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Dislocations and morphological instabilities:
Continuum modeling of misfitting heteroepitaxial films
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We present a continuum model of nonequilibrium heterogeneous elastic systems, which includes both
smooth and singular strains, as well as their coupling to free surfaces, in two spatial dimensions. It accurately
includes nucleation, interactions, and dynamics of dislocations. In particular, we demonstrate that the model
recovers the well-known Matthews-Blakeslee critical thickness for the nucleation of misfit dislocations. For
misfitting heteroepitaxial films above the critical thickness, dislocations compete with the stress-induced in-
stability of the film-vapor interface as a strain-relief mechanism. At early times, the dislocations slow down the
initial instability by climbing to the film-substrate interface and relaxing the misfit strain partially. However,
the late-time morphology is determined by the strong interaction between the stress concentration at the bottom
of the grooves and the singular stresses due to dislocations.
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I. INTRODUCTION

The precise control of the morphology of thin films und
strain is an important ingredient in the fabrication of micr
electronics. For example, various semiconductor alloys
commonly used to engineer devices with particular value
the band gap. Due to the misfit in the constituent’s latt
constants and silicon, the most commonly used substrate
film is typically under a compressive misfit stress. It is no
understood that such strained films may undergo a morp
logical instability owing to the stress in the film. This inst
bility, known as the Asaro-Tiller-Grinfeld1,2 ~ATG! instabil-
ity, allows the film to partially relax its elastic energy b
becoming corrugated~‘‘buckling’’ !, thereby making the
growth of planar films difficult to achieve.3–9 An alternative
strain-relief mode can be important for a sufficiently thi
film:10–13 misfit dislocations can nucleate and climb to t
film-substrate interface, thereby relaxing strain. This la
mechanism leads typically to a large number of thread
dislocations that can deteriorate the electrical properties
the film.

For some applications, films need not be grown plan
For example, there is a growing need to manufacture sm
scale quantum dots (L;1 –10 nm), which can be used i
such novel optoelectronic devices as single-electron tran
tors, quantum-well lasers, and light-emitting diodes. Th
nanoscale components have been traditionally obtained f
planar films by lithographic techniques. However, such lith
graphic techniques incur practical limitations as the size
the desired device is decreased. Hence it has been sugg
that one can employ the ATG instability as a means to s
assemble regular patterns. In that case, the size and sp
arrangement of the islands determines the optoelectr
properties of the device. Therefore, there is a need fo
better understanding of how the growth conditions and m
terials parameters affect the final morphology of the film.
0163-1829/2002/65~16!/165414~20!/$20.00 65 1654
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Experiments suggest9,14–17 that both of these
mechanisms—the buckling of the film and the nucleation
dislocations—take place in supercritical films. It has be
demonstrated17 recently that groove alignment in Si12xGex
films grown on a Si surface depends crucially upon whet
misfit dislocations are present or not. In particular, the dis
cations line up at the film-substrate interface in the^110&
direction, and modify the overall strain pattern in such a w
that the subsequent growth of the film occurs on top of
dislocations. Even a qualitative understanding of the m
phology requires an approach that treats explicitly b
mechanisms at the same time.

To this end, in this paper we introduce a continuum mo
that treats both strain-relief mechanisms on an equal foot
It implicitly includes the nonlinearities arising from free su
faces, as well as singular interactions between dislocat
and smooth misfit strains. The interaction between nonu
form stresses and plasticity is theoretically challenging
address, since the former constitutes a free-boundary p
lem, while the latter involves singular contributions to th
strain. In order to overcome the first difficulty, we have e
ployed a continuum model based on the order-paramete~or
phase-field! concept that implicitly takes free boundaries in
account. In order to overcome the second difficulty, we
troduce a ghost field that conveniently mediates the sing
interaction between the dislocations. We give the mode
detailed exposition, as well as report on some numerical t
with the model. In particular, it is numerically demonstrat
that our model recovers the well-known Matthews-Blakes
criterion for the nucleation of misfit dislocations. Furthe
more, it is shown that the model accurately incorporates
location interactions in thin films.

After reporting results pertaining to dislocation energet
in a static film, we apply the model to the dynamics of thi
film growth in the presence of dislocations. We show th
depending on their mobility and density, dislocations c
have a strong effect on the dynamics. In particular, we de
©2002 The American Physical Society14-1
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onstrate that the film-vapor interface may be stabilized du
the presence of misfit dislocations, if the dislocations scr
the misfit stress completely. The effect of dislocations can
tuned by varying the mobility, or the density of dislocation
through their core energy. We find that dislocations gener
coexist with the ATG instability. The growth rates of th
instability can be continuously tuned by dislocation mobil
and core energy. In the nonlinear regime, defects lead
slower coarsening of the morphology due to a buildup
dislocations ahead of the groove tips.

This paper is organized as follows. First, in Sec. II w
discuss the two modes of strain relief in thin-film growt
and the concepts of critical thickness and the ATG instabi
In Sec. III we review related work. The model is given
detailed exposition in Sec. IV. Our results are summarize
Sec. V, for both static and evolving films. It is shown nume
cally that the Matthews-Blakeslee condition is recovered
dislocations in a static planar film. Furthermore, the coup
dynamics of the thin film and dislocations are studied n
merically. The paper ends with a conclusion and discuss
in Sec. VI. Mathematical details are given in the Appendic

II. STRAIN-RELIEF MECHANISMS

A. Misfit dislocations and the critical thickness

If a film is grown on a substrate with a different lattic
constant, that epilayer will usually be strained. It is w
known that, for thick enough films, threading dislocatio
extend to the film-substrate interface and relax the m
stress in the film by destroying the coherency of the fil
substrate interface.10–12,18Below this thickness, dislocation
are thermodynamically unstable and the system must re
to some other means to relax the stress.

Partially relaxing coherency at the interface allows t
lattice constant in the epilayer to approach its equilibriu
value. However, locations where coherency is lost co
spond to dislocations. Hence, misfit strain is partia
screened by the interfacial misfit dislocations. This leads
an overall decrease in the net misfit strain and hence s
energy. Upon employing energy-balance arguments, M
thews and Blakeslee12,13 derived the following expression
for the critical thicknesshc and the residual equilibrium
strain f * :

hc5
mb

4pYf
ln~hc /b!1const ~1!

and

f * 5
mb

4pYh
@ ln~h/b!11#. ~2!

Note that, in general,f * Þ0, which implies that the strain is
only partially relaxed by the dislocations. Typically,hc;10
atomic layers for a misfit strainf '0.1. Dynamically, defects
are expected to nucleate at the film-vapor interface and g
down to the film-substrate interface. Experiments of Gao
Nix9 demonstrated that films can be grown past their nom
critical thicknesses due to kinetic limitations on dislocati
formation. However, upon annealing, they observed dislo
16541
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tion nucleation, in addition to a morphological instability o
the initially flat surface. This will be discussed further belo

B. Asaro-Tiller-Grinfeld instability of coherent
subcritical films

While misfit dislocations are expected to relax the mis
strain partially for films of thicknessh.hc , the system can
also relax its total energy through a morphological AT
instability.1–3,7This mode occurs in films below their critica
thickness. As a consequence of this instability, the free in
face develops grooves and islands form with a well-defin
wavelength, while the film-substrate interface remains coh
ent. This mode has been identified19 with dislocation-free
layer and island~Stranski-Krastanov! growth.

Consider a semi-infinite two-dimensional film,1–3,20,21

where the interface is given byy5h(x) in the rW5(x,y)
plane andh(x)5h0sin(qx) whereq is a wave number. The
boundary conditions on the stress aresxx(x,y→2`)5sext
and syy(x,y→2`)5sxy(x,y→2`)50, which gives rise
to a uniaxial stress in the unperturbed film. Furthermo
assume that the interface is traction-free, i.e.,s i j nj50, or
snn5snt50, wheren̂ denotes the unit normal to the inte
face, t̂ denotes the tangential direction, and a summat
convention is implicit over repeated indices. The resulti
tangential stress at the interface iss tt5sext@1
22qh0sin(qx)#1O(h0

2q2). In particular, this equation implies
that the perturbation of the free interface leads to a str
concentration at the valleys, while the stress is relaxed at
hilltops. This stress gradient can drive mass flux from
valleys to the hills, hence increasing corrugation. At su
ciently short-length scales, the surface tensiong suppresses
the instability. The typical scalel of the grooved pattern can
be obtained by carrying out a linear-stability analysis.
straightforward calculation21 yields ;gY/sext

2 . For a typical
misfit strain of f 50.1, this impliesl;100–1000 Å.

Ozkanet al.17 have clearly illustrated the importance o
interactions between the smooth strains and dislocations
particular, in the case of supercritical films, initially the film
roughens as subcritical ones. However, the grooves ac
preferred nucleation sites for misfit dislocations,9,14–16 and
once these dislocations are located at the film-substrate in
face, they modify the strain distribution in the film that eve
tually causes the surface ridges to align with the dislocatio
Therefore, in order to understand the evolution of the m
phology it is important to consider both mechanisms on
equal footing.

III. REVIEW OF RELATED WORK

Since the discovery of the ATG instability and the role
misfit dislocations in strain relief, they have been studied a
discussed by various authors.9 Spenceret al.4 performed a
linear-stability analysis of a growing epitaxially straine
dislocation-free solid film, and determined the conditions
which a growing film is unstable. Guyer and Voorhees6 stud-
ied a model of alloy thin film growing by deposition flu
from the vapor, and also carried out a linear-stability analy
for the free surface. They demonstrated that, contrary
4-2
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DISLOCATIONS AND MORPHOLOGICAL . . . PHYSICAL REVIEW B 65 165414
single-component films, under certain conditions, ten
misfit strain can completely stabilize a growing film, where
compressive strains of the same magnitude would be de
bilizing.

