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Linear-response function of a semi-infinite degenerate plasma
in the presence of an external magnetic field
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The static linear-response function $0(r, r ') of a semi-infinite, degenerate plasma of noninteract-

ing electrons is calculated in the presence of an external magnetic field perpendicular to the surface.
The surface is simulated by an infinite-barrier model. The work is based on the density-matrix for-
mahsm for an impurity embedded in a plasma and its image in the surface. The induced electron
number density is expressed as a sum over Landau levels by a Laplace transformation of the density
matrix. The Laplace-transform representation allows an analytic evaluation of the linear-response
function for various magnetic field regimes. Results are presented for Po{r,r ') in the quantum
strong-field limit, such that electrons occupy only the lowest Landau eigenstate, as well as the low-

field limit where the response function is expressed as a series expansion in powers of the applied
magnetic field strength. The intermediate-field regime for de Haas —van Alphen oscillations is also
briefly discussed. These results provide a useful representation of the nonlocal static linear-response

properties of a quantum plasma since Po(r, r ') is expressed in terms of known elementary and spe-
cial functions.

I. INTRODUCTION

The effects due to a surface on the electronic properties
of metals, semimetals, and semiconductors in the presence
of an external magnetic field are of considerable interest.
Both dynamic properties' (such as surface modes) and
static properties '" (such as charge distribution) have been
studied. The electronic response functions required for
these studies are usually determined, in practice, within
simple models such as the infinite-barrier model (IBM)
and classical infinite-barrier model (CIBM). In a self-
consistent-field theory, such as the random-phase approxi-
mation (RPA), the single-particle response function is re-
quired. The evaluation of the response function for
noninteracting electrons is thus a necessary first step in a
self-consistent-field treatment of the electronic properties.

In this paper, we consider the semi-infinite degenerate
electron gas with IBM boundary conditions, with an
external magnetic field perpendicular to the surface. We
give an exact analytical evaluation of the static density-
density response function for noninteracting electrons.
This is equivalent to a calculation of the irreducible, non-
local polarization function go(r, r '), in the static, i.e.
zero-frequency, limit. Such results have not previously
been available and we hope to obtain corresponding exact
results for the frequency-dependent single-particle
response function as well as for other boundary condi-
tions. It is expected that these results will form a useful
basis for further development and applications.

One application for go is the calculation of the induced
electron number density pt(r) by an impurity embedded
in the plasma. As a matter of fact, our calculation of

Xo(r, r ') is formulated in terms of the linear response of a
noninteracting electron gas to an external perturbation
&(r '):

p;(r)= I dr'y ( 0rr')V(r') .

From the boundary conditions, the induced electron num-
ber density is due to the impurity and its image in the sur-
face plane. This means that the density-matrix formalism
used by one of the authors in studying the static
shielding of an impurity in a bulk plasma may be applied
to the IBM. This provides an alternative approach to that
used in Refs. 3 and 4. An advantage of the density-
matrix fortnalism is that the sums over occupied Landau
levels are expressed in terms of an inverse Laplace
transform. This provides a convenient method of doing
analytic calculations, as we show. A comparison of the
density-matrix formalism has previously been made with
the method of Horing ' and Rensink' for a bulk degen-
erate plasma. Although these authors ' obtained ap-
proximate results for the induced electron number density
in useful analytical form, further progress was limited.
This is due to the fact that the sums over Landau levels
involving Hermite polynomials are difficult to evaluate.

The outline of this paper is as follows. In Sec. II the
linear-response formalism is presented for the IBM in the
presence of an external magnetic field perpendicular to
the surface. The low-magnetic-field regime is discussed in
Sec. III and the quantum high-field limit is given in Sec.
IV. The results for go(r, r ') in these two limits are given
in terms of known special functions. Section V deals with
the intermediate-field case. Section VI consists of a sum-
mary and discussion. Our calculation involves some un-
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familiar integrals involving Bessel functions of the first
kind. These integrals are collected in the Appendix.

