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NiTi(Fe) has an incommensurate and a commensurate phase between its low-temperature mar-
tensitic and high-temperature CsCl-type structures. Anomalous deviations of the satellite positions
in the incommensurate phase have been reported. These deviations have raised doubts about the
adequacy of a model based on sinusoidal modulations of the basic structure. Our Landau model
shows that these features can be explained by considering the coupling of the modulations to the lat-

tice strain.

I. INTRODUCTION

Nickel titanium has a martensitic phase transition at
273 K. The space-group symmetry of the martensitic
phase has been established as P2;/m.!”* However, the
symmetries occurring in a series of structural changes ex-
tending 20 K above T, remain controversial, despite
having been the subject of experimental study for over
twenty years.>” !© Further, it is not known what, if any,
is the physical connection between these changes and the
martensitic phase transition. Obviously, a knowledge of
the structure of NiTi in the pretransitional region is a
prerequisite to the establishment of such a relation.

Since 1976, most experiments have been done on
NiTi(Fe).!! ~!5 The dilute Fe, which replaces a small per-
centage of the Ni, strongly depresses T, while leaving
the onset temperature of the pretransitional region ap-
proximately unchanged. The expansion of the pretransi-
tional region allows its features to be distinguished from
those associated with the growth of the martensite. Our
model is devoted to explaining observations reported in
Nige sTisoFe; , by Shapiro et al.'> At present, it is not
clear that our conclusions apply to NiTi itself.> ¢

The high-temperature phase of NiTi(Fe) has, on aver-
age,'% the space group Pm3m. The Bravais lattice is sim-
ple cubic, with one of the two types of atoms considered
to be occupying the corners of the cubes with the other at
their centers. At an initial transition temperature 77, sa-
tellites belonging to the stars of g; and q;; appear. The
wave vectors g; and gy are approximately given by
$+(1,1,0) and 1(1,1,1), respectively. Early experiments
found small deviations from 1, so that g; and g;; were in-
commensurate. A later experiment by Shapiro et al.'?
found that it was impossible to index the satellites by any
set of wave vectors. The deviation of a satellite from its
commensurate position depends on the zone in which it is
found. Higher-order satellites tend to be located further
from their associated Bragg peak than their lower-order
counterparts. The deviation pattern, §(Q), is given in
Figs. 2(a) and 3(a).

A second pretransitional phase transition appears at
Ty;. Here the satellites lock to commensurate positions
and there is a discontinuous rhombohedral distortion. As
the temperature is reduced below T, the amount of
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rhombohedral  distortion  continuously increases.
Transmission electron microscopy (TEM) pictures'? indi-
cate the existence of four domains. Within each domain
only those gq; satellites appear whose q vectors are per-
pendicular to one of the four rhombohedral directions.
Further, the only g; satellite seen is the one parallel to
this direction. At T,,, the crystal starts to convert to a
martensite.

We shall refer to the phase between T and Ty as the
incommensurate phase. The identification of its structure
is the main task of this paper. The phase between T
and T, is referred to as the commensurate phase. T},
Ty, and Ty, are 232 K, 224 K, and 110 K, respectively,
for Niyg ¢ TisoFe; ,.12

A variety of evidence indicates that the transition to
the incommensurate phase is second order. Both the g;
and qy; satellites appear to grow continuously at 7'} and
there is no temperature hysteresis in their disappear-
ance.!?”'* Further, there is no anomaly in the specific
heat at T;."* We assume in our Landau model that the
transition is in fact second order and set the coefficient of
the quadratic term equal to zero at T7.

The major challenge in devising a structural model for
incommensurate NiTi(Fe) is to account for the idiosyn-
cratic deviations 6(Q) in the satellite positions. To some,
this has implied the destruction of three-dimensional or-
der. Yamada er al.'”7'® have suggested that the ex-
istence and positions of the satellites can be explained by
nucleations of martensite within the high temperature
phase. Salamon et al.'* devised a lattice discommensura-
tion model motivated by the observation that the satellite
deviations in the [001] zone were directed toward rhom-
bohedral positions. There has also been a suggestion of
analogies to w-phase behavior.'> But none of these three
proposals have generated a three-dimensional model that
has been compared with the full range of experimental
data.

