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Theory of spin-f1uctuation resistivity near the critical point of ferromagnets*
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A simple theory of electrical resistivity due to critical spin fluctuations R,(T) is presented in a form which is
valid for ferromagnets with anisotropic Fermi surfaces. Subject to reasonable restrictions on the electronic
band structure, it is shown that dR, (T)/d T is positive and proportional to the magnetic specific heat, in the
T~ T, limit, for all ferromagnets which can be described by a spin Hamiltonian with only short-range forces.
A detailed treatment is given of the temperature range above T, where short-range (R & g) correlations no
longer describe the spin fluctuations relevant to the resistivity problem. The gradual cross over to a regime
dominated by longer-range correlations and the corresponding possibility of a change in sign of dR, (T)l d T at
T g T, are studied and numerical results are given. The results are interpreted in terms of the structure of the
spin correlation function I'(q, T) and the Fermi-surface geometry and provide a unified interpretation of
available experimental results.

I. INTRODUCTION

The study of transport properties at magnetic
phase transitions, and of the electrical resistivity
in particular, has received a good deal of atten-
tion. For a survey of the experimental results
and for references to the original literature, we
refer the reader to recent review articles. ' '
There are still several questions which have not
yet been satisfactorily answered. The objective
of this work has been the generalization or exten-
sion of earlier theoretical results4 ' so as to ob-
tain a coherent and unified description of the dif-
ferent types of singularities or "anomalies" in
the temperature derivative p'(T) of the electrical
resistivity at the Curie temperature &~ of ferro-
magnets. For present purposes, ' we may dis-
tinguish three types of behavior of p'(T) near Tc.
These different forms exhibited by p'(T) are il-
lustrated schematically in Fig. 1. It should be
pointed out that this classification of behavior is
based on operational convenience and need not
imply fundamental distinctions. Assuming Mat-
thiessen's rule to provide an adequate approxi-
mation, the total resistivity is the sum of a spin-
fluctuation component p, (T), a phonon component

p»(T), and a contribution due to static imperfec-
tations and lattice defects p~. Taking the slowly
varying phonon background into account, it is seen
from Fig. 1 that nickel-like (type-I) ferromagnets
have p,'(T) & 0 for both T & To and T & Tc throughout
the entire observed critical range. In contrast,
the intermetallic compound Gd¹i„which is taken
to be the prototype of type-II ferromagnets, has
p,'(T) & 0 for T & To and for a short temperature
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FIG. 1. Temperature derivative of resistivity vs tem-
perature for type-. I, -II, and -III behavior near the
Curie temperature (indicated by an arrow). Reduced
temperature scale, as indicated by e, refers to the pro-
totypes discussed in the text. Note that the phonon
background contributes positive slope which must be
subtracted in deducing the spin component from the total
resistivity.
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interval above To; p,'(T) changes sign and is nega-
tive in most of the paramagnetic state. The re-
sistivity measured along the c axis of the rare-
earth metal gadolinium, which is the prototype
and perhaps the unique example of type-III ferro-
magnets, is different again. The immediate vicin-
ity of 1'~ is a bit unclear owing to the extremely
rapid variation of p,'(T) Ho.wever, with this pos-
sible reservation, p,'(T)&0 for T &To but p,'(T) &0
for the entire observed temperature range in the
paramagnetic state.

Theory and experiment are in good qualitative
agreement for type-I ferromagnets. By including
short-range correlations in the de Gennes-Frie-
del' model, Fisher and I anger' showed that p,'(T)
should vary as the magnetic specific heat C for
T- T~. These results were extended by Richard
and Geldart' (to be referred to as RG), who showed
that p,'(T)-C for T-To as well. RG also showed
that a consistent treatment of spin correlations in
an Ornstein-Zernike approximation could lead to
p,'(T) &0 in the paramagnetic range, and they dis-
cussed the possibility of a transition from short-
range dominance at 1'~ to long-range dominance
at higher temperature.

