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We study steady-state configurations of intrinsically-straight elastic filaments constrained within rod-

shaped bacteria that have applied forces distributed along their length. Perfect steady-state helices result

from axial or azimuthal forces applied at filament ends, however azimuthal forces are required for the

small pitches observed for MreB filaments within bacteria. Helix-like configurations can result from

distributed forces, including coexistence between rings and imperfect helices. Levels of expression and/or

bundling of the polymeric protein could mediate this coexistence.
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Many components of the prokaryotic cytoskeleton [1,2]
exhibit helical configurations within rod-shaped bacteria
such as Escherichia coli. For example, the tubulin homolog
FtsZ can exhibit helices [3], while the actin homolog MreB
generically exhibits helices [4]. Other polymerizing fila-
ments also exhibit helices within bacteria, such as MinD,
ParA, and the RNA degradosome [5]. Helical localization
patterns have also been reported in peptidoglycan synthesis
[6]. New helically localized proteins continue to emerge,
see e.g. [7]. Formation mechanisms have not been demon-
strated for any of these helices. A detailed understanding of
helical formation mechanisms within bacteria, and under-
standing how to manipulate them, will help to dissect their
significance within bacteria. While helices in free space
have been well studied [8], we must also understand the
confining effects of a cylindrical bacterial shape.

Equilibrium helices could arise from intrinsically curved
elastic filaments and/or a curved bacterial membrane with
strongly anisotropic interactions between filaments and the
membrane [9]. Polymeric filaments of FtsZ do exhibit
small (intrinsically curved) loops both in vitro and in the
cytoplasm of rod-shaped fission yeast [10]. However, other
polymeric filaments do not appear to have intrinsic curva-
ture, such as MreB, which exhibits straight filaments when
expressed within fission yeast [11]. Furthermore, it is not
known how anisotropic the interactions between filaments
and membranes actually are.

For filaments without either intrinsic curvature or aniso-
tropic membrane interactions, the simplest explanation of
helices in rod-shaped bacteria is the locally-straight poly-
merization (‘‘shooting’’) from a randomly oriented nucleus
[2]. For rod-shaped bacteria, a randomly oriented nucleus
on the cell’s lateral wall making an angle � with the cell’s
axis would extend into a helix with a pitch p ¼ 2�R= tan�,
where R is the cell radius. By transforming a uniform
distribution for �, the pitch p will have a distribution

gðpÞ ¼ 4R=ðp2 þ 4�2R2Þ: (1)

This distribution is broad: its mean and variance both di-
verge. If the nucleus is randomly oriented in the hemi-
spherical end caps, the distribution will be biased towards
even longer pitches and still with a divergent width. Any
relaxation of an intrinsically-straight filament would also
bias the distribution towards longer pitches that have lower
elastic energies [12]. However, reported bacterial helices
do not appear to have pitches that are so long and so
broadly distributed. Randomly oriented filaments also can-
not explain the distinctive coexistence of rings and helices
within extended filaments, as seen with MreB in E. coli
[13].
MreB is an actinlike protein that is found in all rod-

shaped bacteria [6]. MreB directs lateral cell wall synthe-
sis and localizes several proteins to the bacterial cell
poles [4,14]. It appears in a variety of configurations,
including helices running the length of the cylindrical
portion of Caulobacter crescentus and Bacillus subtilis,
rings in Rhodobacter sphaeroides and spherical mutants
of E. coli [15]; and rings and/or helices in E. coli [13].
From its apparent thickness and homology with eukary-

otic actin, MreB filaments have bending stiffness less than
the bacterial cell wall (B� 105 pN nm2), and a persistence
length larger than the bacterial cell size (�� 10–100 �m)
[16]. Thus, cell shape should provide significant con-
straints to straight filaments. Indeed, MreB structures are
found close to the membrane [2,4,13]. Their affinity for the
membrane appears to be indirect, through interaction with
transmembrane proteins MreC and MreD [14,15]. It seems
likely that such indirect affinity for the membranewould be
at most weakly anisotropic. Accordingly, in this Letter we
restrict the filament to the membrane and do not impose
twist forces [9,17].
External forces could act on intrinsically-straight MreB

filaments. RNA polymerase can generate forces up to
25 pN, is present in bacteria, and interacts with MreB
[18]. Cell wall synthesis machinery is thought to rotate
around the circumference of the cell as it inserts peptido-
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glycan [19], requires MreB or its homologs for normal
functioning in various cells [6,15,20], and could pull azi-
muthally on the MreB helix. Polymerization forces may
also act on filaments [21]. We explore how such noncon-
straint forces, i.e., forces other than the constraint forces
holding it to the cylindrical cell wall, can lead to helixlike
shapes within rod-shaped cells.