Our model assumes that the satellites correspond to
sinusoidal modulations of the basic structure of the high-
temperature phase. It takes the amplitudes of these
modulations to be the primary order parameters. It then
demonstrates how the occurrence of these primary order
parameters must necessarily induce some rhombohedral
lattice distortion. This arises from the destruction of cu-
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bic symmetry caused by the modulations. The resulting
rhombohedral strains are secondary order parameters.

If the rhombohedral distortion gives rise to domains,
its effect on the positions of the Bragg peaks and those of
the satellites will be different. A rhombohedral distortion
will not cause a net movement of the Bragg peaks. This
is because the new peaks from each domain distribute
themselves symmetrically about the old cubic positions.
For a small distortion, the splitting of these peaks would
be difficult to observe. The satellites, however, will be
seen to move under a rhombohedral distortion. This is
because a given satellite is always associated with one or
two of the four possible domains. It must then be refer-
enced with respect to the rhombohedral Bragg peaks of
its particular domain(s), rather than the average Bragg
positions which are still cubic. Taking this into con-
sideration enables us to account for the observed 5(Q).

The existence of a rhombohedral distortion in the in-
commensurate phase has been controversial. Salamon
et al.** found no deviation of the rhombohedral angle
from 90.0° between T and T;. In Niy,TisoFe; however,
movements of the Bragg peaks below 7| were found to be
suggestive of a rhombohedral distortion in the incom-
mensurate phase.!” Later studies found the same result
for Niyg s TisoFe; , as well.2°

Our model can be considered an extension of that pro-
posed by Shapiro et al.'> They also understood the pri-
mary symmetry lowering to have been brought about by
sinusoidal g; modulations. This largely explained both
the g; and gy satellite intensities. However they could
not explain the §(Q) that they measured nor extinctions
[see Fig. 3(a)] of the gy satellites in the [01T] zone. Nev-
ertheless, the amount of agreement obtained was thought
to indicate an approximation of the actual structure. Our
model accounts for the deviations in the satellite posi-
tions. The problem of the apparently random gy; extinc-
tions is not addressed here, though it is conceivable that
they may be accounted for by our model.

In Sec. II, the Landau free energy consistent with the
symmetry of the high-temperature phase is derived. The
transformation properties of the order parameters are de-
rived from those of their associated modes. Thus much
of Sec. II is devoted to defining the relevant modes. The
formalism given here is related to that previously used by
one of us to describe the modulated phases of a-
uranium.?! In Sec. III it is shown how the fourth-order
free energy allows a second-order transition to an incom-
mensurate three-q rhombohedral state. The physically
inequivalent choices of phase for the nonzero order pa-
rameters are then classified. In Sec. V it is shown how a
three-q rhombohedral state gives rise to accompanying
rhombohedral strains. The effect of these strains on the
satellite positions is explained in Sec. VI. Sec. VII con-
sists of preliminary observations on the relevance of the
Landau expansion to the commensurate phase. Section
VIII is a summary of our conclusions.

II. DERIVATION OF THE FREE ENERGY

To allow for the incommensurability of the q; satellites,
let £=1—5. Then the following six vectors, plus their

18

negatives, form the star of wave vector £(1,1,0):

@ =4(1,1,0), q,=&(1,1,0),
q2=§(071’1), q5=§(0,1,T) , (1)
q3=§(1»0’1)7 q6:§(T,O,1) .

The notation q? will refer to the same q vectors with
6=0. The modes with these q vectors will be written as
linear combinations of the basis vectors e(l,s,a). The
basis vector e(/,s,a) represents the state of the crystal
with a displacement of unity of atom s in unit cell / in
direction a. Here s can be 0 or 1, with O referring to the
atom at the center of the simple-cubic unit cell, and with
1 to the atom at its corner. The equilibrium position of
an atom can then be represented as
R(l,s)=(1,+s)a,+(l,+s)a,+(l;+s)a;. The simple-
cubic Bravais-lattice vectors a;, a,, and a; are in the
[100], [010], and [001] directions, respectively. One now
defines vectors which are a basis for a one-dimensional ir-
reducible representation of the c¢rystal’s translation
group:

e(q,5,0)=N"123 e aRUSe (15 q) . )
7

When acted upon by an element of the crystal’s transla-
tion group, they transform according to