In Secs. II-IV, we extend the simple theory of
resistance due to critical spin fluctuations to apply,
as far as possible, to type-II and -III ferromag-
nets. Subject to reasonable conditions on the elec-
tronic band structure, it is proved analytically

that short-range spin fluctuations always lead to
p,'(T) &0 at To. The possibility of a crossover to
long-range dominance, described by a consistent
Ornstein-Zernike regime, is discussed in detail.
Special features introduced by small Fermi-sur-
face calipers and by anisotropic Fermi surfaces
are emphasized. Numerical results are given.
Section V consists of a summary of results, dis-
cussion of the applicability of the model results
to real systems, and some additional observa-
tions concerning the resistivity in the ordered
state.

II. RESISTIVITY IN s-f EXCHANGE MODEL

The electrical resistivity due to spin fluctuations
is due to electrons (labeled by wave number, band,
and spin-projection-state indices knv) being scat-
tered by spins S, which are taken to be localized
at lattice points R, . The (weak) coupling between
the conduction electrons and the localized spins
is of short-range s fexcha-nge origin. ' To ade-
quately discuss type-II and -III ferromagnets, we
require a formulation of the resistivity problem
which is valid for non-free-electron band struc-
ture. Useful solutions of the Boltzmann equation
are not available in such cases, so we shall rely
on the variational principle, according to which
the resistivity in the ith crystal direction satisfies

@k'n' v', knvf knv(1 fk'n' v')(4'knv 4k'n' v')

sf 2
B e +- v+wknv knv

kgv knv

with the equality holding when pk„, corresponds to the exact solution to the Boltzmann equation. ' In Eq.
(1), &e is the Boltzmann constant, T is the absolute temperature, e is the electron charge, f-„„,is the
Fermi function, &k„, is the electron energy, and &k„„ is the ith component of the electron velocity
Wkek„, /K. The transition rate for electron scattering in the second Born approximation is given, in the
paramagnetic state, by

Qk„v k „„—- ~@2 (~k „v knv~ g exp[-i(k —k') R] dt exp[i (e»v —ek n, )t/+]((o„, Sn)[o„v Sk(t)]),
R g ~ OO

(2)

where 0, is the volume per ion, M denotes a matrix element of the s-f exchange interaction, o = (o„,o„o,)
are the Pauli matrices, and Sk(t) has the time dependence of the Heisenberg picture.

The utility of the variational formulation obviously lies in the fact that simple "approximate" forms for
Qk„„may be used in Eq. (1), which, being stationary for the "exact" Qk„„, then yields an estimate of p,'.
An exact solution in simple isotropic cases and a physically reasonable approximation in anisotropic cases

iis given by pk„v —vk„„ this will be used exclusively in the following. Near the critical temperature the
spin-fluctuation lifetime is sufficiently long that the scattering is quasielastic. The time dependence of
Sa(t) may then be neglected. The time integral in Eq. (2) then yields the usual energy-conserving ~ func-
tion. As a further simplification, matrix elements of the short-range exchange interaction are replaced
by a suitable average value ~~~'. Putting all of these results into Eq. (1),
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p,'(T) = g (S, S-)G'(RT), (3)

where

+ e "" " "fk„(1 —fT) . )&(&T)n - F-k . )(UT~)n —&f, . )

kn 86
kn kn

Low-temperature approximations are valid for the Fermi functions since &~&&«&~, the Fermi energy.
It is convenient to normalize the resistivity to its high-temperature limit, po, =p,'(T»Tc). Introducing

I"(RT) =(S() 'SR)/S(S+1),

Eq. (3) becomes

R,'(T) =p,'(T)/p', = g I'(RT)4 (R), (8)

with

~(~T)n-eF)~( T)' ' —nF)("T)n —UT)ene}

C)(R)
f

( Tn- ~) ( T n
— z)(&In- &T n

}'
kn k'n'

(7)

It should be emphasized that these results are
valid for arbitrary nondegenerate band structures
and that the electron energies and velocities which
enter have the correct lattice periodicity when
translated by any reciprocal lattice vector. It is
then clear from Eq. (7) that

(8)

