and spin polariza-
tion due to a 3d impurity is based on Anderson's
degenerate-added-orbital model and is carried out
in the Hartree —Fock approximation. The corre-
sponding Hamiltonian is

gX =mqk Ck, Ck, +my„'PC~,C„,
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right-hand side of Eq. (lob). Since the basis func-
tions are orthonormal, the net change in the elec-
tron density when integrated over the volume of the
crystal

Z', = f d r 5n'(r) (1Sa.)

FIG. 1. Contour in the g plane for the integral in Eq.
(9). Dots indicate the poles of the Fermi function f(f).

n'„(r)=Z a„-*(r)e,.(r) (C'-„.C...),
&'„(r)= Z a„*-,(r)a„-(r)(C'„-,.C„-.) .

k0k
(8d)

The procedure for expressing these densities in
terms of the propagator for electrons in the lo-
calized state is known, 3 so only some results will
be quoted. For example,

dfn'„(r)=&C,„(r)Cg„(r)
2

. G,'„(i)f(r) (9a)

r4~(r) = ZB f(r)&„-(r)
2 . f(i:)Gp„.(0), (9b)

kk'

where

~.(c)= [~ —e, -~;(~)] ' (1Oa)

The major self-consistency requirement to be
im,-iosed on this calculation is the Friedel sum rule.
To see how this constrains parameters, write Eq.
(7) as no(r)+ 58'(r ), where the "unperturbed" Bloch-
electron density is given by the first term on the

~rr, ri (&)
(g- ')(c- '-) (lob)

The contour of the g integration is shown in Fig. 1
and f(f) denotes the usual Fermi function. Although
our numerical results are given for the T- 0 limit,
the finite-temperature formalism is convenient for
motivating the transformations of integrals de-
scribed in Sec. IV. In Eq. (10), Z~(g) is the usual
mixing self -energy

)
2

Ts(g) Q kdm

and the T matrix for band-electron scattering is

Tg, (f) =Z Vi,a~Gu~(g)V-a~E

is contributed only by Eqs. (8a) and (Sd) and is
seen to satisfy

ef(S) , »—[C—e;, -~,'(C)]=-8;(~ ) .e . . 5 .
(13b)

The phase shift, in analogy with the usual scat-
tering theory, is defined in the limit P = &+ i0 by

—Ggg(e + fO') = 8"&"/( [e —80 —~(e)]'+ I"„(e)Q'
(14)

and real and imaginary parts of the self-energy
have been separated by

&;(e+ fo') = ~(e) —fl",(e) .
Now a fully self-consistent treatment of the

magnetic ion would require the solution of a set of
complex coupled equations to determine even the
existence of spin splitting in terms of the basic pa-
rameters of the Anderson model (Coulomb and ex-
change integrals, mixing matrix elements, and so
on). In view of the many uncertainties in the pre-
cise details of the problem, we adopted a simpli-
fied procedure. We wish to describe situation.
which are known to be spin split, so Z„'0 g„'was
assumed at the outset. The two spin levels were
then treated completely independently in much the
same spirit as in early work of Friedel and
others. ' That is, reasonable values of g„'and g„'
are specified by the screening condition (Z~+ Z„')
and the experimentally known magnetic moment
[CL(Z„'—Z~)]. From Eqs. (13b) and (14), this de-
termines 5', (g~). Since a', (e~) and I „(e~)are fixed
already by the band structure of the host and the
strength of the mixing interaction, self-consistency
for each spin is imposed by finally choosing the pa-
rameters q'„0to satisfy

sin&', (~ ) = I"„(~,)/f[~ —e;0- ~(e )]'+ I",(e )'p',
(15a)

cos&', (e~) = —[e~ —&o- a(~z)]/([e~ —40- &'u(~~)l'

+ I",(e,)'P", (15b)

so as to reproduce the Z'„required by Eq. (13b).
By simplifying the self-consistency problem in this
way, we maintain the simplicity and intuitive ap-
peal of Friedel's approach while still quantitative-
ly treating the wave-number and energy dependence
of the scattering within the spirit of Anderson's
model.