{EIR(D}e(q,s,a)=e 9RDe(q 5,a) . (3)

A general distortion with periodicity q° will be an arbi-
trary linear combination of the six e(q?,s,a). The mode
e(q)) which gives rise to the q? satellites is known!* to
have TA, symmetry. It transforms according to the =,
irreducible representation?? of the little cogroup of qC.
Imposition of this symmetry, and also of time-reversal
symmetry, determines e(q)). The remaining five e(q?)
can then be found by application of the appropriate
point-group element to e(q}). All six e(q?) are given in
Appendix A.

The transformation properties of the e ( q?) under a set
of generators of Pm3m can be shown to be

{110}e(q?)=e*(q)) , (4a)
{C3110}e(q})=e(Cyq)) , (4b)
{Cy.10}e(q))=expliq)-icle(C,,q)) , (4¢)
{Ela;}e(q))=exp[ —iq}-a;]e(q)) . (4d)

The convention for the phases of the e (q?) has been
chosen so that the normal modes satisfy Eq. (4a). The six
e (q?), plus their complex conjugates, are a basis for an ir-
reducible corepresentation of Pm3m. The matrices of
this corepresentation are defined by Egs. (4).

The most general way of characterizing distortions of
the type given by the e (q?) is through the state vector u,

que[ é [¢,(r)e(q§?)]] . (5)

j=1
The order parameters ¥;(r) are complex functions of po-
sition. A good approximation close to T is to consider
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only the first harmonic:

Py (rr=ly,le" "
The introduction of the p; allows us to consider state vec-
tors representing incommensurate distortions, despite
having defined the modes as commensurate. This is be-
cause the wave vector p; of the order parameter and q? of
the e (q?) simply add to give a total wave vector of
q)+p;. To see this, let ¥,(r) be of the form given by Eq.
(6), with all other ¢;(r)=0. Now derive the atomic dis-
placement pattern u (/,s,a) from u. Expand e (q)) first in
terms of the e (q?,s,a), and then in terms of the e(/,s,a).
Then substitute R(l,s) for r. The u(l,s,a) are the
coefficients of the e (/,5,a).

u(ls,a)=—a,|P;|(e)sin[(qd+p;) R(l,s)+¢,] (7

(6)

The state vector u transforms under a space-group
operation according to

6
{Plwlu=Re | 3 ¢;({Plw} 'n){Plw}e(q)) | . (8)
i=1

An identical effect on the atomic displacements can be
obtained by operating solely on the order parameters.
For instance, it is not difficult to verify that if
¥;(r)—97(r) under inversion, the effect on u is the same
as that achieved by using Eq. (4a) in Eq. (8). The trans-
formation properties of the order parameters under the
generators of Pm 3m can be derived in this way. They are
given in Appendix B. The free-energy density, up to in-
variant terms of fourth order or less, can then be shown
to be?*

2
F= § Y1) A;(—iV)p;(r)+B, é ly;1* | +B, i l¢,~l4]
j=1 j=1 j=1
+ B3 (1912 [ 2+ [0 (9] 2+ [93 ] 19612) + By [ (19,060 + 195 0203 +dethsthspd ) +(c.c.)] . 9)

An expansion to this order can be expected to be accurate
close to Ty. B,, B,, B3, and B, are assumed to be con-
stants independent of temperature.?*

We assume that the order parameters have the form
given by Eq. (6) close to T;. Their spatial variation is
then completely prescribed by their p;. Hence,

A (—iV)P;(1)=4,(p,)¥;(r) . (10)

The point group symmetry of the Brillouin zone en-
sures that 4;(p;) will be extremal along the q? directions
in reciprocal space. It is therefore likely that the minima
of A;(p;) will occur along these directions as well. As in-
dicated in the introduction, this agrees with experiment.
However, there is no symmetry to make 4;(p;) extremal
at the q?(pj=0). Its minima will therefore occur at in-
commensurate reciprocal distances from the q?. These
reciprocal distances will be referred to as —3 Sq?. As-
suming the transition at 7} to be second order, the
A4;(=3 Sq?) will pass through zero at T;. Hence to first
order near T, the 4;(—3 ng-’) will vary with tempera-
ture as

A;(—38q))=k(T —Ty) (11)

where k is a positive constant. Thus, just below T, the
order parameters will have the form given by Eq. (6) and
will prescribe distortions with incommensurate wave vec-
tors q;.