This sum rule was discussed by RG and has the
physical consequence that a periodic potential,
considered as a possible scattering mechanism,
yields zero resistance. Equation (8) will be im-
portant in later discussion. Since this result was
derived assuming a sharply defined Fermi surface
(which does not always exist due to disorder in the
system}, it is reasonable to ask whether Eq. (8}
still holds when the finite electron mean free path
is taken into account. For simplicity, consider a
single-band model and assume that the finite elec-
tron lifetime 7 =&/I' can be described in a Breit-
Wigner approximation, so that an additional factor
of e ~'~ ' appears in Eq. (2). Then the & function
in Eq. (4) is replaced by (I'/rr)[(eT, „—eT, „)'+I']
which is always finite. The velocity transfer fac-
tors in Eqs. (4) and (7) are assumed not to be
"smeared out" by the disorder, so that Eq. (8}
still results.

Upon some reflection, it is seen that this situa-
tion also persists even when multiple bands and
interband transitions are included, provided the
thermal (k~T) and disorder (I') smearing of the
Fermi surface can be neglected in comparison

to the excitation energies to the first normally un-
populated band. Thus, to this level of approxi-
mation, Eq. (8) may be considered to be of general
validity.

In obtaining estimates for R, (T), it is often con-
venient to use a free-electron model to describe
4'(R), or its corresponding Fourier integral trans-
form

e'(q) = f d'r@')r)e 'e'

For free electrons, the integrals in Eq. (7) are
elementary, and Eq. (9}yields

(9)

C'(q) = (3v'/2k')(q'/q)e(2k —q), (10)

where qf is the component of q in the direction of
the applied field and e(x) is the usual unit step
function. In the case where disorder smearing of
the electron energy is explicitly included in a
Brett-Wigner approximation (as discussed above),
Eq. (10) can be shown to be modified by an addi-
tional factor of 4qe~/vk~l' in the q «1/l limit,
where L is the electron mean free path. This will
be commented upon in the Sec. III.

In the case of type-III ferromagnets, we shall
consider a model in which the electron (hole} dis-
persion law is anisotropic, having only cylindrical
symmetry, and is of the form

e T,
= + 5'[k2/2m, + (k2+ k', )/2m, ] + const,

where the + (-) sign refers to electron (hole) exci-
tations. 4'(q) can still be explicitly evaluated in
this model. From Eqs. (7) and (9), we require
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if d )3 6(e)( —ey )6 (e), +(( —ep )(U), —L)), (.q)

fd3&d3&'6(e- —e )6(~-, —e )(U-' —v-', )3

(12)

Changing variables by &'- (v'm')k', etc. , the in-
tegration in Eq. (12) is reduced to the previous
isotropic case and we obtain

critical specific heat C -& ", is assumed to be of
a reasonably short-range Heisenberg form. In
order to be consistent with the specific heat, the
spin correlation function must be

I'(RT) =D (M)/(R/a),

where x =1/g, a is the lattice constant, and D(xR)
is given for KR«1 by"

Fc Fa
D(x) =D -D x"-"""-D,x "—

0 (16)

where kr, (&„,} is half the Fermi-surface caliper
in the c (a) direction and

q3 =[q', +(q„'+q', )m, /m, ] ~3.

Of course, precisely this same r(RT} determines
the electrical resistivity due to critical spin fluc-
tuations, so we have

6R~3(T) =R(3(T)—R3(Tc) =A'e' "+B'e+
On the basis of these simple models for the

electron dispersion law and Fermi surface, Secs.
III and IV deal with how different types of spin
correlation functions yield characteristic resistive
anomalies.

Various forms can be written for the resistivity;
for example, if a Fourier representation is used
for the functions in Eq. (6}, we have

where

and

A' = D, (z,a)"—"' " g (R/a)~C'(R)
R

(17)

(18)

(14)

where the integration is over all q space. The
Fourier lattice transforms are defined by

Ei (q, T) = g e ' "' E(R, T),

and are related to Fourier integral transforms by

(15)

where the last sum is over all reciprocal-lattice
vectors (including zero). For simplicity, we have
neglected the minor complications which are re-
quired in the case of a non-Bravais lattice.

