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Dislocations and morphological instabilities:
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We present a continuum model of nonequilibrium heterogeneous elastic systems, which includes both
smooth and singular strains, as well as their coupling to free surfaces, in two spatial dimensions. It accurately
includes nucleation, interactions, and dynamics of dislocations. In particular, we demonstrate that the model
recovers the well-known Matthews-Blakeslee critical thickness for the nucleation of misfit dislocations. For
misfitting heteroepitaxial films above the critical thickness, dislocations compete with the stress-induced in-
stability of the film-vapor interface as a strain-relief mechanism. At early times, the dislocations slow down the
initial instability by climbing to the film-substrate interface and relaxing the misfit strain partially. However,
the late-time morphology is determined by the strong interaction between the stress concentration at the bottom
of the grooves and the singular stresses due to dislocations.
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. INTRODUCTION Experiments suggest*™'’ that both of these
mechanisms—the buckling of the film and the nucleation of
The precise control of the morphology of thin films under dislocations—take place in supercritical films. It has been
strain is an important ingredient in the fabrication of micro- demonstrated recently that groove alignment in ;Si,Ge,
electronics. For example, various semiconductor alloys arélms grown on a Si surface depends crucially upon whether
commonly used to engineer devices with particular values omisfit dislocations are present or not. In particular, the dislo-
the band gap. Due to the misfit in the constituent's latticecations line up at the film-substrate interface in t1d.0)
constants and silicon, the most commonly used substrate, tif#rection, and modify the overall strain pattern in such a way

film is typically under a compressive misfit stress. It is nowthat the subsequent growth of the film occurs on top of the

understood that such strained films may undergo a morphcg_islocations. Even a qualitative understanding of the mor-

logical instability owing to the stress in the film. This insta- pholﬁgy_ requirtetsh an appt(oach that treats explicitly hoth
bility, known as the Asaro-Tiller-Grinfefe? (ATG) instabil- me_;_:o ?r?ilssg]rfdain tﬁi;ar:eerlr\?vgintroduce 2 continuum model
ity, allows the film to partially relax its elastic energy by f S pap . )

becoming corrugated*buckling’ ), thereby making the that treats both strain-relief mechanisms on an equal footing.

. e . . It implicitly includes the nonlinearities arising from free sur-
59

grov_vth o_f planar films dn‘flc_ult to achievé. An a_llt_ernatwe_ faces, as well as singular interactions between dislocations

strain-relief mode can be important for a sufficiently thick

TR D X ; and smooth misfit strains. The interaction between nonuni-
film: misfit dislocations can nucleate and climb to theorm siresses and plasticity is theoretically challenging to
film-substrate interface, thereby relaxing strain. This 'atteraddress, since the former constitutes a free-boundary prob-
mechanism leads typically to a large number of threadingem, while the latter involves singular contributions to the
dislocations that can deteriorate the electrical properties Oftrain. In order to overcome the first difficulty, we have em-
the film. ployed a continuum model based on the order-paranteter
For some applications, films need not be grown planarphase-fielglconcept that implicitly takes free boundaries into
For example, there is a growing need to manufacture smallaccount. In order to overcome the second difficulty, we in-
scale quantum dotsL(~1-10 nm), which can be used in troduce a ghost field that conveniently mediates the singular
such novel optoelectronic devices as single-electron transigateraction between the dislocations. We give the model a
tors, quantum-well lasers, and light-emitting diodes. Theseletailed exposition, as well as report on some numerical tests
nanoscale components have been traditionally obtained fromith the model. In particular, it is numerically demonstrated
planar films by lithographic techniques. However, such litho-that our model recovers the well-known Matthews-Blakeslee
graphic techniques incur practical limitations as the size otriterion for the nucleation of misfit dislocations. Further-
the desired device is decreased. Hence it has been suggestadre, it is shown that the model accurately incorporates dis-
that one can employ the ATG instability as a means to selffocation interactions in thin films.
assemble regular patterns. In that case, the size and spatial After reporting results pertaining to dislocation energetics
arrangement of the islands determines the optoelectronig a static film, we apply the model to the dynamics of thin-
properties of the device. Therefore, there is a need for &lm growth in the presence of dislocations. We show that,
better understanding of how the growth conditions and maeepending on their mobility and density, dislocations can
terials parameters affect the final morphology of the film. have a strong effect on the dynamics. In particular, we dem-
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onstrate that the film-vapor interface may be stabilized due ttion nucleation, in addition to a morphological instability of
the presence of misfit dislocations, if the dislocations screethe initially flat surface. This will be discussed further below.
the misfit stress completely. The effect of dislocations can be

tuned by varying the mobility, or the density of dislocations, B. Asaro-Tiller-Grinfeld instability of coherent

through their core energy. We find that dislocations generally subcritical films

coexist with the ATG instability. The growth rates of the

instability can be continuously tuned by dislocation mobility

and core energy. In the nonlinear regime, defects lead ggtrain partially for films of thicknes>h;, the system can

slower coarsening of the morphology due to a buildup Ofalso relax its to_tal energy thro_ugh a morphological_ .ATG
dislocations ahead of the groove tips instability} =37 This mode occurs in films below their critical

This paper is organized as follows. First, in Sec. Il We';hlckr:jess.lAs a consequendC(_a ?f t2|sf|nstab|_lltﬁ/, the flzede :I“eg
discuss the two modes of strain relief in thin-film growth, ace develops grooves and 1slands form with a well-aefine

and the concepts of critical thickness and the ATG instability.Waveler.‘gth’ while the f|Im-sgbstrgte |n'terfaf:e remains coher-
In Sec. lll we review related work. The model is given g ent. This mode has bgen identifiédvith dislocation-free
detailed exposition in Sec. IV. Our results are summarized npyer and islandStranski-Krastangugrowth. ArR.20.21
Sec. V, for both static and evolving films. It is shown numeri- Con5|der. a sem|-.|nf|n-|te two-dlmenglonal E' v
cally that the Matthews-Blakeslee condition is recovered fomwhere the interface is given by=h(x) in the r=(x.y)
dislocations in a static planar film. Furthermore, the coupledlane andh(x)=hosin(gx) whereq is a wave number. The
dynamics of the thin film and dislocations are studied nudoundary conditions on the stress arg(X,y— —®) = ey
merically. The paper ends with a conclusion and discussio@Nd ayy(X,y— —®) = oy(X,y— —) =0, which gives rise
in Sec. VI. Mathematical details are given in the Appendicesto a uniaxial stress in the unperturbed film. Furthermore,
assume that the interface is traction-free, ig;n;=0, or
Il. STRAIN-RELIEF MECHANISMS onn=0n=0, wheren denotes the unit normal to the inter-

face, t denotes the tangential direction, and a summation
o _ _ ~convention is implicit over repeated indices. The resulting
If a film is grown on a substrate with a different lattice tangential stress at the interface isry= eyl
constant, that epll_ayer will usu_ally be stra_med._ It is \_NeII —2qhosin(qx)]+O(h§q2). In particular, this equation implies
known that, for thick enough films, threading dislocationsiyat the perturbation of the free interface leads to a stress
extend to the film-substrate interface and relax the misfitoncentration at the valleys, while the stress is relaxed at the
stress in the film b3’12d1%Str°y'”g the coherency of the film-pjjitops. This stress gradient can drive mass flux from the
substrate interfact™****Below this thickness, dislocations yalleys to the hills, hence increasing corrugation. At suffi-
are thermodynamically unstable and the system must revegiently short-length scales, the surface tensjosuppresses
to some other means to relax the stress. the instability. The typical scale of the grooved pattern can
Partially relaxing coherency at the interface allows thepe gptained by carrying out a linear-stability analysis. A

lattice constant in the.epilayer to approach it§ equ”ibriumstraightforward calculatigh yields~yy/o§ .. For a typical
value. However, locations where coherency is lost COIerisfit strain off=0.1. this implies)\~100—X1000 A

spond to dislocations. _Heng:e_, ”_“Sf“ s_train is_ partially Ozkanet all” have clearly illustrated the importance of
screened by the |nte_rfaC|aI misfit _d|f5|0cat_|ons_ This leads t(_?nteractions between the smooth strains and dislocations. In
an overall decrease n the net misfit strain and hence stral articular, in the case of supercritical films, initially the film
energy. Upon employing energy-balance arguments, Ma

h d Blakesléa® derived the followi ; roughens as subcritical ones. However, the grooves act as
thews and Blakes erived the following expressions preferred nucleation sites for misfit dislocationé; ¢ and
for the critical thicknessh, and the residual equilibrium

once these dislocations are located at the film-substrate inter-

While misfit dislocations are expected to relax the misfit

A. Misfit dislocations and the critical thickness

strain f*: face, they modify the strain distribution in the film that even-
ub tually causes the surface ridges to align with the dislocations.
h.=-—=In(h./b)+const (1)  Therefore, in order to understand the evolution of the mor-
4m )t phology it is important to consider both mechanisms on an
and equal footing.
b
f* :4ﬁyh [In(h/b)+1]. @) lll. REVIEW OF RELATED WORK

Since the discovery of the ATG instability and the role of
Note that, in general* # 0, which implies that the strain is misfit dislocations in strain relief, they have been studied and
only partially relaxed by the dislocations. Typically,~10  discussed by various authcrsSpenceret al* performed a
atomic layers for a misfit straifi=0.1. Dynamically, defects linear-stability analysis of a growing epitaxially strained
are expected to nucleate at the film-vapor interface and gliddislocation-free solid film, and determined the conditions for
down to the film-substrate interface. Experiments of Gao anavhich a growing film is unstable. Guyer and VoorHestsid-
Nix® demonstrated that films can be grown past their nominaled a model of alloy thin film growing by deposition flux
critical thicknesses due to kinetic limitations on dislocationfrom the vapor, and also carried out a linear-stability analysis
formation. However, upon annealing, they observed dislocafor the free surface. They demonstrated that, contrary to
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single-component films, under certain conditions, tensileminimal model whose generic features are applicable to
misfit strain can completely stabilize a growing film, whereasmany microscopically different systerfs.
compressive strains of the same magnitude would be desta-
bilizing.