At this point the basic features of the formalism
are established so some simplifications of wave
functions will be made. We require the electron
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density only at lattice sites occupied by host ions.
At such points,

B-„(r)= e'" ' ' B„-(0), (16a)

and B„-(0)will be approximated by a plane wave
orthogonalized to the occupied wave functions of a
single ion core. Thus, at lattice po~nts,

~1k ~ r OCC ~1k ~ r
B«(r)=,)-p 1 —Z b„,„(k)bi(„,„(0)v„=~ggg a,

num

(16b)
where v, is the normalization constant and 0 is the
crystal volume. Thus, the Bloch-wave enhance-
ment is roughly incorporated by

n= 1 b„ook'z @ ooo &z. (16c)

If the Cu 3d core functions are also approximated
by the analytic form of Eq. (6a) with an appropriate
X(), slightly larger (by about 20%) than that required
for the more extended Mn core functions, the sum
in (18) can easily be estimated. In Appendix A it is
shown that the overlap integral is about 96%.

Finally, it can be shown that only 5&»(r) con-
tributes significantly to bn'(r) for values of r& a,„,
the nearest-neighbor distance. The fact that n'„~(r),
n~e(r), and ne„(r)are all negligible for r & a„fol-
lows from the very small overlap of the Mn core
functions even at nearest-neighbor distances. This
is shown in detail in Appendix B.

The net result of these approximations and esti-
mates is that the charge density at host lattice sites
is given by Eq. (17) only. Our main objective in
the present work has been the study of how the
wave-number and energy dependence of T„-«,(f),
which is still quite complicated, influences the
amplitude and phase of bn'(r). In Sec. III, we

Thus no attempt is made to include detailed struc-
ture of the Bloch functions and this approximation
will be used for the Bloch functions which enter ex-
plicitly in Eqs. (8). For example, subtracting the
unperturbed Bloch-wave contribution, Eq. (8d) be-
comes

f &k- k' ) ' r T;;- (C)b'n„(r)=n'Z
2

. f(g) (,")(~ ~ )
.

(17)
Note, however, that Bloch functions are still re-
quired in the calculation of the matrix elements
which enter the scattering amplitude. With this
exception, the calculation is reduced to an elec-
tron-gas problem. In the same way, a single fac-
tor of o appears in each of Eqs. (8b) and (8c).

As a further simplification, C~„(r)= P~ (r) will
be used in subsequent calculations. This is justi-
fied by their large overlap. Thus, from Eq. (6),

discuss three different models for the mixing ma-
trix elements and localized-state self-energy.

III. MODELS FOR RESONANCE SCATTERING

In this model, the conduction-band states are
taken as Bloch waves which are obtained by or-
thogonalizing the plane-wave states to the outer-
most Sd states of the host Cu ion. In principle, an
OPW should be constructed by orthogonalizing the
plane-wave states to all the occupied core states
of the host ion. However, since the inner core
states are much more localized than the Sd states,
the overlap of the Sd states with the plane waves is
much greater, and to a fair degree of accuracy, we
can consider the Bloch state simply to be a single
OPW. Since it is the Sd components which are im-
portant for the mixing matrix elements, we shall
take

8„-()=vbb'v (e"'' —Z(b ()v)4,„(r))v (19)

The m sum runs over the five azimuthal quantum
numbers corresponding to the d(l = 2) states. The
overlap integral b„(k)is defined by

bf„(k)-=f d re '"''blI„(r)= —4pFz„(k)a~, (20)

where

a, = f drr~j2(kr)y„(r) (21a)

e„„(r)=q,(r)F, (r) .

As discussed in Sec. II, we take

)I)„(r)= Aor2e '0", -

(21b)

(22a)

where the parameter Xo is obtained by fitting to the
Cu ion Sd form factors. The normalization con-
stant Ao is found easily to be

A, = (fit)"' (22b)

In this section we shall discuss various models
to study the resonant scattering amplitude of con-
duction electrons from a single magnetic impurity
ion. The purpose of this is to assess the sensitiv-
ity of the resulting resonance line shape to the
choice of the model parameters. Care is taken to
satisfy self-consistency criteria, discussed in Sec.
II, within the framework of the model. The various
models differ from each other by virture of the ap-
proximations made to evaluate the matrix element
of the mixing potential Vg~, the conduction-band
state density N(&), and the frequency dependence
of the self-energy terms Z~(«+ f0') = b,„(«)—il'~(«).
We consider three models: (A) orthogonalized-
plane-wave (OPW) model, (B) finite-bandwidth
(FBW) model, and (C) constant-self-energy (CSE)
model.

A. Orthogonalized-Plane-Wave Model
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Substituting Eq. (22a) in Eq. (21), we get

48iou2
iNi p (ja + ka)4 (23)

With the choice of the above OPW basis function,
the matrix elements of the potential v(r) can now be
calculated.