III. SPIN-FLUCTUATION RESISTIVITY FOR T~ T'

It was noted by Fisher and Langer' that the lat-
tice sum in Eq. (6) has an inherent cutoff R, (which
may be the finite electron mean free path or anoth-
er relevant electronic length scale), so that the
dominant contributions to R(3(T}come from terms
in the sum for which iRi&R, . However, the length
scale of the spin correlation function is $(T)

, which increases indefinitely as

e = (T —T c)/T c- 0

(standard notation for critical indices will be
used'0). Consequently, the form of the correlation
function used in Eq. (6) must be that appropriate
to the limit R&R,«$ when 1' is sufficiently close
to T~. The effective spin-spin interaction, which
determines the magnetic internal energy and the

B' is given by a similar form in which n-0.
It was an approximate version of Eq. (18) which

was evaluated by Fisher and Langer, ' who con-
cluded that A' )0 and hence p'(T) )0 near Tc for
type-I ferromagnets. The work of BG, who eval-
uated Eq. (18) by numerical methods, was re-
stricted to a free-electron model. We now extend
these results by giving a simple analytical demon-
stration that A.' and dp'/dT are positive for T- Te
for arbitrary nondegenerate band structure.

Since the contributions to the sum in Eq. (6)
come from R(R„ it is clear that the sum will be
virtually unchanged by introducing an additional
factor e, provided that &«1/R, and that there
is no change at all if the ~-0 limit is taken at
some appropriate point. However, this device
serves to define the Fourier transform of

Explicitly, the Fourier integral transform is

6r~(qT) =

4', (((a)" )i" r(2+ /) sin[(2+/) tan '(q/&)J
a 4q (q3 ~ y3)t+(('/3

(20)

For the commonly occurring critical exponents,
0& ((() &1 (in fact, (I) & 3), so it is seen from Eq. (20)
that 6ri (qT) is positive for q», and is negative
for q & A,„where &, = X tan[a/(2 + (t))]. These nega-
tive contributions may be isolated by writing Eq.
(17) as
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d Q6R,'(T) = q, e,'(q)6r,'(qT) . (21)

Note from Eqs. (7) and (9) that @'z(q)&0 and that
@'z'(q} vanishes (at least linearly) when q-5. Also,
because of the Bloch periodicity of the velocities
in Eq. (7}, @z'(q}-0 when q- G, where G is a re-
ciprocal-lattice vector. From Eqs. (15) and (20),
61'~(qT) is negative for ~q —G~«„where G is any
reciprocal-lattice vector (including zero).

First consider the negative contribution to Eq.
(21) from q & &,. From Eq. (20), it is easy to place
upper and lower bounds on 61', (qT} in this region,
so that the magnitude of the corresponding con-
tribution to Eq. (21} is of order

for T-T~, is valid for a wide class of band struc-
tures as described in Sec. II. The specific predic-
tion of the T dependence,

R~s
St

q
3+0

p

if the finite electron mean free path is neglected.
If the finite mean free path is retained as in Sec.
II, 4'z(q}~q' for q-0, so ~' ~ results. The cor-
responding negative contributions to Eq. (21) from
the regions where ~q —G~&&, are also of order

4&(pl- Ql de I ~q . C}(- gl-0
( ~-of&a Iq —Gl

since @z'(q) vanishes (at least linearly) for q- G.
We conclude that all negative contributions can be
isolated and that the &- 0 limit can be taken (just
as in the original R-space sums) and that only
Positive contributions to 6R~s (T) remain.