I1. FORMALISM

We apply the density-matrix method employed in Refs.
5 and 6, adapted to the semi-infinite IBM. We let the
point charge described by the potential V(r ) be embedded
in a semi-infinite electron gas having single-electron
eigenstates P (r). Then the electron density at zero tem-
perature is (EF denotes the Fermi energy)

P(r)= g ~
1( (r)

~

=Ms 'Is '%(r, r,s) j,
where W, ' denotes the inverse Laplace transform (with
argument r), and

%(r, r', s)= gP (r)g (r')e

is the density matrix. The latter satisfies the integral
equation

e(r, r ',s) =q,(r, r ',s) —f dr, V(r„)

S j % 0 I",I' )~$ —S )

XV(ri, r ',si), (4)

where %0(r, r ',s) is the density matrix in the absence of
the potential, which for the IBM with a uniform magnetic
field H applied in the z direction (normal to the surface)
1S

%0(r, r ',s) =(m*/2vrR s) ~ (poHs)5«e csch(p OHs)

X exp I (m */2—fi )[2ip OH (xy' yx ' }+p—OH coth(p, OHs )
~ p —p

'
~ ]j

XI exp[ —m*(z —z') /2R s]—exp[ m*(z+z') —/2' s]j,
where m is the effective mass, po (p 0) is the spin (orbital} Bohr magneton, cr is a spin index, and p =(x,y, O).

By solving (4) to first order in V, we find the induced charge density due to the impurity is

Inserting the expression (5) into (6), after a simple change of variables in the s i integral, we obtain our basic formula,

p;(r)= —2(poH)'(m*/2m%' )' f driV(ri)&g ' s ' f
X expI —a[coth(su)+ coth(su')]

~ p —p& ~

2j

X I exp[ —a(z —z& )2/su ]—exp[ —a (z+z, )z/su ] j

X I exp[ —a(z —,) /su ]—exp[ —a(z+z, )'/su ]j, (7)

P=EI' ~POH &=iii /I and a =iii poH/2a'. In deriving this expression we have allowed for an or-
bital effective mass b«have set the electron g facto«qual to 2. Lifting this restriction requires only a minor modifica-
tion and does not appreciably affect the rema&nder of the calculation We note from (1) that the response function can be
extracted from (7) by the functional derivative 5p;(r)/QV(r ')=go(r, r ').

The low-magnetic-fteld regime ls characterized by g—+ 00 which requires an asymptotjc evaluatjon of the jnverse La
place transform jn (7) This js easily achieved by expanding the jntegrand jn ascendjng powers of g. Carryjng thjs ouf,
and taking advantage of the uu ' symmetry, we obtain

1

p (r)= —2(m'/2M ) (poH) f driV(r~} f ~& '~" s 3[1 —,'as
~ & p& ~2+ —'(&2 'u& 'u~2)sz+. . . ]

I.

X exp( —a
~

r —r,
~

'/suu )+ exp( —a
~
r r;

~

/»u )

+
Q Q
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where r )
——(x),y), —z) ). The inverse Laplace transform can now be evaluated using standard tables, ' and we find

p;( )=p,'"(r)+[p';"(r)+p,'"(r)]()M'oH!E )'+
~here the lowest-order term,

pl kp
p,' '( r ) = — d r ) V( r ) )

4m A' (uu')' I
r —r) I J2[kz I

r —r)
I
/(uu')'~ ]

+
I
' —')

I »I41r —r ) I
/(»')'"]

—2(l r —r)1 u+
I
r —r)1 u')

I
r —r,

I I
r —r)1

u' (10)

contains the zero-field limit as well as a contribution due to the implicit dependence of EF and the Fermi wave vector
kF ——(2m EF /A" )

~ on the applied field. The leading terms containing explicit field dependence are

m*kF

x J, '
I
r —r)

I
'J)[41r—r) I/(»')'"]+

I
r —r)

I
'J)[kp

I
r —r) I/(»')'"]

uu'

—2(
I
r —r) l~u+

I
r —r)1'u') '~ J) kp

u u

,)
m'k„'

p,
' '(r)= — dr) V(r, )

32m'A'2 o (uu')'~

x Jo[kF I
r —r)

I
/(uu')'"]+JolkF

I
r —r ) I

/(»')'"]

u u

Quite remarkably, the u integrations can be carried out exactly, and are given in the Appendix (details will be reported
elsewhere). The three terms in Eqs. (10)—(12) show the clear separation into a "classical'* (cl) part, corresponding to the
point charge and its image (the so-called CIBM terms) and a quantum-interference (QI) term. Accordingly, we write

A. Zero-fic1d behavior

In this limit (10) can be written as the sum of

(o) m"kF, sin(2k~
I

r —r)
I

)
~p ) (r) 3 2 I dr) V(rl)

I
r rl

I

' —cos(2k'
I

r —r) I )
4~3122 2ap

I
r —r)1

sin(2kF
I
r —r ',

I
)

+ lr —r)
I

' —cos(2k~
I
r —r ',

I )
2k~ I

r —r ) I

(14a)
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m'k
&pqr'i~~=, „, I dF&~~~iH

I
~=~i

I I

r —~i I
~

I

' —~i I+ Ir —Fi
I ~i

'

sin[kgb& J
r —ri [ + )

r —r i [ )] —cos[kF( r —ri + r —r i ]
k~(

J
r —ri

/ +
f
r —r 'i

f
)

(14b)

Note that there is an exact cancellation of the classical and interference terms for r =0 as is required by the model.

