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Coherent rotations of a single spin-based qubit in a single quantum dot at fixed Zeeman energy
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Coherent rotations of single spin-based qubits may be accomplished electrically at fixed Zeeman energy with
a qubit defined solely within a single electrostatically defined quantum dotg tfeetor and the external
magnetic field are kept constant. All that is required to be varied are the voltages on metallic gates which
effectively change the shape of the elliptic quantum dot. The pseudospin-1/2 qubit is constructed from the
two-dimensionalS=1/2,S,=-1/2 subspace of three interacting electrons in a two-dimensional potential well.
Rotations are created by altering the direction of the pseudomagnetic field through changes in the shape of the
confinement potential. By deriving an exact analytic solution to the long-range Coulomb interaction matrix
elements, we calculate explicitly the range of magnitudes and directions the pseudomagnetic field can take.
Numerical estimates are given for GaAs.
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I. INTRODUCTION II. SUMMARY

. . o Our qubit is encoded in the two-dimensiorg#1/2, S,
The issue of real-time coherent control of individual __, /5 subspace of three interacting electrons in a two-
quantum states is central to quantum computing and to Maimensional potential well. Rotations are created by tuning

other ideas in the burgeoning field of quantum nanoelectronthe eccentricity of the elliptic confinement potential.

ics. The main challenge is to isolate a syst@nthe inter- Any two-level system can be described as a pseudospin-

esting parts of a systenirom its environment in order 0 4, object in a pseudomagnetic field with a Hamiltonian
prevent decoherence, yet have it environmentally coupleaYritten as

enough in order to perform measurements to determine wha
state (or distribution of statgsthe system is in. In a solid
state system—semiconductors in particular—encoding infor-
mation in the spin, rather than the charge, of an electron is &The most general Hamiltonian will have an additional term
promising path since spin couples more weakly to the enviproportional to the identity operatpThe o; are the Pauli
ronment than does charge. But precisely because of thigpin matrices, and this are parameters dependent upon the
weaker environmental coupling, controlliignd measuring  details of the problem. To rotate qubits, at least one of the
the dynamics through external fields is slower and morghree pseudofield components must be tunable; in principle,
problematic than in charge systems. this degree of control can be arbitrarily small. As shown

For quantum computing, employing the spin as the basi®elow, the pseudofield for the present system lies in a plane,
qubit, for essentially the reasons mentioned above, was regvhich we take to be th&-z plane(b,=0). In particular, we
ognized early ort. Here, the two-qubit gates are controlled consider pseudofield switching between two valugsand
electrically? but single qubit rotations—a necessary ingredi-b;, which differ in magnitude and in directiof
ent in universal quantum computing—require local figlols The crucial point demonstrated below is that the Hamil-
more precisely, local Zeeman tunjpgand necessitates tonian of Eq.(1) may be realized in a single elliptic quantum
breaking the spin symmetry explicitly. In contrast, one candot, whereb,, by, andb, all have adifferent functional de-
definecodedqubits®# rather than defining a logical qubit as pendencen the eccentricity of the quantum doSince this
being a single electrofor excess electrorin a single quan-  eccentricity is tunable by external gafethe spin-based qu-
tum dot, a single logical qubit may be defined, for example bit may be rotated solely through external gate potentials
as several quantum dots. Explicit gate sequehtmsthree  which are local to the quantum dot.
electrons respectively confined to three quantum dots explic- Although our results below are for two-dimensional ellip-
ity show that the exchange interaction, controlled throughtic confinement, the general scheme holds equally well for
gates(i.e., electrical meanslone is sufficient. This requires any anisotropic (noncirculaj confinement potential. The
both additional gates and an order-of-magnitude increase igeneral requirements are guided by three considerations.
gate operations. First, the two qubit state) and|1) should both have the

In the present paper, we show how a spin-based qubisame spin(1/2) and spin projection. Second, if the two
defined in asinglequantum dot, may be manipulated exclu- states differ by at least one spin-flipped pair, the relaxation
sively by pulsing voltages applied to gates; the external magshould then be governed by the sgimther than charge
netic field and the g-factor are uniform, isotropic, and staticrelaxation time, regardless of the orbital configurations.
Thus both single- and double-qubit gates can be constructethird, if those spin-1/2 states which define the qubit are the
solely through voltage pulsing with a homogeneous, statitwo lowest-energy states, then one can serve as the initial
Zeeman energy. state, prepared by equilibration.