We compute the equilibrium configuration of an inex-
tensible but flexible filament of length L constrained to lie
on a cylinder of radius R. In agreement with experiment in
B. subtilis [22] and consistent with most MreB configura-
tions seen in E. coli [13], we only consider the helix within
the cylindrical part of the cell. The elastic energy density is
H 0 ¼ B�2=2 where B is the local bending modulus and �
is the local curvature. The Frenet-Serret theorem gives
�2 ¼ R2½�04 þ �002� þ z002, where the filament is parame-
terized by ~r ¼ ðR cos�; R sin�; zÞ, both �ðsÞ and zðsÞ de-
pend on the arclength s, and primes indicate derivatives
with respect to s. The inextensibility constraint is 1 ¼
R2�02 þ z02, which we implement with a Lagrange multi-
plier �ðsÞ, together with applied axial force density fðsÞ
and azimuthal force density �ðsÞ, in a total energy H ¼R
L
0 H ðsÞds where
H �H 0�R��ðsÞ�zfðsÞ��ðR2�02þz02�1Þ: (2)

The problem is to find �ðsÞ and zðsÞ that minimize H,
such that �

R
L
0 Hds ¼ 0. In general, this occurs when

@H =@z� ð@H =@z0Þ0 þ ð@H =@z00Þ00 ¼ 0 and the bound-
ary conditions @H =@z0 �ð@H =@z00Þ0 ¼0 and @H =@z00 ¼
0 are satisfied at s ¼ 0 and s ¼ L; and also equivalent
equations for �. For a static solution there must also be no
net torque

R
�ðsÞds ¼ 0 and no net force

R
fðsÞds ¼ 0.

Integrating the resulting equations once, scaling all
lengths by the bacterial radius R so that the scaled arc-
length is ~s � s=R and the scaled filament length is 	 �
L=R, and using Z � z0 and T � �0, we then have

Z00 þ ~�Zþ Z0B0=B ¼ Fð~sÞ (3)

T00 � 2T3 þ ~�T þ T0B0=B ¼ Nð~sÞ (4)

Z2 þ T2 ¼ 1; (5)

where the boundary conditions reduce to Z0 ¼ T0 ¼ 0 at
~s ¼ 0 and ~s ¼ 	. The scaled integrated axial force is
Fð~sÞ � R2

R
~sR
0 fð
Þd
=Bð~sÞ and the scaled integrated azi-

muthal force is Nð~sÞ � R2
R
~sR
0 �ð
Þd
=Bð~sÞ. The magni-

tude of scaled forces is set by B=R2 � 0:6 pN. We can use
derivatives of the inextensibility equation, Eq. (5), to solve

explicitly for ~� ¼ Z02 þ T02 þ 2T4 þ TN þ ZF. The set
of equations, Eqs. (3)–(5), can be solved using standard
relaxation techniques [23] starting from a uniform helix.
For simplicity, we solve cases where B ¼ const (B0 ¼ 0).
The variables Z and T are related to the local unscaled
helical pitch p,

p ¼ 2�RZ=T ¼ 2�RZ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Z2

p
; (6)

which for a perfect helix is the axial distance over which

the helix wraps once around the cylinder. Since p diverges
for straight filaments (which are longitudinal, aligned with
the cell axis), we will instead discuss Z which equals �1
for straight filaments and 0 for rings.
In the absence of external forces, with F ¼ N ¼ 0,

Eqs. (3)–(5) only admit transverse loops with T ¼ 1 and

Z ¼ 0 or short longitudinal filaments with Z ¼ 1 and T ¼
~� ¼ 0. Perfect helices correspond to the vanishing of all
derivatives of Z and T and so require constant F and N
along the filament, i.e., delta-function forces at the filament
tips. When both tip torques and tip forces are nonzero, then
a perfect helix solution exists and satisfies F ¼
ðN þ 2T3ÞZ=T. For tip torques only, F ¼ 0, we either

have ~� ¼ 0 and a helix with T¼�ðN=2Þ1=3 and Z¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ðN=2Þ2=3

q
or a ring with Z ¼ 0 and T ¼ 1. By

considering H, we find that the helix is stable (minimal
energy) below a critical torque of N� ¼ 2, above which the
ring is stable. The bifurcation diagram is shown in the inset
of Fig. 1. For axial tip forces only, N ¼ 0, we either have a
straight filament with T ¼ 0 and Z ¼ �1, or

F ¼ 2Zð1� Z2Þ: (7)