To address nonlinearities, Yang and Srolovfzderived
an evolution equation for the free surface of a two- Our approach is based on the phase-field method em-
dimensional system and found numerically that deep, crackployed by two of ué and Kassner and co-work&rs to
like grooves form as a result of the instability. In particular, model the ATG instability, in the absence of dislocations. A
they observed accelerating grooves with finite-time singufpreliminary account of some aspects of this work can be
larities manifested in the apparent divergence of the groovéound in Ref. 27. We couple a scalar vapor-solid order pa-
growth rate. However, they did not study the evolution of therameter to vectorial displacement and dislocation density
interface in the grooved regime. To this end, two of p-  fields, including an elastically inert solid substrate. Disloca-
posed a model, free from numerical instabilities, based oflions are characterized by a vector fieﬂ(f)’ which gives
the Ginsburg-Landau approach to study the strain-reliethe local Burger's vector density. Dislocations give rise to
mechanism at a free surface in two and three dimensiongind interact through singular stresses; in particular, upon as-
The model permitted the simulation of the surface '”Stab'l'ty'suming mechanical equilibrium, one can reIE‘(ef) to the

and the subsequent competitive coarsening of the interface g]ngular part of the stress tensor through the Airy stress

the nonlinear regime, in qualitative agreement with €xperiy,nction2 Moreover, correct and accurate treatment of these
ments of Gao and Nix.Furthermore, this technique made singular interactions is essential. To this end, we make use of
thr.e.e—dlmensmnal simulations poss.|ble. A model similar ing 4 generalize the continuum model introduced by
spirit _was _proposed and studied by Kassner andygenao@® to study dislocations and their interactions in
co-workers® e . . . . two spatial dimensions. In particular, we introduce an auxil-
The role of misfit dislocations in the strain-relief mecha- i,y field that mediates the nonlocal interaction between the

. . . 24
nism of thin films was addressed by Doegal,”* who stud- * giqjncations. This field is massiv@nd hence short ranged
ied the growth and relaxation of two-dimensional misfitting;, {he vapor phase, while becoming massléeag ranged
films through molecular-dynamics simulations. They demon;, the solid phases. As shown below, this is sufficient to

strated that, above a critical thickness, dislocations nucleatg, ;e the dislocation interactions vanish in the vapor phase
and relax most of the misfit. They also demonstrated that theg o quired. It leads to the correct logarithmic dependence of
surface morphology plays an important role in the nucleationye gjisiocation self-energy on the thickness of the film,
of dislocations, in which the formation of deep-valley struc- | hich is essential in order to recover the Matthews-
tures acted as preferential nucleation sites for dis")cation%lakeskee critical thickness. Furthermore, in our approach
However, due to smallmicroscopi¢ length and time scales giq|ncations are coupled to the external stresses via standard

amenable to molepulqr-dynamics _simulations, they did nofgtic interaction; this provides a thermodynamic driving
address the physics in the nonlinear regime where botl e for the nucleation of dislocations.

coarsening and misfit dislocations and their interactions con- Dynamic fields included explicitly in the model are a sca-

tribute to the morphology of the film. lar solid-vapor order parametef, the Burger’s vector field
A different type of approach to studying dynamics of dis- -, - P . _p efr,. g
n(r) for the dislocations, and six components for the non-

locations in three dimensions under external stresses was un: ) ; .
dertaken by SchwarZ,where the motion of dislocation lines S'”g.“_'aT and smgqlar stresses. Upon employlng .mec.hamcal
’ e(?qumbrlum conditions, however, the only explicitly time-

is driven by the net local stress through the Peach-Koehl -
force. While treating the interactions and topology of thedependent fields ar¢ andb; smooth strains are expressed in
dislocation network physically, the motion of the dislocationsterms of. Singular stresses and their interaction with non-
was not coupled to the evolution of a free surface, and theresingular strains are determined througglandb by introduc-
fore, the response of the free surface to both nonsingular aridg two auxiliary fields that are equilibrated instantaneously
singular stresses could not be addressed. or equivalently, on a time scale much shorter than typical
All of the approaches presented above have some inheretime scales corresponding to the evolution of the surface.
shortcomings. Continuum models presented to“ddtenly  Physically, this corresponds to the assumption that the rel-
include smooth elastic fields, and dislocations have beeesvant dynamics is slow compared to the speed of sound; this
omitted. The molecular-dynamics simulations of Dongcondition is most certainly valid in typical experiments
et al?* include dislocations implicitly. However, length and where the evolution of the surface occurs over several min-
time scales amenable to molecular-dynamics studies anates or hourS:’
quite short 10’ m and ~10°8 s). Therefore, it is An important feature of the model is that, since disloca-
worthwhile to develop a coarse-grained continuum formulations are topological defects, their dynamics must satisfy a
tion, free from length and time-scale restrictions, which isconservation law for the total Burger’'s vector, leading to
able to treat smooth elastic strains as well as the nucleatiowliffusive dynamics. This allows us to study the effect of
interaction, and dynamics of dislocations in heterogeneoudefect mobility on the pattern forming system. Furthermore,
strained systems. As discussed above, this approach neceg assume that evaporation condensation is the main mecha-
sarily leads to a free-boundary problem with singular long-nism for mass transport to and from the film, leading to
ranged elastic fields. A continuum approach constitutes aonconserved dynamics for the solid-vapor order parameter.

IV. MODEL
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This interplay between conserved dislocations and noncorthe film thickness is much less than the thickness of the
served mass leads to interesting effects, such as mobilitysubstrate layer. Smooth nonsingular elastic fields are de-
dependent ductility: in Ref. 27 it is shown that, depending orscribed by
their mobility, defects can screen stress by building up at 1 5 5
large-curvature groove tips, leading to high ductility, or be _ > N ns_ %G ~ns
“outrun” by the tips, leading to brittleness via a nonequilib- }—e'_f dr) 5 (V- u™) +'U“q)s°'(u” v u ) }
rium brittle-to-ductile transition. Finally, we consider an ex- (8)
ternal deposition flux that allows us to study both anneale
systems and systems with deposition.

Q/vhere,u is the shear modulus.

The singular part of the elastic energy involves several
_ terms. Interactions between dislocations are mediated by a
A. Statics complex auxiliary field¢ through

As a generic model for the energetics of strained thin
films, the free-energy functional is constructed such that it .
describes a strained solid-vapor system with coexisting Fin= J' dr
phases, and dislocations interacting with each other, and with
the nonsingular strains in a finite film. We wriféas the sum Where ) is the Young’s modulus andl is a microscopic
of seven termg&+28-30 length entering into the boundary conditions fat the free
surfaces, as shown in Appendix E. Below we relat® the
F=Fyt+ Fexrt Fert Fintt Fioct Feoupt Fiux-  (3)  Airy stress function. Once integrated ddthis gives rise to
the nonlocal interaction between the dislocations, as demon-

Phase coexistence of solid, film, and vapor is described byirated below. Back coupling of the defects to the stress in-
the term involving the order parametet volves the field

(1_(bsol)§2

)

! ViE+1En+
2ytV EtEm L

2 2 -
f¢=f dl?[%|'§¢|2+f(d))+ zn_,iqumis , (4) 7(r) =P Viby—Wb,). (10
The local energy of a dislocation enters through
wheref(¢)=(1/a) $*(p—1)*(¢p—2)?, ais a constantk is
the compressibility modulus, angl, is proportional to the
externally applied stress. Hence, the homogeneous equilib-

rium phases of the vapor, film, and solid substrate correspondh by is the si f the dislocati hich i t by th
to ¢eq=0, 1, or 2, respectively. For an inhomogeneous sysyv ﬁre o IS Ine size %2 : eth |Sd0(]:,a lon, Which 1S se d y the
tem, these coexisting phases will be separated by diffusgnnarmonic termi=;~b” is the defectcore energy, ands a

interfaces of thicknese~ e+/a. The phase-field approach is constan.t that determine§ the barrier fo.r the nucleation of de-
equivalent to the sharp-interface formulation as long as théeCts' Finally, Tse, coupling *?et""ee” singular straﬁﬂ and
interface thickness is much smaller than typical length scale§M0Oth stress;” is accomplished by
of interest in the morphologd. We introduced ;s and @,
to enforce convenient thermodynamics for the vapor, film, y:coup:f dFo{}SuiSj ) (12)
and solid substrate equilibrium phases, generalizing the ap-
proach of Kobayashf: Thg guanutycbmis ensures that the The last term in the free-energy functional describes ex-
stress only occurs at a misfib, ensures that only the two ternal flux
solid phases can support shear. This is done by requiring
@' (hpeg =0, where the prime denotes a derivative, and .
D (peg) = deq, Or peg=0 or 1, while for ¢peg=2, =0 fﬂux:—HJ dr @by —h(x)], (13
and®g,=1. These requirements are satisfied by the choices
whereH is a constant®y,,= 3 ¢?>— +¢*, h(x) denotes the
D = — 13 (2% — 12¢°+ 15¢*+ 20¢°— 364%), (5)  position of the stationary film-substrate interface, ahds
the Heaviside step function. This controls the flux of par-
ticles to the epilayer, permitting the study of both annealed
q)solz _ %32(19¢6_81¢5+ 60¢4+ 135¢3_177¢2) films and films Wlth depOSition. . .
(6) Nonlocal couplings between the dislocations, as ex-
) pressed by the Peach-Koehler force, enter thrafigh This
The externally applied stress enters through term arises from the elastic energy stored in the singular
stresses, and it is merely an alternative way of writifig
]—'extzf dr[ 7o® iV - u"]. (7)  =3fdrojus. This can be seen as follows. First, we note
that employing the definition of the Airy stress functignit
This “prestress” leads to nonzero stresses in the epilayer; thean be showi that this is equivalent to
strength of the applied stress is determined by the coupling
constanty,. We assume that all of the misfit strain is accom- o 1 de(Vz )2
modated by the film. This assumption is justified as long as 2y X