Using these results in Eq. (4), we have

4~
Vaz„=—&«a I a„(k)(ia —8&&) v&, (24a)

with

Isa, =
2

BZ*e Ak
da [ka + (q + j )a]s (24b)

1024~~2+y2g8

() '+ k')' (21+q„)' (24c)

JIi, /I4N(k- 0) = 4. 9 (25b)

J~„/I~a(k- ks ) —4. 0 . (25c)

This clearly demonstrates the importance of the
core contribution to the strength of scattering. Its

In Eqs. (24), the X parameters for both Mn and Cu
ions have been taken to be the same since, as
noted in Sec. II, they differ by only 20/p. As will
be seen in Sec. IV, the results for 5n'(r) are insen-
sitive to variations in X. It is interesting to com-
pare the relative magnitudes of J„,and I„,:

~.s 128
& [k +(q»+&)1

(25 )(k'+ ~')' (»+q„)'
In the present calculation, k~, qTF, and X were
taken to be 0. 74laz', 0.971ao', and 2. 50az', re-
spectively. Thus,

I;„(~)=4'v IV( )a[4. &„,]'. .— (26b)

The electron density of states is taken to be that of
a free-electron system, N~(&), and the square
bracket in Eq. (26b) has to be evaluated at energy

Np(e') = ink/2k g

The evaluation of the real part of the self-energy,

( ) p Q tdstIV" t

k & &a
(28)

where 6' denotes that the principal value is to be
taken, is rather lengthy but straightforward. We
have therefore chosen to give only the final steps.
Using Eq. (24a), Eq. (28) can be written as a sum
of three terms which represents the contributions
of the plane-wave-plane-wave, plane-wave-core,
and core-core terms. Thus

importance will be discussed later while consider-
ing the width of the resonance.

In the subsequent analysis, we shall neglect the
normalization factor va. From Eq. (19), it can
easily be verified that v~ is almost unity and much
more slowly varying for 4- k~ than other factors
in Eqs. (24). To be specific, v~-1. 03, while v~- 0. 9/k~. The omission of the corrections due to
v„greatly simplifies the calculation of the d-state
self-energy and, according to the discussion in
Sec. IV, is not expected to influence 6n'(r) signif-
icantly.

In the limit of a vanishingly small concentration
of impurities, any induced spin splitting of the con-
duction band is negligible. Then b~„(g)and I'~„(a)
are independent of spin direction. From Eq. (14),

I', (e) = ii&
~
V„-„„~'&(p —p, ) . (26a)

k

Using Eq. (24a), we have

with

f co

I , Xp(&, )
u~(&)= 47' P

J d&&Isa
0 &a

~.(~) = ~.(e)+~.'(e)+ ~'„'(~), (29a)

p (-3eq —25&re —150''gf +150qzq +25&pc +36 )1s 4 sa as 4 s

2in a~ (p~ + ~)

II Iv.(~.)«sos ~is
4o

8 8 64~g 2 go

&o+ 5&o&+ 15&o& —5& 5&r 4&i Eo + 9&r 6o+ 8&r &o 3&r &o 4&o &o
3 2 2 3 3 5/2 1/2 2 3/2 3/2 2 5/2 3

cp(cy+ t) (cp+ p) 'fp(tg —e'p) (py + t) (Eg + cp )
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and, finally,

5(~5/2 e2el/2 2~$/2 ~ 2e P/ 2 ~ ~1/2 2 5/ 2

60(C'/ Cp) (6/ + e'0 ) (6/ + f)
(29c)

~III(~)
—4 (p d& 4~dk

e 8 / (64Z"A) gt/
4 2m 2V(co+ e)'

x(—9go —105qo& —1040eoe +1575eoe +525@~0& +189qoq +45@op +5g ) . (29d)

The parameters $1 fo and & in the above equations are defined as

~/=- (@'/2m) (q+ &)', c,-=(8'/2m) (i.)', i -=(@'/2m) (q+ 2i)' . (29e)

The spectral function can now be given by

r, (~)
v [~ —&0 —~(e)]'+&,(e)' ' (30)

1.8—

The determination of e~o via, Eq. (15) has been out-
lined in Sec. II and it is through this parameter
that the self-consistency criterion, Eq. (13b), is
satisfied. The only unspecified parameter in the
theory is Z* and its value is chosen so that (i) the
charge-neutrality condition, Eq. (13b), is satis-
fied and (ii) the resonance in Eq. (30) is "reason-
ably" broad. We also imposed the weaker condi-
tion that (iii) the resonance spectral function should
reflect the true enhancement in state density by re-
quiring that

~ =5 f«f(~)A;(e)
be approximately the same as 2'„. For this model,
Z* = 2 was found to satisfy these three require-

ments. It must be pointed out that these conditions
could not be simultaneously satisfied by using only
plane waves (rather than OPW) to evaluate matrix
elements of the potential.

