UNIVERSITY
Inspiring Minds

@ DALHOUSIE

Downloaded from: Dalhousie’s Institutional Repository
DalSpace
(http://dalspace.library.dal.ca/)

Type of print: Publisher Copy
Originally published: Physical Review B
Permanent handle in DalSpace: http://hdl.handle.net/10222/24129



PHYSICAL REVIEW B

VOLUME 44, NUMBER 1

1 JULY 1991-1

Brief Reports

Brief Reports are accounts of completed research which, while meeting the usual Physical Review standards of scientific quality, do
not warrant regular articles. A Brief Report may be no longer than four printed pages and must be accompanied by an abstract. The
same publication schedule as for regular articles is followed, and page proofs are sent to authors.

Phase diagram of betaine calcium chloride dihydrate in an applied electric field

Ian Folkins and M. B. Walker
Department of Physics, University of Toronto, Toronto, Ontario, Canada M5S 147

Z.Y. Chen
Xerox Research Centre of Canada, 2660 Speakman Drive, Mississauga, Ontario, Canada L5K 2L1
(Received 2 January 1991; revised manuscript received 11 March 1991)

The molecular crystal betaine calcium chloride dihydrate (BCCD) exhibits the largest number of
structurally incommensurate and commensurate phases yet found. A model recently introduced by two
of us reproduced the sequence and temperature stability interval of the commensurate phases, as well as
the complex temperature dependence of the spontaneous polarization. We generalize the free energy of
this model to include the effect of an applied electric field. The phase diagram of BCCD in an applied
field is then calculated and the result compared with experiments.

The molecular crystal betaine calcium chloride dihy-
drate (BCCD) exhibits the largest number of structurally
incommensurate and commensurate phases yet found.
The magnitude a(7) of its modulation wave vector
k=a(T)c* decreases from slightly below 1 at the initial
164-K normal-to-incommensurate transition to, succes-
sively, 5, %, 7> 11> %> 35> 3> © 5 1§ 1> 7 3 and
finally zero at 46.0 K.! The region of temperature for
which many of the commensurate phases are stable is too
narrow to be measured by x-ray diffraction.? In these
cases, the evidence for their existence comes principally
from dielectric anomalies.”®> These measurements also
indicate that there are several intervals between the com-
mensurate phases where the wave vector appears to vary
continuously.

The “devil’s staircase” behavior in the wave-vector
magnitude, and the associated complex temperature
dependence of the spontaneous polarization and dielec-
tric constant, have motivated several mean-field mod-
els.>”7 One of these,* recently introduced by two of us,
successfully explained the wave-vector sequence, repro-
duced the observed spontaneous polarization and was
able to predict space-group symmetries for the various
phases. This paper generalizes the free energy of this
model to nonzero applied electric fields. Doing this en-
ables us to calculate the temperature versus applied
electric-field phase diagram, and to compare the result
with what is known about this diagram from experiment.

The normal-state crystal structure® of BCCD contains
four BCCD molecules within its orthorhombic unit cell.
We envisage this structure as being composed of layers
perpendicular to the ¢ axis.* The layers are not identical,
however, as the c-axis periodicity is twice the interlayer
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spacing. The soft mode responsible for driving the
normal-to-incommensurate transition, and presumably
the subsequent transitions at lower temperatures as well,
is known’ to be of A; symmetry. The approach of Ref. 4
examines the displacements of the atoms in a particular
layer caused by this mode. The wave vector of the A,
mode is perpendicular to the layers. Hence, the relative
displacements of any two ions in the same layer is
prescribed by the polarization vector of the A; mode. In
general, these displacements will not transform according
to any single irreducible representation (IRREP) of the
two-dimensional space group of a layer. They can, how-
ever, be split into two parts, one part transforming ac-
cording to the I') two-dimensional IRREP and the other
to the I'; IRREP. The amplitude on layer / of the first
part is referred to as v;, the amplitude of the second as
w;. Symmetry prescribes to some extent what the ion dis-
placements in the v; and w; symmetry modes are. For ex-
ample, the two symmetry-related calcium ions of the
two-dimensional unit-cell move in opposite directions
along the b axis for v;, but in the same direction for w;.*
The ratio between v, and w, is independent of [ for a
particular A; mode. One can, however, relax this con-
straint to consider more general displacements from the
normal state. The Landau model of Ref. 4 considers all
v; and w; to be independent variables. The free energy of
an isolated layer [ is expanded to fourth order in powers
of v; and w;. The two-dimensional symmetry of a layer
will determine the form of this expansion. Interlayer in-
teractions are represented by products of v; and w; with
V) 4+ and w, ;. The form of these nearest-neighbor layer
coupling terms will depend on the full three-dimensional
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space group of BCCD. The resulting free energy can be
shown* to be,
=3 (%avlz-!- 1
1

+1awl+' +lbv1w[)

+%§ (Jv,v1+1+J’wlw;+1)

+5 2 (w = v wy) - (1)
]