To address nonlinearities, Yang and Srolovitz5,22 derived
an evolution equation for the free surface of a tw
dimensional system and found numerically that deep, cra
like grooves form as a result of the instability. In particul
they observed accelerating grooves with finite-time sin
larities manifested in the apparent divergence of the gro
growth rate. However, they did not study the evolution of t
interface in the grooved regime. To this end, two of us7 pro-
posed a model, free from numerical instabilities, based
the Ginsburg-Landau approach to study the strain-re
mechanism at a free surface in two and three dimensi
The model permitted the simulation of the surface instabil
and the subsequent competitive coarsening of the interfac
the nonlinear regime, in qualitative agreement with expe
ments of Gao and Nix.9 Furthermore, this technique mad
three-dimensional simulations possible. A model similar
spirit was proposed and studied by Kassner a
co-workers.8,23

The role of misfit dislocations in the strain-relief mech
nism of thin films was addressed by Donget al.,24 who stud-
ied the growth and relaxation of two-dimensional misfitti
films through molecular-dynamics simulations. They dem
strated that, above a critical thickness, dislocations nucl
and relax most of the misfit. They also demonstrated that
surface morphology plays an important role in the nucleat
of dislocations, in which the formation of deep-valley stru
tures acted as preferential nucleation sites for dislocatio
However, due to small~microscopic! length and time scale
amenable to molecular-dynamics simulations, they did
address the physics in the nonlinear regime where b
coarsening and misfit dislocations and their interactions c
tribute to the morphology of the film.

A different type of approach to studying dynamics of d
locations in three dimensions under external stresses wa
dertaken by Schwarz,25 where the motion of dislocation line
is driven by the net local stress through the Peach-Koe
force. While treating the interactions and topology of t
dislocation network physically, the motion of the dislocatio
was not coupled to the evolution of a free surface, and th
fore, the response of the free surface to both nonsingular
singular stresses could not be addressed.

All of the approaches presented above have some inhe
shortcomings. Continuum models presented to date4–8 only
include smooth elastic fields, and dislocations have b
omitted. The molecular-dynamics simulations of Do
et al.24 include dislocations implicitly. However, length an
time scales amenable to molecular-dynamics studies
quite short (;1027 m and ;1028 s). Therefore, it is
worthwhile to develop a coarse-grained continuum formu
tion, free from length and time-scale restrictions, which
able to treat smooth elastic strains as well as the nuclea
interaction, and dynamics of dislocations in heterogene
strained systems. As discussed above, this approach n
sarily leads to a free-boundary problem with singular lon
ranged elastic fields. A continuum approach constitute
16541
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minimal model whose generic features are applicable
many microscopically different systems.26

IV. MODEL

Our approach is based on the phase-field method
ployed by two of us7 and Kassner and co-workers8,23 to
model the ATG instability, in the absence of dislocations.
preliminary account of some aspects of this work can
found in Ref. 27. We couple a scalar vapor-solid order
rameter to vectorial displacement and dislocation den
fields, including an elastically inert solid substrate. Disloc
tions are characterized by a vector fieldbW (rW), which gives
the local Burger’s vector density. Dislocations give rise
and interact through singular stresses; in particular, upon
suming mechanical equilibrium, one can relatebW (rW) to the
singular part of the stress tensor through the Airy str
function.28 Moreover, correct and accurate treatment of the
singular interactions is essential. To this end, we make us
and generalize the continuum model introduced
Aguenaou29 to study dislocations and their interactions
two spatial dimensions. In particular, we introduce an au
iary field that mediates the nonlocal interaction between
dislocations. This field is massive~and hence short ranged!
in the vapor phase, while becoming massless~long ranged!
in the solid phases. As shown below, this is sufficient
make the dislocation interactions vanish in the vapor pha
as required. It leads to the correct logarithmic dependenc
the dislocation self-energy on the thickness of the fil
which is essential in order to recover the Matthew
Blakeskee critical thickness. Furthermore, in our approa
dislocations are coupled to the external stresses via stan
elastic interaction; this provides a thermodynamic drivi
force for the nucleation of dislocations.

Dynamic fields included explicitly in the model are a sc
lar solid-vapor order parameterf, the Burger’s vector field
bW (rW) for the dislocations, and six components for the no
singular and singular stresses. Upon employing mechan
equilibrium conditions, however, the only explicitly time
dependent fields aref andbW ; smooth strains are expressed
terms off. Singular stresses and their interaction with no
singular strains are determined throughf andbW by introduc-
ing two auxiliary fields that are equilibrated instantaneou
or equivalently, on a time scale much shorter than typi
time scales corresponding to the evolution of the surfa
Physically, this corresponds to the assumption that the
evant dynamics is slow compared to the speed of sound;
condition is most certainly valid in typical experimen
where the evolution of the surface occurs over several m
utes or hours.9,17

An important feature of the model is that, since disloc
tions are topological defects, their dynamics must satisf
conservation law for the total Burger’s vector, leading
diffusive dynamics. This allows us to study the effect
defect mobility on the pattern forming system. Furthermo
we assume that evaporation condensation is the main me
nism for mass transport to and from the film, leading
nonconserved dynamics for the solid-vapor order parame
4-3
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This interplay between conserved dislocations and nonc
served mass leads to interesting effects, such as mob
dependent ductility: in Ref. 27 it is shown that, depending
their mobility, defects can screen stress by building up
large-curvature groove tips, leading to high ductility, or
‘‘outrun’’ by the tips, leading to brittleness via a nonequilib
rium brittle-to-ductile transition. Finally, we consider an e
ternal deposition flux that allows us to study both annea
systems and systems with deposition.

A. Statics

As a generic model for the energetics of strained t
films, the free-energy functional is constructed such tha
describes a strained solid-vapor system with coexis
phases, and dislocations interacting with each other, and
the nonsingular strains in a finite film. We writeF as the sum
of seven terms:21,28–30

F5Ff1Fext1Fel1Fint1Floc1Fcoup1Fflux . ~3!

Phase coexistence of solid, film, and vapor is described
the term involving the order parameterf,

Ff5E drWFe2

2
u¹W fu21 f ~f!1

h0
2

2k
Fmis

2 G , ~4!

wheref (f)5(1/a)f4(f21)2(f22)2, a is a constant,k is
the compressibility modulus, andh0 is proportional to the
externally applied stress. Hence, the homogeneous equ
rium phases of the vapor, film, and solid substrate corresp
to feq50, 1, or 2, respectively. For an inhomogeneous s
tem, these coexisting phases will be separated by diff
interfaces of thicknessw;eAa. The phase-field approach
equivalent to the sharp-interface formulation as long as
interface thickness is much smaller than typical length sc
of interest in the morphology.31 We introduceFmis andFsol
to enforce convenient thermodynamics for the vapor, fi
and solid substrate equilibrium phases, generalizing the
proach of Kobayashi.32 The quantityFmis ensures that the
stress only occurs at a misfit;Fsol ensures that only the two
solid phases can support shear. This is done by requi
F8(feq)50, where the prime denotes a derivative, a
F(feq)5feq, for feq50 or 1, while forfeq52, Fmis50
andFsol51. These requirements are satisfied by the cho

Fmis52 1
11 ~2f6212f5115f4120f3236f2!, ~5!

and

Fsol52 3
132~19f6281f5160f41135f32177f2!.

~6!

The externally applied stress enters through

Fext5E drW@h0Fmis¹W •uW ns#. ~7!

This ‘‘prestress’’ leads to nonzero stresses in the epilayer;
strength of the applied stress is determined by the coup
constanth0. We assume that all of the misfit strain is acco
modated by the film. This assumption is justified as long
16541
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the film thickness is much less than the thickness of
substrate layer. Smooth nonsingular elastic fields are
scribed by

Fel5E drWF1

2
k~¹W •uW ns!21mFsolS ui j

ns2
d i j

2
¹W •uW nsD 2G ,

~8!

wherem is the shear modulus.
The singular part of the elastic energy involves seve

terms. Interactions between dislocations are mediated b
complex auxiliary fieldj through

Fint5E drWF 1

2Y j¹4j1ıjh1
1

2Yl 4
~12Fsol!j

2G , ~9!

where Y is the Young’s modulus andl is a microscopic
length entering into the boundary conditions forj at the free
surfaces, as shown in Appendix E. Below we relatej to the
Airy stress function. Once integrated out,29 this gives rise to
the nonlocal interaction between the dislocations, as dem
strated below. Back coupling of the defects to the stress
volves the field

h~rW !5Fsol~¹xby2¹ybx!. ~10!

The local energy of a dislocation enters through

Floc5E drW@cbW 2~bW 22b0
2!21EcbW

2#, ~11!

whereb0 is the size of the dislocation, which is set by th
anharmonic term,Ec;b2 is the defectcore energy, andc is a
constant that determines the barrier for the nucleation of
fects. Finally, the coupling between singular strainui j

s and
smooth stresss i j

ns is accomplished by

Fcoup5E drW s i j
nsui j

s . ~12!

The last term in the free-energy functional describes
ternal flux

Fflux52HE drW Ffluxu@y2h~x!#, ~13!

whereH is a constant,Fflux5
1
2 f22 1

4 f4, h(x) denotes the
position of the stationary film-substrate interface, andu is
the Heaviside step function. This controls the flux of p
ticles to the epilayer, permitting the study of both annea
films and films with deposition.

Nonlocal couplings between the dislocations, as
pressed by the Peach-Koehler force, enter throughFint . This
term arises from the elastic energy stored in the singu
stresses, and it is merely an alternative way of writingFint

5 1
2 *drW s i j

s ui j
s . This can be seen as follows. First, we no

that employing the definition of the Airy stress functionx, it
can be shown33 that this is equivalent to

Fint5
1

2YE drW~¹2x!2. ~14!
4-4
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Since ¹4x5Y(¹xby2¹ybx) for a homogeneous
system,29,33,34it is straightforward to show that Eq.~14! can
be rewritten as

Fint5
Y
2E dqW

~2p!2

1

q2 S d i j 2
qiqj

q2 D bi~qW !bj~2qW !. ~15!