The conclusion that 6Rs(T)&0, so that

expansion, Eq. (16), for D(x) must fail for values
of x = ~ somewhat less than unity. Thus an al-
ternative form for I'(RT) must be found which is
valid for It'R ~ 1. One such approximation, sug-
gested by Ferer, Moore, and Wortis, " is of modi-
fied Ornstein-Zernike (OZ) form

1,
T(RT) =

C (za)"
R a

R=0,

R&a
(22)

1
I oz(RT) =

C ], R&a,
(23)

where the constant C =0.2 is taken to fit the near-
est-neighbor correlations near Tc. This approxi-
mation satisfies two major requirements for a
physically correct correlation function for simple
ferromagnets: (a) I'(R, T) =1 at R=6 for all T,
and (b} I'(RT} is a decreasing function of both R
and & for R40. It was shown by RG that the
Fourier lattice transform of Eq. (23), I'o~ (q, T},
qualitatively resembles the exact correlation
function. ' In particular, dl o~ (q, T}/dT is positive
for ~ «g and negative for q «&, so that at fixed
q, I o~~(q, T) has a maximum as a function of T at
To(q)&To. Consequently, Eq. (23) describes not
only the long-range (/&R&1) regime but also quali-
tatively describes the gross features (although not
the precise temperature dependence, of course)
of correlations closer to &&.

Using I' (R, T), it is very simple to calculate
the contribution of spin fluctuations to physical
properties of the system. Consider first the elec-
trical resistivity. From Eqs. (6) and (23),

which was estimated, on the basis of numerical
analysis of Ising-model data, to be valid for ~a
&0.1. A simpler approximation of OZ form was in-
tr oduced by RG:

followed from the scaling form of Eqs. (15) and
(16). However, the conclusion that 6Rs(T) &0 for
7.' —T ~ would follow for a wide class of functions
I'(RT}, subject to being appropriately decreasing
functions of both R and 1', is insensitive to moder-
ate deviations from strong scaling. These results
are all valid in the strict limit of T- &~. For
finite values of &, higher-order terms in the ex-
pansion of Eq. (16) become important, and the
possibility that the short-range expansion may
break down and that 6Rs (T) may change sign cannot
be excluded. This is discussed in Sec. IV.

so

Cae '~
R~s(T) =1+Q 4'(R)

R a'p

s( } C Q @c(R) KR

BK
R&p

Ca 1 — 4" 8 =Ca
R

For K- 0, the right-hand side is just

(24)

(25)

IV. SPIN-FLUCTUATION RESISTIVITY FOR T) T~

The results of Sec. III are, strictly speaking,
limited to the 1'- T ~ limit, since the short-range

from Eq. (8). Thus, a treatment of correlations
in a consistent OZ approximation also yields

BRs (T)
dr
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near T~, in agreement with the treatment in Sec.
III. The corresponding calculation of the heat
capacity is also elementary. Assuming a Heisen-
berg model for the spin-spin interaction, the spe-
cific heat per spin is

N dT-- R
R&p

-Ca r'r(T)S(S +1)g d(R)
R &p

= Ca~'( T}(-2Te), (26)

where T~p is the mean-field approximation to the
critical temperature. Thus &R~(T)/BT and Cz(T)/N
are found to have the same temperature dependence
near Te and their ratio is 2/(3Tc, ), just as was
found by Mannari" via a very different approach.

These results strongly suggest that the consis-
tent OZ approximation, Eq. (23), may be quite
adequate to discuss the crossover from short-
range dominance near T~ to long-range dominance
at higher temperatures. The importance of doing
so within a unified, albeit approximate, theory
should not be underestimated.

Before continuing, it is necessary to be more
precise about the cutoff &, which enters into the
electronic factor C'(R) in Eq. (24). It has already
been indicated' that the finite electron mean free
path / is a possible cutoff. However, subject to a
sufficiently sharp Fermi surface, C" (R) contains
oscillatory factors (e.g. , cos2k~R in the case of
an isotropic Fermi surface) which are equally
effective as cutoffs, so that (2k+) ' is also a pos-
sible cutoff. For any metals to which the theory of
Sec. II may reasonably be expected to apply, it is
necessary that disorder smearing of the Fermi
surface be relatively unimportant, i.e., 1/l must
be somewhat less than 2&~. In this case, the ef-
fective cutoff of R-space sums is the inverse
Fermi-surface caliper, and the dominant con-
tributions to the resistivity come from transitions
with

dR~ (T) Cavrr
(27)

with

S'(z) =1 —g 4" (R)e "
R

1 g d'q 8 rrrr

0, o (2rr)' l(q+G)'+z'I'

(28)