'qqubit: bxa'x + bya'y + bza'z- (1)
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In the following section, we outline an exact solution to wo = [w?+ 2(w?+ ws)]llz, w_= (w2~ w§)1/2, (5)
the one-body problem. This solution has been published
before® but we provide an alternate derivation based on 4. 2 214
Bose operators, similar to the circular case, which will facili- Q= (w2 + wgwg) ™. (6)
tate the second-quantized treatment with interactions.

In Sec. IV, we consider interactions. We provide an exact
closed-form expression for all Coulomb matrix eleme(nts

The Bose operators of E3) diagonalize the elliptic Hamil-
tonian, Eq.(2):

the single-particle eigenbagisvalid for arbitrary quantum R 1 1

numbers. H :hQ+(éIél+ —) +hQ_(“géz+ —), (7)
We next detail the explicit construction of our qubit in 2 2

Sec. V, and derive Eq1), giving expressions for the pseud- Y=Y

- / 2 i ic limi
ofields in terms of the various exchange energies, and, uItiWhere Q. =(1/2Vwp+ w207 (In the isotropic limit of

mately, in terms of the parameters appearing in the electroni¥x @y W€ havea,—1 and 5, —1. The Bose operators

Hamiltonian. and lthe Hamiltonian then reduce to the usual isotropic
Following this, we give an explicit sequence of confine-°€s™)

ment deformations which enables a qubit flip and give esti-

mates based on GaAs lateral dots using realistic potential and I[V. COULOMB MATRIX ELEMENTS:
material parameters. EXACT SOLUTION
For the electron interactions, we use the long-
lll. ONE-BODY HAMILTONIAN: EXACT SOLUTION range Coulomb energy~1/r) and work in the second
The Hamiltonian for a noninteracting elliptic quantum dotquahtlzed Aljr?rmahsm usmAgTA the exact single-particle
is given by basis|mn) (&18;|mry=n|mn), &8;|mn=m|mn); henceVc
1 02 1 :(1/2)Evijmcfa_c;ra,cw,ckg, where all indices(ijkloo’) are
H= —<p_ -A> + ~m(0ZC + w2). (2)  summed over; each Latin index representsair of orbital
2m C 2 guantum numbergm,n) and the Greek indices represent

We have neglected the Zeeman term since it plays no signifPin (0,0’ =£1/2). Calculation of the matrix element
cant role in what follows. Equatiof®) describes one elec- Proceeds through the two-dimensional Fourier transform,

tron trapped in a plane, under a perpendicular magnetic 2

field—we use the symmetric gauge= B(-y,X, 0)/2—with Vi = f d?q —— (myny, mpn, €412 mgng myn,), (8)

further lateral confinement bigvo differentparabolic poten- 2mq

tials with frequenciesv, and w,. This describes an elliptic

confinement with the rotational symmettgnd consequent

angular-momentum conservatioexplicitly broken.
Equation(2) may be diagonalized by introducing Bose

operators analogous to the isotropic cd&®r an alternative

by writing the position operatdr=(X, ) in terms of the Bose
operators in Eq(3) and their adjoint. After some calculation,
we obtain

min(nq,n3)
but equivalent solution to the elliptic one-body problem, see , _ —eZ/(ZMO) El ’ P! <n1><n3>
Ref. 8) These operators are explicitly given by = /ZH;‘Zl MmN p0 Y \p/\py
a 1 xI2¢ P lo/h - i
{2 By e o
2/ N2 Pylo/h yI2€, x 2 p! > ps!
py=0 P2/\P2/  p=0 P3/ \P3
a 0 B B- min{mz my) m ]
R R L) R T R
0 la -B- B: gt ““\ps/\pa ( 2)
from which the adjoint operato(é{,éz) can easily be found. NS
These four operators satisfy the canonical Boson commuta- Xf dx —, (9
tion relations. The dimensionless parameterss, are de- -1 Vl-x
fined by