B. Terms proportional to (p oH/Es)

The leading field-dependent terms, (11) and (12), can be written as

sin(2kF
~

r —r i ( ) sin(2k+
~

r —r ',
~

)

2
(15a)

m*kF
2 cos(2k~

/

r —ri
f

) cos{2k+
/
r —r i f

)
5p, i (r) = — d ri V(r i) a2 +4' A 2k, ~r —r,

~
2k'

i
r —ri i

—i'2 [&o&kF I
r —ri

I
)+&o&41r—r i I )]

m*k
5PQI&r) drlV(ri)( P P 1)'

I
r —ri

I

'
I
r —r i I

'sin[kF&
I
r —ri

I
+

I
r —r 'i

I )]
12m R

(15c)

(2)
m* ~ p i I

r —ril+ I
r —ri

I5pgi(r)= —
3 driV(ri) (a ——, )

Sn. A'

k
& cos[kF&

I
r —ri

I
+

I
r —r i I )]—3» &

I
r —ri

I
+ I

r —r i I )
2

J

{15d)

where Bo is defined in the Appendix. Note that there is an additional contribution proportional to H arising from ex-
panding the implicit field dependence of kz in (10). This term is straightforwardly obtained and need not be written ex-
plicitly.

IV. QUANTUM HIGH-FIELD LIMIT

Returning to our basic formula (7), as discussed in Ref. 6, the behavior of p;(r) in the high-field quantum limit
(HFQL), where $~0, can be obtained by expanding the s integrand about s = ao. Each successive term in this expansion
corresponds to the inclusion of one more Landau level. Here, we shall confine attention to the leading term, which corre-
sponds to the quantum limit of the occupation of only the lowest (spin-split) Landau level. Then we have

(~) ( a~)2( a/~2)3 d~ V(~ )
—a

i p —p i i ~ i i dg
[

—a is —si i
/sa —a is+si i /sa]

—a is —si i
s/sa' —a

i s+si i
2/sa'

X[e 8 ]

where g'=(+a —1. The inverse Laplace transform is easily carried out, and we have

p;(r)= —(p, oH) (m'/mh ) I driV(ri)e

du
&& I „, ~o[2 l~ —~i

I
&0'«»')'"]+~o[2

I
z+~i

I
&0'«»')'"l

QQ

,'$/2
I&+&i I'—2Jo '2 ag'

Q Q

Surprisingly, the u integrations are also tractable (see the Appendix), and

(17)
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( ) 5 HFQL( )+5 HFQL(
)

5p,~" "(r)=(poH) (m /M ) f dr~V(r~)e ' [si(2k+ Iz —zi
I
)+ si(2kF Iz+zi

I )]

5pQt (r )= —2(poH) (m /~')' f driV(ri)e
"

' ' " »[kF(
I
z —zi

I + I
z+zi

I )]

where kF ——2(ag )

V. INTERMEDIATE FIELDS: de HAAS —van ALPHEN TERMS

(18a)

(18b)

(18c)

The quantum oscillatory terms in the density arise from the imaginary singularities of the s integrand in (7), which are
isolated essential singularities s„=nni/u, s„' =nnilu' (n =+1,+2, . . . ). We express the inverse Laplace transform as a
Bromwich integral, and distort the contour into a succession of small circles surrounding these points. (The singularity
at s =0 contributes only to the steady field behavior studied in Sec. IV, and has already been taken into account. ) Be-
cause of the u~u symmetry we need only consider the terms arising from the singularities s„and multiply the result by
2. Next, by evaluating the individual contour integrals by residues and pairing the +

~

n ~, —~

n
)

terms we obtain

p,'"(r)= (poH) (m*/2M )
OSC ~

Q cos An7T Q J 1/2

, n o (uu')'/ sin(nm/u )

)& Re[ exp[ia
~ p —p & ~

cot(nn /u )+ignis/u ].
)& [ exp(ia

~

z —z~
~

/nm) exp(—ia
~
z+z~

~

/nm)]

)&[exp(ia (z —z&
(

u/nmu') —exp(ia )z+z& (
u/n~u')]J .