Fioe= f dr[cb?(b?—b2)2+E b?], (11)

and

(14
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Since V“X:y(bey—Vbe) for a homogeneous interactions between the dislocations, as employed by Nel-
system?¥3334it is straightforward to show that E¢14) can  son and Halperiti=*in their study of dislocation mediated

be rewritten as melting in two dimensions.
y( dgq 1 0id;i R R B. Dynamics
fim:ﬂ—z—z(aj—'—; bi(a)bj(—q). (15 . L
(2m)° q q We assume that the dynamics of the system is driven by

the minimization of the free energy, thereby leading to relax-
ational dynamics forp and b. Mechanical equilibrium al-

lows us to integrate out the strains; consequently, two auxil-
iary fields are naturally introduced. As discussed above, the

Now, if & equilibrates instantaneously, it follows thatsat-
isfies (letting é=Im &)

1 1 interaction between the dislocations is mediated by the field
Zy4 =1 _
yV et y|4(1 Do) £=0. (16) ¢, and the interaction between the dislocations and smooth
stresses is mediated by a new figdd These fields satisfy
By identifying xy= — &, x satisfies (see Appendix B for a derivation
4, L 4. 1
\Y X+I_4(1_(D50I)X:y77- (17 v §+|_4(1_q)sol)§:_y7],

For a homogeneous systefh,,= 1, and Eq(16) reduces to 1
1 V4ﬂ(l’)+|—4[l—q)so|(l’)],8(l’)

yV4§+ 7=0. (18

5”' P -,

gike i Vo (r)
Equation(18) is easily solved in Fourier space, and whén
is replaced by its solution, it can be shofrthat 7, leads S .
to the well-known nonlocal interaction between the disloca- - %Vzo{}s(r) /ZM .
tions, as embodied in E@15).

Consider a heterogeneous system, as described by Egpege fields are equilibrated instantaneously using an itera-

(16). Since n vanishes .in the vapor phase, dislocations inyye scheme. Following Onuki and Nishimdfi, Sagui
that phase do not contribute to the overall stress state of t al,% and Miller and Granf, we employ the mechanical

system, and hence they do not interact amongst themselv‘éﬁuilibrium equations to solve fm,injs in terms of ¢, to first

or with other dislocations in the_ solid _phases. In add'.t'on'order inu/ k. The time dependence of the order parameter is
singular stresses due to defects in the film must vanish in thgssumed to obey

vapor phase. This is enforced conveniently by the inhomo-
geneous mass term in E@.6). In the vapor phase, we have
V4E+ ¢/14=0. In Appendix E we show that this implies ex- 9 _ -r oF (20)
ponentially decaying solutions for the dislocations in the va- ot o’
por phase. Consequently, this enforces effective boundary . . )
conditions for¢ at the solid-vapor interface. In particular, we Where the constant mobility is an inverse time scale related
use an asymptotic expansion to show thaatisfies the fol- fto the attachment_and detachm_ent klnet|cs_of atoms_ at _the
lowing partial differential equation in the sharp—interface'merface e\{aporatlon—c_ondensgtlon m.‘?Cha”'S”.‘ for kinetics.
A o R, . For convenience we will set this mobility to unity hereafter
“mlt' Y §+_y7;—0 n the doﬁmamQ—{qb(r)zl} with £ (hence, time is in units df ~1). Note that we have assumed
=V¢-n=0 in the domain{¢(r) =1/2}. that the main matter transport mechanism is evaporation con-
The origin of the elastic coupling terms is straightforward. gensation, which speeds up our simulation studies apprecia-
The total strainuii* of the system & the sum of smooth by, In other words, material in the film is not conserved.
(nonsingulay and singular strains, i.eu;"'=uj*+uf . Also,  While this mass-transport mode is not the dominant one for
the total stress can be decomposed to the sum of smooth aagnealed films in vacuum, where the film evolves under sur-

singular stressest}?tz oi;>+ o7, . From the theory of elastic- face diffusion, we anticipate that the physical processes we

ity, it follows that the elastic energy isfdr o-i‘?tu}}“, where investigate in this paper are relatively insensitive to the mode
summation over repeated indices is implied. By using the?f matter transport. _ _

definition of ' andu'®, this free energy can be rewritten as Defects are conservgd due to t'helr t_opologlcal nature; they
can only appear and disappear in pairs and hence the total

J 1

1 © ns ns; 1 S .S £ S .ns

1 nsns 1 Sus + S uns. - X .

2Jdroju ™+ 2 Jdr ojuy [ dr oy ui”. Therefore, the en- g, 00rs vector is conserved. Fbr, we have

(19

i]
ergy breaks up naturally into three contributions: smooth
strain energy ), singular strain energyX;,), and their

. . . . by - . _OF
coupling (Fcoup- The elastic energy of the singular strains —X=V.D.V— (21)
can be written in terms of dislocation self-energies and the ot oby
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whereD is a mobility tensor. For simplicity we will ignore o denotes the tangential stress at the interface. Furthermore,
thermal noise. The relatively easy glide motion and the moréhe stresses satisfyo;; /9x;=0, with op,=0p=0 and
sluggish motion in the climb directiof,have different mo-  ox(X,y——%)=0ey. Equation (24) has a transparent
bilities. This is phenomenologically accounted for by writing Physical meaning: surface tension tends to flatten the inter-

the mobility tensor as face, while larger tangential stress at the bottom of the
grooves leads to faster growth, providing a positive feedback
mechanism.
. [mg O The presence of a nonzero deposition flux and disloca-
D=l g m/ (22)  tions leads to four additional terms in E@4), as shown in
¢ Appendix C,
wheremy andm, denote the glide and climb mobilities. Note X
that the scaIaEu—Di,jaigj formed fromﬁ, say, and t\{vo ar- —phel 2K — _€+A0?ts+ BUESZJFCUtStZJFZCU?tSUtSt
bitrary vectorsa and c is invariant under reflectionx 4y
——x and y—y. This implies that off-diagonal elements 2 débo
vams_h, while the_ diagonal ele_rr_]ents are arbitrary. Since va- + _f dYWq>§o|(bey—Vybx)(§—yﬂ), (27
cancies are not included explicitly, we expeat<my. For Y

thin-film growth, this is unimportant since most dislocation
motion is in the climb direction in any case. We rewrite the
equation of motion as

where

62 d¢0
- _ "V H! va
c 8yl“yJ dY 5 Pla” (28)

by 92 9\ 6F , o .
i Mg— +Mc— b (23)  The second term arises from deposition. For the additional

Ix ay X three terms, two of these can be mainly attributed to dislo-
The equation forb, is of the same form with, however cations in the bulk and the last one to interfacial dislocations.
mga2/6x2+mcazlayyzemcazlﬁxhrmgazl&yz, in ,the two " Both bulk and int_erface dislocations giv<_a rise _to tangen.tial
equations above. stresses at the interface. Note that dislocations partially

Most of the functional variations oF can be found easily, SCT€en the stress giving rise to slower growth due to elastic-

but 6F 0./ 3¢ is quite involved. The derivation is given in [tY; furthermore, foroy~—oy’, the growth can become

Appendix B. For the derivation, it is useful to introduce the Very slow since the net stress in the film has almost vanished.
—_— > " . : Indeed, Eq(27) has an appealing physical interpretation. In

coupling field3(r)=;; oF/ 5(Vib;) between the dislocations the absence of dislocations, buckling of the surface is driven

and g;; , whereg;; is the antisymmetric unit tensor. As dis- . : . ;
] | ) . . by the tangential stress at the interface. Dislocations nucleate
cussed above, it results from integrating the strain out of the . . ;
nd renormalizéscreen the stress partially. This leads to a

dynamics, and mediates the interaction between the defecgsecrease in the net.. and hence to slower arowth
and smooth stresses. tt g :

Interfacial dislocations, on the other hand, give rise to
both stresses at the interface and also to the last term in Eq.
(27). We can physically interpret this contribution as follows.

In the absence of dislocations, one Taderive the fol-  First, in the absence of external stressgg=Q), it is
lowing equation of motion for the film-vapor interface, as straightforward to show that the above term is positive and
shown in Appendix C: hence favors melting of the solid. This is due to the fact that

dislocations at the interface give rise to stresses in the vicin-

ity of the interface and the system can reduce its elastic en-
—v,=€’K+Aoy+Bo?, (24)  ergy by eliminating these interfacial dislocations by melting.

