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In this paper, we present a formalism for the exact calculation of spectral profile of an isolated line under-
going speed-dependent collisional broadening and shifting and Dicke narrowing. It is couched in the language
of the density matrix as in the closely related fields of transport phenomena, laser physics, and nonlinear optics.
The formalism isab intio in spirit, permitting the calculation of the line shape starting only from a given
interaction potential. The line shape is obtained by solving a transport/relaxation equation for the off-diagonal
element of the density matrix, a macroscopic quantity. The collision operator in the transport/relaxation equa-
tion, which is determined from th@nicroscopi¢ interaction between the active molecule and the perturber, is
presumed known.
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[. INTRODUCTION problem when solved numerically and there now exists a
considerable literature involving a variety of techniques and
Since the days of Boltzmann it has been recognized thapproximations for the numerical treatment of transport
the only viable treatment of systems that involve a largeproblems in statistical mechani¢see Ref.[2], and refer-
number of particles is in statistical terms. In this theory, aences therein
central role is played by a distribution function, which is a  With the notable exceptions of neutron and Brillouin
macroscopic quantity. For example, when one ignores thepectroscopy, all of spectroscopy involves particles with
internal structure and describes the translational motion clasnaternal degrees of freedom. In such cases, the classical
sically, the distribution functiori(t,r,v) gives the probabil- Boltzmann equation is inadequate and one must resort to the
ity of finding a molecule within a cell centered about a pointdensity-matrix formalism of quantum mechanics, where the

at positionr and veIocityJ at time t. The evolution of equation of motion is

f(t,r,v) due to collisions is governed by the Boltzmann g 1
transport equatiofil] Epentire:E[vaentire]y ©)
(9 > > — > > - > > A~ A~
S ftrv)=—v-V i(tr,v)+Sycf(trv), (1) where™ and penre are the Hamiltonian and density-matrix
operator for the entire system: active molecules, perturbers
where the velocity-changing collision operator (bath, and radiation field. For an example relevant to line

shapes see Reff3,4]. Two approximations(i) the transla-
“ - . 3 a, - - tional motion is treated classically ariil) the influence of
S\,Cf(t,r,v)——j d*v'A(v"—v)f(t.r,v) the active molecules on the batherturbers is treated as
very weak, converts Eq3) to a Boltzmann-like transport/
+j A3 A(v—v)F(t,F,0") (2)  relaxation equﬂatior[S], where the HamiltoniarH aﬂnd the
density matrixp apply only to the active moleculebl con-
o . . - -, . tains the interaction with the electromagnetic field. The den-
is given in terms of the collision kerné\(v+uv’), which . oA . , ~ - .

. . - sity matrix p is a continuous function af andv and discrete
describes tbe rate of transfer into the celbalrom the cell in the internal degrees of freedom. The additional transport/
centered ab’. All minOfCOEiC aSpeCtS of the transport pl’ob- relaxation terms that appear in E@) arise from “tracing”
lem are contained id\(v<—v') and may be calculated for a over the degrees of freedom of the perturbers. As in the
given interaction between the molecules. Equatibnbeing  Boltzmann equation, the transport/relaxation coefficients can
an integral-differential equation, is very difficult to handle and will, in general, depend upon the speed of the active
analytically even for an interaction described by a verymolecule and may only be determined from microscopic cal-
simple function. On the other hand, Eg) does not pose a culations[6].

There are several historical forms to the revised Boltz-
mann equation, Eq3). It is referred to as the Wang-Chang-

*Email address: jim@atmosp.physics.utoronto.ca Uhlenbeck equatiofi7] if one ignores the degeneracy of the
TCorresponding author. Email address: dmay@physicsinternal levels and restricts the treatment to the diagonal el-
utoronto.ca ements of the density matr{populations$. It is known as the
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Waldmann-Snider equation, if degeneracy is inclufg@|. lated line. In the fourth section, we specialize the formalism
This equation is also called the quantum-mechanical Boltzto the case where velocity changing collisions and dephasing
mann equatiof9] or the quantum kinetic equatid0]. For  collisions are statistically uncorrelated. This completes the
the off-diagonal element®ptical coherendeit is known as  formalism that, in principle, permits one to calculate the
the generalized Waldmann-Snider equation. Recently, one @pectral profile of an isolated line with no adjustable param-
us has discusseld] what might be called the generalized eters. We finish with a summary and conclusions.
Wang-Chang-Uhlenbeck equation. This captures all of the