Now, if j equilibrates instantaneously, it follows thatj sat-
isfies ~letting j[Im j)

1

Y¹4j1h1
1

Yl 4
~12Fsol!j50. ~16!

By identifying x52j, x satisfies

¹4x1
1

l 4
~12Fsol!x5Yh. ~17!

For a homogeneous system,Fsol51, and Eq.~16! reduces to

1

Y¹4j1h50. ~18!

Equation~18! is easily solved in Fourier space, and whenj
is replaced by its solution, it can be shown,29 that Fint leads
to the well-known nonlocal interaction between the dislo
tions, as embodied in Eq.~15!.

Consider a heterogeneous system, as described by
~16!. Sinceh vanishes in the vapor phase, dislocations
that phase do not contribute to the overall stress state o
system, and hence they do not interact amongst themse
or with other dislocations in the solid phases. In additio
singular stresses due to defects in the film must vanish in
vapor phase. This is enforced conveniently by the inhom
geneous mass term in Eq.~16!. In the vapor phase, we hav
¹4j1j/ l 450. In Appendix E we show that this implies ex
ponentially decaying solutions for the dislocations in the
por phase. Consequently, this enforces effective bound
conditions forj at the solid-vapor interface. In particular, w
use an asymptotic expansion to show thatj satisfies the fol-
lowing partial differential equation in the sharp-interfa
limit: ¹4j1Yh50 in the domainV5$f(rW)>1% with j

5¹W j•nW 50 in the domain$f(rW)51/2%.
The origin of the elastic coupling terms is straightforwa

The total strainui j
tot of the system is35 the sum of smooth

~nonsingular! and singular strains, i.e.,ui j
tot5ui j

ns1ui j
s . Also,

the total stress can be decomposed to the sum of smooth
singular stresses:s i j

tot5s i j
ns1s i j

s . From the theory of elastic

ity, it follows that the elastic energy is12 *drW s i j
totui j

tot , where
summation over repeated indices is implied. By using
definition ofs i j

tot andui j
tot , this free energy can be rewritten a

1
2 *drW s i j

nsui j
ns1 1

2 *drW s i j
s ui j

s 1*drW s i j
s ui j

ns . Therefore, the en-
ergy breaks up naturally into three contributions: smo
strain energy (Fel), singular strain energy (Fint), and their
coupling (Fcoup). The elastic energy of the singular strai
can be written in terms of dislocation self-energies and
16541
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interactions between the dislocations, as employed by N
son and Halperin33,34 in their study of dislocation mediate
melting in two dimensions.

B. Dynamics

We assume that the dynamics of the system is driven
the minimization of the free energy, thereby leading to rela
ational dynamics forf and bW . Mechanical equilibrium al-
lows us to integrate out the strains; consequently, two au
iary fields are naturally introduced. As discussed above,
interaction between the dislocations is mediated by the fi
j, and the interaction between the dislocations and smo
stresses is mediated by a new fieldb. These fields satisfy
~see Appendix B for a derivation!

¹4j1
1

l 4
~12Fsol!j52Yh,

¹4b~rW !1
1

l 4
@12Fsol~rW !#b~rW !

5F d i j

4k
¹2s i j

ns~rW !1F« ik« j l ¹k¹ls i j
ns~rW !

2
d i j

2
¹2s i j

ns~rW !GY2mG . ~19!

These fields are equilibrated instantaneously using an it
tive scheme. Following Onuki and Nishimori,39 Sagui
et al.,40 and Müller and Grant,7 we employ the mechanica
equilibrium equations to solve forui j

ns in terms off, to first
order inm/k. The time dependence of the order paramete
assumed to obey

]f

]t
52G

dF
df

, ~20!

where the constant mobility is an inverse time scale rela
to the attachment and detachment kinetics of atoms at
interface evaporation-condensation mechanism for kinet
For convenience we will set this mobility to unity hereaft
~hence, time is in units ofG21). Note that we have assume
that the main matter transport mechanism is evaporation c
densation, which speeds up our simulation studies appre
bly. In other words, material in the film is not conserve
While this mass-transport mode is not the dominant one
annealed films in vacuum, where the film evolves under s
face diffusion, we anticipate that the physical processes
investigate in this paper are relatively insensitive to the mo
of matter transport.

Defects are conserved due to their topological nature; t
can only appear and disappear in pairs and hence the
Burger’s vector is conserved. Forbx we have

]bx

]t
5¹W •DW •¹W

dF
dbx

, ~21!
4-5
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whereDW is a mobility tensor. For simplicity we will ignore
thermal noise. The relatively easy glide motion and the m
sluggish motion in the climb direction,28 have different mo-
bilities. This is phenomenologically accounted for by writin
the mobility tensor as

DW 5S mg 0

0 mc
D , ~22!

wheremg andmc denote the glide and climb mobilities. Not
that the scalar( i j Di , jaicj formed fromDW , say, and two ar-
bitrary vectors aW and cW is invariant under reflectionsx
→2x and y→y. This implies that off-diagonal element
vanish, while the diagonal elements are arbitrary. Since
cancies are not included explicitly, we expectmc!mg . For
thin-film growth, this is unimportant since most dislocatio
motion is in the climb direction in any case. We rewrite t
equation of motion as

]bx

]t
5S mg

]2

]x2
1mc

]2

]y2D dF
dbx

. ~23!

The equation forby is of the same form with, however
mg]2/]x21mc]

2/]y2→mc]
2/]x21mg]2/]y2, in the two

equations above.
Most of the functional variations ofF can be found easily

but dFcoup/df is quite involved. The derivation is given i
Appendix B. For the derivation, it is useful to introduce t
coupling fieldb(rW)[e i j dF/d(¹ibj ) between the dislocation
ands i j , wheree i j is the antisymmetric unit tensor. As dis
cussed above, it results from integrating the strain out of
dynamics, and mediates the interaction between the de
and smooth stresses.

C. Model in the sharp-interface limit

In the absence of dislocations, one can21 derive the fol-
lowing equation of motion for the film-vapor interface, a
shown in Appendix C:

2vn5e2K1As tt1Bs tt
2 , ~24!

where

A5
h0e2

2kg E dY
df0

dY

dFmis

df0
Fmis~f0!Fsol~f0!, ~25!

and

B5
4e2

mg E dY
df0

dY

dFsol

df0
Fmis~f0!2. ~26!

In the above,Y(x,y) is the distance normal to the curve
surface at any point,f0(Y) is the local-equilibrium solution
for the order parameter at the interface,K denotes the loca
curvature,g5e2*dY(df/dY)2 is the surface tension, an
16541
e

a-

e
cts

s tt denotes the tangential stress at the interface. Furtherm
the stresses satisfy]s i j /]xj50, with snn5snt50 and
sxx(x,y→2`)5sext . Equation ~24! has a transparen
physical meaning: surface tension tends to flatten the in
face, while larger tangential stress at the bottom of
grooves leads to faster growth, providing a positive feedb
mechanism.

The presence of a nonzero deposition flux and dislo
tions leads to four additional terms in Eq.~24!, as shown in
Appendix C,

2vn
net5e2K2

He2

4g
1As tt

ns1Bs tt
ns 21Cs tt

s 212Cs tt
nss tt

s

1
e2

g E dY
df0

dY
Fsol8 ~¹xby2¹ybx!~j2Yb!, ~27!

where

C52
e2

8g l 4YE dY
df0

dY
Fsol8 Y4. ~28!

The second term arises from deposition. For the additio
three terms, two of these can be mainly attributed to dis
cations in the bulk and the last one to interfacial dislocatio
Both bulk and interface dislocations give rise to tangen
stresses at the interface. Note that dislocations parti
screen the stress giving rise to slower growth due to elas
ity; furthermore, for s tt

s '2s tt
ns , the growth can become

very slow since the net stress in the film has almost vanish
Indeed, Eq.~27! has an appealing physical interpretation.
the absence of dislocations, buckling of the surface is dri
by the tangential stress at the interface. Dislocations nucl
and renormalize~screen! the stress partially. This leads to
decrease in the nets tt and hence to slower growth.

Interfacial dislocations, on the other hand, give rise
both stresses at the interface and also to the last term in
~27!. We can physically interpret this contribution as follow
First, in the absence of external stresses (b50), it is
straightforward to show that the above term is positive a
hence favors melting of the solid. This is due to the fact t
dislocations at the interface give rise to stresses in the vi
ity of the interface and the system can reduce its elastic
ergy by eliminating these interfacial dislocations by meltin
In the presence of external stresses, on the other hand,
term vanishes for

j2Yb'
1

2

d2j

dY2
Y22

Y
2

d2b

dY2
Y252

1

2
~s tt

s 1s tt
ns!Y250,

~29!

where the derivatives are evaluated at the interface, or

s tt
s 52s tt

ns . ~30!

Therefore, this term does not contribute to the evolution
the interface once the net tangential stress vanishes.

For dislocations, their dynamics in the sharp-interfa
limit follows from
4-6
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]bx

]t
5Fmg

]2

]x2
1mc

]2

]y2G FdFloc

dbx
1Y¹yb2¹yjG ,

]by

]t
5Fmc

]2

]x2
1mg

]2

]y2G FdFloc

dby
2Y¹xb1¹xjG , ~31!

where noise has been neglected. Since bothj andb vanish
in the vapor phase, the Burger’s vector satisfies nonlin
diffusion equations, driven byFloc .

