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Coefficients to 0 (a ) for the mixed fixed point of the nm-component field model
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The nrn-component field model has a number of applications in the description of critical phenomena.
The coefficients in the ~ expansion for the stability matrix eigenvalues and correlation function exponent q
for the mixed fixed point are presented to 0 (e ) and 0 (e ), respectively.

In this Brief Report we present the coefficients in the
e(=4 —d) expansion to order e' of the eigenvalues which
determine the stability of the mixed fixed point of the gen-
eral nm-component field model'
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nite when e 0. [In (2) p represents the external momen-
ta and K is an arbitrary rescaling factor. ]

The fixed points (u', 4') of the renormalization-group
flow are determined by the vanishing of the beta functions
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and

pg= K
(where, as usual, there is momentum conservation for all
products of P's in P').

The eigen values were determined by the method of
minimal subtraction2 in which the spin field renormalization
constant Z and renormalized coupling constants uR and 4R
are chosen so that after renormalization of the N point
functions,
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and using the. finiteness of the beta functions as e 0, we
obtain
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and similar expressions obtained from the above by inter-
changing u and b, . This is the generalization to two coupling
constants of Brezin's results.

It is therefore only necessary to obtain the coefficients in
Z„and Zq from the Feynman graph expansions for the two-
and four-point functions. The beta functions are then
determined immediately from (5) and the corresponding
identity for pq. The integrals associated with the Feynman
graphs are known from the calculation for the isotropic
model and therefore it was necessary only to determine the
multiplicities of the graphs and to perform the lengthy alge-

bra to derive Z„and Z~. The multiplicities of the graphs
were determined by a brute force counting of component
configurations and checked by an algebraic method. Identi-
ties like (6) provide a useful check on the self-consistency
of the calculations.

The beta functions were determined for general n and m

in the way described above. A computer program was then
written to determine the fixed points for particular values of
n and m. It was previously shown by Brezin, Le Guillou,
and Zinn-Justin' that this model has only three fixed points;
these are the nm-component and m-component isotropic
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fixed points and the "mixed" fixed point. These authors
found that to 0 (e) only one fixed point is stable.

Rather than present the fixed points themselves (which
have no direct physical meaning) we tabulate the eigen-
values X~ and P 2 of the stability matrix,

dPu ~Pu

ap, Bp&

when the derivatives are evaluated at the mixed fixed points
(Tables I and II). If both eigenvalues are positive, the asso-
ciated fixed point is stable and the critical behavior of exper-
imental systems undergoing second-order transitions is
determined only by such stable fixed points. Tables I and II
exhibit these eigenvalues for values of n and m of interest
for the study of dilute systems (n 0), ' magnetic systems
with cubic anisotropy4 (m = I) and systems which undergo
a change in the unit cell at the transition temperature
(m =2).'

In the course of this calculation we also determined the
eigenvalues of the above stability matrix at the isotropic
fixed points. However, in the case of the nm-component
isotropic fixed point, the stability is dependent on the prod-
uct nm and not on the particular value of m, and so has pre-
viously been determined by Ketley and Wallace6 to 0(u3).
We therefore refer the reader to the comments of these au-
thors on the considerable difficulty of determining the sta-
bility of this fixed point from truncated e expansions. The
stability of the m-component isotropic fixed point is expect-
ed to depend only on the sign of the specific-heat exponent
o. of the m-component isotropic model. 7 In the limit
n ~ this fixed point is expected to be stable only if

& 0. However, it may be shown that to all orders in e
the eigenvalues are independent of n.

In addition to the eigenvalues, we have determined the
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'See Ref. 15.

correlation function exponent

q=E logZ8

to order ~4. The results are listed in Table III. Writing
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the finiteness of q as e 0 leads to
1
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TABLE II. Coefficients of e, e, and e in the e expansion of the
eigenvalue A. 2 for the mixed fixed point (see text).

TABLE I. Coefficients of e, e, and e in the e expansion of the
eigenvalue A.

&
for the mixed fixed point (see text).

TABLE III. Coefficients of ~, e, and e in the e expansion of
the exponent q for the mixed fixed point (see text).
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and
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Thus, the determination of Z from the Feynman graph ex-
pansion for I' t" determines q and identities such as (10)
provide checks on the self-consistency of the calculation.

Many of the previous predictions for experimental sys-
tems from the nm-component model have been based on
truncation of the ~ expansions and setting & to one. Our
own interest in the model was stimulated by the applicability
of the cases m = 2, n = 2, and m = 2, n = 3 to systems which
undergo a change in the unit ce11 of the transition tempera-
ture. Both experimental and theoretical'~' results indi-
cate that o, is negative when m =2 for three-dimensional
systems, and hence the isotropic m-component fixed point
is expected to be stable in three dimensions in this case.
Truncation of the eigenvalues for the mixed fixed point of
0 (» ) and setting e to one for the cases m = 2, n = 2, and
m =2, n =3 leads to positive values for both eigenvalues.
If the mixed fixed point is stable in three dimensions for
these cases, we would have the interesting case of a region
of n and m values for which two fixed points are simulta-
neously stable. However, our present results show that, for
the cases m = 2, n = 2, and m = 2, n = 3 and for the case
m = 1, n = 3 (of interest in the study of systems with cubic
anisotropy), the second eigenvalue X2 (Table II) changes in
sign depending on the order at which the expansion is trun-
cated, and the relative magnitude of the coefficients indi-
cates that truncation of the expansion is probably an unreli-
able device (c.f. Ref. 6) for these eigenvalues.

It might be hoped that comparison of experimentally
determined values of the critical exponents with the values
determined for different fixed points would indicate which
fixed points are stable in three dimensions. It is therefore
highly desirable to extend the known ~ expansions for criti-
cal exponents at the mixed fixed point in order that proper
resumm ation methods may be employed. Our present
results for q are a first step in this direction.

A particular difficulty arises in trying to identify the ap-
propriate fixed point from experimentally determined ex-
ponents for systems with n =2, m =2. Previously, 5 it has
been noted that to order e the coefficients in the expansion
of q at the mixed fixed point are the same as those for a
four-component isotropic system. [A similar result holds to
0 (e ) for othe exponents. ] We find that this remains true
for the O(e~) coefficient (and is also true for the other
four-component system listed in Table III, n = 4, m = I).

In summary, reliable determination of the stability of the
mixed fixed point in the nm model seems to require the cal-
culation of further terms in the e expansion as well as an
appropriate resummation procedure. '

Note added. Since the submission of this manuscript, a
detailed study of the most general four-component @ field
model to 0 (e') has appeared. '
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