Above a critical compressive axial force, F� ¼ 4=ð3 ffiffiffi
3

p Þ �
0:77, the helix is unstable and will snap over and align
itself with the cylinder axis such that the axial forces

become tensile. The smallest stable jZj is Z� ¼ 1=
ffiffiffi
3

p
,

corresponding to a maximal pitch p� ¼ �
ffiffiffi
2

p
R. The bifur-

cation diagram is shown in Fig. 1, where we have shaded
the experimental range seen for MreB homologs in vivo:
fromMbl helices in B. subtiliswith jZj � 0:56 [4] to MreB
rings in E. coli with Z � 0 [13]. The experimental range is
inconsistent with fixed-magnitude axial tip forces only.
Nonzero azimuthal forces, or torques, are required to ex-
plain experimentally observed helices.

FIG. 1 (color online). Bifurcation diagram showing perfect
helices with Z � z0 vs scaled axial force F at filament tips.
Stable branches are solid lines, unstable branches are dashed.
Red squares are at the critical points �ðF�; Z�Þ ¼
�½4=ð3 ffiffiffi

3
p Þ; 1= ffiffiffi

3
p �. The experimental range of Z observed for

MreB homologs is indicated by the shaded region. The inset
shows the bifurcation diagram for Z vs scaled azimuthal force N.
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Forces that naturally act with respect to the filament
orientation (i.e., in the Frenet frame), as well as static
pinning forces, can be straightforwardly included in the
numerical solution of the elastic equations through �ðsÞ
and fðsÞ determined self-consistently by the filament con-
figuration. For example, constant �ðsÞ will generally re-
solve into nonconstant normal and tangential force
densities in the Frenet frame. Here, we consider only
simple force densities in the fixed bacterial frame.

Inhomogeneous helical pitches, such as observed with
MreB in E. coli [13] are inconsistent with only tip forces
and torques, but arise naturally from distributed forces
along the filament length. We illustrate the effects of
distributed forces by considering uniformly distributed
azimuthal forces, where a constant torque density � ¼
N0B=ð	R3Þ is applied everywhere along the filament along
with a counterforce of magnitude N0 at ~s ¼ 	,

Nð~sÞ ¼ N0~s=	� N0�ð~s� 	Þ: (8)

Other distributed azimuthal forces (e.g., linearly distrib-
uted [24]) give similar results. The resulting Z vs s=L are
shown in Fig. 2(a) for a variety of N and a fixed filament
length 	 ¼ 20 [25]. We see the boundary condition Z0 ¼ 0
at s ¼ 0 and s ¼ L, and the emergence of a ringlike
structure (Z � 0) for larger s when N >N� ¼ 2, as illus-
trated by the real-space helical configuration for N ¼ 3
[26]. While it would be difficult to systematically control
�ðsÞ experimentally, N is scaled by the bending modulus B
and so should be accessible by controlling the expression
of the polymeric protein (i.e., MreB).

In Fig. 2(b) we show Z vs s=L for a fixed total forceN ¼
3 and a variety of filament lengths. The 	 ! 1 limit,
shown by a thick red (light gray) curve, corresponds to
vanishing spatial derivatives in Eqs. (3) and (4)—the hel-
ical pitch is then determined by the instantaneous F and N.
Note that Z0 � 0 at s ¼ 0 for this limit, which reflects a
boundary layer that vanishes as 	 ! 1. The right inset

shows that the width of this boundary region is �s� R,
less than one helical turn. (Comparing the solid 	 ¼ 20
and the dashed 	 ¼ 1 curves in Fig. 2(a) shows that the
boundary region is not strongly force dependent.)
Corrections for finite filament length are substantial when
the filament length approaches the bacterial circumfer-
ence (	 ¼ 2�), but are primarily seen near s ¼ 0 and at
the transition to ring collapse when Nð~sÞ ¼ 2 (here at
s=L ¼ 0:5).
In the limit of long filaments, the transition between

open helical configurations and a ring (where Z ¼ 0) is
abrupt. The location of this transition s=L as a function of
N is shown in Fig. 3 by the thick red line. For shorter
filaments, the transition is smooth and is shifted towards
larger Nð~sÞ—as illustrated by the thinner (black) lines for
various 	. For filaments that are not long enough to make a
helical turn, large enough forces will tilt the entire filament
into a ringlike configuration.
Other mechanisms for helical filaments within bacteria

have been proposed. We have shown that shooting fila-
ments without intrinsic curvature in a random direction [2]
leads to an overly wide distribution of pitches. To describe
observed helical pitches of MreB in bacteria, such a shoot-
ing mechanism would need additional pitch-selection
mechanisms. For elastic filaments, such a mechanism
would also need membrane anchors to prevent subsequent
relaxation towards smaller pitches (though nonpolymer-
ized helices [27] would not). Conversely, an equilibrium
mechanism for helices has also been proposed for intrinsi-
cally curved filaments twisted by anisotropic association
with the membrane [11]. Complementing such an ap-
proach, in this Letter we have considered helical configu-
rations of intrinsically-straight elastic filaments that are
bent by applied and constraint forces without twist.
For elastic filaments without intrinsic curvature, such as