Having specified the remaining parameter Z*,
the properties of the resonance are uniquely deter-
mined for each value of Z'„. In Fig. 2, we have
plotted the parameter q'„0as a function of Z'„to il-
lustrate its dependence on the screening charge per
spin. In Fig. 3, the spectral functions correspond-
ing to Z~=0. 5 and 4. 5, respectively, are given.
Note that the positions and the widths of the reso-
nance are as expected from general physical con-
siderations.

In order to verify the relative insensitivity of
these results to details of the OPW model, we shall
also consider two alternative and simpler models.

B. Finite-Bandwidth Model

As was previously pointed out, the use of plane
waves and a free-electron state density does not
yield a consistent spectral function of the desired

L„1.4
4)

4J 1.2

1.0
01

I I

0.3 0.5 0.7 0.9

EIJ

2
4)

0.5 0.7 0.9

Z =0.5
cl

(

I
/

/

I

1.1 1.5

FIG. 2. Variation of the unperturbed d-state energy
a&~0 with self-consistent final occupation Zz as required by
the Friedel sum rule in the OPW model.

FIG. 3. Spectral functions A&(e) for Z& = 0.5 and 4. 5 in
the OPW model.
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width. The reason is that there are large contri-
butions to ~(&), Eqs. (29), from the high-energy
region where No(e) is large. On the other hand, for
the range of energies of interest (g- c~), the free-
electron band may be adequate for I'„(&),Eq. (26b).
This suggests, if plane waves are to be used as
basis functions in a simplified model, that a more
"realistic" state density must be used. To simu-
late a state density of finite bandwidth, we have
chosen

where the constant C is given by

(16Z*W)'2'
C=

v(a~+ e, )
(32)

so that N(g~) =No(q~). With this choice of state
density, N(&)- &' ' for small & and N(&)- &

' ' for
large q. Furthermore, this particular form of
N(q) leads to a simple analytic form for ~(e).
From Eq. (28) we easily obtain

5/ P. 8

N(~)= 3
' 8,4v(1, )' (s+~~)' ' (sl)

r, (~) = 4&'N(~) [I,',], .

Also,

(33)

~,(~) =4vs g
(

)N(~)

e' I' "' 32(WA)'
4 2m (e'~ + EI) ('f+ 6y )

x(-9m~ —105q~q —945q~c +1575q~q +525q~e +189qFe +45e~q +5q ) . (s4)

For this FBW model, we find that the three con-
sistency requirements mentioned previously are
well satisfied for ~ = 5. The resulting spectral
functions for Z'„=0.5 and 4. 5, respectively, are
plotted in Fig. 4 and are seen to be similar to
those of the OPW model.

C. Constant-Self-Energy Model

In the simplest model of all, the energy depen-
dence of I'„(g)and g~(q) is completely neglected.
To obtain a reasonable width, we take'

on integrating over the angles of k. Similarly,
~I- fk' ~ r

—,
""' =F,(~)~.(~) . (svb)

Of course, the form of E„(g)depends on the model
chosen. Details of the calculations will now be giv-
en for the OPW model and modifications required
to apply to the FBW and CSE models will be indi-
cated later.

In the OPW model, it follows from Eqs. (24a) and
(3V) that

Specifying Z'„then determines

Eu = t-'so+ &u (36a)

(s8)F„(t;)=- dao'q, (u )
'"

Inserting (37) into Eq. (1V) and carrying out the

in terms of I'~. Using Eq. (15),

Eg —cy = Ig/tan5g(sp) . (s6i )

This choice yields the usual Lorentzian form for
the resonance, which is again similar to the pre-
vious forms. In Sec. IV we describe the calculation
of 6n'(r) and shall see how sensitively it depends
on the choice of the resonance spectrum.

IV. NUMERICAL RESULTS FOR Bn (r)

From Eq. (12), we see that the T matrix re-
quired for 5rf(r) is a sum of separable terms, so
the k and k' sums in Eq. (17) can be evaluated in-
dependently. Since the angular dependence of
V„-~ is given by Y2 (k), we easily find

0
0.5 0.7

Z =0.5
I i~
I

I

I

l

l
I

1.3

~ik ~ r y„"'" =F„(C)Y,.(~) (3Va) FIG. 4. Spectral functions Az(e) for Z&~=0. 5 and 4.5 in
the FBW model.
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sum over the azimuthal quantum number results in where

5
" d5&(r)=4, . f(t:)F„'(C)G;,(C) . (39) Q (r)= f dIPE„(cp+i(d)G«(ep+i(P) .