In the presence of external stresses, on the other hand, this

C. Model in the sharp-interface limit

where term vanishes for
2 . 1 d2¢ yd?g 1
o€ de¢pg dO a9 S o YUP L, - 2_
A= mj Yd_Y Vn:sq)mis(%)q)sm((ﬁo), (25 § YB~3 deY 2 deY = 2(0tst+"?ts)Y =0,
and @9

where the derivatives are evaluated at the interface, or
B 462J quﬁo d¢>50|q) ) o6
=y Y doo mis( $0)°- (26) oS=— ol (30)

In the above,Y(x,y) is the distance normal to the curved Therefore, this term does not contribute to the evolution of
surface at any poinipy(Y) is the local-equilibrium solution the interface once the net tangential stress vanishes.

for the order parameter at the interfaéedenotes the local For dislocations, their dynamics in the sharp-interface
curvature,y=€?fdY(d@/dY)? is the surface tension, and limit follows from
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a—mz_ma—z+m(9—2_[5ﬂoc+)}Vﬁ—V§} — i
gt | %ax2 Cay?|| dby Y L N |;;:g: 3333%2?."
175 ---- |=3.0, 2000 iter. 1
r7_by ) r ) 07_2 . (?_2 5Fine S (31) —-— analytical soln.
ot _ C&XZ g&yz_ 5by X XS |1

. 075
where noise has been neglected. Since go#imd 8 vanish ¢

in the vapor phase, the Burger’'s vector satisfies nonlineal
diffusion equations, driven byf,..
In summary, our model in the sharp-interface limit re- —0.25
duces to three kinetic equations, namely, E2j7) for the
film-vapor interface, Eqs(31) for the dislocation dynamics
in the solid phases, and the following equations for the aux-
iliary fields (¢,8) in the solid phases: 125 ¢ ” 5 = = o 8
V4E=—Y(Vb,~ Vb, (32 !
FIG. 1. Stress profiles due to a line of dislocations with varying
I. Notice the convergence af}, to the analytical result aKL,
—0.

and

8ik£j|VkV|Uir}s(F)

4n_ 6” 2 _ns/. 1
v B_[ﬂv 7ij “Hﬂ onstrated recently by Hu and Ch&hor by directly solving
the elasticity equations as was done by Kassted?
(33) As the model stands now, it applies only to two-
dimensional systems. In three dimensions, one must consider
) . ) the topology of line defects and find a convenient way to
Finally, the boundary conditions at the mterjacg for the elasygjye the equilibrium elastic equations for the singular
tic and auxiliary fields arerys=on;=0, £=V&-n=0, and  stresses. In Appendix D we outline how this can be achieved
3263.520. Auxiliary fields (¢,B) are equilibrated nu- by employing an approach similar to that discussed in this
merically by employing an iterative method described in Ap-Paper.
pendix A.

5” -,
— 5 V2T

V. RESULTS

D. Discussion A. Numerical studies of static dislocations

In this section we have introduced a continuum model to
study the dynamics of dislocations coupled to external
stresses and free surfaces in two spatial dimensions. Let us TO test our approach, we have evaluated the stress com-
now briefly discuss some of the approximations that are emPOnentoy, in a system of dimensioris, =64, L, =128 due
ployed in solving the model. For simplicity, we consider t0 @ line of dislocations withb,(x,y=L,/2)=1.0. First, we
elastically isotropic systems in this paper. It is certainly truecompute¢ iteratively and then numerically evaluating,,
that the detailed surface structure and dislocation slip planes 9°¢/dy®. The film (¢=1) occupies the regionOx<L,
depend strongly on the presence of elastic and surfacénd 32<y<96 and is surrounded by vapot0) above
tension anisotropies, as well as on the lattice structure of th@nd below. Concerning convergence &fthere are two is-
film. However, the aim of this paper is to introduce a robustsues. First, since we employ an iterative method, we expect
model that allows us to study and understand the generithe solutiong" (1) =¢. Furthermore, in the limit of small
features of dislocations interacting with external stresses and@hich corresponds to enforcing effective boundary condi-
free surfaces at the expense of omitting various microscopitions at the film-vapor interfacesee Appendix E we expect
details of any particular system. On the other hand, incorpoé"(l) to approach the sharp-interface limit solution.
rating, say, the aforementioned anisotropies is straightfor- The results for three values b¥(3.0,2.0,1.0) are shown
ward within our approach, and we envision further fruitful in Fig. 1, along with an analytical solution corresponding to
investigations along these lines. boundary conditions §(x,y=32)=¢&(x,y=96)=0 and

While singular strains are obtained accurately by directlydé/ dy(x,y=32)=d&/dy(x,y=96)=0. To obtain the ana-
solving for the Airy stress function, the smooth strains ardytic solution, we use the Green functi@(y,y’) satisfying
computed as a function of the order parameter from a first-
order perturbative expansion ju/ x.”*°**°We have verified N ,
that this approximation leads to qualitatively correct stress wG(y,y )=aly=y’) (34)
profiles (such as the large stress concentration at the bottom
of the groovels more accurate profiles could be obtained bywith G(0,y")=G(L,y’)=0 anddG(0,y')/dy=dG(L,y")/
including higher-order terms in the expansion, as was demdy=0. It is given by

1. Convergence in quasi-one-dimensional systems

d4
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012 - FIG. 2. Dislocation self-

energy E; as a function of film
thicknessw. The length of the film
is L=256. In the inset we ploEg

vs Inw, demonstrating thakg is
consistent withEgxIn w. The pro-

1 portionality constant thus obtained
2 is 0.027, as compared to the theo-
retical result of 0.02.

0.08 -

0.06 L L :
0 10 20 30 40

1 a3 EL(w)~ y—bzm(w/b) + const 37)
E(L—y ) s yp. :

/:l _v’\3 ! _\'\3
G(y.y") 6(y y)roy—yH)+(y-y")

This is due to the fact that the finite thickness of the film
_i(L_y,)g effectively cuts off the long-ranged singular stress fields.
212 Plotting E5 vs Inw, as shown in the inset, reveals good quali-
tative agreement with theory. Moreover, the numerical data

o gives E4(w)~0.027 Inw while the theoretical prefactor is
+ Z(L_y )7l (35 ~0.02, for this set of parameters. Hence, the prefactor is in
reasonable quantitative agreement. Additionally, we have

where 6 is the Heaviside step function. The analytical So|u_evalur;1te.dES for fixed w and varyingb,, and verified that
tion is built from a superposition of tw&(y,y’) corre- Es~Dj, inaccord with theory. Furthermore, we find tha
sponding to twos functions ando,, is evaluated fromr,, ~ Shows negligible dependence bfor I/w<1.
=d?/dy?[G(y,y1) + G(Y.Y2)]- . .

Two things are noteworthy in the figure. First, the numeri- 3. Defect-defect interaction energy
cal solution converges towards the analytical resultifag, Conside a a pair of dislocations separated by a distashce
—0, in agreement with the sharp-interface calculation of Ap-in a thin film of varying thicknessv=10,20,30, as shown in
pendix E. Second, the number of interactions needed to corFig. 3. The gradient of the interaction energy,; gives rise
verge increases rapidly in this limit. In particular, reducing to the Peach-Koehler force discussed before. It can be
from1=2 tol =1 leads to an approximately tenfold increaseshowri® that, in an infinite systemEg,,.~const(Ind). Of
in the number of iterations. Therefore, the valuel&m-  course, a finite film thickness cuts off long-range interac-
ployed in simulations is dictated by two opposing consider-ions for length scaled>w. We find that, asv is increased,
ations: first, small is required for good convergence to the E;, increases rapidly and reaches a plateau d&comes
sharp-interface limit. Second, very smaMvill result in ex-  comparable to @. Furthermore, the plateau Va|®natt cor-
cessively long equilibration times. Our chosen compromiseresponds t(EisnattZZX E4(w), as can be verified from Fig. 2,
which is physically relevant and numerically convenient, isieflecting the fact that two dislocations witt>w cease to

1
——(L-y")?|+(y—y')?

2L2

1=2.0. interact. It is also clear from Fig. 3 that increasindeads to
a larger crossover length, after which the defects interact
2. Dislocation self-energy only very weakly.
Consider next the numerically evaluated dislocation self- _ . - )
energyE, as a function of the film thickness, displayed in 4. Numerical evaluation of the critical thickness h
Fig. 2. Parameters used weg(L,/2,L,/2)=1.0,1=2.0, u Finally, as a last test case for dislocations in static films,

=0.25, andL,=128. This data was obtained by relaxing thewe demonstrate that the Matthews-Blakeslee condition for
auxiliary fieldsé and B to equilibrium and then evaluating the critical thickness is correctly incorporated in the model.
In the absence of external stra'mﬂSEO, the energy cost to
E= J dr

1 create a defect withb|=b, is (including the long-range

- @[V2§<F>]2—5<F> 7(r) strain fields

1
- E=E+= E.bZ, 38
Zw(l—cbsooé(r)l. (36 sta e 38
whereEg denotes the self-energy of the defect. If, however,
Notice the gradual increase ity asw is increased. Theoreti- external strain is present, the defect-free state will be stable
cally, it can be showi? that until
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03 . .
0.25
FIG. 3. Energy of interaction
d E;, for a dislocation pair in the
u 027 1 same glide plane as a function of
e T their separatiom, for three differ-
ent widths w=10,20,30. The
045 | o_ow10 length of the film isL=256.
—aw=20
¢+—oew=30
oty 15 30 45
d
> 1
S, NSl _ | > > >
f dr2; ofju|=E. 39 Es=f dr| — 55 [ V2N 2= &) n(r)

