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Coherent rotations of single spin-based qubits may be accomplished electrically at fixed Zeeman energy with
a qubit defined solely within a single electrostatically defined quantum dot; theg factor and the external
magnetic field are kept constant. All that is required to be varied are the voltages on metallic gates which
effectively change the shape of the elliptic quantum dot. The pseudospin-1/2 qubit is constructed from the
two-dimensionalS=1/2,Sz=−1/2 subspace of three interacting electrons in a two-dimensional potential well.
Rotations are created by altering the direction of the pseudomagnetic field through changes in the shape of the
confinement potential. By deriving an exact analytic solution to the long-range Coulomb interaction matrix
elements, we calculate explicitly the range of magnitudes and directions the pseudomagnetic field can take.
Numerical estimates are given for GaAs.
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I. INTRODUCTION

The issue of real-time coherent control of individual
quantum states is central to quantum computing and to many
other ideas in the burgeoning field of quantum nanoelectron-
ics. The main challenge is to isolate a systemsor the inter-
esting parts of a systemd from its environment in order to
prevent decoherence, yet have it environmentally coupled
enough in order to perform measurements to determine what
statesor distribution of statesd the system is in. In a solid
state system—semiconductors in particular—encoding infor-
mation in the spin, rather than the charge, of an electron is a
promising path since spin couples more weakly to the envi-
ronment than does charge. But precisely because of this
weaker environmental coupling, controllingsand measuringd
the dynamics through external fields is slower and more
problematic than in charge systems.

For quantum computing, employing the spin as the basic
qubit, for essentially the reasons mentioned above, was rec-
ognized early on.1 Here, the two-qubit gates are controlled
electrically,2 but single qubit rotations—a necessary ingredi-
ent in universal quantum computing—require local fieldssor,
more precisely, local Zeeman tuningd, and necessitates
breaking the spin symmetry explicitly. In contrast, one can
definecodedqubits;3,4 rather than defining a logical qubit as
being a single electronsor excess electrond in a single quan-
tum dot, a single logical qubit may be defined, for example,
as several quantum dots. Explicit gate sequences5 for three
electrons respectively confined to three quantum dots explic-
itly show that the exchange interaction, controlled through
gatessi.e., electrical meansd alone is sufficient. This requires
both additional gates and an order-of-magnitude increase in
gate operations.

In the present paper, we show how a spin-based qubit,
defined in asinglequantum dot, may be manipulated exclu-
sively by pulsing voltages applied to gates; the external mag-
netic field and the g-factor are uniform, isotropic, and static.
Thus both single- and double-qubit gates can be constructed
solely through voltage pulsing with a homogeneous, static
Zeeman energy.

II. SUMMARY

Our qubit is encoded in the two-dimensionalS=1/2, Sz
=−1/2 subspace of three interacting electrons in a two-
dimensional potential well. Rotations are created by tuning
the eccentricity of the elliptic confinement potential.

Any two-level system can be described as a pseudospin-
1/2 object in a pseudomagnetic field with a Hamiltonian
written as

Ĥqubit = bxŝx + byŝy + bzŝz. s1d

sThe most general Hamiltonian will have an additional term
proportional to the identity operator.d The ŝi are the Pauli
spin matrices, and thebi are parameters dependent upon the
details of the problem. To rotate qubits, at least one of the
three pseudofield components must be tunable; in principle,
this degree of control can be arbitrarily small. As shown
below, the pseudofield for the present system lies in a plane,
which we take to be thex-z planesby=0d. In particular, we
consider pseudofield switching between two values,b0 and
b1, which differ in magnitude and in directionu.

The crucial point demonstrated below is that the Hamil-
tonian of Eq.s1d may be realized in a single elliptic quantum
dot, wherebx, by, andbz all have adifferent functional de-
pendenceon the eccentricity of the quantum dot.6 Since this
eccentricity is tunable by external gates,7 the spin-based qu-
bit may be rotated solely through external gate potentials
which are local to the quantum dot.