0
(40b)

5n'(r)=, Req (r),
5~2

(40a)

In our numerical work, we found it convenient to
transform Eq. (39) by distorting the contour of in-
tegration to pickup only the discrete poles of the
Fermi function at r = 4~+i&p„, where ~„=(2pI

+1)p/k2T. In the limit of low T, the sum over (d„
is replaced by an integral. Then

The explicit form of E„(&r+ipp) required in Eq.
(40b) can be obtained by converting Eq. (38) to a
contour integral in the complex k plane. Using
Eqs. (24b) and (24c) in Eq. (38), there are seen
to be contributions from poles in the upper half
of the complex k plane at K„=kr (1+i&p/4z), at
iq =i(q»+X) and at iX T. he calculation is straight-
forward although lengthy, so only the final result
is given:

where

rr, (ee+ ire) = am e'A r (r),'"(ire) —(,bb„r)„-"(rre) —,
1 + qTp /2X) r ' (41a)

b,'"((~)= ee e' " ii'. + ——,)+e-,"+ ' + —, + ' (iieee*')e —(iie. +e"e)r
I (b(b)

3iK 3 l +„23q* 3 1+q*r 2 2
r2

q„"(i(p)= 2 24 e' ~" K„'+ ——,+ -~ @2+—+—,~+ (K2+X2)+—(K2+)(2)2+

(41c)
In order to appreciate Eqs. (40) and to motivate the procedure for numerical work, consider the limit of

large r. From Eqs. (41) it is seen that

2m +2 2 $2+2 ~$ Kf41

F„(4' +p)2„(b)Fe„r(ep +rI(d) = 8Z e e4 p
(

2 ~2,2 —. . . .2, 2 . 2~4 (42)

K„=k~(I+ ipp/2er) (43)

in the phase of e'~~" and setting (p = 0 (i. e. , K„
= kr) elsewhere in the integrand. Thus (42) can be
replaced by

2m e "F"
F (e + &) (I g ) -Ilperb)/2sp

r F g 2 d4F ~~F

(44)
while Eqs. (14) and (15a) can be used to write

G;,(4~+ iO') = —e"4"I")sing(4~)/I „(e~). (45)

Using these results in Eq. (40b) yields

/ (48)
sinÃ&

I', (e~) J,
The remaining integral is 4~/k~r. From Eq. (28b)
there finally results

Since K„=k~(1+ i(p/e~)' gives exponential damping
of the integrand in Eq. (40b) for (() & 0, the leading
term in Q'(r) for large r is given correctly by us-
ing the approximation

~ iy/l snr5(f4@)I 124 ,r e ()() (b~f
r (4V)

which when inserted in Eq. (40a.) leads at once to
Eq. (1).

For numerical work as well a,s for further de-
velopments in Sec. V, we found it useful to define
a function y'(r) by

qp ( )
r( Ie I [2r()Ibr +5 (br ) g ()

( )
sin5 (q ) ii

3r (48)

From the above discussion of how various factors
were simplified in the integrand of Eq. (40b) so as
to yield Eq. (4'7), it is easy to see that

e
F„(eI+iO'b) C~q(4p + iO')

0
(49)

On measuring &p in units of q~ and r in units of 1/
k~, Eq. (49) provides a convenient dimensionless
form for numerical work. The ~ integral was
evaluated by Simpson's rule with a variable mesh
and also by Gaussian quadrature with an error con-
trol yielding accuracy of better than 0. leap.

This procedure was also followed for the finite-
bandwidth (FBW) and the constant-self-energy'
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FIG. 5. Comparison of polarization per spin 6n~(g) for
Z&~=0. 5 in the OPW, FBW, and CSE models.

(CSE) models. In both of these cases, plane waves
are used as a basis, so the appropriate Jl„(gz+i~)
is given by only the first term on the right-hand
side of Eq. (41a). That is, the core orthogonaliza-
tion term, Eq. (41c), is absent. In each case,
t «(&r+i~) is given by the analytic continuation in-
to the upper half of the complex energy plane of the
appropriate propagator defined in Sec. III. Fur-
thermore, it is clear from the above analysis that
the large-r limit, Eq. (4V), and the general func-
tional form of ){'(r), Eq. (49), also occur for the
FBW and CSE models.