structure of the generalized Waldmann-Snider equation, but Il. TRANSPORT /RELAXATION EQUATION

omits all polarization features. Polarization effects are intrin-

sically tied to the spatial degeneracy of the states of the ac- As indicated above, the theory of the shape of an isolated
lcally P 9 y absorption line can be formulated in terms of the density
tive molecules or atoms.

A treatment similar to Refs3,5], but purely classical, matrix [5]. For linear spectroscopy and an isolated line it is

was given much earlier by Rautian and Sobelrfi. There sufficient to consider a two-level system interacting with

is a clear advantage to using the density-matrix formalism IE/veak monochromatic electromagnetic radiation. To first or-
9 9 Y ' c%er in the fieldE, the resonant part of the off-diagonal ele-

permits a direct connection between the theoretical treatmen : . . _
) .ment of the density matrix for the active molecple can be

of a range of subjects, such as the theory of spectral line I - i L
shapes, the theory of mass transport, the theory of nonlinedfitten [5] asp™ =i (w,v)njuiE exd —i(wt—k-r)], where
optics, and the theory of gas lasers. This enlarges our undefs IS the total population in the initial staieand u;s is the
standing of physics and also allows us to borrow powerfulMatrix element of the dipole transition between the initial
techniques used in one area and use them constructively fatéi and the final staté In our scalar treatment, we write
another. Here, we adopt a numerical treatment used in tran#ae field asE exd —i(wt—k-r)] wherew is the frequency and
port phenomena, to the problem of determining the spectral is the wave vector. In the rotating-wave approximation
line shape of an isolated line. Numerical solutions are rey,(, .y satisfies the following transport/relaxation equation
quired, since the new equation, like the Boltzmann equation
is also an integral-differential equation and does not have an SN c > ROV >

: . . : S . =—i(w—wy—k- ,0)—S ), 4
analytical solution without highly simplified assumptions or 2o(v) (0=wp=k-v)e(wv)=Se(w,v), (4

simple models for collision kemelgf. [12,13). where thew, is the resonant frequency a@q(ﬁ) describes

From the practical point of view it is important to use an . . R
. ; . . . the initial or zero-field velocity distribution of the molecules
efficient and flexible method in the numerical calculations. It ) . : D
or atoms in staté. In this paper, we assume that the initial

is well known that Boltzmann-like operator equations can bedistribution is the normalized Maxwellian velocity distribu-
solved using a complete set of orthogonal basis functions: N 2\ —3/2 oy 2
This method, which is widely used in statistical physgigg ~ tion fm(v)=(7v5) ““exp(-voy). Here vy=V2kgT/my
has already been applied to the line-shape protjtyl5). is the most probable speed of the absorbgyjs the mass of
Podivilov et al. [14] calculated the Dicke narrowed line the absorberkg is Boltzmann's constant, antlis the tem-
shapes of ions in dense plasma. The shapes of spectral linpsrature of the gas. The collision opera®mescribes the
were calculated by Robert and Bonami5] in the case influence of the perturberébath on the off-diagonal ele-
where collisional broadening and shifting is speed-ments of the density matrix of the active molecules. It is

dependent. They described the translational motion using thgroportional to the density of perturbers.

Keilson-Storer mode[16] for the collision kernel, but ig-  From a solution for the density-matrix operafgrone can
nored the Doppler shift. We treat the general problem usingeadily find the polarizatior®?, (dipole moment per unit vol-

the same_well-known mgtht{d,l_ﬁl,lﬂ, in principle, starting ume using P=Tr[f>/l], Where,& is the dipole operator.
from the intermolecular interaction. We focus on the macro- . ho K he fi der ik it foll hat P b
scopic part of the problem, i.e., on a solution of the transportYV/th p known to the first order irk- it follows thatP can be

relaxation equation for the off-diagonal elements of the den?//t€n asxE, where y is the complex susceptibility, the

sity matrix assuming that the microscopic part of theimaginary part of which is related to the absorption coeffi-

problem has already been solved i.e., the collsion operator iﬁient [5]. 1t follows that the line-shape functiomormalized

the transport/relaxation equation has already been calculat g unity) desfcntt))lngbthg dca(jpendence %f thelablsorpzjtlon %n thel
starting from the interaction between the active molecule an equency ot absorbed ra lation can be caicu ated as the rea
the perturber. part of a velocity integral and written as