Equation(39) is equivalent to the Matthews-Blakeslee theory -
of the critical thickness: Once the contribution due to exter- 204
nal strain exceedk, a localized defect will be nucleated. In

our approach there exists a barrier separating the two fregq(

energy minima. The height of the nucleation barigrcan

be estimated from the local defect free energy as the barrier

separating the two equal minima fdt|=0 and|b|=by; it E, b:J dr Yp(F) B(F). (42)
will be of the order of the free energy hﬁ| =0.5,

(1— D) E3(r >1 (42)

As expected on the basis of the continuum theory, for small
En~&c bS. (400 W, Es>|E;p| and the film remains coherent. However, for
h>h.~15 andE¢<|E; u|, it is favorable for a single dislo-
cation to nucleate. It is interesting to note that the criterion
One can conveniently tung,, by appropriately changing  derived in Sec. Il A would predict a critical thickness lnf
while still keepingE.; andb, constant. ~10 for the same set of parameters, a result in good agree-
Employing similar numerical simulations to those dis- ment with our numerical estimate. In Fig(b} we show
cussed above, we computed the self-endtgyf the dislo-  similar calculations made with an asymmetric film. In par-
cation as well as the interaction enefgy, , for misfit strain  ticular, the lower surface was fixed at a distarite=32
f=0.006 25. This is shown in Fig.(d), for a symmetric film away from the dislocation and the upper surface was posi-
w=2h with a dislocation of strength,=1.0 in the middle. tioned at a distanch away from the dislocation. Again, the
This data was obtained by relaxing the auxiliary fiefdand  interaction energy dominates for largethereby giving rise
B to equilibrium and then evaluating to the Matthews-Blakeslee condition.

02 ‘ ‘ - 0.25 ‘ ‘ - FIG. 4. (@) Numerically evalu-
ated defect self-energye; and
02 L Py i negative of the interaction energy
=g |E¢p| as a function of the thick-
ness of the symmetric filnh, for
misfit strain of f=0.006 25. Film
thicknessw=2h, and misfit strain
was applied to upper half of the
system. Notice how the two
0.05 | 1 curves intersect at wg~15,
thereby favoring the nucleation of
0 ‘ ‘ . 0 ‘ ‘ . a defect for films withw>w, . (b)
h Similar calculations in an asym-
metric film. Notice how the quali-
tative features persist.

015 -

0.15 -

0.1

o [Eql
E,o Byl

01

0.05
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FIG. 5. Scaled amplitude of growth mode$ as a function of
scaled wave numbeg* in the early-time linearly unstable regime. () (d)

Diamonds E.=1, squaresE.=50, circlesE.= (no defecty

dashed line is linear-stability theory. Data scaled by maximum 5 g (g Typical late-time configuration for the evolving film
growth rate and wave number for restabilization, both of which;, he ahsence of dislocations from a random initial condition
increase with increasing.. Inset shows configurations fdE.  _100.0. (b) Typical late-time configuration for the evolving film
=1,505, from top to bottom. Four times are shown for each; it gisiocations. Initial corrugation of the surface was identical to
grooves deepen with time for all. this figure, and: is the same as welE.=1.0, m;=my=0.1, by
=1.0e—2, c4=2.0e+6. (c) Burger’s vectorx componentb, cor-
responding tab). Interestingly, most of the dislocation activity in
1. Early-time regime without deposition the beginning is at the film-substrate interface, in agreement with
Matthews-Blakeslee theoryd) b, corresponding tgb).

B. Numerical studies of thin-film dynamics

We have studied the early-time evolution of slightly per-
turbed interfaces, both with and without defects. Our results, ) ) .
are summarized in Fig. 5, where we show interface profiledim-vapor interface, as observed p_rewou%lyt Fig. 6(a) we
att=10,15,20,25 and the growth rates of the various FourieShOW @ typical late-time profile during the relaxation. Simu-
modes, forE,= 1.0, E.=50.0, ancE,= (no defects This lation parameters werdN,=256, N,=256, H=0.0, n
data was obtained by initializing the system with a sinusoidaj~ 029, €= 1.0, 70=0.775, ande=1.0. The initially flat sur-
interface of amplitudér, and wave numbeg, and monitor- ace develops into a grooved profile with a well-defined
ing the subsequent evolution of the corresponding Fourief@velength. Eventually, the film breaks up into islands with
mode’ The parameters employed werhl, x N, =128 the sul?strate partlally exposed, in agre;emenfc with controlled
X 128, m,=my=0.01, u= 7,=0.5, andk=1.0. Dislocation annealln%expenments of subcritical, Sj Ge, films of Oz-
densities were initialized with small random fluctuations ofk@netal=" _ _ _
root-mean-square magnitude 0 At very early times { We quantify this behavior by studying the time-dependent
<10) we observe approximately exponential growth forStructure factor
h(q,t), as expected.This phase persists longer without de-
fects. At later times with defects, we find slower growth. Our _ i
data shows that defects decrease the initial growth rate; de- S(Q)=f dx é¥(h(x,t)h(0})), (43
creasing the defect density upon increadiydeads to faster
growth. This can be understood from the thermodynamias a function of wave numbeg where the averaging is done
theory of stressed solids by Ref. 12, according to which, folover initial conditions. In Fig. @& we show the structure
supercritical films, dislocations nucleate and anchor at theactor at different times for a film devoid of dislocations.
substrate-film interface thereby lowering the overall stress ofimulation parameters were set k=256, N,=256, H
the film. Qualitatively similar effects are seen upon decreas=0.0, x=0.25, k=1.0, 7,=0.775, ande=1.0. Notice how
ing defect mobility. In particular, reducing the mobility. to  the peak moves to smaller wave vectors as time progresses,
m.=0.001 leads to practically indistinguishable results asmplying coarsening. This is illustrated in Fig(é where we
compared to the system without defects, as far as the initighlot the dominant wave vectay,,, as time progresses, with
linear stability is concerned. and without defects. Analysis &{(q) at earlier times reveals
dynamics consistent with linearized theory. In particular, the
peak ofS(q), Syax, iNCreases approximately exponentially.

In the absence of dislocations, in the nonlinear regime, thdhe most linearly unstable wave vector dominates in the
system lowers its free energy by continuously coarsening thbeginning, until nonlinear effects lead to competitive growth

2. Late-time regime without deposition
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FIG. 7. (a) Time-dependent structure fact®(q,t) at four different times in the absence of dislocations. From top to bottom:
=18.0,14.0,10.0,6.0. Dashed lines are polynomial fits to the data and serve as guides to i IEy@n top to bottomS(q,t) att
=18.0,14.0,10.0,6.0 with defects. Two things are noteworthy. First, the evolution of the morphology has slowed down considerably. Second,
the most dominant wavelength occurs at smajlevhen defects are present. This is a consequence of a renormalized stress in the film.

for the different modes. At later time§,.x=~Anqt", With locations with a nonzer®d, component are located at the
a~3, as shown in Fig. @), in agreement with previous solid-vapor interface wherey; and oy are nonzero. In par-
results’ ticular, they are completely absent in the bulk of the film.
When dislocations are included in the dynamics, the evo- |n general, we find that either increasiig or decreasing
lution of supercritical films changes dramatically. In Figh)6 m, (or both leads to a more pronounced buckling and hence
we show a late-time profile starting from tisameinitial  faster coarsening of the interface. To illustrate this, see Figs.
condition as in Fig. 6, with small fluctuations of average Zerog(a) and 9b) where we show a configuration Witk
for the dislocation densities in the system. Simulation param=1q g andm,=m,=0.01, as well as the correspondibg
eters were set tb=2.0, by=1.0x10"?, ¢4=2.0x10°, and  gjslocation distributions. The film breaks up into islands, al-
mc=my=0.1. The film remains flat and the fluctuations of though the islands are somewhat larger in this case, due to
the solid-vapor interface become smaller at later times. Thighe smaller effective stress in the film. Furthermore, there is
can be understood by examining the correspondirdisio- a pronounced defect distribution beneath the islands, in
cation distributions in Figs.(6) and &d). There is consider- qualitative agreement with experiments of Ozkanall’
able dislocation activity at the film-substrate interface atPhysically, it is easy to see why the dislocations decouple
early times. In particular, dislocations with positikg com-  from the system, as eith&.—c or m.—0: in the first case,
ponent of the Burgers vector align themselves at the interdislocations are energetically unfavorable in the the solid,
face. This is a consequence of the fact that the film is undewhereas in the second case, the time for defect distribution
tension, so positive dislocations generate a compression iouildup is too long, on the time scale of the buckling, to be
the film and reduce the overall stress. Notice also how diseffective in relaxing the strain.