In summary, our model in the sharp-interface limit r
duces to three kinetic equations, namely, Eq.~27! for the
film-vapor interface, Eqs.~31! for the dislocation dynamics
in the solid phases, and the following equations for the a
iliary fields (j,b) in the solid phases:

¹4j52Y~¹xby2¹ybx! ~32!

and

¹4b5F d i j

4k
¹2s i j

ns~rW !1
1

2m H « ik« j l ¹k¹ls i j
ns~rW !

2
d i j

2
¹2s i j

ns~rW !J G . ~33!

Finally, the boundary conditions at the interface for the el
tic and auxiliary fields aresnn

ns5snt
ns50, j5¹W j•nW 50, and

b5¹W b•nW 50. Auxiliary fields (j,b) are equilibrated nu-
merically by employing an iterative method described in A
pendix A.

D. Discussion

In this section we have introduced a continuum mode
study the dynamics of dislocations coupled to exter
stresses and free surfaces in two spatial dimensions. Le
now briefly discuss some of the approximations that are
ployed in solving the model. For simplicity, we consid
elastically isotropic systems in this paper. It is certainly tr
that the detailed surface structure and dislocation slip pla
depend strongly on the presence of elastic and surf
tension anisotropies, as well as on the lattice structure of
film. However, the aim of this paper is to introduce a rob
model that allows us to study and understand the gen
features of dislocations interacting with external stresses
free surfaces at the expense of omitting various microsco
details of any particular system. On the other hand, incor
rating, say, the aforementioned anisotropies is straight
ward within our approach, and we envision further fruitf
investigations along these lines.

While singular strains are obtained accurately by direc
solving for the Airy stress function, the smooth strains a
computed as a function of the order parameter from a fi
order perturbative expansion inm/k.7,39,40We have verified
that this approximation leads to qualitatively correct str
profiles ~such as the large stress concentration at the bot
of the grooves!; more accurate profiles could be obtained
including higher-order terms in the expansion, as was d
16541
ar

-

-

-

o
l
us
-

e
es
e-
e
t
ic
nd
ic
-

r-

y
e
t-

s
m

-

onstrated recently by Hu and Chen,36 or by directly solving
the elasticity equations as was done by Kassneret al.23

As the model stands now, it applies only to tw
dimensional systems. In three dimensions, one must cons
the topology of line defects and find a convenient way
solve the equilibrium elastic equations for the singu
stresses. In Appendix D we outline how this can be achie
by employing an approach similar to that discussed in t
paper.

V. RESULTS

A. Numerical studies of static dislocations

1. Convergence in quasi-one-dimensional systems

To test our approach, we have evaluated the stress c
ponentsxx in a system of dimensionsLx564, Ly5128 due
to a line of dislocations withbx(x,y5Ly/2)51.0. First, we
computej iteratively and then numerically evaluatingsxx
5]2j/]y2. The film (f51) occupies the region 0,x,Lx
and 32,y,96 and is surrounded by vapor (f50) above
and below. Concerning convergence ofj, there are two is-
sues. First, since we employ an iterative method, we exp
the solutionjn→`( l )5j. Furthermore, in the limit of smalll,
which corresponds to enforcing effective boundary con
tions at the film-vapor interface~see Appendix E!, we expect
jn( l ) to approach the sharp-interface limit solution.

The results for three values ofl 5(3.0,2.0,1.0) are shown
in Fig. 1, along with an analytical solution corresponding
boundary conditions j(x,y532)5j(x,y596)50 and
]j/]y(x,y532)5]j/]y(x,y596)50. To obtain the ana-
lytic solution, we use the Green functionG(y,y8) satisfying

d4

dy4
G~y,y8!5d~y2y8! ~34!

with G(0,y8)5G(L,y8)50 anddG(0,y8)/dy5dG(L,y8)/
dy50. It is given by

FIG. 1. Stress profiles due to a line of dislocations with varyi
l. Notice the convergence ofsxx

l to the analytical result asl /Ly

→0.
4-7
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FIG. 2. Dislocation self-
energy Es as a function of film
thicknessw. The length of the film
is L5256. In the inset we plotEs

vs lnw, demonstrating thatEs is
consistent withEs} ln w. The pro-
portionality constant thus obtaine
is 0.027, as compared to the the
retical result of 0.02.
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G~y,y8!5
1

6
~y2y8!3u~y2y8!1~y2y8!3F 1

3L3
~L2y8!3

2
1

2L2
~L2y8!2G1~y2y8!2F2

1

2L2
~L2y8!3

1
1

2L
~L2y8!2G , ~35!

whereu is the Heaviside step function. The analytical sol
tion is built from a superposition of twoG(y,y8) corre-
sponding to twod functions andsxx is evaluated fromsxx
5d2/dy2@G(y,y1)1G(y,y2)#.

Two things are noteworthy in the figure. First, the nume
cal solution converges towards the analytical result forl /Ly
→0, in agreement with the sharp-interface calculation of A
pendix E. Second, the number of interactions needed to c
verge increases rapidly in this limit. In particular, reducingl
from l 52 to l 51 leads to an approximately tenfold increa
in the number of iterations. Therefore, the value ofl em-
ployed in simulations is dictated by two opposing consid
ations: first, smalll is required for good convergence to th
sharp-interface limit. Second, very smalll will result in ex-
cessively long equilibration times. Our chosen compromi
which is physically relevant and numerically convenient,
l 52.0.

2. Dislocation self-energy

Consider next the numerically evaluated dislocation se
energyEs as a function of the film thicknessw, displayed in
Fig. 2. Parameters used werebx(Lx/2,Ly/2)51.0, l 52.0, m
50.25, andLx5128. This data was obtained by relaxing th
auxiliary fieldsj andb to equilibrium and then evaluating

Es5E drWF2
1

2Y @¹2j~rW !#22j~rW !h~rW !

2
1

2Yl 4
~12Fsol!j

2~rW !G . ~36!

Notice the gradual increase inEs asw is increased. Theoreti-
cally, it can be shown30 that
16541
-
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e,

f-

Es~w!'
Yb2

4p
ln~w/b!1const. ~37!

This is due to the fact that the finite thickness of the fil
effectively cuts off the long-ranged singular stress field
PlottingEs vs lnw, as shown in the inset, reveals good qua
tative agreement with theory. Moreover, the numerical da
gives Es(w)'0.027 lnw while the theoretical prefactor is
'0.02, for this set of parameters. Hence, the prefactor is
reasonable quantitative agreement. Additionally, we ha
evaluatedEs for fixed w and varyingbx , and verified that
Es;bx

2 , in accord with theory. Furthermore, we find thatEs

shows negligible dependence onl for l /w!1.

3. Defect-defect interaction energy

Consider a a pair of dislocations separated by a distanced
in a thin film of varying thicknessw510,20,30, as shown in
Fig. 3. The gradient of the interaction energyEint gives rise
to the Peach-Koehler force discussed before. It can
shown30 that, in an infinite system,Eint'const(lnd). Of
course, a finite film thicknessw cuts off long-range interac-
tions for length scalesd@w. We find that, asw is increased,
Eint increases rapidly and reaches a plateau asd becomes
comparable to 2w. Furthermore, the plateau valueEint

sat cor-
responds toEint

sat523Es(w), as can be verified from Fig. 2
reflecting the fact that two dislocations withd@w cease to
interact. It is also clear from Fig. 3 that increasingw leads to
a larger crossover length, after which the defects inter
only very weakly.

4. Numerical evaluation of the critical thickness hc

Finally, as a last test case for dislocations in static film
we demonstrate that the Matthews-Blakeslee condition
the critical thickness is correctly incorporated in the mod
In the absence of external strain,ui j

ns[0, the energy cost to

create a defect withubW u5b0 is ~including the long-range
strain fields!

E5Es1
1

2
Ecb0

2 , ~38!

whereEs denotes the self-energy of the defect. If, howev
external strain is present, the defect-free state will be sta
until
4-8
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FIG. 3. Energy of interaction
Eint for a dislocation pair in the
same glide plane as a function o
their separationd, for three differ-
ent widths w510,20,30. The
length of the film isL5256.
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U E drW(
i , j

s i j
s ui j

nsU5E. ~39!

Equation~39! is equivalent to the Matthews-Blakeslee theo
of the critical thickness: Once the contribution due to ext
nal strain exceedsE, a localized defect will be nucleated. I
our approach there exists a barrier separating the two f
energy minima. The height of the nucleation barrierEn can
be estimated from the local defect free energy as the ba
separating the two equal minima atubW u50 and ubW u5b0; it
will be of the order of the free energy atubW u50.5b0,

En' 9
64 c b0

6 . ~40!

One can conveniently tuneEn by appropriately changingc
while still keepingEc andb0 constant.

Employing similar numerical simulations to those d
cussed above, we computed the self-energyEs of the dislo-
cation as well as the interaction energyEf ,b , for misfit strain
f 50.006 25. This is shown in Fig. 4~a!, for a symmetric film
w52h with a dislocation of strengthbx51.0 in the middle.
This data was obtained by relaxing the auxiliary fieldsj and
b to equilibrium and then evaluating
16541
-

e-

er

Es5E drWF2
1

2Y @¹2j~rW !#22j~rW !h~rW !

2
1

2Yl 4
~12Fsol!j

2~rW !G ~41!

and

Ef ,b5E drW Yh~rW !b~rW !. ~42!