Although our results below are for two-dimensional ellip-
tic confinement, the general scheme holds equally well for
any anisotropic snoncirculard confinement potential. The
general requirements are guided by three considerations.
First, the two qubit statesu0l and u1l should both have the
same spins1/2d and spin projection. Second, if the two
states differ by at least one spin-flipped pair, the relaxation
should then be governed by the spinsrather than charged
relaxation time, regardless of the orbital configurations.
Third, if those spin-1/2 states which define the qubit are the
two lowest-energy states, then one can serve as the initial
state, prepared by equilibration.
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In the following section, we outline an exact solution to
the one-body problem. This solution has been published
before,8 but we provide an alternate derivation based on
Bose operators, similar to the circular case, which will facili-
tate the second-quantized treatment with interactions.

In Sec. IV, we consider interactions. We provide an exact,
closed-form expression for all Coulomb matrix elementssin
the single-particle eigenbasisd, valid for arbitrary quantum
numbers.

We next detail the explicit construction of our qubit in
Sec. V, and derive Eq.s1d, giving expressions for the pseud-
ofields in terms of the various exchange energies, and, ulti-
mately, in terms of the parameters appearing in the electronic
Hamiltonian.

Following this, we give an explicit sequence of confine-
ment deformations which enables a qubit flip and give esti-
mates based on GaAs lateral dots using realistic potential and
material parameters.

III. ONE-BODY HAMILTONIAN: EXACT SOLUTION

The Hamiltonian for a noninteracting elliptic quantum dot
is given by

Ĥ =
1

2m
Sp̂ −

e

c
ÂD2

+
1

2
msvx

2x̂2 + vy
2ŷ2d. s2d

We have neglected the Zeeman term since it plays no signifi-
cant role in what follows. Equations2d describes one elec-
tron trapped in a plane, under a perpendicular magnetic

field—we use the symmetric gauge,Â;Bs−ŷ, x̂,0d /2—with
further lateral confinement bytwo differentparabolic poten-
tials with frequenciesvx and vy. This describes an elliptic
confinement with the rotational symmetrysand consequent
angular-momentum conservationd explicitly broken.

Equation s2d may be diagonalized by introducing Bose
operators analogous to the isotropic case.sFor an alternative
but equivalent solution to the elliptic one-body problem, see
Ref. 8.d These operators are explicitly given by

Sâ1

â2
†D =

1
Î2
FXYTS x̂/2,0

p̂y,0/"
D + iX−1YSp̂x,0/"

ŷ/2,0
DG , s3ad

X = Sa+ 0

0 1/a−
D, Y = S b+ b−

− b− b+
D , s3bd

from which the adjoint operatorssâ1
†,â2d can easily be found.

These four operators satisfy the canonical Boson commuta-
tion relations. The dimensionless parametersa±,b± are de-
fined by

a± = Sv0
2 ± sV2 + v−

2d
v0

2 ± sV2 − v−
2d
D1/4

, s4ad

b± = S1 ±
v−

2

V2D1/2

, s4bd

and we have also defined theshybridd magnetic length,0
2

=" / smv0d, cyclotron frequencyvc=eB/ smcd, as well as9

v0 = fvc
2 + 2svx

2 + vy
2dg1/2, v− = svx

2 − vy
2d1/2, s5d

V = sv−
4 + vc

2v0
2d1/4. s6d

The Bose operators of Eq.s3d diagonalize the elliptic Hamil-
tonian, Eq.s2d:

Ĥ = "V+Sâ1
†â1 +

1

2
D + "V−Sâ2

†â2 +
1

2
D , s7d

where V±=s1/2dÎv0
2+vc

2±2V2. sIn the isotropic limit of
vx→vy, we havea±→1 and b±→1. The Bose operators
and the Hamiltonian then reduce to the usual isotropic
ones.10d