" " " 40000
045 4 1x10% | y
/ { »
® w/o defects /
m with defects ax105 | /] 30000 | s "
) 3 /
= L) 6x10° | 1 -
5 £fe 9 i / 20000 [ 1
& 025 [ X3 {1 o ' -
/
L} X 4x10° |- / g -
L3 $
0.15 | & J - ’/ 10000 -
L} X0 p i
®
0.05 . . : v 0 )
0 5 10 15 20 25 4000 8000 0 4000 8000
(a) t (b) £ ¢

FIG. 8. (a) Time evolution of the peak positiony,,,{(t) both with and without dislocations. Notice hayy,. shifts towards smalleg
asymptotically with defectgb) Sp,.(t) vst® at late times for both dislocatgdght panel and defect-free systentleft pane). Dashed line
is a linear fit and demonstrates that the defect-free system displays behavior consist@ytyit~t2 at late times. Such behavior is not
seen with dislocations within time scales studied here due to crossover effects.
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In particular, we have recently obser¢édhat dislocations
accumulate at the groove tips and relax the stress locally. In
this regime(not observed hejeve expect thag,,,,~t* be-
havior would again be found, although there could be differ-
ent behavior near the brittle-ductile transitionthe buildup

of mobile dislocations at the groove tips in the asymptotic
regime, relaxes stresses only locally, which is tantamount to
renormalizing the surface tension, and hence leads to the

(b) same asymptotic behavior.
FIG. 9. (a) Typical late-time configuration for the evolving film 3. Late-time regime with deposition
with dislocations with large core energy and very low mobility. .
E,=10.0, m;=my=0.01, att=100.0.(b) b, corresponding tda). In the presence of deposition, the morphology has a well-

defined length scale, similar to the annealed films. This can
be seen in Fig. 1@ we show a profile from a simulation

tively similar to that found in the absence of defects. Simy-With nonzero deposition rate. Parameters used in this simu-

lation parameters were set tb=2.0, a=0.5, by=2.0 Iftion We(;e'_\'x:2561 Ny:5121r']":?]-3’ ’70:3-r1]v :“jlz"h
X102, cy=2.0x10F, and m.=my,=0.05. We observe =1.0, ande=1.0. It is noteworthy, that, once the film has

coarsening withg, ., at smaller values ofj in the nonlinear (l:j)_rok?n up .;rr]]t?tt:slands, thgse_ |s:ﬁndsl growf 't?] the l;/etrtlct:al
regime, as illustrated in Figs.(B) and 8a). This is to be Irection with ithe coarsening in the plané ot the substrate.

expected since the defects relax the misfit strain partially ana-hIS can be understood by recalling that the island tops are

hence the driving force for the instability is decreased. HOW_stress-free and hence preferred sites for further growth. Fur-

ever, we do not find the asymptot&,,..~t* as before; in- thermore, it is intuitively clear that an island with height
steaa we find a crossover to slowearxgrowth This i,s iIIus-mUCh greater than its basal width is strained only close to the

trated in Fig. 80b). There is a buildup of misfit dislocations in substrate. Therefore, the overall length scale of the self-

the film, which tends to slow down the growth rate, in agree-_aSsembled pattern depends on the initial growth rate of the

ment with the Matthews-Blakeslee theory. instability, deposition rate, and the initial thickness of the
In the asymptotic regime, where the misfit dislocationsf”m' For thin enough films, the selected wavelength will be

coexist with the smooth strains, the morphology of the film isCIOS(.3 to th? most linearly unstat_)le wavelength. .
determined by the strong interaction between the stress con- [?lslocatlons gﬁ‘ect the evolution of the' morphology_ in a
centration at the bottom of the grooves and singular stresse%'.m'l_ar way as in the absence of c_Jeposmon. In particular,

mobile defects lead to a smooth interface, whereas more
sluggish defects lead to a grooved profile. Furthermore, upon
increasing the core energy, the film becomes more rough due
to a decrease in the defect density. See Fig&)ldnd 1Gc)
where order parameter and dislocation profiles are shown
corresponding t&.=10.0 andm.=0.025. In the asymptotic
regime, the film consists of islands separated by uncovered
substrate. Positive dislocations become buried under the is-
lands and there is a concentration of dislocations at indenta-
tions on the film-vapor interface, in qualitative agreement
with experiments of Ozkaet al’

The behavior ofS(q,t), shown in Fig. Tb), is qualita-

VI. CONCLUSIONS AND DISCUSSION

We have introduced a nonequilibrium model of elasticity
in heterogeneous systems, which includes both smooth and
singular strains and their coupling to free surfaces. We have
given the model a detailed exposition, as well as demon-
strated that the interaction between singular and smooth
stresses can lead to rich pattern-formation phenomena. In the
c) case of annealed films, we have shown that dislocations

renormalize the misfit stress in the film in agreement with

FIG. 10. (a) Typical late-time configuration for the growing film Matthews-Blakeskee theory. Moreover, we have shown that
without dislocations at=100.0.(b) Typical late-time configuration the film undergoes a buckling instability, driven by the re-
for the growing film with dislocations with low mobiliyn.=m,  sidual stress in the film. We have quantified this by numeri-
=0.025 and large core energy &t 100.0.(c) b, corresponding cally evaluating the linear dispersion relatiar{q). In par-
to (b). ticular, we have shown that increasing core energy and

Pp—

< \‘!
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deCfeaSing mOblllty lead to less effective Screening of thQ/ve obtain an approximate so|uti0§£ by tak|ng the Spatia|
external stress. Furthermore, we have recently sRbtat average of 1/{1%)(1—®,), and solving the resulting bihar-

dislocations interact very strongly with the smooth stressegnonic equation with FFT. A new approximatiaft is ob-
in the nonlinear regime. This is due to the stress concentrazined from

tion at the bottom of the grooves. A deeper understanding of
the physics in the asymptotic regime requires unraveling the =94 0.156¢. (A2)
coupled dynamics of dislocations and stress concentration at o ) )
the bottom of the grooves. This will be addressed in a sepal "€ Néw correction is obtained by solving
rate publication. 1 1
So far as films with depositio_n are _concernec_i, we have —V45¢+\_16E=—n— —V4*L+ U (1— D) &Y,
shown that(i) in the absence of dislocations, the film breaks Y
up into islands with a well-defined length scale, in qualitative (A3)

agreement with experiments, afig) dislocations affect the WhereLxLyAgf‘}Efdfll(yI4)(1—<1>SO,). This process is re-

morphology through strain relaxation. In particular, in the : . ~ .

presence of mobile dislocations, the film-vapor interface re{aeeate?eggtt'It;T:r;?]izn'tgd;Oi fgﬁ Sco;_reqiigifl '?hl.isi;?rir_'
mains smooth. However, upon decreasing the number or thg npd A ; ximtotl_l '100 : ypilv |)t/ ] tli s of E
mobility of dislocations leads to more rough morphologieszxg) aid?Ag)pp oximately successive iterations of Egs.
Finally, we note that the qualitative features reported abov Furthermore, Eqs(19) are relaxed dynamically after each

are robust towards varying the elastic parameters. In partiCL{.— : . . . )
. o ime step with 50 Euler iterations. Finally, the phase figld
lar, we have varied, E., 7o, and and found qualitatively and dislocation densitiesbg,b,) are updated using finite

similar behavior. . ; . .
It would be of interest to extend this approach to threedlf'ferencmg for the spatial gradients and the Euler method

spatial dimensions; an outline for the procedure is given ir{Or time evolution. Typical system sizes used in this study

A D | icular. thi | | hewere N, X Ny=64x128 to 512512. Typical values for the
ppendix n particular, this would enable one to study the were Ax=1.0,At=0.01,e=Ax=1.0,m

detailed interactions between defects and smooth strains marameters
experimentally relevant situations. =1.0,m;=1.0-0.0001, E.=10.0-0.01, c4=200.0,b,

=0.1,1=2.0,by=0.1, Ng;,=10. We also verified that a

smallerdt=0.005 andN;,=5 led to identical results.
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APPENDIX A: 1. Dislocation density
EQUILIBRATION OF THE AUXILIARY FIELDS  (£,8) The coupling in terms of the Airy stress functignis
The equations of motion, Eq0) and(21), together with Ny 1
Egs. (19) that determine the quasistatic field§, 8), com- ]:coup:_f dfainjs g2y — ek ViVix
pletely specify the dynamics of the model. The fieldsR) 4k 2p
were equilibrated evergith iteration using an iterative spec- 5
tral method. Typically,n=10-30. It was verified that de- = %sz) , (B1)

creasingn did not affect the results reported in this paper.
The main idea of this method is as follows. Since the biharwhere we have employed Hooke’s law to express strains in
monic equation with constant coefficients is diagonal in Fouterms of stresses and hence the Airy stress funggion

rier space and hence amenable to fast numerical solution | ot the Green functiorG(F,F’) satisfy

using the fast Fourier transforffFT) method, one obtains

thfa following §cheme: Fir'st, an iniftial §o|utioﬂ?j is ob- VAG(, ) +1- 41— D )G(F ) =8(F—1"). (B2)
tained. Then, ifé=6¢+ &0 is a solution, it follows thats¢ . .
satisfies The formal solution of Eq(17) is thus

. . X(D)= [ OF G(F. )bl 7V 1(Viby~ Ty
SVASE+ — (1= gy ¢

Y N4 o A
=yf dr'G(r,r")n(r"). (B3)