As expected on the basis of the continuum theory, for sm
w, Es.uEf ,bu and the film remains coherent. However, f
h.hc'15 andEs,uEf ,bu, it is favorable for a single dislo-
cation to nucleate. It is interesting to note that the criter
derived in Sec. II A would predict a critical thickness ofhc
'10 for the same set of parameters, a result in good ag
ment with our numerical estimate. In Fig. 4~b! we show
similar calculations made with an asymmetric film. In pa
ticular, the lower surface was fixed at a distanceh8532
away from the dislocation and the upper surface was p
tioned at a distanceh away from the dislocation. Again, th
interaction energy dominates for largeh, thereby giving rise
to the Matthews-Blakeslee condition.
y

f

-

FIG. 4. ~a! Numerically evalu-
ated defect self-energyEs and
negative of the interaction energ
uEf ,bu as a function of the thick-
ness of the symmetric filmh, for
misfit strain of f 50.006 25. Film
thicknessw52h, and misfit strain
was applied to upper half of the
system. Notice how the two
curves intersect at wc'15,
thereby favoring the nucleation o
a defect for films withw.wc . ~b!
Similar calculations in an asym
metric film. Notice how the quali-
tative features persist.
4-9



r-
ul
le
rie

da

rie

o

fo
e-
u
d

fo
th

s o
a

a
iti

th
th

u-

ed
ith
lled

ent

e

s.

ses,

the
ly.
the
th

.

um
ich

h to

n
ith
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B. Numerical studies of thin-film dynamics

1. Early-time regime without deposition

We have studied the early-time evolution of slightly pe
turbed interfaces, both with and without defects. Our res
are summarized in Fig. 5, where we show interface profi
at t510,15,20,25 and the growth rates of the various Fou
modes, forEc51.0, Ec550.0, andEc5` ~no defects!. This
data was obtained by initializing the system with a sinusoi
interface of amplitudeh0 and wave numberq, and monitor-
ing the subsequent evolution of the corresponding Fou
mode.7 The parameters employed wereNx3Ny5128
3128, mc5mg50.01,m5h050.5, andk51.0. Dislocation
densities were initialized with small random fluctuations
root-mean-square magnitude 1024. At very early times (t
,10) we observe approximately exponential growth
h(q,t), as expected.7 This phase persists longer without d
fects. At later times with defects, we find slower growth. O
data shows that defects decrease the initial growth rate;
creasing the defect density upon increasingEc leads to faster
growth. This can be understood from the thermodynam
theory of stressed solids by Ref. 12, according to which,
supercritical films, dislocations nucleate and anchor at
substrate-film interface thereby lowering the overall stres
the film. Qualitatively similar effects are seen upon decre
ing defect mobility. In particular, reducing the mobilitymc to
mc50.001 leads to practically indistinguishable results
compared to the system without defects, as far as the in
linear stability is concerned.

2. Late-time regime without deposition

In the absence of dislocations, in the nonlinear regime,
system lowers its free energy by continuously coarsening

FIG. 5. Scaled amplitude of growth modesv* as a function of
scaled wave numberq* in the early-time linearly unstable regime
Diamonds Ec51, squaresEc550, circles Ec5` ~no defects!,
dashed line is linear-stability theory. Data scaled by maxim
growth rate and wave number for restabilization, both of wh
increase with increasingEc . Inset shows configurations forEc

51,50,̀ , from top to bottom. Four times are shown for eac
grooves deepen with time for all.
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film-vapor interface, as observed previously.7 In Fig. 6~a! we
show a typical late-time profile during the relaxation. Sim
lation parameters wereNx5256, Ny5256, H50.0, m
50.25,k51.0, h050.775, ande51.0. The initially flat sur-
face develops into a grooved profile with a well-defin
wavelength. Eventually, the film breaks up into islands w
the substrate partially exposed, in agreement with contro
annealing experiments of subcritical Si12x Gex films of Oz-
kan et al.17

We quantify this behavior by studying the time-depend
structure factor

S~q![E dx eiqx^h~x,t !h~0,t !&, ~43!

as a function of wave numberq, where the averaging is don
over initial conditions. In Fig. 7~a! we show the structure
factor at different times for a film devoid of dislocation
Simulation parameters were set toNx5256, Ny5256, H
50.0, m50.25,k51.0, h050.775, ande51.0. Notice how
the peak moves to smaller wave vectors as time progres
implying coarsening. This is illustrated in Fig. 8~a! where we
plot the dominant wave vectorqmax as time progresses, with
and without defects. Analysis ofS(q) at earlier times reveals
dynamics consistent with linearized theory. In particular,
peak ofS(q), Smax, increases approximately exponential
The most linearly unstable wave vector dominates in
beginning, until nonlinear effects lead to competitive grow

;

FIG. 6. ~a! Typical late-time configuration for the evolving film
in the absence of dislocations from a random initial conditiont
5100.0. ~b! Typical late-time configuration for the evolving film
with dislocations. Initial corrugation of the surface was identical
this figure, andt is the same as well.Ec51.0, mc5mg50.1, b0

51.0e22, cd52.0e16. ~c! Burger’s vectorx componentbx cor-
responding to~b!. Interestingly, most of the dislocation activity i
the beginning is at the film-substrate interface, in agreement w
Matthews-Blakeslee theory.~d! by corresponding to~b!.
4-10
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FIG. 7. ~a! Time-dependent structure factorS(q,t) at four different times in the absence of dislocations. From top to bottomt
518.0,14.0,10.0,6.0. Dashed lines are polynomial fits to the data and serve as guides to the eye.~b! From top to bottom,S(q,t) at t
518.0,14.0,10.0,6.0 with defects. Two things are noteworthy. First, the evolution of the morphology has slowed down considerably
the most dominant wavelength occurs at smallerq when defects are present. This is a consequence of a renormalized stress in the
vo
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for the different modes. At later times,Smax'Andt
a, with

a'3, as shown in Fig. 8~b!, in agreement with previous
results.7

When dislocations are included in the dynamics, the e
lution of supercritical films changes dramatically. In Fig. 6~b!
we show a late-time profile starting from thesame initial
condition as in Fig. 6, with small fluctuations of average ze
for the dislocation densities in the system. Simulation para
eters were set tol 52.0, b051.031022, cd52.03106, and
mc5mg50.1. The film remains flat and the fluctuations
the solid-vapor interface become smaller at later times. T
can be understood by examining the correspondingbW dislo-
cation distributions in Figs. 6~c! and 6~d!. There is consider-
able dislocation activity at the film-substrate interface
early times. In particular, dislocations with positivebx com-
ponent of the Burgers vector align themselves at the in
face. This is a consequence of the fact that the film is un
tension, so positive dislocations generate a compressio
the film and reduce the overall stress. Notice also how
16541
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locations with a nonzeroby component are located at th
solid-vapor interface wheresxy

ns andsyy
ns are nonzero. In par-

ticular, they are completely absent in the bulk of the film.
In general, we find that either increasingEc or decreasing

mc ~or both! leads to a more pronounced buckling and hen
faster coarsening of the interface. To illustrate this, see F
9~a! and 9~b! where we show a configuration withEc
510.0 andmc5mg50.01, as well as the correspondingbx
dislocation distributions. The film breaks up into islands,
though the islands are somewhat larger in this case, du
the smaller effective stress in the film. Furthermore, there
a pronounced defect distribution beneath the islands,
qualitative agreement with experiments of Ozkanet al.17

Physically, it is easy to see why the dislocations decou
from the system, as eitherEc→` or mc→0: in the first case,
dislocations are energetically unfavorable in the the so
whereas in the second case, the time for defect distribu
buildup is too long, on the time scale of the buckling, to
effective in relaxing the strain.
t

FIG. 8. ~a! Time evolution of the peak positionqmax(t) both with and without dislocations. Notice howqmax shifts towards smallerq
asymptotically with defects.~b! Smax(t) vs t3 at late times for both dislocated~right panel! and defect-free systems~left panel!. Dashed line
is a linear fit and demonstrates that the defect-free system displays behavior consistent withSmax(t);t3 at late times. Such behavior is no
seen with dislocations within time scales studied here due to crossover effects.
4-11
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The behavior ofS(q,t), shown in Fig. 7~b!, is qualita-
tively similar to that found in the absence of defects. Sim
lation parameters were set tol 52.0, a50.5, b052.0
31022, cd52.03106, and mc5mg50.05. We observe
coarsening withqmax at smaller values ofq in the nonlinear
regime, as illustrated in Figs. 7~b! and 8~a!. This is to be
expected since the defects relax the misfit strain partially
hence the driving force for the instability is decreased. Ho
ever, we do not find the asymptoticSmax;ta as before; in-
stead, we find a crossover to slower growth. This is illu
trated in Fig. 8~b!. There is a buildup of misfit dislocations i
the film, which tends to slow down the growth rate, in agre
ment with the Matthews-Blakeslee theory.

In the asymptotic regime, where the misfit dislocatio
coexist with the smooth strains, the morphology of the film
determined by the strong interaction between the stress
centration at the bottom of the grooves and singular stres

FIG. 9. ~a! Typical late-time configuration for the evolving film
with dislocations with large core energy and very low mobili
Ec510.0, mc5mg50.01, att5100.0.~b! bx corresponding to~a!.

FIG. 10. ~a! Typical late-time configuration for the growing film
without dislocations att5100.0.~b! Typical late-time configuration
for the growing film with dislocations with low mobilitymc5mg

50.025 and large core energy att5100.0. ~c! bx corresponding
to ~b!.
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In particular, we have recently observed27 that dislocations
accumulate at the groove tips and relax the stress locally
this regime~not observed here! we expect thatSmax;ta be-
havior would again be found, although there could be diff
ent behavior near the brittle-ductile transition:27 the buildup
of mobile dislocations at the groove tips in the asympto
regime, relaxes stresses only locally, which is tantamoun
renormalizing the surface tension, and hence leads to
same asymptotic behavior.