III. THE PHASE DIAGRAM

We specialize to those states whose nonzero Iz/JjI are
equal. Further, we consider only those for which the q;
of their nonzero |l//j| sum to zero. The minimum free en-
ergy of a given state with n nonzero equal |4;| can be cal-

culated. It will be some function of the four B’s. The
global minimum can be found by comparing these func-
tions for different n. The resulting phase diagram is
shown in Fig. 1. Only the B,=0 plane is shown. A
nonzero B, tends to favor a four- or six-q state and for
large enough B,, only these states will be stable. The dia-
gram also assumes B; >0. For B, <0, only a six-q state
is possible.

Note that a three-q state will be favored for B,,B, >0,
B; large enough, and B, small. The four degenerate
three-q rhombohedral domains will be referred to as the
{456}, {423}, {513}, and {612} states. Each of the four
domains has only those ¥;(r) nonzero whose g vectors
are perpendicular to their rhombohedral direction. Since
experiments have indicated that the incommensurate

B(

w|w

UNSTABLE

FIG. 1. The regions of stability of the 1, 2, 3 and six-q states
in the B, =0 plane. B, is taken to be positive. Note that there
is a region of parameter space in which the three-q rhom-
bohedral state is stable.
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phase does have this form, we will restrict our attention
to these states from now on. In particular, we shall refer
mainly to the {456} domain.

There are in fact four other, less symmetrical three-q
states that are degenerate with the three-q rhombohedral
states in the fourth-order free energy of Eq. (9). The
sixth-order terms (see Appendix C) however break this
degeneracy. And it can be shown that for the D,
coefficient of the D, term sufficiently big, the three-q
rhombohedral states are always favored.

IV. THE INCOMMENSURATE PHASES

Although the free-energy density given by Eq. (9) al-
lows for a transition to a rhombohedral incommensurate
state, it does not completely prescribe the symmetry of
these states. This is because it does not distinguish be-
tween rhombohedral states of differing phases. To deter-
mine the possible phases, it is necessary to consider the
sixth-order invariants. There are twelve such terms.
They can be found in Appendix C. It can be shown that
the only term which constrains the rhombohedral incom-
mensurate phases is the D; term. For incommensurate
{456} order parameters of the form given by Eq. (6), it
reduces to

2D1I¢4’/’5’/’6|2005[2(¢4+¢§+¢6)] . (12)

It is always possible to smoothly translate the modula-
tion pattern of a crystal in those directions in which it is
incommensurate without changing its symmetry or free
energy. Such a translation is equivalent to varying the
appropriate phase. The phases of the order parameters of
incommensurate crystals are therefore never entirely
specified. This freedom is made manifest by writing the
phases as ¢, =¢,,—q; r,. From the definition of the state
vector, it can be shown that a change of 6r; in r; corre-
sponds to sliding the modulation pattern with respect to
the basic structure by the same amount. The rhom-
bohedral {456} state is incommensurate in the plane
defined by its three incommensurate q vectors. The vec-
tor ry may therefore take on any value within this plane.
It remains then to specify the ¢,,. These are chosen so as
to minimize the D, term. For each of the two choices of
sign for D, it can be shown that there are only two phys-
ically inequivalent choices for the ¢;,. The total of four
possible cases have ¢;,=¢, where ¢, is 0 or 7/3 for
D, <0, and ¢ is w/6 or 7/2 for D >0.

Although we have considered only the {456} states in
this section, a similar analysis of the incommensurate
phases would apply to the three other domains.