Whereqi:%Ei“:l(il)“l(mi +n,—2p;). The integral may be ex-

_ w(z)i Q%+ w?) | 4 pressed as a sum of elementary functions and complete el-
£ Wi+ (2= w?)) (43 liptic integrals of the first, second, and third kinds. The func-
tion A=A\ (x) is explicitly given by
2\ 1/2
w_ n *\n \m
= e um2(y’” )34y Ma4 12
A (1192> ' (40 NS URA L U (10)
(|U|2+ |U|2)q +1/2
and we have also defined tl{hybrid) magnetic Iength€§
=f/(mwy), cyclotron frequencyw.=eB/ (Mo, as well a8 wheren;; =nj+n;—(py+ps), m;=m+m;—(p,+p,), and
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Pseudofield angle 0 [degrees] Pseudofield magnitude b [e%(2/rr) '%/(321,)]

FIG. 1. Contour plot showing
the angle 6 (left plot) and the
magnitude b (right plot) of the
pseudomagnetic field as a func-
tion of quantum dot anisotropy
=wy/w, and (actua) magnetic
field z=w./wy. The angle 0 is
measured from the positiveaxis
andb lies in thex-z plane. Angles
are measured in degrees and mag-
nitudes in units o8?\2//(32(,).
= S Shown are lines of constaftand
= b, respectively.
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(u) <,3+/a+ i, B )( X ) Fock treatment. What is more, at finite magnetic field, these
_ . | 11 . -~ . i
v wp. ipa )\ 1@ (11)  states are both lower in energy than spin-1/2 states involving

a doubly occupied-shell.

The matrix element, Eq9), vanishes i;(m,+n,) is odd and We project the total Hamiltonian—consisting of both one-
is real otherwise. In the isotropic limitw,=w,) the expres-  body, Eq.(7), and two-body, Eq(9), terms—down to our
sion simplifies considerably and conservation of angular motwo-dimensional qubit subspace, spanned by the vedbrs
mentum emerges explicitly. Equatid) is anexactresult, ~and|1). This can be mapped to a pseudospin-1/2 problem
valid for any set of quantum numbens,n(i=1,...,4. It  whose general form is given by E¢f). The pseudomagnetic
can be used as the basis of a numerical treatment of théeld components are given by various exchange interactions.
many-body problem. We find b,=0, whereas

—_—

V. QUBIT CONSTRUCTION ’

\3
. . b, = —(Vgr0— V , 13
Rotations are enabled through the mutual exchange inter- = 75 Vozzo~ Vizz) (139

actions among the confined electrons. In what follows, we

consider three-particle antisymmetric state vectors of the 1

form |m1nlal,m2n202,n13n303}, with fixed orbital states b, = = Voi10+ = (V1221+ Vo220 - (13b)
(m;,n;). For a given set of orbital quantum numbers, we con- 2

struct the qubits from théexac) two-dimensional subspace ) ) o

of the three-electron problem with spB1/2,S,=-1/2. We The pseudofieldb, andb, depend on different combinations
shall consider the three orbital statés,n)=(0,0),(1,0), of exchange-interaction matrix elements, and each of these
(2,00 with no double occupancy. We stress, however, thafl€Pends differently on the ratio= wy/w,. This will be true
neither single occupancy nor three orbital staesly) are of_ almost any anisotropic conflnemgnt potential. Because of
essential to the main conclusions. The important point is tha!iS: the direction of the pseudofield can be changed—
the spin-degenerate space is two-dimensional—an exaltducing coherent rotations of the qubit—by changing the
result—and that the shape of the dot is tunable—an experNiSOropy parameter. Analytic expression for the various
mentally demonstrated fatThe resulting eight-dimensional €Xchange energies in EGL3) are given in the Appendix.
Hilbert space is spanned by the antisymmetrig8iater de- Figure 1 shows the anglé of the pseudofield (relative
terminanj states|00g, 100y, 200), which we will simply to the positivex _aX|_s) as a function of both anisotropyand
write as|o,a4,0,) (but note that these agntisymmetrized (@ctud) magnetic fieldz= w./ ,. The larger vaIue_s of are
state. Three spin-1/2 particles can be combined to form g€ Physically relevant onegThe isotropic casay,=w, cor-
spin-3/2 quartet and two orthogonal spin-—1/2 doublets. Th&€SPONds to =1, whereas =0 is the one-dimensional limit.
two |S,S,)=|1/2,-1/2 states are orthogonal and form our The figure shows that at fixed magnetic fieldz, a range of