IV. COULOMB MATRIX ELEMENTS:
EXACT SOLUTION

For the electron interactions, we use the long-
range Coulomb energys,1/rd and work in the second
quantized formalism using the exact single-particle

basis umnl sâ1
†â1umnl=numnl ,â2

†â2umnl=mumnld; henceV̂C

=s1/2doVijklcis
† cjs8

† cls8cks, where all indicessijklss8d are
summed over; each Latin index represents apair of orbital
quantum numberssm,nd and the Greek indices represent
spin ss ,s8= ±1/2d. Calculation of the matrix elementVijkl

proceeds through the two-dimensional Fourier transform,11

Vijkl =E d2q
e2

2pq
sm1n1,m2n2ueiq·sr̂1−r̂2dum3n3,m4n4d, s8d

by writing the position operatorr̂ =sx̂, ŷd in terms of the Bose
operators in Eq.s3d and their adjoint. After some calculation,
we obtain

Vijkl =
e2/s2p,0d

Î2pk=1

4
mk ! nk!

o
p1=0

minsn1,n3d

p1 ! Sn1

p1
DSn3

p1
D

3 o
p2=0

minsm1,m3d

p2 ! Sm1

p2
DSm3

p2
D o

p3=0

minsn2,n4d

p3 ! Sn2

p3
DSn4

p3
D

3 o
p4=0

minsm2,m4d

p4 ! Sm2

p4
DSm4

p4
Ds− 1dq−

Gsq+ + 1
2d

3E
−1

1

dx
l + l*

Î1 − x2
, s9d

whereq±= 1
2oi=1

4 s±1di−1smi +ni −2pid. The integral may be ex-
pressed as a sum of elementary functions and complete el-
liptic integrals of the first, second, and third kinds. The func-
tion l=lsxd is explicitly given by

l =
un12su*dn34vm34sv*dm12

suuu2 + uvu2dq++1/2
, s10d

wherenij =ni +nj −sp1+p3d, mij =mi +mj −sp2+p4d, and
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Su

v
D = Sb+/a+ ia+b−

a−b− ib+/a−
DS x

Î1 − x2D . s11d

The matrix element, Eq.s9d, vanishes ifoismi +nid is odd and
is real otherwise. In the isotropic limit7 svx=vyd the expres-
sion simplifies considerably and conservation of angular mo-
mentum emerges explicitly. Equations9d is an exact result,
valid for any set of quantum numbersmi ,nisi =1, . . . ,4d. It
can be used as the basis of a numerical treatment of the
many-body problem.

V. QUBIT CONSTRUCTION

Rotations are enabled through the mutual exchange inter-
actions among the confined electrons. In what follows, we
consider three-particle antisymmetric state vectors of the
form um1n1s1,m2n2s2,m3n3s3l, with fixed orbital states
smi ,nid. For a given set of orbital quantum numbers, we con-
struct the qubits from thesexactd two-dimensional subspace
of the three-electron problem with spinS=1/2,Sz=−1/2. We
shall consider the three orbital statessm,nd=s0, 0d,s1,0d,
s2,0d with no double occupancy. We stress, however, that
neither single occupancy nor three orbital statessonlyd are
essential to the main conclusions. The important point is that
the spin-degenerate space is two-dimensional—an exact
result—and that the shape of the dot is tunable—an experi-
mentally demonstrated fact.7 The resulting eight-dimensional
Hilbert space is spanned by the antisymmetrizedsSlater de-
terminantd statesu00s0,10s1,20s2l, which we will simply
write asus0,s1,s2l sbut note that these areantisymmetrized
statesd. Three spin-1/2 particles can be combined to form a
spin-3/2 quartet and two orthogonal spin-−1/2 doublets. The
two uS,Szl= u1/2,−1/2l states are orthogonal and form our
two qubit statesu0l and u1l. They are explicitly given by

u0l ;
1
Î6

s2u↓↓↑l − u↓↑↓l − u↑↓↓l, s12ad

u1l ;
1
Î2

su↓↑↓l − u↑↓↓ld. s12bd

These states are linear combinations of single-determinant
state vectors and, as such, go beyond the standard Hartree-

Fock treatment. What is more, at finite magnetic field, these
states are both lower in energy than spin-1/2 states involving
a doubly occupieds-shell.