In the interest of simplicity we consider only the case a= l. Relying on the feature that g»1, after the substitution
x =u /u, we find that the dominant contribution to the x integral comes from the singularity at x =0. Expanding about
this point leads to Fresnel integrals and, after some simplification, we find that

5p"'(r)= (poH) (m*/A )

r1V r1 Jo 2k' p —p1 n r —r1 'cos n~ +a z —z1 nm —m. 4
n=1

+
~

r —r')
~

'cos(n~g+a ~z+z) ~2/nn ~/4)], (20a)

Osg( ~) ( «H )3/3( « /g 2)5/22

X f dr& V(r&)JO(2kF
~ p —

p& ~
) g n [~ r —r,

~

'cos(n~g+a ~z+z&
~

/n~ m/4)—
n=1

+
~

r —r
& ~

'cos(nerf+a ~z —z&
~

/num/4)] . .—(20b)

Further discussion of the intermediate-field case will not be given here.

VI. SUMMARY

We have evaluated the static linear-response function
for noninteracting electrons in the infinite-barrier model
in the presence of an applied magnetic field. The calcula-
tions have been carried out in configuration space using
Laplace-transform methods so that explicit sums over
Landau levels are totally avoided. All quantum-
interference effects are rigorously included and exact
analytical results are given in closed form for both the
weak-field (in the form of a series expansion in powers of

the applied magnetic field strength) and in the quantum
high-field limit (where only one Landau level is occupied).
The intermediate de Haas —van Alphen regime of field
strengths is also briefly discussed. It is expected that our
new exact results will provide a convenient basis for fur-
ther developments in which time-dependent external per-
turbations, as well as electron-electron interactions, are in-
cluded.

For convenience we list the explicit forms for the
linear-response function as deduced from (14) in the zero-
field limit,
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sin(2krR ) I—cos(2kFR )
2k~R R'

sin(2kFR') —cos(2k+ R ')
2~+

4
RR'(R+R')

sin[kF(R +R ') ]
kr(R+R')

—cos[k~(R+R'] ' (21)

where R=r~ —r~ and R'=r] —r 2, while the quantum
high-field limit (18) gives

go(ri, r)=(p(3H) /(m'/irh ) e

X I si{2kp )
z —zi ) )+ si(2k@

) z+zi ( )

—2si[kr(
(
z —zi ( + [ z+zi [ )]I . (22)

A„(A, )
—= f J„{A(uu') ' ),0 {uu r)(3—v)/2

A()(A, )=4k, 'cos(2A, ),
A, (A, )=2k, 'sin(2A, ),

T

sin(2A, )
2 =

2A,

{Ala)

(A lb)

In a self-consistent calculation of p;(r ), (7) would be an
additional term in Poisson s equation. The dynamical na-
ture of the linear-response properties would entail factors
in (6) which involve a time integral. These results may be
employed in evaluating collective and dynamic aspects of
bounded plasmas in the presence of an external magnetic
field. This would increase our knowledge and appiecia-
tion of the nonlocal behavior of bounded plasmas under
various magnetic field conditions. We hope to report
such resQ1ts in the future.

emote added in proof. Professor Horing has pointed out
to us that a similar study is contained in the thesis of N.
Yildiz (Stevens Institute of Technology, Hoboken, New
Jersey). See also N. J. Horing and M. Yildiz, in Proceed-
ings of the Thirteenth International Conference on Semi
conductors, Rome, 1976, edited by F. G. Fumi (North-
Holland, Amsterdam, 1976), p. 1129; however, these re-
sults are within the momentum representation.

A 3(A, )=A, '[jo(2))I.)—cos(2A, )],
B,(k) —= i, du u'i'(u') ' '10().(uN') 'i')

=2k ' cos(2A, )—2A, '+4Jo(2&)

/&p)i/2(~1/2+pl/2)3/2 —vJ (&i/2+ pl/2)

() (a p)= f u'~'(u') '"J +—
0 Q Q

I/2

du

(A3)

—2m. [Jn(2A, ) Hi(2A, )—Ji(2A, ) Hn(2A, )]+2si(2A, ),
(A2)
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APPENDIX

A number of Bessel function integrals of an u~f~~iliar
nature occur in this calculation. %e simply record their
values here and refer the interested reader to a future re-
port for the details of the evaluations:

2I a—i/2 cos( i/2+ pi/2)+ [ ( i/2+ pi/2) ]I

1/2

0( tP)= I & i/2 JO
&
+du a p

(uu')'/2 u' u

2 st(& i/2+ pl/2)

The conventional notation for various special functions
has been followed. '
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