two qubit state$0) and|1). They are explicitly given by pseqdofield directions are ayailable for qubit rotations by
varying the voltage-tuned anisotropy In both extremest

_1 _ _ =0, 1, Fig. 1 shows no dependence ®with magnetic field
)= \J’E(ZMD LT =111, (129 z, in both cases, the system essentially has only one tunable
parameter which, in the logical qubit space, tunestizay-
1 nitude of the pseudofield(through the hybrid magnetic
1D=—=(L1D-[1L1). (12b)  length (). Figure 1 also shows how the magnitude units
V2 of €\2/m/(32¢,)] of the pseudofield changes as a function
These states are linear combinations of single-determinamf r andz. In general, both the magnitude and direction of
state vectors and, as such, go beyond the standard Hartrebe pseudofield are altered by the anisotropy.
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VI. EXPLICIT QUBIT FLIP SEQUENCE
By tuning r(t) in real time, a qubit flip|0)—|1) can be

performed; we give here an explicit example. It is useful to

rotate our qubit, Eq(12), so that it is oriented parallébnd
antiparalle] to the direction of the pseudofield far=1,

given explicitly by
~\m (57 &
=——| =,0,21]—.
° 512<\3 )fo

Thus our rotated qubit states a@=c_|0)—c,|1) and|1)
=c,|0)+c_|1), wherec,=+/(byxbg,)/(2bp).

The initial (t=0) qubit state is along the pseudofield di-
rection by given byry=1, which, in our rotated frame, we
take to lie along the axis. The field is then pulsétito a new
value b; given by, r;<1. (This field lies in thex-z plane)
The qubit will precess abou; with periodT,==#/b,. Half
a period later, at=T;/2, the qubit is again in thg-z plane,
whereupon the field is pulsed backltg. The qubit precess
about this new field with periody=w%/b,. Half a period
later, att=(T,;+Ty)/2, the field is again pulsed tm and the
process is repeated every half perigdctually, the pseud-

(14)
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FIG. 2. Direction and magnitude of magnetic figll,=0) for
various anisotropy values=wy/w, at fixed magnetic fieldw,
=0.12w,. This is essentially a plot of Eq(13) in units of
e?\2/1/(32€,). The hatched circle and ellipse are schematics of the
guantum-dot shape at different anisotropies.

state can be written as a correlated many-body J@je
=39, where [Q)=|0),|1) is the logical qubit state

ofield does not need to be switched every half period; an oddnd the |} are antisymmetrized orthonormal statég)

number of half periods sufficeslf the angleu betweenb,
andb; is chosen such that=7/(2k), wherek is an integer,
the qubit may be flipped bt pulses at; with pulse width
T,/2, each separated by an intervgj/2 at by. The total
switching time istlP =kT,/2+(k-1)To/2 and can be very

=|m;n, 04, MpN,0,, MgNsa3), such thatQ) is a spin eigenstate
with S=1/2,5,=-1/2. Equation(12), for example, has
(myny,mpn,, mgn3) =(00, 10,20 for both |Q)=|0), and |Q)
=|1); the differences between the two logical states are, in
this case, solely due to spin flips and phase factors: bf

fast(see below. The qubit can in fact cover the Bloch sphere Although there is naequirementthat the orbital degrees of
by judicious choice of pseudofields, which are entirely con-freedom are identical for each qubit state, it is nevertheless

trolled by the quantum dot anisotropy.