We project the total Hamiltonian—consisting of both one-
body, Eq.s7d, and two-body, Eq.s9d, terms—down to our
two-dimensional qubit subspace, spanned by the vectorsu0l
and u1l. This can be mapped to a pseudospin-1/2 problem
whose general form is given by Eq.s1d. The pseudomagnetic
field components are given by various exchange interactions.
We find by=0, whereas

bx =
Î3

2
sV0220− V1221d, s13ad

bz = − V0110+
1

2
sV1221+ V0220d. s13bd

The pseudofieldsbx andbz depend on different combinations
of exchange-interaction matrix elements, and each of these
depends differently on the ratior ;vy/vx. This will be true
of almost any anisotropic confinement potential. Because of
this, the direction of the pseudofield can be changed—
inducing coherent rotations of the qubit—by changing the
anisotropy parameterr. Analytic expression for the various
exchange energies in Eq.s13d are given in the Appendix.

Figure 1 shows the angleu of the pseudofieldb srelative
to the positivex axisd as a function of both anisotropyr and
sactuald magnetic fieldz;vc/vx. The larger values ofr are
the physically relevant ones.sThe isotropic case,vx=vy cor-
responds tor =1, whereasr =0 is the one-dimensional limit.d
The figure shows that at afixedmagnetic fieldz, a range of
pseudofield directions are available for qubit rotations by
varying the voltage-tuned anisotropyr. In both extremes,r
=0, 1, Fig. 1 shows no dependence onu with magnetic field
z; in both cases, the system essentially has only one tunable
parameter which, in the logical qubit space, tunes themag-
nitude of the pseudofieldsthrough the hybrid magnetic
length,0d. Figure 1 also shows how the magnitudefin units
of e2Î2/p / s32,0dg of the pseudofield changes as a function
of r and z. In general, both the magnitude and direction of
the pseudofield are altered by the anisotropy.

FIG. 1. Contour plot showing
the angle u sleft plotd and the
magnitude b sright plotd of the
pseudomagnetic fieldb as a func-
tion of quantum dot anisotropyr
=vy/vx and sactuald magnetic
field z=vc/vx. The angle u is
measured from the positivex axis
andb lies in thex-z plane. Angles
are measured in degrees and mag-
nitudes in units ofe2Î2/p / s32,0d.
Shown are lines of constantu and
b, respectively.
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VI. EXPLICIT QUBIT FLIP SEQUENCE

By tuning rstd in real time, a qubit flipu0l→ u1l can be
performed; we give here an explicit example. It is useful to
rotate our qubit, Eq.s12d, so that it is oriented parallelsand
antiparalleld to the direction of the pseudofield forr =1,
given explicitly by

b0 =
− Îp

512 S 57
Î3

,0,21De2

,0
. s14d

Thus our rotated qubit states areu0̃l=c− u0l−c+ u1l and u1̃l
=c+ u0l+c− u1l, wherec±=Îsb0±b0zd / s2b0d.

The initial st=0d qubit state is along the pseudofield di-
rection b0 given by r0=1, which, in our rotated frame, we
take to lie along thez axis. The field is then pulsed12 to a new
value b1 given by, r1,1. sThis field lies in thex-z plane.d
The qubit will precess aboutb1 with periodT1=p" /b1. Half
a period later, att=T1/2, the qubit is again in thex-z plane,
whereupon the field is pulsed back tob0. The qubit precess
about this new field with periodT0=p" /b0. Half a period
later, att=sT1+T0d /2, the field is again pulsed tob1 and the
process is repeated every half period.sActually, the pseud-
ofield does not need to be switched every half period; an odd
number of half periods suffices.d If the anglem betweenb0
andb1 is chosen such thatm=p / s2kd, wherek is an integer,
the qubit may be flipped byk pulses atb1 with pulse width
T1/2, each separated by an intervalT0/2 at b0. The total
switching time istk

flip =kT1/2+sk−1dT0/2 and can be very
fastssee belowd. The qubit can in fact cover the Bloch sphere
by judicious choice of pseudofields, which are entirely con-
trolled by the quantum dot anisotropy.