The computed 6n'(r) for these three models is
shown in Fig. 5 for Z„=0. 5. It is important to
note that the results for all three models are rather
similar. In particular, there is agreement as to
the sign of 5n'(r) at the first-nearest-neighbor dis-
tance, although the predicted magnitudes differ
somewhat. Also, the relative phase and positions
of nodes in 5n'(r) were found to be insensitive to
variations in the parameter X provided ~ was
chosen to maintain self-consistency in the sense of
Sec. III. Corresponding changes in the magnitude
of 5n'(r) near the nearest-neighbor distance were
within 30%%uo. The general consistency of these facts
suggests that the phase or relative sign of 5d'(r) is
given accurately by any of the present models, al-
though uncertainty in the magnitude is of order 50%%uo

for small r. On the other hand, the asymptotic
form, Eq. (1), differs in sign from our computed
5n'(r) in the neighborhood of the first nearest neigh-
bor. This is illustrated in Fig. 6 for Z'„=0.5. We
have carried out these calculations for Z~ ranging
from 0. 5 to 4. 5. In every case, the computed re-
sults for different models were in good agreement
with each other but differed from the asymptotic

The fact that three different models give essen-
tially the same numerical results for 5n'(r), even
at nearest-neighbor distances, suggests that it may
be feasible to develop an interpolation formula for
5n'(r). To do so in a simple and physical way, re-
turn to the complex quantity )f'(r) of Eq. (49) and
write it in terms of its amplitude A'(r) and phase
8'(r) by

~s(r) isa(r)s(8 tr)

Use of the form in Eqs. (40) and (48) yields

(50)

I I I

n
OPW

CSE

4—
P)

GJ

0

SYM

I

4
I I

10

FIG. 6. Comparison of the asymptotic form (denoted
by ASYM) for 6n~(x) with results of OPW and CSE models
for Z& =0.5. The first-nearest-neighbor distance is given
by A@a„~=3.

form, just as shown in Fig. 6, until A~g ~ 10.
From these results, it is possible to appreciate

the important source of co dependence in the inte-
grand of y'(r), Eq. (49). The f dependence of Z(g)
is not crucial, since the CSE model is in good
agreement with the OPW and FBW models. In fact,
it can be seen from calculations of Z(f) in Sec. III
that i BZ(f)/Bf I

-0. 1 for r = e~+i0' .To check this,
we calculated g'(r) and 5n'(r) in an "s-wave" model
in which the k dependence of V„-„wasneglected
everywhere (thus only explicit g dependence of
propagators was retained). The resulting gn'(r)
was very similar to the asymptotic form, Eq. (1),
so it is not discussed at length. The result does
show, however, that the explicit k and k' depen-
dence of T„-„-,(g), which is reflected in the g depen-
dence of the normalization constant v, .

It is evident that, owing to the extent of numeri-
cal work involved, these results are somewhat in-
convenient, in their present form, for applications.
In Sec. V, it is shown how an adequate interpolation
formula can be developed.

V. INTERPOLATIONS FORMULA FOR Bn'(r)
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OJ

o0

for use in the exponential 8'~~". Also all first-or-
der terms of the Taylor expansion in powers of cd

of all other factors in the integrand must be in-
cluded. On carrying out the expansions, Eqs.
(52a) and (52b) become

(
3i(d/4:2 &~ 2(d 3i -2(km') I 2k' (2 rkk2g 2k2

» ~&+—+ F + e p p
1 + q /k2il 'EE kFr

zoo

q~ —E~+ z

respectively. Inserting these results in Eq. (49),
we obtain

I I

k ~
F

I I

'lO 12 e( )
jk d -krkkklk2 (22rkk /4kk r 2 2

FIG. 7. Gomparison of the interpolation formula (de-
noted by INT) for 6n~(r) with results of the CSE model for
Z'=0. 5.

6i~/2~ 2i&u 6i i u

1+k" /k' k~ k~r k —k(+iT~)
(54)

The integrals pose no problem, and the result, to
first order, is

5yg'(r) = —4, , sin5'„(2~)
5 A'(r) .

4m

xcos[2k„r+5'(q )+ 8 (r)] . (51)

~ (r)=1+ " +O(r '),
k~r

where

(55a)

( (I(
P„(er+ i0') &„'+q*' k2 kr'r

(52a)

G gg (62+ ild ) . '42 —Eg + iT ~

G44(tr + $0 ) 22 —E~ + 2((d + I'4) (52b)

where E', =s22+A4 in Eq. (49). It is again a con-
sequence of the exponential in Eq. (52a) that only
small (d contributes to y'(r) for large r. However,
to obtain g'(r) correctly to first order in I/kyar,
we must replace Eq. (43) by the more accurate
higher-order expansion

E„=k~1+ + 2 (53)

The chief advantage of this approach is that A'(r)
and 8'(r) are expected to show regular convergence
to their asymptotic values of A'(~) =1 and 8'(~)
= 0. They can then be approximated more easily
than 5n'(r) itself, which is necessarily oscillatory.