3. Late-time regime with deposition

In the presence of deposition, the morphology has a w
defined length scale, similar to the annealed films. This
be seen in Fig. 10~a! we show a profile from a simulation
with nonzero deposition rate. Parameters used in this si
lation were Nx5256, Ny5512, H50.3, h053.1, m5k
51.0, ande51.0. It is noteworthy, that, once the film ha
broken up into islands, these islands grow in the verti
direction with little coarsening in the plane of the substra
This can be understood by recalling that the island tops
stress-free and hence preferred sites for further growth.
thermore, it is intuitively clear that an island with heig
much greater than its basal width is strained only close to
substrate. Therefore, the overall length scale of the s
assembled pattern depends on the initial growth rate of
instability, deposition rate, and the initial thickness of t
film. For thin enough films, the selected wavelength will
close to the most linearly unstable wavelength.

Dislocations affect the evolution of the morphology in
similar way as in the absence of deposition. In particu
mobile defects lead to a smooth interface, whereas m
sluggish defects lead to a grooved profile. Furthermore, u
increasing the core energy, the film becomes more rough
to a decrease in the defect density. See Figs. 10~b! and 10~c!
where order parameter and dislocation profiles are sho
corresponding toEc510.0 andmc50.025. In the asymptotic
regime, the film consists of islands separated by uncove
substrate. Positive dislocations become buried under the
lands and there is a concentration of dislocations at inde
tions on the film-vapor interface, in qualitative agreeme
with experiments of Ozkanet al.17

VI. CONCLUSIONS AND DISCUSSION

We have introduced a nonequilibrium model of elastic
in heterogeneous systems, which includes both smooth
singular strains and their coupling to free surfaces. We h
given the model a detailed exposition, as well as dem
strated that the interaction between singular and smo
stresses can lead to rich pattern-formation phenomena. In
case of annealed films, we have shown that dislocati
renormalize the misfit stress in the film in agreement w
Matthews-Blakeskee theory. Moreover, we have shown
the film undergoes a buckling instability, driven by the r
sidual stress in the film. We have quantified this by nume
cally evaluating the linear dispersion relationv(q). In par-
ticular, we have shown that increasing core energy a
4-12
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decreasing mobility lead to less effective screening of
external stress. Furthermore, we have recently shown27 that
dislocations interact very strongly with the smooth stres
in the nonlinear regime. This is due to the stress concen
tion at the bottom of the grooves. A deeper understandin
the physics in the asymptotic regime requires unraveling
coupled dynamics of dislocations and stress concentratio
the bottom of the grooves. This will be addressed in a se
rate publication.

So far as films with deposition are concerned, we ha
shown that~i! in the absence of dislocations, the film brea
up into islands with a well-defined length scale, in qualitat
agreement with experiments, and~ii ! dislocations affect the
morphology through strain relaxation. In particular, in t
presence of mobile dislocations, the film-vapor interface
mains smooth. However, upon decreasing the number or
mobility of dislocations leads to more rough morphologie
Finally, we note that the qualitative features reported ab
are robust towards varying the elastic parameters. In part
lar, we have variedl, Ec , h0, andm and found qualitatively
similar behavior.

It would be of interest to extend this approach to thr
spatial dimensions; an outline for the procedure is given
Appendix D. In particular, this would enable one to study t
detailed interactions between defects and smooth strain
experimentally relevant situations.
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APPENDIX A:
EQUILIBRATION OF THE AUXILIARY FIELDS „j,b…

The equations of motion, Eqs.~20! and~21!, together with
Eqs. ~19! that determine the quasistatic fields (j,b), com-
pletely specify the dynamics of the model. The fields (j,b)
were equilibrated everynth iteration using an iterative spec
tral method. Typically,n510–30. It was verified that de
creasingn did not affect the results reported in this pap
The main idea of this method is as follows. Since the bih
monic equation with constant coefficients is diagonal in F
rier space and hence amenable to fast numerical solu
using the fast Fourier transform~FFT! method, one obtains
the following scheme: First, an initial solutionj i , j

0 is ob-
tained. Then, ifj5dj1j0 is a solution, it follows thatdj
satisfies

1

Y¹4dj1
1

Yl 4
~12Fsol!dj

52h2
1

Y¹4j011/~Yl 4!~12Fsol!j
0. ~A1!
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We obtain an approximate solutiondj̃ by taking the spatial
average of 1/(Yl 4)(12Fsol), and solving the resulting bihar
monic equation with FFT. A new approximationj1 is ob-
tained from

j15j010.15dj̃. ~A2!

The new correction is obtained by solving

1

Y¹4dj̃1le f f
24dj̃52h2

1

Y¹4j111/~Yl 4!~12Fsol!j
1,

~A3!

whereLxLyle f f
24[*drW1/(Yl 4)(12Fsol). This process is re-

peated until the magnitude of the correctionudj̃u is less than
the preset tolerancee tol53.031025. Typically, this corre-
sponds to approximately 100 successive iterations of E
~A2! and ~A3!.

Furthermore, Eqs.~19! are relaxed dynamically after eac
time step with 50 Euler iterations. Finally, the phase fieldf
and dislocation densities (bx ,by) are updated using finite
differencing for the spatial gradients and the Euler meth
for time evolution. Typical system sizes used in this stu
wereNx3Ny5643128 to 5123512. Typical values for the
parameters were Dx51.0, Dt50.01,e5Dx51.0, mg
51.0, mc51.020.0001, Ec510.020.01, cd5200.0,b0
50.1, l 52.0, b050.1, Nskip510. We also verified that a
smallerdt50.005 andNskip55 led to identical results.

APPENDIX B:
ORDER-PARAMETER AND FUNCTIONAL DERIVATIVES

Most of the terms in Eq.~3! can be used in a straightfor
ward manner to work out the functional derivatives with r
spect to the relevant fields (f,bx ,by) for the equations of
motion. The exception isFcoup.

1. Dislocation density

The coupling in terms of the Airy stress functionx is

Fcoup52E drW s i j
nsF d i j

4k
¹2x1

1

2m S « ik« j l ¹k¹lx

2
d i j

2
¹2x D G , ~B1!

where we have employed Hooke’s law to express strain
terms of stresses and hence the Airy stress functionx.

Let the Green functionG(rW,rW8) satisfy

¹4G~rW,rW8!1 l 24~12Fsol!G~rW,rW8!5d~rW2rW8!. ~B2!

The formal solution of Eq.~17! is thus

x~rW !5YE drW8G~rW,rW8!Fsol@f~rW8!#~¹x8by2¹y8bx!

5YE drW8G~rW,rW8!h~rW8!. ~B3!

This allows us to rewrite Eq.~B1! as
4-13
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HAATAJA, MÜLLER, RUTENBERG, AND GRANT PHYSICAL REVIEW B65 165414
Fcoup5E drW s i j
nsE drW8F d i j

4k
¹2G~rW,rW8!Yh~rW8!

1
1

2m H « ik« j l ¹k¹lG~rW,rW8!Yh~rW8!

2
d i j

2
¹2G~rW,rW8!Yh~rW8!J G

5E drW8Yh~rW8!E drW s i j
nsF d i j

4k
¹2G~rW,rW8!

1
1

2m H « ik« j l ¹k¹lG~rW,rW8!2
d i j

2
¹2G~rW,rW8!J G .

~B4!

Upon interchangingrW and rW8 and carrying out two partia
integrations one finally arrives at~note that surface term
vanish due to periodic boundary conditions!

Fcoup5E drW Yh~rW !E drW8G~rW,rW8!F d i j

4k
¹82s i j

ns~rW8!

1
1

2m H « ik« j l ¹k8¹ l8s i j
ns~rW8!2

d i j

2
¹82s i j

ns~rW8!J G
[E drW Yh~rW !b~rW !, ~B5!

where

b~rW ![E drW8G~rW,rW8!F d i j

4k
¹82s i j

ns~rW8!

1
1

2m H « ik« j l ¹k8¹ l8s i j
ns~rW8!2

d i j

2
¹82s i j

ns~rW8!J G .
~B6!

Since we do not have a closed-form expression forG, we
evaluateb numerically in a similar manner asj,

¹4b~rW !1 l 24~12Fsol!b~rW !

5F d i j

4k
¹2s i j

ns~rW !

1
1

2m H « ik« j l ¹k¹ls i j
ns~rW !2

d i j

2
¹2s i j

ns~rW !J G . ~B7!

The asymptotic solution forb is given by Eq.~B6!. Hence,
with this formulation the dynamics from the coupling to e
ternal stresses for thebx,y fields are straightforward to calcu
late.

2. Order parameter

In order to treatf, we proceed as follows. First, we re
write Fcoup ~after two partial integrations! as
16541
Fcoup5E drW x~rW !F d i j

4k
¹2s i j

ns~rW !

1
1

2m H « ik« j l ¹k¹ls i j
ns~rW !2

d i j

2
¹2s i j

ns~rW !J G .
~B8!

Hence,

dFcoup

df~rW !
5E drW8

dFcoup

dx~rW8!

dx~rW8!

df~rW !

5E drW8F d i j

4k
¹82s i j

ns1
1

2m H « ik« j l ¹k8¹ l8s i j
ns

2
d i j

2
¹82s i j

nsJ Gdx~rW8!

df~rW !
. ~B9!

Furthermore, sincex satisfies

¹84x~rW8!1
~12Fsol!

l 4
x~rW8!5YFsol~rW8!~¹x8by2¹y8bx!,

~B10!

it follows that

¹84
dx~rW8!

df~rW !
1 l 24@12Fsol~rW8!#

dx~rW8!

df~rW !

5YdFsol~rW8!

df~rW !
~¹x8by2¹y8bx!1 l 24

dFsol~rW8!

df~rW !
x~rW8!.

~B11!

The formal solution of Eq.~B11! can be written as

dx~rW8!

df~rW !
5E drW9G~rW8,rW9!FYdFsol~rW9!

df~rW !
~¹x9by2¹y9bx!

1
1

l 4

dFsol~rW9!

df~rW !
x~rW9!G . ~B12!