V. THE RHOMBOHEDRAL STRAIN

A rhombohedral distortion is described by off-diagonal
(shear) strains. Their transformation properties under
the Pm3m generators are given in Appendix B. These
properties can be used to find the lowest-order strain-to-
order parameter and strain-to-strain invariant terms.
They are

I&

Nles(t 12—/ +es(e312— 96l
Cy
teallal? =]+ —Hef+ed e . 13)

The strains and elastic constant have been labeled with
Voigt notation.?> C,, >0 is required for stability. The
order parameters, being primary, prescribe the symmetry
of the incommensurate state. Therefore, to find the
strains  appropriate to a {456} state, take
[, =|¥s| =|¥s| =1|9|, with all other |1/1j|=0. The cou-
pling is indifferent to the phases to this order. Then the
off-diagonal strains which minimize (13) are

e4=e5:e6:CiM|¢|2. (14)

These strains describe a rhombohedral distortion in the
[111] direction. This relation between the g; satellite in-
tensities and the magnitude of the rhombohedral strain
can be expected to be accurate close to T}. This is the re-
gime where the two terms in Eq. (13) make the dominant
contribution of the strains to the free energy. Because
their net contribution is negative, nonzero off-diagonal
strains will always occur in the three-q rhombohedral
states. They will give rise to an elongation or compres-
sion along the rhombohedral axis depending on whether
N is positive or negative.

Experiments indicate that the elastic constant C,, in-
creases with temperature.?®?’ According to Eq. (14), this
would then contribute to the increase in the rhom-
bohedral distortion below T7.

The diagonal strains can also be shown to couple to the
primary order parameters. This coupling is not con-
sidered here because, to lowest order, it simply induces
an isotropic volume change which has no effect on the
symmetry.

VI. THE EFFECT OF A RHOMBOHEDRAL STRAIN
ON THE SATELLITE POSITIONS

If the four rhombohedral domains were present in ap-
proximately equal amounts, there would be no net move-
ment of the Bragg peaks. One would expect to see only a
progressive broadening and eventually splitting of peaks
as one moved to higher and higher zones. The satellites
however will be displaced by a rhombohedral distortion.
The distortion matrices for each of the rhombohedral
domains are given in Appendix D. They will be used to
calculate the satellite deviations 8(Q). We will confine
our attention to the [001] and [011] zones as these have
been investigated by experiment.!

The distortion matrices B give the new x’ to which a
position vector x moves after a distortion by a rhom-
bohedral angle of a.

x'=Bx (15)

The angle a will always be within a degree of 90° in in-
commensurate NiTi(Fe). A good approximation is to
write the matrix entries to first order in e=J(7/2—a).
Doing this, and rewriting them to define movements in
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reciprocal rather than real space, gives the reciprocal dis-
tortion matrices Bg. They are given in Appendix D.

Let Q label the cubic Bragg peak to which a satellite q
is referenced. The deviation of the satellite from its com-
mensurate cubic position is then

8(Q*q°)=Bx(Q*q)—(Q+q") . (16)

A complication arises when a satellite is associated
with more than one domain. All g; satellites, for exam-
ple, derive scattering intensity from two of the four
domains. The ambiguity in the choice of By means the
deviation is not unique. This is a source of anisotropy in

H K 1
{423): 8| |K |+q}|=—€¢| H |+ §_5 -1
0 —H—-K 0
H K 1
{456): 8| |K |tq}|=—€¢| H _[§_5 -1
0 H+K 0

A term going as €d has been dropped. Both domains
have identical deviation in the [100] and [010] directions.
Hence there is no anisotropy of the satellite widths in the
[001] zone.

The major qualitative features of the deviation are ac-
counted for by the first of the two terms on the right of
Eq. (17). They are compared with the actual [001] zone
deviation in Fig. 2. The agreement in the directionality is
excellent. The second terms in Egs. (17) introduce a
small uniform shift rather than a deviation that varies
from zone to zone. They will be taken into consideration
when calculating the best € and 8 that numerically fit the
data.

NiTi(Fe) (001) ZONE

[0KO] ® + B - PHASE BRAGG PEAKS
SATELLITES
030 -O . O STRONG
O MEDIUM
O —
o WEAK
020 .
-0

010 -~ P . p

100 300
aQ, 200 O\ O\[Hoo]
O\

(a) ?
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the satellite widths. (The incommensurateness of the q
vectors may also give rise to anisotropy, as will be shown
later for the gqy; satellites).