To obtain an approximation for A'(r) and 8'(r),
we return to Eq. (49) to generate the leading cor-
rection terms to y'(~) = 1 in the expansion in powers
of I/k~r Since .all three models give very similar
results, it will be adequate to consider only the
simple CSE model. Thus the core orthogonaliza-
tion term, Eq. (41c), will be dropped and the en-
ergy dependence of Z(f) neglected. Furthermore,
all exponentially decaying terms in Eq. (41b) can
be dropped. The lowest-order corrections are thus
obtained by using

(55b)

17 6 2~ (2~ —E', )
2 1 + q42/k2 (& EP)2 + Ik2 (55c)

The amplitude and phase of g(r) are thus given by

A (r) =1+@'/k,r,
8'(r) = q'/k, r .

(56a)

(56b)

We have used these lowest-order approximations
in Eq. (51) to define an interpolation formula. In
Fig. 7, we compare the results of Eq. (51) for
g„'=0. 5 with the complete numerical calculations
given in Sec. IV for the CSE model. The agree-
ment is seen to be good even near the first-near-
est-neighbor distance. To some extent, this agree-
ment is fortuitous, since at the nearest-neighbor
distance, P/a„„=—0. 21 and rf/a„=3.4, so that
g'(a„)is very different from its asymptotic value
of unity. However, the basic point is that the
structure of the preasymptotic corrections can be
used as a guide when obtaining trial estimates of
8'(r) and A'(r) Of cour. se, the resulting interpo-
lation formula, Eq. (51), is no longer simply an
expansion in powers of I/k~r and its ultimate justi-
fication is that it provides a good fit to the com-
puted results. The simple approximations of Eqs.
(56) were found to be adequate for Z,' ~ 1 and for
p'„~4, which is the expected range in physical ap-
plications. Alternative but more complicated in-
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terpolation formulas can, of course, be obtained
by straightforward procedures for the intermediate
range of gd', if desired.

VI. SUMMARY AND CONCLUSIONS

The spatial dependence of the polarization per
spin produced in a free-electron metal by a mag-
netic ion has been calculated in the Friedel-Ander-
son picture. Three different models were used to
describe the scattering of electrons by the impuri-
ty. Provided the resonance was described consis-
tently, all three models led to essentially the same
results for 5n'(r) even at the first-nearest-neigh-
bor distance. On the other hand, the asymptotic
form, Eq. (1), was found to be even of opposite
s jgyg in this range.

To simplify applications of the present results,
an interpolation formula of convenient analytical
form has been given. The application of these re-

As mentioned in Sec. II, the impurity resonance
state is described by

(1)=(& (r) —Z B„(F)(B(r).l„.g (r)))r
(Al)

where vd is the usual normaliz 1tion constant,

v = 1 -Z
I &Brl q4 (A2)

The overlap of the resonance state C„with the
atomic state P„ is then

«,.I
~..&=((-&

I &k;I &..&I')

In order to evaluate the overlap integral in Eq.
(A8), we shall study the term

(As)

suits to the calculation of hyperfine fields in alloys
will be discussed elsewhere.

APPENDIX A: LOCALIZED-RESONANCE-STATE WAVE
FUNCTION

2
d'~ „i(ke '" '-»&0&*(k)q,*„(r)ly,„(r)

V 2

g dm dm
= —Z 5* (k) —f)' '*(k)ADA 45x128 (A4)

The definitions of various quantities in Eq. (A4) are
given in Sec. III. We may point out that the suffix
0 is used for the host metal and thus distinguishes
host parameters from those of the impurity. Re-
placing the summation by integration in Eq. (A4),
we get

I

functions, Eq. (A8) yields

Z
l &a„-ly,„)l'=0.08.

Thus the overlap in Eq. (AS) is

&e,.l~,.)=0 96.

(A9)

(A10)

k

(0) 2,
~k(( eke

7 ] 2S y r) 7/2 ~

Since ) and A. 0 are close, we can write

)&o= X(1+5), 5 «1 . (A6)

This large overlap suggests the resonance state of
the impurity ion can be approximated (within 4%%uo) by
the atomic-3d wave function. This approximation
considerably simplifies the algebra in the OPW
model for resonant scattering.