Note that all terms in the sum over reciprocal-
lattice vectors are positive and tend to reduce the
slope of the resistivity from its value near T~. In
the range of present interest, & and 2&~ are both
significantly less than 2rr/a, so the sum in Eq.
(28) converges rapidly and is dominated by the
G =0 term. " Using Eq. (10) and averaging over
the three equivalent crystal directions, the inte-
gral in Eq. (28) is easily evaluated to give

2 1 +p
rr2d' P' 1 + P' (29)

where d =k~a/rr and p=&/2k~. In Fig. 2, we have
plotted

dR~(T) ~ 1 dRe(T)
3

as fcc Ni (type-I) and cubic I aves phase Gd¹,
(type-II), is that the dominant current carriers
are associated with isotropic (electron or hole)
pockets of sP character. The Fermi-surface cali-
per 2&~ of such pockets is expected to be somewhat
less than the dimension -2n'/a, of the first Brillouin
zone. Values of 2k„/(2a/a) in the range 0.1-0.5
are not unreasonable. Type-III ferromagnets will
be discussed later.

Having decided upon the relevant model param-
eters, the slope of the resistivity is given by Eq.
(25}, which can be rewritten

in agreement with the conclusion of Fisher and
Langer'; the electron mean free path plays no
essential role.

The above considerations suggest that rr(T)/2k+
is a relevant parameter to characterize the pos-
sible sign change of dR~(T)/dT and the crossover
from short-range to long-range dominance. It is
thus necessary to estimate, albeit very roughly,
the value of A'~ appropriate to the metals which
we are attempting to describe. The band structure
of magnetic metals is rather complex, of course.
The simplest model which we may reasonably
adopt in the case of basically cubic metals, such

as a function of log, p&, for a range of values of d.
First consider the case of type-I ferromagnets,

which have high values of T&. It is clear that the
positive slope of R~(T) observed for these sys-
tems in the paramagnetic range" is consistent
with Fig. 2, provided the substantial sP pockets
of current carriers have Fermi-surface calipers
2k' which satisfy d =k~a/rr+d =0.6. On the other
hand, type-II ferromagnets have considerably
lower transition temperatures (e.g. , Tc for GdNi,
is an order of magnitude smaller than that for Ni).
The fact that their resistivity curves exhibit more
structure than do type-I ferromagnets over the
same range of & suggests, on the basis of Fig. 2,
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FIG. 2. Reduced temperature derivative of resistiv-
ity vs the logarithm of reduced temperature for the is-
otropic model. Each curve is labeled by the corres-
ponding vaLue of 2k+/(2w/a), i.e., 0.3, 0.4, and 0.5.

that the dominant current carriers in type-II fer-
romagnets are to be associated with correspond-
ingly smaller Fermi-surface pockets. This sug-
gestion is consistent with the relatively low transi-
tion temperatures for such systems in which the
dominant magnetic interaction between the localized
rare-earth ions is of indirect exchange origin.
We conclude that both type-I and type-II ferro-
magnets can be adequately accounted for by the
present description. The substantial differences
observed in their resistivities are ascribed to
Fermi-surface characteristics rather than to qual-
itative differences of a fundamental nature. In
either case, of course, dR~ (T)/dT &0 varies as the
magnetic specific heat for T sufficiently close to

Reliable estimates of the temperature range
of validity of the corresponding power law are not
possible without adequate knowledge of the higher-
order terms in the expansion for D(KR) in Eq. (18).
This point will not be pursued-here; it is sufficient
to note that the short-range expansion is certainly
invalid in the temperature range where dRz (T)/dT
changes sign.