For definiteness, we give here numerical estimates based
on material parameters for GaAs. We takevx=6 meV, while
vy switches between 3 and 6 meV. We also take asfixed,
uniformd magnetic field ofB=0.42 T. Thusr =1, 0.5 andz
=0.12 for GaAs. Forr =1, the pseudofield is explicitly given
by Eq. s14d and yields a magnitude ofb0<1.61 meV. Atr
=0.5 the magnitude is decreased,b1<0.94 meV, whereas
the directionu is increased. Figure 2 shows both the direc-
tion and magnitude of the pseudofield for these particular
parameters. The fieldb1 is tilted away fromb0 by m=9°. This
gives a qubit flip in ten pulses. With these pseudofield val-
ues, the precession periods areT0=1.3 ps for b0 and T1
=2.2 ps forb1. The lower boundon the flipping timetflip is
for a pseudofield switch every half period; this yieldstflip

<16.8 ps. These times are closer to optical frequencies than
what is currently achievable using pulse generators. Recent
pulsed-gate experiments13 employed electrical pulse-widths
on the order of 10 ns. With such pulse generators, we have
tflip <190 ns.

VII. DISCUSSION

Our qubit, Eq.s12d, has been constructed from a linear
combination of single-determinantsHartree-Fockd state
vectors, where the orbital degrees of freedom have been
frozen out. But the general scheme is certainlynot limited
to our specific state vectors. In general, each logical qubit

state can be written as a correlated many-body stateuQl
=oiai

sQd ucli, where uQl= u0l , u1l is the logical qubit state
and the ucl are antisymmetrized orthonormal states,ucl
= um1n1s1,m2n2s2,m3n3s3l, such thatuQl is a spin eigenstate
with S=1/2,Sz=−1/2. Equation s12d, for example, has
sm1n1,m2n2,m3n3d=s00,10,20d for both uQl= u0l, and uQl
= u1l; the differences between the two logical states are, in
this case, solely due to spin flips and phase factors of61.
Although there is norequirementthat the orbital degrees of
freedom are identical for each qubit state, it is nevertheless
advantageous to have the orbital quantum numbers identical
since this will reduce the electromagnetic fluctuations which
would be present if the qubit rotation involved orbital tran-
sitions as well as spin transitions.

It is always possible to define the logical qubit states in
such a way that they differ only by spin flips and relative
phases and not by their orbital quantum numbers. This state-
ment is not restricted to the simplesyet relevantd case of that
described by Eq.s12d. It is an exact result, valid even for
correlated states involving many Slater determinants. Thus
voltage fluctuations due to orbital transitions can be miti-
gated.

It is also possible to choose the qubit states such that one
is the ground spin-1/2 state and, consequently, state prepa-
ration can be a matter of equilibration.

Finally, the two qubit states will not be energetically de-
generate. Thus each qubit state will have different transport
characteristics; the magnitude of current through the dot will
depend differently on gate and bias voltages for each of the
qubit states. This may be exploited to be used as a detection
scheme for final readout.
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FIG. 2. Direction and magnitude of magnetic fieldsby=0d for
various anisotropy valuesr =vy/vx at fixed magnetic fieldvc

=0.12vx. This is essentially a plot of Eq.s13d in units of
e2Î2/p / s32,0d. The hatched circle and ellipse are schematics of the
quantum-dot shape at different anisotropies.
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APPENDIX: EXCHANGE ENERGIES

The pseudofield, Eq.s13d, is determined by various ex-
change energies. TheseVijkl are in turn determined from the
exact expression of Eq.s9d with the subscriptssi , j ,k, ld
=sm1,m2,m3,m4d and all ni =0. For the cases on interest
here, the relevantVijkl are given by