One would expect to see in the [001] zone those satel-
lites whose q vectors are perpendicular to the [001] direc-
tion. This is satisfied for q,. These satellites come from
the {456} and {423} domains. The deviation will be
different for each. However, as their differences are
confined to the [001] direction they will not give rise to
anisotropy in the [001] zone. The deviation is found by
using Eq. (16) and the reciprocal distortion matrices
given in Appendix D. Taking L =0 for the [001] zone,

In the [01T] zone, g satellites occur at reciprocal dis-
tances of approximately *+1(1,1,1) and +i(—1,1,1)

from the (HKK) Bragg peaks. The deviations of both can
be explained in the same way as for the g; satellites. In
addition the widths of these satellites are anisotropic.
This can be ascribed to the incommensurateness of the g
satellites.

The gy; satellites can be understood as second-order g;
satellites. Their scattering intensity will then have two
physically different sources. One source will be first-
order harmonics of the g; wave vectors. These were as-

sumed small in Sec. II, but as secondary order parame-

NiTi(Fe) (001) ZONE
* B - PHASE BRAGG PEAKS
O SATELLITES

[0KO]
030 .
el
Pe
020 .

Pe

010 p .
P P

300? [HOO}

—0
i ®]

200
7

(b) ]

Lo |0 o T

'FIG. 2. (a) The [001]-zone q, satellite intensities and deviations taken from Ref. 12. Only the direction of the deviation is given.
The length of the arrows is not significant. (b) Our approximate deviation directions.
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ters, they will always occur to some extent. However, as
demonstrated in Ref. 12, the g, satellites will appear in-
dependently of whether harmonics are present or not.
This is because the density function is a nonlinear func-
tion of the atomic displacements.

The position of a gy satellite is independent of its
source. The gy vector of a particular domain is always
constructed from two of its gy vectors and a reciprocal-
lattice vector. There are, however, always three ine-
quivalent ways of doing this. For example, the three
ways of constructing the 1(1,1,1) satellite of the {456}
domain are

q2—q2+(0,0,1) , (18a)
1(1,1,1)={q3—q3+(0,1,0) , (18b)
q9—q3+(1,0,0) . (18c)

The deviation of a =1(1,1,1) satellite from its (HKK)
Bragg peak depends on which of the three constructions
is used. Using the same technique as for the gy satellites,
the deviation for the three cases can be shown to be

H 2K 1

8| |K |+4(1,1,1) |=—€ |H+K —T—~2£ 1

K H+K 1

(19a)

(19b)

5|—1
—1

(19¢)

Again, terms of order €8 have been dropped.

The first term on the right of Eq. (19) gives the dom-
inant contribution to the deviation. The pattern it gives
rise to is compared with that found experimentally in Fig.
3. Again the agreement is very good. The first two terms
taken together define the average deviation of the
+1(1,1,1) satellite. The third term indicates that it actu-
ally consists of three distinct satellites distributed symme-
trically about this average position. They lie in the plane
perpendicular to the [111] direction. This should be
made manifest in the [011] zone as an elongation of the
satellite widths in the [211] direction. From Fig. 4 of
Shapiro et al.'? it can be seen that this is the case.

The analysis of the £1(—1,1,1) satellite deviations is
- identical to that of the £1(1,1,1) deviations. The aver-
age deviation of a =1(—1,1, 1) satellite is ’

H —1 2K 1
5| |K i% 1 =€ |H—K isz —1|. (0
K 1 H—-K —1

This can be compared with the deviation of the two
+1(—1,1,1) satellites shown in Fig. 4 of Shapiro et al.'
The agreement is again excellent.

There are actually three +1(—1,1,1) satellites symme-
trically distributed about the average deviation given by
Eq. (20). They lie in the plane perpendicular to the [111]
direction. This should reveal itself in the [011] zone as
an elongation of the satellite widths in the [211] direction.
Figure 4 of Shapiro et al.'? shows that there is indeed
some elongation of the two +(—1,1,1) satellites shown,
though the alignment with the [211] direction is imper-
fect.