The case of type-III ferromagnets is particularly
intriguing for several reasons, among which are
the following: The resistivity of Gd is highly aniso-
tropic; when measured with the current flowing
along the c axis of the hcp crystal, R'(T) clearly
has negative slope for 1'& T~ and throughout the

observed paramagnetic range. This fact has to be
reconciled with the conclusions of Sec. III and will
be returned to subsequently. However, the resis-
tivity of Gd with the current flowing in the basal
plane, R (T), has Positive slope and, generally
speaking, has roughly the form characteristic of
type-I ferromagnets. Our first task will be to
show how dR'(T)/dT &0 with dR'(T)/dT & 0 at the
same temperature can be consistently obtained in
the paramagnetic state. From the previous results
for isotropic systems, it is clear that the Fermi-
surface geometry may play an important role.
The Fermi surface of Gd is known from band-
structure calculations to be highly anisotropic;
for details we refer the reader to a recent review
by Freeman. " The only portions of the calculated
(hole) Fermi surface which have significant veloc-
ity components parallel to the c axis of the hcp
Brillouin zone are found in the network of arms
located near the hexagonal faces of the zone." The
Fermi-surface caliper in the c axis direction of
these arms is rather small, but the average cali-
per in the basal plane is somewhat larger. Rela-
tive to the appropriate reciprocal-lattice vectors,
2k+, =0.2(2w/c) while 2/~~=0. 4(4m/&3 a), where c
and a denote the usual lattice constants.

We believe that the above features of the Fermi
surface of Gd play an important role in deter-
mining the resistivity, and accordingly have adopt-
ed the following simple model to illustrate the
point: Portions of the Fermi surface having their
velocity vectors largely perpendicular to the c
axis of the zone are ignored totally, and the net-
work of arms is replaced by a single ellipsoid
having cylinder symmetry about the c axis. The
Fermi-surface calipers of this ellipsoid are taken
to be 24~, and 2k», as given above, for the e and
basal-plane axes, respectively. The dispersion
law for this model has already been stated in Eq.
(11), and the corresponding anisotropic @1(q),
which is given by Eq. (13), can be inserted into

Eq. (28) to yield dR~~(T)/de for i =c or i =b. The
integral in Eq. (28) can be reduced to a single
quadrature, which is not expressible in terms of
the usual elementary functions and was therefore
evaluated numerically. We again retained only the
G =t) term in the sum over reciprocal-lattice vec-
tors which is valid for 2&„„2k», and & less than
half the magnitude of the smallest nonzero recip-
rocal-lattice vectors. Calculations were made for
the values of 2&» and 2&~, indicated above for a
wide range of temperatures. The results for
dR'e (T)/de are plotted in Fig. 3 as a function of
logjo&. For & & 10 ', which corresponds to T —Tc
-0.3 K in the case of Gd, it is seen that slope of
R~ (T) is negative and is an order of magnitude
stronger than the slope of R~(T), which is initially
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FIG. 3. Reduced temperature derivative of resistivity
vs the logarithm of reduced temperature for the cylin-
drical-symmetry model. Curves are labeled by & and
c, which refer to the direction in which the resistivity
is measured.

V. SUMMARY AND CONCLUSIONS

Our objective has been the development of a
simple theory which can reasonably describe, in a
unified way, the three distinct types of behavior
of electrical resistivity observed near the critical
point of ferromagnets. Subject to reasonable sim-
plifying approximations, it has been proved quite
generally that dR~ (T)/dT & 0 and varies as the
magnetic specific heat at & =Tc. This universal
feature is strictly limited to &-&c, and as T in-
creases above Tc, length scales other than g =I/a'
become important. The most significant of these
is the inverse Fermi-surface caliper, rather than
the finite electron mean free path. As a conse-
quence, large-angle scattering through g =2&~
dominates both the magnitude and the temperature

positive but then changes sign and is very small
(and would then be virtually impossible to dis-
tinguish from the phonon background). Consequent-
ly, we conclude that several features of the re-
sistivity of type-III ferromagnets may also be ac-
counted for by spin-fluctuation scattering, provided
the Fermi-surface anisotropy is included, with the
possible exception of a very small temperature
region near Tc. Of course, this temperature re-
gion is a very sensitive one in complex ferromag-
nets, and a number of other effects may be com-
peting with direct spin-fluctuation scattering. How-
ever, it is clear that the latter cannot be neglected.