=—n- 1V“§°+ UNH (1= D) €° (AL

y This allows us to rewrite EqB1) as
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N T A [ e - |zl g2 n
F coup™ dl’O'ij dr EV G(r,r")In(r’) Feoup= | dr x(r) EV O-IJ (I’)
1 g ) 1 ns, . 5” 2 _ns; .
+ﬂ eiej IMG(r,r")Yn(r’) +ﬂ eikeji iy (1) — o Vaooi(r) 1 ].
Sij - - . (B8)
— 5 VG(r,r)yn(r’)
Hence,
fdr ya(r’ )fdra = O g2g i)
K 4k , 5-7'—coup j dr’ 5~7'—coup 5)(([’ )
Sp(r) Sx(r') 8¢(r)
+ — 2,(L ,k81|VkV|G(I’ r )——VZG(I’ r ) 1
84) fdr { Ly 2+ — o | eenViVioh
Upon interchanging andr’ and carrying out two partial _%igra ns Sx(r") B9)
integrations one finally arrives dhote that surface terms 2 Sp(r)
vanish due to periodic boundary conditipns
Furthermore, sincg satisfies
- - - - —> 5 ’
fCOUp:f dryn(r)f dr'G(1\7")| 0V %) 1-®.)
. VA >+|—S°' (') =201 )(V4by— V}by),
+m eikeji ViV oi] (r')— ”V g ns(r )H (B10)
R . it follows that
= [ @ wn)i0) ®5
, i
where v'4 Sx(r )+I 1= Ddgy(r )] o)
Sp(r) Sp(r)
> ij "2y ns 5D (1 -
,B(r)—Jdr G(r,r )[ V%) _ 5 SD o )(V,b b1 sm(e )x(r’).
Sp(r) o(r)
1
| e ViV oS - ”V 2of(r )H (B11)
(B6) The formal solution of Eq(B11) can be written as
Since we do not have a closed-form expressionGowe Sy(r) |( F)
evaluate8 numerically in a similar manner as 507 j dr'G(r',r")| » Pso ———(V;b,— Vib,)
r
VBN +17 41— Do) B(T) 1 6D(r")
+— ——x(") (B12)
14 5¢p(r)

|: ij VZ ns(r)
However, sinces® ¢, (r")/ 6 (r)=dL(r")8(r—r"), it fol-

+ — |k<‘3‘J|VkV|0'|J (r) J VZO.” (r)H (B7) lows that

2

The asymptotic solution foB is given by Eq.(B6). Hence, ox(r") =G(r,1")
with this formulation the dynamics from the coupling to ex-  §¢(r) ’
ternal stresses for thg, , fields are straightforward to calcu-
late. - 1 . s

X yq);ol(r)(vxby_vybx)"' |_4¢);ol(r))((r) .
2. Order parameter (B13)

In order to treate, we proceed as follows. First, we re-

write Feo,p (after two partial integrationsas Substituting this in Eq(B9) finally yields
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5fcoup
5p(r)

1
yq)sol(r)(Vb Vbx)"_ CI)SO|(I’)X(I'))

jer(rr)[ ”VZ”S

N
2u

Sik8j|V’V|’0'lr]S— _V K ns)}

(B14)

As a final step, we replacg by — ¢ and obtain
O coup_ (ycb (N(V,by,~V,b,)— '.(F)ﬁ(F))B(r
5¢( ) sol X so

(B15)

- 1 IR -
yq)éol(r)(vxby_vybx)+ Ijq)éol(r))((r)) ,B(I’)

PHYSICAL REVIEW B 65 165414

JT|OC

=2c by[(b?—Db§)?+2b*(b>—bj)]+2Ecby,

O Foup_ )
5by - _yvx[q)solﬁ(r)]i

5]:ﬂux
o

==j(N($—¢%. (B16)

APPENDIX C: INTERFACE EQUATION OF MOTION
IN THE SHARP-INTERFACE LIMIT

In this Appendix we will derive the equation of motion for
the solid-liquid interface by employing the projection-
operator method, valid in the thin interface limfte<1,
whereK denotes the local curvature of the interface ard
the width of the diffuse interface.

The remaining functional derivatives are straightforward We begin by writing down the equation of motion for the
to obtain. For completeness, we list all such derivativesorder parametet

below.
6Fy 7o ,
5—¢=—|2V2¢+f¢+ (Dmlsq)ms!
S F et L
5(;’)( - noq)misv -u”s,
SFe S -\?
&;ZM(I)smz ( F uns) ,
SF
T =D - DL (b, — Vb)),
o¢ 214
ST, , PR
ﬁ):(yq)sol(vxby_vybx)_j(psolg(r)),g(r)y
5f‘”t—1v4g+ e (1-D )¢
5§(F) y 77 :)}IA sol ’
5-7:coup:
S¢ :
OFint
—=—V(£Dg,),
5bx(l’) y(§ sol)
J’T
¢ _ 2¢ by (52— b2)2+ 262(52— b2) ]+ 2E,b, ,
Sb,
SF,
°°”'°—yvy[<1>soﬂ<r>]
Fint
—=V(§Dg,),
5by(r) x(f sol)

i € _,  1df(¢)  dg 75 dPpms

a2 a do¢ d¢ « déo
> d(I)sol ( |J—>—>2
nodd)SVu Md(l); ij— Vu.

(CD

We use an orthogonal coordinate systed, Y), where
Y(x,y) denotes the distance to the interface from pokay)
along a normal to the interface, aX{x,y) denotes the arc
length along the interface measured from some reference
point. We define the interface position to be given by the
level set¢p=1/2.

Next, given a gently curved interface on the scale,ofrie
write the solution to Eq(C1) in the quasistationary approxi-
mation as

B(r,1)= do(W(r 1)), (€2

where ¢ satisfies

2 d2¢>0_3 df( o)
dy2 a dgg

=0, (C3

with

lim ¢o=0; lim ¢o=1. (C9

Y— Y——x

Furthermore, the Laplacian in the new coordinate system be-
comes
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Vz_‘72 K 4 1YK2a2
T vz TR YK oY +(1+ )7

K 3
+3(1+YK)Y——

X aX €9

However, in the vicinity of the interfaceY(=0), the Laplac-
ian can be approximated by

V2 ” K 7 c6
T v e (o
Hence, the equation of motion can be written as
dpo dY  d? d 1df d
ﬁ_zez ¢0+62 ﬂ_ ﬁ_FH_g
dy ot dy?2 dy a d¢ do
_W_%dq)mis d(I)solv Y
x do AR
dg(¢) Oij= - 2
—MW; Uj— 5 V-uj, (C7
which, by virtue of Eq.(C3), becomes
do dY _ , debo 75 dPpys dg
€T T D st H——
dy gt dY « d¢ do
d(I)mi = = dCI)soI 5ij = = 2
A LT AR
(C8)

In order to project the bulk dynamics onto the interface, we
multiply both sides of Eq(C8) by d¢,/dY, and integrate

over Y over the whole domain

2
aypNE

ot dy
debo)? de¢o dg deo
=2 _- 7Y _7
eKJdY(dY +HdedY d deY
7o AP s APy
X|\— o
k d¢ do
- d(I)sol 5|] > - z
Uty ; =5 V-u (C9)
In passing, we note that
d
f dY 5/ d’o ~1, (C10
and
¢o 1 \/5 €
fdv @) Ta0) =g 5 (12

PHYSICAL REVIEW B65 165414

€ ¢0 _1
E(d—v =3f(%0). (€12
and, therefore,
dee( ) Jd¢>0 —_— (C13
Furthermore, from Eq(C12) it follows that
d
¢° \/ b D(d0-2),  (C14

for our choice off = ¢4(¢— 1)2(¢—2)?. Upon substituting
Eqg. (C14) in Eq. (C13 yields Eq.(C11).

Returning to the equation of motion, from E@9) we
obtain

€’H déo dg
oy =2 R
=eK+ 5 dy i d¢
d¢o 770 ch)mls
“f g Cmet d<z>sV :
ch)sol 5ij > - 2
+u d¢ ;(Uij_?V'U . (015)

Next we wish to express the strains in terms of the stresses,
by employing the definition of the stress

>

- 1 Tii
V-u= ;(7— 70D mis ¢0)) : (C19

and

5” N 1
Uij— =V-U=g——
. 2 2u® g bo)

Therefore, the equation of motion for the interface is

1
(Uij_zaii5ij)' (Cl?)

H€2 62 d¢0 7]0 dq) ;i
2 €€ S%o| 770 T mis
vn=e€K 4v 'deYdY 2k d¢ i
1 ddg, ( 1 )2
+ Oii — 5 Tji i .
Audgydo)? d¢ bo2nn

(C19

Sinced¢o/dY is sharply peaked at the interface, the integral
in Eg. (C18 is nonzero only at the interface. Also, since
force balance across the interface requirgs= o= 0 (lig-

uid is assumed to have negligible presgutieis implies that

oy IS constant along the interface in order to preserve me-
chanical equilibrium close to the interface. Furthermore, em-
ploying the known spatial dependence of the planar solution
for the stresses we may write

Uttq) mis( $0) Psol( Po), (C1

is the surface tension. This result can be readily derived as

follows. First, from Eq.(C3) it follows that

whereo,, denotes the magnitude of,. Hence, we arrive at

165414-16



DISLOCATIONS AND MORPHOLOGICA. . .. PHYSICAL REVIEW B 65 165414

He ~ ~ 2 d
_ .2 2 € bo
—vp= K= —— + AT+ B2, (C20 :__f 990 47 ya
n 4y tt tt C 8,11y dy Y DY (C28
where ) ) o ) o
Finally, let us consider the contribution of interfacial dis-
No€> dpg dD s locations to the effective equation of motion. Upon project-
A= _nyf A\ Ao Pris( ¢0) ool bo) (C21)  ing 5F/ 5 and 8F o,/ ¢ ONto the interface, we obtain
and

i 62 d(bo ,
_(5v)n=7f dYWCDSmX(bey—Vbe)(g—y,B).

O bo)>.  (C22) (€29
We can physically interpret this contribution as follows.