It should be valid as long as the displacements of a layer
are small and the interactions between layers short
ranged. The interlayer interaction terms will prescribe
the variation in v; and w, as one goes from layer to layer.
It is the competition between these terms that gives rise
to the sensitive dependence of the modulation wave vec-
tor on changes in the parameters J and J'. Instead of us-
ing the parameters of Eq. (1), however, the authors of
Ref. 4 introduce the parameters a;=1i(ata’),
J.=21(J+xJ'), and b. They fix a_=0.4, J_=0, b=3
and calculate the @ , versus J, phase diagram. Their re-
sult is shown as Fig. 1. The trajectory a, =0.8J . +1.6
reproduces not only the succession of commensurate
phases observed, but also their approximate temperature
intervals, assuming J , varies linearly with temperature.
The free energy of Eq. (1) is expanded in terms of the
displacements alone. An electric field applied to the crys-
tal, however, will not interact with the displacements
directly but rather through the crystal’s polarization.
Hence, to consider the effect of an electric field on
BCCD, it is necessary to first couple the displacements
with the polarization, and then the polarization with the
field. The electric fields applied to BCCD and the aver-
age polarizations per layer of BCCD along the a and b
directions will be referred to as E,,P,, and E,, P,, respec-
tively. They will transform as vector components while
the transformation properties of v, and w, are given in
Ref. 4. These symmetries will dictate the lowest-order
couplings between the displacements and polarization,

e 2;13 2/11
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FIG. 1. This is the zero field (J,a ) phase diagram calcu-
lated in Ref. 4 with a_ =0.4, J_ =0, and b=3. The low-order
commensurate phases have been labeled by their value of a.
The shaded regions correspond to higher-order commensurate
phases and/or incommensurate phases. The trajectory shown
approximately reproduces the succession of wave vectors seen
in experiment and their temperature-stability intervals.

and polarization and field. They are,

F,= _X0a1P2+“'X0b1P§_mPaEa —mP,E,

+cg1 P, 2(—1)v,(w,+1—w,_1)
I
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! ]
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where m is the number of layers. Note that the displace-
ments interact linearly with P, but quadratically with P,.
This accounts for the relative weakness of the spontane-
ous P, as compared to spontaneous P, seen in experi-
ments.

At equilibrium, the free energy F, must be a minimum
with respect to P, and P,. This condition can be used to
solve for the polarizations in terms of the displacements
and applied fields. The resulting expression for P, in-
volves four terms—a term linear in E,, and the c,y, ¢,
and c,; terms quadratic in the displacements. The last
three terms were discussed in Ref. 4, where it was found
that each made a similar contribution to the spontaneous
a polarization. They therefore considered only the ¢,
term and set c¢,,=c,;=0. We will assume that this can
be done for nonzero apphed fields as well. The resulting
simplified expression for P,, and the corresponding ex-
pression for P, can be substituted into Eq. (2) to obtain
the free energy F, in terms of the displacements and fields
alone. The result is

F,=E; 3 (= Dhy(w 4y —w, )
]

2
_% " [2(—1)’v,(w,+1—w,,1)]2
!
+E'zw—i—”— w2 3)
b - 1 2 m [1 l] .

Terms involving the fields alone are dropped since they
can be assumed fixed at some applied value. The parame-
ters have been scaled for simplification. For example, E,
has been substituted for ¢, Yo, E, and c.; for c,1/V Xoa-
Similar remarks apply to E; and c;.

The equilibrium displacements v, and w; in an applied
field will be those which minimize the total free energy
F,+F,. They will now therefore depend on seven
parameters—the five originally occurring in F, and the
c,; and ¢, of Eq. (3). Note that the c,; and ¢, terms may
contribute to the total free energy even if there are no ap-
plied fields. These terms were not considered in Ref. 4
because they couple the displacements of layers arbitrari-
ly far apart. Their introduction here means that the
stable states in zero field associated with the free energies
Fy, and F,+F, will, in general, be different. However,
since F, alone was able to successfully reproduce the
wave- vector sequence of BCCD, we will set

¢, =c,=0.001. This renders the effect of these addition-
al terms small and enables us to set a_ =0.4, J_ =0,
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b=3, and a, =0.8J +1.6 as in Ref. 4. We will show
that this choice of parameter values is consistent with the
stable states and polarizations seen in BCCD when an
electric field is applied along its b direction. It is not our
intent to suggest, however, that this choice is uniquely
able to explain the response of BCCD to an electric field.
There may be other sets of values which do equally well
or better.

The free energy Fy+F, can be used to calculate the
phase diagram of BCCD in either an applied E, or E,.
Only the E; diagram is given here because few experi-
ments have measured the effect of an E, field on BCCD.
The phase at a given point (J,,E;) in the diagram is
characterized by the periodicity of its displacements.
These can be determined by extending the numerical
methods used to minimize F, in Ref. 10. This procedure
determines the best displacements with periodicity
a=n/m. In our case, this is done for all ratios n /m with
m =26. The displacements which yields the overall
minimum determine the stable state.