dependence of the resistivity in the critical range.
To describe the gradual crossover from short-
range dominance at Tc to "long-range" dominance
at higher temperature and, in particular, the possi-
bility of a change in sign of dR~(T)/dT, it is therefore
essential to describe correctly the spin correlations
near T,(2&~)where To(2&~) denotes the temperature
at which I'(q =2&~, T) has its maximum as a, func-
tion of T. Bearing these facts in mind, the results
of Sec. IV are readily understandable. In particu-
lar, the differences between type-I and -II ferro-
magnets are ascribable to the role played by

T(2k~) in the corresponding ranges of &. In the
case of the anisotropic Fermi surface which was
used to describe type-III ferromagnets, similar
roles are played by To(2&~,) and To(2&z~). It is
particularly important to note that the small Fer-
mi-surface caliper in the c direction implies that
the crossover, as the temperature is lowered,
from negative dR~ (T)/dT to positive values (as
required at Tc) occurs very close to Tc (e.g. ,
e & 10 ' in the model calculation of Sec. IV). This
is clearly a difficult proposition to verify in detail
experimentally, but it is consistent with the ex-
tremely rapid variation of dR'(T)/dT which is ob-
ser ved exper imentally in the immediate vic inity
of ~c.

Vfe conclude that the results of our calculations
of the contribution to resistivity due to spin fluc-
tuations are consistent with all of the experimental
facts indicated in Fig. 1, provided that (a) a rea-
sonable spin correlation function is used, and (b)
the effects of Fermi-surface geometry are taken
into account. Of course, in a final analysis, one
must not be so naive as to ignore the many other
complications which exist in real systems. For
example, it has been suggested that the negative
slope of R(T) above Tc in the case of c-axis Gd is
due primarily to the anomalous thermal expansion'
reflected in dc(T)/dT. There is certainly no doubt
that this effect exists, "in addition to the usual
spin-fluctuation resistivity described in Sec. IV,
but we are not convinced that it plays a dominant
role. A number of other effects also merit quan-
titative consideration. The long-range dipole-dipole
forces could lead to a crossover to a regime domi-
nated by dipolar interactions" in the immediate
vicinity of Tc. The role of strains and sample-
dependent inhomogeneities in broadening the transi-
tion should be further elucidated. Inelastic scat-
tering and umklapp processes in systems with
complex band structures should also be studied.
The role of anisotropy, with respect to the crystal
axes, of I'(R, T) may also be relevant in noncubic
systems.

All of the above analysis has been limited to the
paramagnetic state, & -Tc. Some remarks con-
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cerning resistivity in the ordered state below T~
are in order. There are two distinct ways in which
long-range order, o(T) o-~e~, might be thought to
be reflected in the resistivity. One of these ~as
shown to be spurious by RG. A second way, of
which BG were also aware, entails the long-range
order appearing in the average Bloch potential for
the electrons. The electron energies and velocities
would thereby contribute a term to dR(T)/dT which
varies as ~&~' ', as pointed out by Kasuya and
Kondo. " This effect is also spurious. The inclu-
sion of the long-range order, or background mag-
netization, in the average Bloch potential is mani-
festly a mean-field approximation which is par-
ticularly bad near T~. The dominant role is played
by fluctuations, so that any electron renormaliza-
tion effects must reflect the specific-heat tem-
perature dependence for T- T~. This conclusion
also follows from noting that (S a So )= S(S +1) for
H =5 in the ordered state, just as for T & Tc and

that the near-neighbor correlations still carry the
specific-heat singularity for T-T~. The tem-
perature dependence of the spin correlations for
R» t' [which is where the o'(T) term appears] is
just as irrelevant for & & as it is for &~ . The
basic reason is again the fact that the electronic
coherence is limited by an inherent cutoff due to
the sharp Fermi surface. Consequently, only
short-range correlations are reflected in the re-
sistivity, and dR(T)/dT varies as the magnetic
specific heat for T-Tc. Of course, the inclusion
of long-range order in the average Bloch potential
by a mean-field approximation becomes realistic
somewhat below T&, but it is then appropriate to
consider also the role of electron-magnon scatter-
ing.

The methods of analysis described in this paper
have also been applied to antiferromagnets. The
results will be published later in a separate paper.
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