However, sincedFsol(rW9)/df(rW)5Fsol8 (rW9)d(rW2rW9), it fol-
lows that

dx~rW8!

df~rW !
5G~rW,rW8!

3S YFsol8 ~rW !~¹xby2¹ybx!1
1

l 4
Fsol8 ~rW !x~rW !D .

~B13!

Substituting this in Eq.~B9! finally yields
4-14
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dFcoup

df~rW !
5S YFsol8 ~rW !~¹xby2¹ybx!1

1

l 4
Fsol8 ~rW !x~rW !D

3E drW8G~rW,rW8!F d i j

4k
¹82s i j

ns

1
1

2m S « ik« j l ¹k8¹ l8s i j
ns2

d i j

2
¹82s i j

nsD G
[S YFsol8 ~rW !~¹xby2¹ybx!1

1

l 4
Fsol8 ~rW !x~rW !D b~rW !.

~B14!

As a final step, we replacex by 2j and obtain

dFcoup

df~rW !
5S YFsol8 ~rW !~“xby2“ybx!2

1

l 4
Fsol8 ~rW !j~rW !D b~rW !.

~B15!

The remaining functional derivatives are straightforwa
to obtain. For completeness, we list all such derivativ
below.

dFf

df
52 l 2¹2f1 f f1

h0
2

k
FmisFmis8 ,

dFext

df
5h0Fmis8 ¹W •uW ns,

dFel

df
5mFsol8 (

i , j
S ui j

ns2
d i j

d
¹•uW nsD 2

,

dFint

df
5

1

2Yl 4
Fsol8 j22jFsol8 ~¹xby2¹ybx!,

dFcoup

df
5S YFsol8 ~¹xby2¹ybx!2

1

l 4
Fsol8 j~rW !D b~rW !,

dFint

dj~rW !
5

1

Y¹4j1h1
1

Yl 4
~12Fsol!j,

dFcoup

dj
50,

dFint

dbx~rW !
52¹y~j Fsol!,

dFloc

dbx
52c bx@~bW 22b0

2!212bW 2~bW 22b0
2!#12Ecbx ,

dFcoup

dbx
5Y¹y@Fsolb~rW !#,

dFint

dby~rW !
5¹x~j Fsol!,
16541
s

dFloc

dby
52c by@~bW 22b0

2!212bW 2~bW 22b0
2!#12Ecby ,

dFcoup

dby
52Y¹x@Fsolb~rW !#,

dFflux

df
52 j ~rW !~f2f3!. ~B16!

APPENDIX C: INTERFACE EQUATION OF MOTION
IN THE SHARP-INTERFACE LIMIT

In this Appendix we will derive the equation of motion fo
the solid-liquid interface by employing the projection
operator method, valid in the thin interface limitKe!1,
whereK denotes the local curvature of the interface ande is
the width of the diffuse interface.

We begin by writing down the equation of motion for th
order parameterf

]f

]t
5

e2

2
¹2f2

1

a

d f~f!

df
1H

dg

df
2

h0
2

k

dFmis

df
Fmis

2h0

dFmis

df
¹W •uW 2m

dFsol

df (
i j

S ui j 2
d i j

2
¹W •uW D 2

.

~C1!

We use an orthogonal coordinate system (X,Y), where
Y(x,y) denotes the distance to the interface from point (x,y)
along a normal to the interface, andX(x,y) denotes the arc
length along the interface measured from some refere
point. We define the interface position to be given by t
level setf51/2.

Next, given a gently curved interface on the scale ofe, we
write the solution to Eq.~C1! in the quasistationary approxi
mation as

f~rW,t !'f0„w~rW,t !…, ~C2!

wheref0 satisfies

e2
d2f0

dY2
2

1

a

d f~f0!

df0
50, ~C3!

with

lim
Y→`

f050; lim
Y→2`

f051. ~C4!

Furthermore, the Laplacian in the new coordinate system
comes
4-15
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HAATAJA, MÜLLER, RUTENBERG, AND GRANT PHYSICAL REVIEW B65 165414
¹25
]2

]Y2
1

K

11YK

]

]Y
1~11YK!2

]2

]X2

13~11YK!Y
]K

]X

]

]X
. ~C5!

However, in the vicinity of the interface (Y50), the Laplac-
ian can be approximated by

¹2'
]2

]Y2
1K

]

]Y
1

]2

]X2
. ~C6!

Hence, the equation of motion can be written as

df0

dY

]Y

]t
5e2

d2f0

dY2
1e2K

df0

dY
2

1

a

d f~f!

df
1H

dg

df

2
h0

2

k

dFmis

df
Fmis2h0

dFsol

df
¹W •uW

2m
dg~f!

df (
i j

S ui j 2
d i j

2
¹W •uW D 2

, ~C7!

which, by virtue of Eq.~C3!, becomes

df0

dY

]Y

]t
5e2K

df0

dY
2

h0
2

k

dFmis

df
Fmis1H

dg

df

2h0

dFmis

df
¹W •uW 2m

dFsol

df (
i j

S ui j 2
d i j

2
¹W •uW D 2

.

~C8!

In order to project the bulk dynamics onto the interface,
multiply both sides of Eq.~C8! by df0 /dY, and integrate
over Y over the whole domain

]Y

]t E dYS df0

dY D 2

5e2KE dYS df0

dY D 2

1HE dY
df0

dY

dg

df
2E dY

df0

dY

3Fh0
2

k

dFmis

df
Fmis1h0

dFmis

df
¹W

•uW 1m
dFsol

df (
i j

S ui j 2
d i j

2
¹W •uW D 2G . ~C9!

In passing, we note that

E dY
df0

dY
521, ~C10!

and

g5E dYFe2

2 S df0

dY D 2

1
1

a
f ~f0!G5

7A2

60

e

Aa
, ~C11!

is the surface tension. This result can be readily derived
follows. First, from Eq.~C3! it follows that
16541
e

as

e2

2 S df0

dY D 2

5
1

a
f ~f0!, ~C12!

and, therefore,

g5E dYe2S df0

dY D 2

5E
1

0

df0e2
df0

dY
. ~C13!

Furthermore, from Eq.~C12! it follows that

df0

dY
52A 2

ae2
f0

2~f021!~f022!, ~C14!

for our choice off 5f4(f21)2(f22)2. Upon substituting
Eq. ~C14! in Eq. ~C13! yields Eq.~C11!.

Returning to the equation of motion, from Eq.~C9! we
obtain

2vn5e2K1
e2H

g E dY
df0

dY

dg

df

2
e2

g E dY
df0

dY Fh0
2

k

dFmis

df
Fmis1h0

dFmis

df
¹W •uW

1m
dFsol

df (
i j

S ui j 2
d i j

2
¹W •uW D 2G . ~C15!

Next we wish to express the strains in terms of the stres
by employing the definition of the stress

¹W •uW 5
1

k S s i i

2
2h0Fmis~f0! D , ~C16!

and

ui j 2
d i j

2
¹W •uW 5

1

2mFsol~f0! S s i j 2
1

2
s i i d i j D . ~C17!

Therefore, the equation of motion for the interface is

2vn5e2K2
He2

4g
2

e2

g E dY
df0

dY F h0

2k

dFmis

df
s l l

1
1

4mFsol~f0!2

dFsol

df (
i j

S s i j 2
1

2
s i i d i j D 2G .

~C18!

Sincedf0 /dY is sharply peaked at the interface, the integ
in Eq. ~C18! is nonzero only at the interface. Also, sinc
force balance across the interface requiressnn5snt50 ~liq-
uid is assumed to have negligible pressure!, this implies that
s tt is constant along the interface in order to preserve m
chanical equilibrium close to the interface. Furthermore, e
ploying the known spatial dependence of the planar solu
for the stresses we may write

s tt5s̃ ttFmis~f0!Fsol~f0!, ~C19!

wheres̃ tt denotes the magnitude ofs tt . Hence, we arrive at
4-16



ic

s
he

I
rm

n

, w
s

s-
ct-

s.

nd
hat
cin-
en-
te
of

for

of

o-
p-
by

a-

a
e
of

i-

g

ss

DISLOCATIONS AND MORPHOLOGICAL . . . PHYSICAL REVIEW B 65 165414
2vn5e2K2
He2

4g
1As̃ tt1Bs̃ tt

2 , ~C20!

where

A5
h0e2

2kg E dY
df0

dY

dFmis

df0
Fmis~f0!Fsol~f0! ~C21!

and

B5
4e2

mg E dY
df0

dY

dFsol

df0
Fmis~f0!2. ~C22!

Notice that this equation is nonlocal due to the mechan
equilibrium condition¹W •sW 50 that gives rise tos tt .

1. Interface dynamics with defects

When defects are included, there are additional term
the interface equation of motion. To this end, we write t
local velocity of the interface as

vn
net5vn1~dv !n

b1~dv !n
i , ~C23!

wherevn denotes the velocity in the absence of defects@see
Eq. ~C20!#, and (dv)n

b and (dv)n
i arise from bulk and inter-

facial dislocations, respectively. Consider bulk defects.
this case it is easy to show that there are two additional te
that can be written as

2~dv !n
b52

e2

2g l 4E dY
df0

dY S 1

YFsol8 j222Fsol8 jb D .

~C24!

Now, using the fact that, in the sharp interface limit,j
5dj/dn50 and b5db/dn50, at the interface, we ca
make a Taylor expansion and write

j'
1

2

d2j

dY2
Y21•••, ~C25!

and

b'
1

2

d2b

dY2
Y21•••, ~C26!

where the derivatives are evaluated at the interface. Now
note that the singular component of the tangential stres
the interfaces tt

s is given by2d2j/dY2. Furthermore, upon
employing the definition ofb and recalling that, in the vi-
cinity of the interface,snn

ns5snt
ns50, we find that at the in-

terfaces tt
ns/Y'd2b/dY2. With this insight we can rewrite

Eq. ~C23! as

2vn
net5e2K2

He2

4g
1As tt

ns1B s tt
ns 21C s tt

s 2

12 C s tt
nss tt

s 2~dv !n
i , ~C27!

where
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C52
e2

8g l 4YE dY
df0

dY
Fsol8 Y4. ~C28!