Figure 2 shows that the stability of states n /m with n
even and m odd is favored by the application of a field
while for the others it is progressively diminished. These
states are known to exhibit a spontaneous b polarization.
In this case, Eq. (2) implies that they have P, <3, w,70
for E, =0. The third term on the right-hand side of Eq.
(3) then gives a contribution to the free energy linear in
E;. The field will always favor the domain that makes
this contribution negative. For the other states, the lead-
ing term is, at most, quadratic in E;. The lowest-order
effect of E,, is therefore to always favor the spontaneously
polar states.

Figure 2 can be compared with the phase diagram of
Kopperpieper et al.!! They have determined the regions
of stability of the 2, 1, Z, 1 and Z states. Their phase
boundaries are in rough agreement with those seen in
Fig. 2. Our phase diagram, however, shows additional
higher-order phases. Their existence is verified by hys-
teresis loop measurements that plot P, against E, for
some fixed temperature. This corresponds, in our dia-
gram, to the polarizations one would encounter by start-
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ing off at a particular J, and going in the E; direction.
The steplike behavior seen in the loops can be compared
with the discontinuities in the polarization to be expected
when crossing first-order lines in our phase diagram.
These discontinuities can be evaluated using the expres-
sion for P, in terms of E; and w; that, as previously dis-
cussed, can be obtained from Eq. (2). The results are
shown in Figs. 3 and 4. The five plots of Fig. 3 can be
compared with the ten loops measured by Inruh et al.!
between 117 K (an incommensurate region between L
and ) and 115 K (the upper limit of stability of the 1
state). Our J, = —0.767 plot corresponds to their first
loop at 116.8 K. Both have an E, =0 phase which is
nonpolar and a discontinuity in P, associated with a
field-induced transition to the - state. Unruh et al.'
then give several loops showing the movement of the
discontinuity to smaller field values as the stability inter-
val of the % state is approached. This behavior would be
reproduced by our diagram. The plot at J, =—0.775
shows the spontaneous polarization of the % state. One
encounters a nonpolar state below -+ and the % discon-
tinuity again moves off to larger fields. This is shown for
J, =—0.782. The remaining two loops of Unruh ez al.!
are taken from the polar £ and nonpolar 1 states. The
response of their polarizations to an applied field is well
reproduced by our J, =—0.786 and —0.788 plots, re-
spectively.

Rother et al.!? have measured another set of hysteresis
loops at 12 different temperatures. Their loops at 124.1,
116.6, 77.1, 75.0, 59.0, and 50.5 K may be compared
with ours at J,=-—0.72, —0.761, —0.924, —0.95,
—0.99, and —1.032, respectively. The overall agreement
is quite good. We have, however, discontinuities arising

from transitions to the %, &, and 2 phases in our
J=—0.761 plot not seen in their loop at 116.6 K. It is
possible that a more sensitive measurement would have
seen these additional discontinuities. It is also possible
that Fig. 2 overestimates the stability of these states. If
this region of the phase diagram was incommensurate,

the wave vector would vary continuously with E, and

E,
6/23
0.008
4/15
0.006 2/9 2/7
0.004 1/4 1/4
e 7/26 . 123
0.002 3/14 4 3
3/13 5/19 1 7128
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-0.95 -0.9 -0.85 -0.8 -0.75 0.7 +

FIG. 2. Our calculated phase diagram of BCCD in an applied E; field. The phases have been labeled by their value of a=n/m
and only those with m <26 have been considered. The E;=0.0 axis corresponds to the trajectory shown in Fig. 1.
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FIG. 3. Plots of P, vs E, for various values of J (tempera- J,=-1.082 R
ture). The starting E; =0 point of each plot is taken as the ori-
gin of the vertical P, axis, so that spontaneously polar states 1/6 2/11 .
such as = and & have a jump at E, =0. The phases associated N E,
with each plot have been labeled by a. 1/5 2/11
J, =-0.99 I
there would be no discontinuities in the polarization. 0.0 T T T ’
Modifying our numerical procedure to deal with incom- ) 0.004 0.008 0.012 Eb

mensurate states may resolve this discrepancy. The
77.1-K loop of Rother et al.'? has a zero-field discon-
tinuity in the polarization. This is explained by our
J, =—0.924 loop as due to the existence of the spon-
taneously polar % state, though it is apparently not
known to be stable at zero field. The lower-temperature
hysteresis loop measurements seen to indicate that the %
state occupies a region of stability between the % and ¢
phases. Its absence in our diagram is probably because,
as explained in Ref. 4, our trajectory underestimates a |
in this temperature region. In conclusion, we note that
our previously introduced competing interaction model is
consistent with the stable states and polarizations which

FIG. 4. Plots of P, vs E;. The vertical P, scales of the
Ji=-—0.99, —1.032 and J,=—0.924, —0.95 plots are ten
and two times larger, respectively, than the scale of the
J+=—0.72, —0.761 plots.

arise when an electric field is applied along the b direc-
tion of BCCD.
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