advantageous to have the orbital quantum numbers identical

For definiteness, we give here numerical estimates basegince this will reduce the electromagnetic fluctuations which

on material parameters for GaAs. We takeg=6 meV, while
wy, switches between 3 and 6 meV. We also takéixed,
uniform) magnetic field ofB=0.42 T. Thusr=1, 0.5 andz
=0.12 for GaAs. For =1, the pseudofield is explicitly given
by Eg. (14) and yields a magnitude di,~1.61 meV. Atr
=0.5 the magnitude is decreasds],~0.94 meV, whereas

would be present if the qubit rotation involved orbital tran-
sitions as well as spin transitions.

It is always possible to define the logical qubit states in
such a way that they differ only by spin flips and relative
phases and not by their orbital guantum numbers. This state-
ment is not restricted to the simplget relevank case of that

the directiond is increased. Figure 2 shows both the direc-described by Eq(12). It is an exact result, valid even for
tion and magnitude of the pseudofield for these particulacorrelated states involving many Slater determinants. Thus

parameters. The fielol is tilted away fromb, by ©=9". This

voltage fluctuations due to orbital transitions can be miti-

gives a qubit flip in ten pulses. With these pseudofield val-gated.

ues, the precession periods arg=1.3 ps forb, and T,
=2.2 ps forb;. Thelower boundon the flipping timet™ is
for a pseudofield switch every half period; this yield®

It is also possible to choose the qubit states such that one
is the ground spin-1/2 state and, consequently, state prepa-
ration can be a matter of equilibration.

~16.8 ps. These times are closer to optical frequencies than Finally, the two qubit states will not be energetically de-

what is currently achievable using pulse generators. Recegenerate. Thus each qubit state will have different transport

pulsed-gate experimeftsemployed electrical pulse-widths characteristics; the magnitude of current through the dot will

on the order of 10 ns. With such pulse generators, we havedepend differently on gate and bias voltages for each of the

tfiP ~ 190 ns. qubit states. This may be exploited to be used as a detection
scheme for final readout.

VII. DISCUSSION
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APPENDIX: EXCHANGE ENERGIES 1 (3 c?  4i(a+2b)
C

- b(a+ b) - 15b2(a+ b)z)y (A4C)

The pseudofield, Eq(13), is determined by various ex- Ae= a3\b
change energies. Thesg, are in turn determined from the

exact expression of EqQ) with the subscripts(i,j,k,I) »

=(m,,m,,m3,m,) and all n,=0. For the cases on interest Bo=—F7—", (A4d)
! avb(a+h)
here, the relevarit;;, are given by
1 +
Vouo=CXo Vo= 3CX  (Ala 1= [ 2O g
a’\b(a+b) 3b(a+b)
1 /1
Vi201= §C< er - 2X,+ 4X2), (Alb) B. = 1 ( 3y N 2cr”(a+ Zb)+ 81%(a+ 2b)?
®” B3Jb\la+b  ba+b? = 150%a+b)?
where C=¢€?/(4m(y) is the Coulomb energy scaleX, 3,3
=292 [(s+1)/2]l, and - —) A4f
o 5b(a+b)?/’ (AdD)
_ (cl? +d)¥?
o 0 W)@ + o (A2) where
1 1
Eachl,is a linear combination of complete elliptic integrals a= BE(—Z - —2) + B(a? - a?), (A5a)
of the first and second kintt, RS
ls= AK(m) + BE(m), (A3) b= %o’ + a2p?, (A5b)
where m=(a?-a?)/ o2, and the coefficient#\; and B, are
given by c=a?B% - Bia?, (A5C)
c
Ay=—F, (A4a) d=p%d?, (A5d)
avb
1 2 v=ad- bc, (A5e)
= r((;2 - ) ) (A4b) ; ;
a2\b 3b(a+ b) and thea, and B, are given in Eq(4).
*URL:http://solition.phys.dal.ca Berlin, 1997.
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