APPENDIX B: ASYMPTOTIC FORMS OF Snead, hand~, AND

5ndd

(0) 9 SX2
~Ad ~Ad ~

2 y2+ y2
11

Substituting Eq. (AV) in Eq. (A5) and retaining
terms to the lowest order in 5, we have

(Av)

x
~l0

Sdss 4 5 —
2 1+s . AS1+s

With 5=0.2, estimated from Cu and Mn 3d wave

Using Eq. (A6) in Eq. (A5) and recalling the defini-
tion of ak~ from Eq. (23), it is easy to show that,
to first order in 5,

In this appendix, we show that the contributions
to the electron density as outlined in Eqs. (8a)-
(8c) are negligible as compared to that in Eq. (8d).
The analysis is based on the methods of Sec. IV.

Eppes, „(r)=ZZ &k (r)l „*-,
2

. " f(f)4&,„(r)

. f(f )&„(t;)y'g„(r)G'„„(L)y,„(r)
mj

(Bl)
according to Eqs. (16b) and (8'7b). The m sum
yields a factor 5/4z and the f integral can be trans-
formed as in Sec. IV. Using the large y form for
&„(g)as given by Eqs. (44) and (45) for G~~(f), the
asymptotic form of Eq. (Bl) becomes
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50 )t 2g~ 2tPlZ 6' g„(r)„-—
4 p &+&

k a @a (~i&~ ~go~)
4m k~r

x ' ~ cos[k~y +6', (e~)] .sin6', (q~ )
I'~ Ep

(B2)
The contribution of 6&~„s(r)is exactly the same as
Eq. (B2). Using Eg. (22b) for A and Eg. (26b) for
I', (&~), the sum of Egs. (8b) and (8c) is

6n'„(r)=Z [6n', „(r)+6n',„,(r)]

Of course, the well-known asymptotic form of
Eg. (8d) is

2

6'~(r) „=—4, , sin6', (&~) cos[2k~r+g(r~)] .
4m&

(B5)
Typical parameters for systems of the CuMn type
are k~-1 A ', a„-3A, and A-5 A . Using these
values in Eqs. (B3)-(B5)yields the estimates

kj, 6nqq(a ) 8.4x 10

kz
~

6'�„(a„,)
~

~ 0. 5n s in6~ (eI„)x 10

s
2v 45 k„ I'„(e~)

1/2

k~ ~6n~s(a„,)~ ~ 0. 5n sin6~(gz)x10- . (B8)

6n'„(r) 4
=A—r e (B4)

x sin6~(&~) e ~ cos[k~r + 6„'(r~)].
(B3)

The contribution of Eq. (8a) is given for any p by

It is seen that 5n«and 5m~, are orders of magni-
tude smaller than 5n». These estimates are
based on using asymptotic forms even as close as
the first-nearest-neighbor distance, but these are
quite adequate for obtaining relative orders of
magnitude.
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Magnetic Susceptibility Measurements of the Spin-- Linear-Chain
n-his-(N-Methylsalicylaldiminato)-Copper (n-CuNSal)~

Robert C. Knauer and R. R. Bartkowski
Sandia I-aboxatoxies, Albuquerque, New Mexico 87115

(Heceived 16 June 1972)

The susceptibility of the spin-2 linear chain e-CuNSal has been measured by the Faraday-
balance technique from 2-300 K. The measurements over the entire range can be understood
in terms of several approximations applicable to the high- or low-temperature regimes of the
Heisenberg linear chain. From these models the nearest-neighbor-exchange strength has been
obtained by two different techniques and its value determined to be J/k = -3.2+ 0.2 K. The
excellent fit of the magnitude and temperature dependence of the data to these approximations
over this wide temperature range confirms the one dimensionality of the system and yields an
accurate measurement of the exchange constant.

INTRODUCTION

X-ray crystallography studies'2 have shown that
a-his-(N-methylsalicylaldiminato)-copper (n-
CuNSal) is highly one dimensional in structure with
a Cu-Cu separation of 3.33 A along the chain or
c axis and a minimum distance between chains of

0
9. 19 A. Electron-spin-resonance- (ESH) line-

shape experiments ' indicate that the exchange in-
teraction between non-nearest-neighbor Cu atoms
is small compared to nearest-neighbor exchange
coupling. Previously, the classic spin- —, linear-
chain system Cu(NH, ),SO, H30 has been shown, ~

on the basis of magnetic-susceptibility and specif-
ic-heat data, to agree with the calculations of
Bonner and Fisher' (BF) for a spin--,' one-dimen-