MreB, we have shown how applied forces can lead to
perfect helices (if forces are tip directed) or helices with
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FIG. 2 (color online). Equilibrium configurations Z � z0 vs s=L ¼ ~s=	 for uniformly distributed azimuthal forces �ðsÞ following
Eq. (8). (a) Fixed scaled length 	 ¼ 20 and scaled azimuthal forces N0 ¼ 0:75, 1.5, 4, 6, and 12 [blue (dark gray) curves]. The real-
space helical configuration for N0 ¼ 3 [medium-weight blue (dark gray) curve] is shown in red (light gray). The 	 ¼ 1 limits for the
same range of azimuthal forces are shown by black dashed lines. Significant 	 dependence is seen both at the free tip and at the
transition to Z ¼ 0. (b) Fixed azimuthal force N0 ¼ 4 and various scaled lengths 	 ¼ 5, 10, 20, 40, 80 [blue (dark gray) curves], and1
[thick red (light gray) curve]. The left inset shows the pitch distributions of the configurations with finite 	. The right inset, plotting
Z	 � Z1 vs s=R, shows that the boundary layer, near s ¼ 0, has a width of order R.
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instantaneous pitches that vary along their length (if forces
are distributed). We derive and solve the equations that
describe the helical configurations that result. In particular,
azimuthal forces in a physiological range (1–25 pN) can
give rise to a helixlike configuration with a pitch in the
experimentally observed range of MreB (0:5–2:0 �m).
Distributed azimuthal forces result in the coexistance of
extended helical and collapsed ringlike configurations in
the same filament, as observed with MreB in E. coli [13].
When rings of MreB are observed in E. coli [13] the
fluorescence intensity of the filament appears to dimin-
ish—which may indicate thinner filaments and corre-
spondingly smaller B and larger Nð~sÞ. Unbundling (or
rebundling) MreB filaments may be an accessible switch
to turn on (or off) ringlike collapse within bacteria.

Force generation within bacterial cells remains a fron-
tier, with no reported homologs of the processive motors
associated with cytoskeletal filaments in eukaryotic cells
(e.g., dynein, myosin, kinesin). We have shown that azi-
muthal forces would be required for the helical configura-
tions that are observed for MreB, and such forces are
unlikely to simply result from geometric constraints. A
detailed and quantitative study of inhomogeneous helical
pitch and of bending modulus (potentially accessible via
variations of fluorescence intensity along the filament) can
now be used to access distributed azimuthal (and axial)
forces distributed along the filament, and hence to explore
active force generation within bacteria.
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(2004); R. Carballido-López et al., Dev. Cell 11, 399
(2006).

[23] W.H. Press et al., Numerical Recipes: the Art of Scientific
Computing (Cambridge University Press, New York,
2007), 3rd ed..

[24] Motors binding at a fixed rate then advecting with the
filament [21] would give a linear force distribution.

[25] L=R ¼ 	 ¼ 20 allows for 2–3 complete windings of
circumference 2�R along the filament length.

[26] Using R � 400 nm,
R
� � 1 pN, and B � 105 pN nm2,

we obtain N � 1:6.
[27] One might ‘‘spray-paint’’ a new helix of pitch p ¼

p0=½1�!Rv�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2=ð2�RÞ2p � from a locus tread-

milling at speed v [21] along a preexisting helix of pitch

p0 that is itself rotating at an angular speed !.

0

5

10

15

20

0 0.2 0.4 0.6 0.8 1

A
zi

m
ut

ha
l f

or
ce

 N

s/L

ringopen helix

α = 5

α = ∞ 

FIG. 3 (color online). In the limit of long filaments, with 	 ¼
1, the range of filament length s=L and scaled azimuthal force N
that have rings (Z ¼ 0) are shown above the thick red line, while
open helical configurations are seen below the line. No rings are
seen below N� ¼ 2. For shorter filaments, this phase diagram
still applies approximately. Shown are the lines separating Z <
0:01 and Z > 0:01 for 	 ¼ 5, 10, 20, 40, and 80, using Eq. (8).
For shorter filaments (as shown here for 	 ¼ 5), the entire short
filament is ring-shaped at larger forces.
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