Notice that this equation is nonlocal due to the mechanicaFirst, in the absence of external stressgg=Q), it is
equilibrium conditionV - =0 that gives rise tar . straightforward to show that the above term is positive and
hence favors melting of the solid. This is due to the fact that
dislocations at the interface give rise to stresses in the vicin-
ity of the interface and the system can reduce its elastic en-

When defects are included, there are additional terms |rérgy by relaxing this energy; a convenient way to eliminate
the interface equation of motion. To this end, we write thethese interfacial dislocations is by melting. In the presence of
local velocity of the interface as external stresses, on the other hand, this term vanishes for

4€? d¢o d®
B= f bo sol

- | gy=2==°
my dY dgyg

1. Interface dynamics with defects

U=+ (80)2+ (Sv)},, (c23 L Vi,
wherev,, denotes the velocity in the absence of def¢sese §-Yp= 2 dv? 2 dv?
Eqg. (C20], and (5v)ﬁ and (6v),, arise from bulk and inter- (C30
facial dislocations, respectively. Consider bulk defects. In o )

this case it is easy to show that there are two additional term&here the derivatives are evaluated at the interface, or
that can be written as

1
=~ S (Rt op)Y?=0,

on=— o (C31)
2
_ b__ € % 1 12 od! Therefore, this term does not contribute to the evolution of
(5U)n dy q)solé 2CI)50|§B . . . .
2914 dy |y the interface once the net tangential stress vanishes.

(C24

=d¢é/dn=0 and B=dB/dn=0, at the interface, we can

X ; As the model stands now, it applies only to two-
make a Taylor expansion and write

dimensional systems. In this Appendix we outline an ap-
proach to extending the model to three spatial dimensions by

i~ 1 d_zf 2. (C25 employing a model similar to the one introduced in this pa-
2 dv2 ' per.
First, we note that the dislocation density becomes a
and second-rank tensop;;, where the first index denotes the

direction of the line and the second indicates the direction of
the Burgers vector in the following manngid S p;; = b; for

any surfaceS. The conditions that dislocations cannot termi-

o ) nate in the interior of the crystal adp;, /dx;=0.
where the derivatives are evaluated at the interface. Now, we However, one can still employ our formulation utilizing

note that the singular component of the tangential stress ghe Ajry stress function (or the complex auxiliary

the interfacess, is given by —d?¢/d Y2 Furthermore, upon function—in this case there is more than one stress
employing the definition of8 and recalling that, in the vi- function3’

cinity of the interface gpy=omn:=0, we find that at the in-

1d?
,8~§d—YB2Y2+ o (C26)

terface o,/ Y~d?B/d Y2, With this insight we can rewrite . 19
Eq.(C23 as \ Xij:_zﬂ_xk(eimkpjm"_ €jmkPim) (D1)
2
€ and
—vpt= €K~ Ty TATETE o+ Coap?

az)(lfs 1 ‘92Xrlm _ 1 ‘92Xr,m
ax3,  1-vaxoxs 1-v'" 52
where (D2)

+2Copoy—(dv)h, (27 P
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In the aboveg;;, denotes the antisymmetric unit tensor. It is normal to the interface, argk= S(x,y) denotes the arc length

useful to make the fields massive in the vapor phase if theralong the interface measured from some reference point.

are free surfaces, as we did in the two-dimensional case We will solve Eq.(E2) in a perturbation theory ih and
show that, to lowest orderappears through effective bound-
ary conditions applied at the interface. It is essential to note

4.1 -4 I —
Vixij+ 1 (1= Psoxij = — 2 ﬁ_xk(eimkpier €jmkPim) that this is a singular perturbation problem sitgeultiplies
the highest derivative. Therefore, we will solve this problem
= 7 - (D3)  using the matched asymptotic expansion technique. We pro-

ceed by formally expanding in a perturbation series ih
and hence obtain the “outer” expansioé@=2ﬁ:0I“§3(F).
Substituting this in Eq(E2) we find that, to lowest order,

PP ey 2mi _, (D4) V4=~ Y. (E3)

ot M oy
' for Y<0, andé,=0 for Y>>0, sincey vanishes in the liquid
where j,; denotes the dislocation flux tensor. It can bephase.

Conservation for the total Burgers vector leXd® the
following dynamics forp;; :

showr® that the flux tensor can be written as Next we introduce the inner expansion and wrife
g | oF =37_ol"&'(2), where we have introduced the stretched var_i—
jmj= _ijstesab_<_)a (D5)  ablez=Y/l. Furthermore, to lowest order we can approxi-
IXp | Opat mately write (1-®4,)~ 0(Y), where § denotes the Heavi-

where a linear relation between thermodynamic forces andide step function. Hence, the equation satisfied by the inner
fluxes has been assumed; furthermore, for an isotropic sy§&XPansion becomes

tem, B,js: becomes 14V4E+ 0(Y)E= — %Y. (E4

ijst:”B[%(gmtgjer 5m85jt)_%5mj5st], (D6) Upon substituting this into EE4) we find thaté? satisfies
~ d*£’/dZ*+ 6(z)£°=0, where we have used the fact that the
whereB is a constant. When one integrates Hoy) intime,  interface is planar at this levelNote that Eq(E4) is effec-
a subtlety is that the auxiliary conditions must be satisfied afively one dimensional at this level of approximation—there
all times. However, it is easy to show that if these conditionsyould be terms at higher order arising from the curvature of
are satisfied at= 0, they are satisfied at all later times. From the interface. However, these terms turn out to be unimpor-

the equation of motion, EqD4), one obtains tant at the end of the calculatigriWe again note that this
. approximation is valid fore<l; in this case, the order pa-
i @: e I Imi =0 (D7) rameter varies very rapidly on the scalelofFurthermore,
gt X ™ gxgax; since £&=0 for Y>0, this implies that lim .&°
sincee;, is antisymmetric in | ) and the partial derivatives =limy_..d£/dY=0. We expect this equation to have an
are symmetric. Hence, the auxiliary conditions hold at allenvelope of exponentially decaying solutions for0. In-
times. deed, it can be verified by a direct substitution that the fol-
lowing solution satisfies the biharmonic equation 0
APPENDIX E: and is well behaved foz— :

AUXILIARY FIELD £ IN THE SHARP-INTERFACE LIMIT

£(2)=Acodz/\2)exp( —2/2)

In this Appendix we will derive the sharp-interface limit -
model corresponding to the auxiliary fiefd This derivation +Bsin(z/ V2)exp —2/2). (E9)
is valid in the limitl/A<1, whereA denotes the character-
istic scale of the film andlis a small parameter related to the
correlation length of defects in the liquid phase. For now, w
also assume that<l, wheree denotes the thickness of the
diffuse interface. At the end of the calculation we will com-
ment on this approximation.

Our starting point is Eq(16),

The constant@ andB will be determined by matching the
inner and the outer solutions at the origin.

€ To this end, we first formally solve EGE3) and expand
the solution in terms of the stretched variabia the vicinity
of the interface

1
bo=5 £5/(0:AB)IZ+1£4(0:A,B)1%7°

1 1
Vet 7t (LT Pso6=0. (ED) +EG(0;A,B)Iz+ E(0;AB) + - - -, (E6)

where the two integration constantd,B) parameterize the
derivatives of the solution at the interface. In order to deter-

14VA4E+(1— D) é=—1%Yn. (E2) mine the unknown constanté\(B,K,E) we match the inner
. and outer solutions at the interfaze 0. Upon requiring that
Next we assume thap(r)=~ ¢o(Y) where Y=W(x,y) de- ¢ has continuous derivatives up to third orderzatO, we
notes the distance to the interface from poixty) along a  obtain the following set of conditions:

which can be rearranged to read
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A=¢4(0;A,B),
AL B
V2 2

B=12¢}(0;A,B),

=1£,(0:A,B),

(E?)

a B =13£(0;A,B)
\/E \/E 0 [LAAY} 1
where we have employed the explicit solution Hg5). Tak-

ing the limit|— 0 trivially yields A=B=0 and, therefore,

£0(0;A,B)=0, (E8)

providing one condition betweeA and B. Furthermore,
upon expanding

and
E0(0:AB)=¢&p o1 €0 1+ 1280 o+ - - (E10

we readily obtairB,=B,=0, and henc®&=O(1?). Further-
more, from the last condition in EGE7), similar consider-
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A=0(1) and B=0(1)* In particular, this implies that
£(0)=0(1%)=0 asl—0, and &,(0)=0(l)=0, asl—0,
which we recognize as two effective boundary conditions at
the interface. In other words, we have just shown that the
phase-field equatiofV4&+ (1—d4,) E= —14Y7 is equiva-
lent to V4= —Y7 in the domainQ={¢(r)=1} with &
=V¢-n=0 at the interfacd ¢(r)=1/2} in the limit |—0.

Physically, the above results are not very surprising. The
finite mass term forceé to vanish exponentially in the liquid
phase, leading to the first boundary condition. On the other
hand, all derivatives of are also forced to vanish exponen-
tially fast in the liquid phase. Upon requiring théahas finite
derivatives up to third order at the interface, we arrive at the
second boundary condition.

In the numerics we have employedl =0.5. Hence, the
Heaviside step function is replaced by a functiessentially
the equilibrium order-parameter profildhat varies smoothly
on the scale of, so the inner solution is a more complicated
function of z, than the one above. Nevertheless, asymptoti-
cally it must decay exponentially, sin¢é—d,,(z)]—1 as
z—oo, This implies that the asymptotic solution is the one
given in Eq.(E5). Therefore, in the limit —0 we may use
similar arguments to those above, obtaining the same two
boundary conditions. As well, a finite=~| will generate ad-
ditional I-dependent terms in the boundary valueg ahd its

ations forA yield A=0(l?). These estimates are valid for first derivative.
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