Equations (17) and (19) predict the deviation for the q,4
and +1(1,1,1) satellites in terms of the two parameters €
and 8. It is possible to determine the € and 8 that best fit
the actual deviations found in Figs. 3 and 4 of Shapiro
et al.'”?> The determination is crude because the devia-
tions are comparable to the widths of the satellites them-
selves. But with €=0.0023 and §=0.0011, Eq. (17)
correctly specified 8(Q=*q,) to within 50% of 16 of 22 de-
viation directions. The correspondence for the eight
+14(1,1,1) satellites in the [011] zone was somewhat
better. With the same €, Eq. (19) achieved the same accu-
racy for 14 of 16 deviation directions. From the
definition of €, €=0.0023 is equivalent to a rhombohedral
angle of a=289.7°.

VII. THE COMMENSURATE PHASE

.As the order parameters increase in magnitude below
T}, the free-energy expansion to fourth order in order pa-
rameters given by Eq. (9) will progressively lose validity.
In this case, the sixth-order terms may alter the symme-
try of the equilibrium phase. These terms are given in
Appendix D. Of particular interest are the terms with
coefficients D,,D;, and D,. With incommensurate order
parameters of the form given by Eq. (6), they are periodic
functions of position. Their contribution to the free ener-
gy therefore averages to zero when integrated over the
entire crystal. If the crystal is commensurate however,
p; =0 and the three terms become constants. They may
induce the crystal to become commensurate if their con-
tribution to the free energy is sufficiently negative. We
suggest that the lock-in transition at T’ is indeed driven
by the D,, D3, and D, sixth order umklapp terms.

The space group of the commensurate phase is deter-
mined by the phases ¢; of the order parameters. These,
in turn, are determined by the D,, D,, D3, and D, terms.
A detailed analysis of the resulting phase diagram is com-
plex. However, it can be shown that the two choices
¢;=0 and ¢;=m /2 each minimize the four terms for par-
ticular values of the D’s. These correspond to the space
groups P3 and P3Im, respectively. Both space groups
have been previously discussed by Shapiro et al.'? in rela-
tion to the incommensurate phase.?® Subgroups of these
space groups are also conceivable.

A convergent beam electron diffraction experiment has
assigned the symmetry P3/m to the commensurate phase
of Nig,TisoFe,.1° But because there are no phases for
which the order parameters have this symmetry, this
symmetry is not consistent with the results of our theory.
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FIG. 3. (a) The [011]-zone %( 1,1,1) satellite intensities and deviations taken from Ref. 12. Only the direction of the deviation is
given. The length of the arrows is not significant. (b) Our approximate satellite deviation directions.

VIII. CONCLUSIONS

Anomalous deviations of the incommensurate satellite
positions from commensurate positions are observed in
NiTi(Fe). A number of attempts to explain these devia-
tions have been made, all of which, up to the present,
have invoked explanations which lie outside the frame-
work of a conventional theoretical treatment of incom-
mensurate crystals. This article has shown that, provided
one acknowledges the existence of different incommensu-
rate domains in a given crystal, and provided that one
takes account of the different strains (relative to the cubic
phase) which exist in these different domains, one can ac-
count in some detail for the anomalous satellite devia-
tions within the framework of a conventional theory of
the incommensurate phase.

There are a variety of other ways in which our theory
could be further tested. The most direct way would be to
perform a diffraction experiment on a single domain sam-
ple. One way in which such a sample may be created is
by cooling it through the normal to incommensurate
phase transition temperature in a stress sufficiently large
and in such a direction as to preferentially favor the for-
mation of one of the four domains. Failing this there are
a number of indirect methods. One could, for example,
test our theoretical relations between the rhombohedral
angle and the satellite deviations and intensities, or be-
tween the anisotropic gy satellite widths and the incom-
mensurateness of the ¢; wave vectors. This latter relation
has already been shown to be approximately correct.
Further measurements should verify its quantitative ac-
curacy.

ACKNOWLEDGMENTS

This research was supported by the Natural Sciences
and Engineering Research Council of Canada.