Finally, let us consider the contribution of interfacial di
locations to the effective equation of motion. Upon proje
ing dFint /df anddFcoup/df onto the interface, we obtain

2~dv !n
i 5

e2

g E dY
df0

dY
Fsol8 3~¹xby2¹ybx!~j2Yb!.

~C29!

We can physically interpret this contribution as follow
First, in the absence of external stresses (b50), it is
straightforward to show that the above term is positive a
hence favors melting of the solid. This is due to the fact t
dislocations at the interface give rise to stresses in the vi
ity of the interface and the system can reduce its elastic
ergy by relaxing this energy; a convenient way to elimina
these interfacial dislocations is by melting. In the presence
external stresses, on the other hand, this term vanishes

j2Yb'
1

2

d2j

dY2
Y22

Y
2

d2b

dY2
Y252

1

2
~s tt

s 1s tt
ns!Y250,

~C30!

where the derivatives are evaluated at the interface, or

s tt
s 52s tt

ns . ~C31!

Therefore, this term does not contribute to the evolution
the interface once the net tangential stress vanishes.

APPENDIX D: MODEL IN THREE SPATIAL DIMENSIONS

As the model stands now, it applies only to tw
dimensional systems. In this Appendix we outline an a
proach to extending the model to three spatial dimensions
employing a model similar to the one introduced in this p
per.

First, we note that the dislocation density becomes
second-rank tensorr i j , where the first index denotes th
direction of the line and the second indicates the direction
the Burgers vector in the following manner:*dSir i j 5bj for
any surfaceSW . The conditions that dislocations cannot term
nate in the interior of the crystal are]r ik /]xi50.

However, one can still employ our formulation utilizin
the Airy stress function ~or the complex auxiliary
function!—in this case there is more than one stre
function:37

¹4x i j8 52
1

2

]

]xk
~e imkr jm1e jmkr im!, ~D1!

and

s rs52mF ]2x rs8

]xm
2

1
1

12n

]2xnn8

]xr]xs
2

1

12n
d rs

]2xnn8

]xm
2 G .

~D2!
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In the above,e i jk denotes the antisymmetric unit tensor. It
useful to make the fields massive in the vapor phase if th
are free surfaces, as we did in the two-dimensional case

¹4x i j8 1 l 24~12Fsol!x i j8 52
1

2

]

]xk
~e imkr jm1e jmkr im!

[h i j . ~D3!

Conservation for the total Burgers vector leads28 to the
following dynamics forr i j :

]r i j

]t
1e i lm

] j m j

]xl
50, ~D4!

where j m j denotes the dislocation flux tensor. It can
shown38 that the flux tensor can be written as

j m j52Bm jstesab

]

]xb
S dF
drat

D , ~D5!

where a linear relation between thermodynamic forces
fluxes has been assumed; furthermore, for an isotropic
tem,Bm jst becomes

Bm jst5B̃@ 1
2 ~dmtd js1dmsd j t !2 1

3 dm jdst#, ~D6!

whereB̃ is a constant. When one integrates Eq.~D4! in time,
a subtlety is that the auxiliary conditions must be satisfied
all times. However, it is easy to show that if these conditio
are satisfied att50, they are satisfied at all later times. Fro
the equation of motion, Eq.~D4!, one obtains

]

]t

]r i j

]xi
52e i lm

]2 j m j

]xl]xi
[0, ~D7!

sincee i lm is antisymmetric in (i l ) and the partial derivatives
are symmetric. Hence, the auxiliary conditions hold at
times.

APPENDIX E:
AUXILIARY FIELD j IN THE SHARP-INTERFACE LIMIT

In this Appendix we will derive the sharp-interface lim
model corresponding to the auxiliary fieldj. This derivation
is valid in the limit l /L!1, whereL denotes the characte
istic scale of the film andl is a small parameter related to th
correlation length of defects in the liquid phase. For now,
also assume thate! l , wheree denotes the thickness of th
diffuse interface. At the end of the calculation we will com
ment on this approximation.

Our starting point is Eq.~16!,

1

Y¹4j1h1
1

Yl 4
~12Fsol!j50, ~E1!

which can be rearranged to read

l 4¹4j1~12Fsol!j52 l 4Yh. ~E2!

Next we assume thatf(rW)'f0(Y) where Y5W(x,y) de-
notes the distance to the interface from point (x,y) along a
16541
re

d
s-

t
s

ll

e

normal to the interface, ands5S(x,y) denotes the arc length
along the interface measured from some reference point

We will solve Eq.~E2! in a perturbation theory inl and
show that, to lowest order,l appears through effective bound
ary conditions applied at the interface. It is essential to n
that this is a singular perturbation problem sincel multiplies
the highest derivative. Therefore, we will solve this proble
using the matched asymptotic expansion technique. We
ceed by formally expandingj in a perturbation series inl,
and hence obtain the ‘‘outer’’ expansion:j05(n50

` l nj0
n(rW).

Substituting this in Eq.~E2! we find that, to lowest order,

¹4j052Yh0 , ~E3!

for Y,0, andj050 for Y.0, sinceh vanishes in the liquid
phase.

Next we introduce the inner expansion and writej i

5(n50
` l nj i

n(z), where we have introduced the stretched va
able z[Y/ l . Furthermore, to lowest order we can appro
mately write (12Fsol)'u(Y), whereu denotes the Heavi-
side step function. Hence, the equation satisfied by the in
expansion becomes

l 4¹4j1u~Y!j52 l 4Yh. ~E4!

Upon substituting this into Eq.~E4! we find thatj i
0 satisfies

d4j i
0/dz41u(z)j i

050, where we have used the fact that t
interface is planar at this level.@Note that Eq.~E4! is effec-
tively one dimensional at this level of approximation—the
would be terms at higher order arising from the curvature
the interface. However, these terms turn out to be unimp
tant at the end of the calculation.# We again note that this
approximation is valid fore! l ; in this case, the order pa
rameter varies very rapidly on the scale ofl. Furthermore,
since j050 for Y.0, this implies that limY→`j i

0

5 limY→`dj i
0/dY50. We expect this equation to have a

envelope of exponentially decaying solutions forz.0. In-
deed, it can be verified by a direct substitution that the f
lowing solution satisfies the biharmonic equation forz.0
and is well behaved forz→`:

j i
0~z!5Ã cos~z/A2!exp~2z/A2!

1B̃ sin~z/A2!exp~2z/A2!. ~E5!

The constantsÃ and B̃ will be determined by matching the
inner and the outer solutions at the origin.

To this end, we first formally solve Eq.~E3! and expand
the solution in terms of the stretched variablez in the vicinity
of the interface

j05
1

6
j0-~0;A,B!l 3z31 1

2 j09~0;A,B!l 2z2

1j08~0;A,B!lz1j0~0;A,B!1•••, ~E6!

where the two integration constants (A,B) parameterize the
derivatives of the solution at the interface. In order to det
mine the unknown constants (A,B,Ã,B̃) we match the inner
and outer solutions at the interfacez50. Upon requiring that
j has continuous derivatives up to third order atz50, we
obtain the following set of conditions:
4-18
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Ã5j0~0;A,B!,

2
Ã

A2
1

B̃

A2
5 l j08~0;A,B!,

~E7!
B̃5 l 2j09~0;A,B!,

Ã

A2
1

B̃

A2
5 l 3j0-~0;A,B!,

where we have employed the explicit solution Eq.~E5!. Tak-
ing the limit l→0 trivially yields Ã5B̃50 and, therefore,

j0~0;A,B!50, ~E8!

providing one condition betweenA and B. Furthermore,
upon expanding

B̃5B̃01 lB̃11 l 2B̃21••• ~E9!

and

j09~0;A,B!5jo,09 1 l jo,19 1 l 2jo,29 1••• ~E10!

we readily obtainB̃05B̃150, and henceB̃5O( l 2). Further-
more, from the last condition in Eq.~E7!, similar consider-
ations for Ã yield Ã5O( l 2). These estimates are valid fo
n
t

r.

t
.

16541
A5O(1) and B5O(1).41 In particular, this implies that
j0(0)5O( l 2)50 as l→0, and j08(0)5O( l )50, as l→0,
which we recognize as two effective boundary conditions
the interface. In other words, we have just shown that
phase-field equationl 4¹4j1(12Fsol)j52 l 4Yh is equiva-
lent to ¹4j52Yh in the domainV5$f(rW)51% with j

5“j•nW 50 at the interface$f(rW)51/2% in the limit l→0.
Physically, the above results are not very surprising. T

finite mass term forcesj to vanish exponentially in the liquid
phase, leading to the first boundary condition. On the ot
hand, all derivatives ofj are also forced to vanish expone
tially fast in the liquid phase. Upon requiring thatj has finite
derivatives up to third order at the interface, we arrive at
second boundary condition.

In the numerics we have employede/ l 50.5. Hence, the
Heaviside step function is replaced by a function~essentially
the equilibrium order-parameter profile! that varies smoothly
on the scale ofl, so the inner solution is a more complicate
function of z, than the one above. Nevertheless, asympt
cally it must decay exponentially, since@12Fsol(z)#→1 as
z→`. This implies that the asymptotic solution is the o
given in Eq.~E5!. Therefore, in the limitl→0 we may use
similar arguments to those above, obtaining the same
boundary conditions. As well, a finitee' l will generate ad-
ditional l-dependent terms in the boundary values ofj and its
first derivative.
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