V0110= CX2, V0220=
1

4
CX4, sA1ad

V1221=
1

2
CS1

4
X6 − 2X4 + 4X2D , sA1bd

where C=e2/ s4p,0d is the Coulomb energy scale,Xs

=2ss+3d/2Gfss+1d /2gIs, and

Is =E
0

1

du
scu2 + dds/2

s1 − u2d1/2sau2 + bdss+1d/2 . sA2d

EachIs is a linear combination of complete elliptic integrals
of the first and second kind,14

Is = AsKsmd + BsEsmd, sA3d

where m=sa+
2−a−

2d /a+
2, and the coefficientsAs and Bs are

given by

A2 =
c

aÎb
, sA4ad

A4 =
1

a2Îb
Sc2 −

n2

3bsa + bdD , sA4bd

A6 =
1

a3Îb
Sc3 −

cn2

bsa + bd
−

4n3sa + 2bd
15b2sa + bd2D , sA4cd

B2 =
n

aÎbsa + bd
, sA4dd

B4 =
2n

a2Îbsa + bd
Sc +

nsa + 2bd
3bsa + bdD , sA4ed

B6 =
1

a3Îb
S 3c2n

a + b
+

2cn2sa + 2bd
bsa + bd2 +

8n3sa + 2bd2

15b2sa + bd3

−
3n3

5bsa + bd2D , sA4fd

where

a = b+
2S 1

a+
2 −

1

a−
2D + b−

2sa−
2 − a+

2d, sA5ad

b = b+
2/a−

2 + a+
2b−

2, sA5bd

c = a−
2b−

2 − b+
2/a−

2, sA5cd

d = b+
2/a−

2, sA5dd

n = ad− bc, sA5ed

and thea± andb± are given in Eq.s4d.

*URL:http://solition.phys.dal.ca
1D. Loss and D. P. DiVincenzo, Phys. Rev. A57, 120 s1998d.
2G. Burkard, D. Loss, and D. P. DiVincenzo, Phys. Rev. B59,

2070 s1999d.
3D. Bacon, J. Kempe, D. A. Lidar, and K. B. Whaley, Phys. Rev.

Lett. 85, 1758s2000d.
4J. Kempe, D. Bacon, D. A. Lidar, and K. B. Whaley, Phys. Rev.

A 63, 042307s2001d.
5D. P. Divinceneo, D. Bacon, J. Kempe, G. Burkard, and K. B.

Whaley, NaturesLondond 408, 339 s2000d.
6In the istropic limit of a circular quantum dot, we findby=0 and

bx~bz; only the magnitude, not the direction, of the pseudofield
can be changed; the direction of the pseudofield can only be
changed through control of the anisotropy.

7J. Kyriakidis, M. Pioro-Ladriere, M. Ciorga, A. S. Sachrajda, and
P. Hawrylak, Phys. Rev. B66, 035320s2002d.

8A. V. Madhav and T. Chakraborty, Phys. Rev. B49, 8163s1994d.
9Without loss of generality, we restrictvxùvy in what follows.

10L. Jacak, P. Hawrylak, and A. Wójs,Quantum DotssSpringer,

Berlin, 1997d.
11The notationu¯ddenotes unsymmetrised states, whileu¯ldenotes

properly antisymmetrized and normalized states.
12A smoother pulse shape forrstd, while more realistic, would en-

tail a careful treatment of time ordering and would unnecessarily
obfuscate the present simple example.

13T. Fujisawa, D. G. Austing, Y. Tokura, Y. Hirayama, and S.
Tarucha, J. Phys.: Condens. Matter15, R1395s2003d.

14We define elliptic integrals of the first and second kind as

Ksmd =E
0

1

dt
1

Îs1 − t2ds1 − mt2d

and

Esmd =E
0

1

dt
Î1 − mt2

Î1 − t2
,

respectively.

COHERENT ROTATIONS OF A SINGLE SPIN-BASED… PHYSICAL REVIEW B 71, 125332s2005d

125332-5