APPENDIX A

Gooding et al.?® have formulated a Landau theory of
the 1+(1,—1,0) mode in Li. Because Li has the same
point group as NiTi(Fe), our Landau expansions should
be almost identical. We have adopted their conventions
regarding the normal modes and the order parameter
transformation properties. However, our Landau expan-
sion has more terms, theirs being incomplete. One of the
new terms found here is crucial to our work since it is re-
sponsible for stabilizing the three-q state.

Let e=(—1,1,0) and P;e be the new polarization vec-
tor into which e is transformed by the point-group opera-
tion P;. The ath component of this vector is then (P;e),.

The six e (q)) are then

e(@)=i 3 [a,(P;e)ue(q},0,a)

+a1/2(Pje)ae(q?,%,a)] .

The P; are defined as P,=E, P,=Cj', P;=C;,,
P,=C,, P5=C4_y1, P¢=C,,'C,,, and a, and a,,, are
real constants.

APPENDIX B

The transformation properties of the order parameters
can be found by using the procedure outlined in Sec. II.
Under a set of Pm 3m generators, they are

{Ela;}¢;(r)=exp[ —iq}-a; ]¢;(r) ;
(110}y,(0=y5(0) ;

{C31|0}3 U ==Y,
Yo—>Ys—>Pe— Y, ;
{Csl0}: 1 —>Y; YT =Y~y

Y —Pe— ‘”’P;“’ —3—1, .
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The transformation properties under {Cj;;|0} and {C,,|0} have been represented as orbits. Those of the shear strains
e;,i =4, 5, 6, can be similarly represented.

{110}e;={E|0}e;=¢; ;
{C31|0}: e4—>e5~+e6—>e4 N
{C4zj0]: €e—> " €c—>€¢

€5—>€4—> T"€5—> €4 —>€5 .

APPENDIX C

The twelve sixth-order invariant terms can be found by using the transformation properties of the order parameters
given in Appendix B. They are

F®=D {[4°+B*+C*+D?*]+[c.c.]}
+ D, ([ — )R =98 ) + (P — )N — ) + (3 — )P — )]+ (c.c. )]}
+ D3 ([ =D — )+ (P> — ) (93 — ) + (93> — P (3 — ) ] +(c.c.)]
6 6
+D, 3 Wiy +Ds 3 1yl

j=1 i=1
FD[(Y1+ Y)W+ 05 + (W3 + 93 )W+ 93) (3 + 93 )+ v )]
D { Uy [P+ [ ), 1+ 132+ s 12+ [96%)
F U195 P+ 13 P+ 12+ ]2 + s+ 196y [P+ [, 2+ [ 2+ 5] D))
Dg(AA*+BB*+CC*+DD*)
+Do (1912 [ [93 12+ [9,] [l ]2+ (9317 [94]? |¢5|2+|¢‘112 9512 196])
+D oLy P+ [ )5 12+ 1,1 1)
F P+ s3] 1>+ [, 12 [ ]%)
+ U312+ 1961, 1 1)+ 192 [, 1)]
+D;[(AB+ AC+ AD +BC*+BD*+CD*)+(c.c.)]

+D,[(A*B+A*C+ A*D+BC+BD+CD)+(c.c.)] .

A, B, C, and D represent

A=Yss, C=9sPi1s,
B=vy, 3, D=9 {3 .

The notation c.c. represents the complex conjugate of the term in its neighboring bracket.

APPENDIX D

The deviation of any satellite can be found by using Eq. (16)

. The appropriate distortion and reciprocal distortion
matrices for each domain are given below.
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Rhombohedral
Domain axis B By
m —n —n 1 —€ —€
{456} [111] —n m —n V —€ 1 —€
—n —n m —€ —€ 1
m n n 1 € €
{135} [111] n —n e 1 —€
n - m € —€ 1
m n —n —€
{162} [111] n n € €
—n n m —€ € 1
m —n n 1 —€
{423} [111] —n n —e 1
n n m € € 1

A derivation of the distortion matrices is given in Miyazaki et al.* From there,

m =(2V'2/3)sin(a/2)+[3—4sin%(a/2)]'2/3 ,
n=(v2/3)sin(a/2)—[3—4sinXa/2)]'?/3 .

The rhombohedral angle a is geometrically defined in Ref. 30. The parameter € is defined in Sec. VI.
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