This paper is divided into a number of sections. In the 1
second section, we present the fundamental transport/ (w)= _Ref dve(w,0). (5)
relaxation equation describing the off-diagonal element of ™
the density matrix. We show its connection to the absorption
coefficient and transform it in order to treat it in a manner 1 he imaginary part of this integral is related to the function
parallel to the methods commonly used to handle mass tran§lescribing the frequency dependence of the index of refrac-
port in statistical mechanics. In the third section, we borrowton [5J- ) )
further from the theory of mass transport and convert the AS in the treatment of the diagonal element of the density
transport/relaxation equation into a set of coupled lineafMatrix in statistical meichanlcs it is useful to express the off-
equations that is generally applicable to the case of an isadiagonal elemenp(w,v) as
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o(w,0)=F(v)h(w,0) (6) where the expansion coefficientg(w) depend on the fre-

’ " ’ quency,o. Inserting Eq.(13) into Eq. (8), we obtain an in-
and to define the operatéf (which is related to the collision finite system of complex simultaneous linear equations for
operatord) by the equation the coefficientx(w). This set of equations can be written in

P y q matrix form as[15]

Sfm(v)h(w,0)=fu(v)Sh(w,0). v
b=L(w)c(w), (14
If we insert Eq.(6) into Eq. (4) we obtain - B
1= —i(0—wy—K-0)h(w,0)—&h(w,0), ) where the column vectds, contains one in the top position

and zeros elsewhere, TG[.Q]S= ds0- The column vector
c(w) consists of the coefficientxs(w), i.e., [c(w)]s
=Cs(w). The matrixL (w) depends on the frequenay and
£San be given in the following form

which can be used to determine the functitfw,v). A very
similar equation was given much earlier and applied to in
vestigate the dynamics of time-dependent processes
simple classical fluid$2,17]. Furthermore, if we define the

scalar product4,b) of functionsa(v) andb(v) as[2] L(w)=—i(0—w)l+iK—S', (15

(a’b):f d30f,(0)a* (0)b(v), (9) wherel is the unit matrix, i.e[1]s s =0s¢, K is thg rpatrix
that represents the Doppler shift, i.eK]ss=(slk-v|s’),
and S’ is the matrix that represents the collision operator,

i.e., [S'ss=(s|SMs’). Note it follows directly from Egs.
(7) and(9) that

then Eq.(5) for the shape of line can be written as
1 -
l(w)= ;Re(l,h(w,v)). (10

Thus, there is a direct connection between the solution of Eq. (s|S'|s")= f d%0 0% (0)Sf (V) @sr (V). (16)
(8) and the spectral profile. However, as indicated above,

there are no known analytical solutions to E8). for a col-

lision operator containing speed-dependent effects and Bhis means that the matri&’ can be obtained directly from
physically realistic treatment of the translational motion. Inthe operatorS. Inserting Eq.(13) into Eq. (10) we have
this case, only a numerical approach to the line-shape prolj2,15]

lem is viable. The expression for the shape of a line,(EQ).

is very close to the expression for the self-structure factor

used in statistical physid®]. l(w)= %Reco(w). (17)

Ill. SYSTEM OF COMPLEX LINEAR EQUATIONS
A Thus, the line shape can be evaluated if the solution to the set

The complexity of the collision operat® or S' dictates  of algebraic equations is known.
that we use an efficient numerical method for solving the A variety of technique$2] have been used in statistical
transport/relaxation equation. It is well known in quantummechanics to find approximate solutions to equations like
and statistical mechanics that a solution to this kind of op£q. (14). In this application to the line-shape problem, we
erator equation can be found using a complete set of orsimply limit the infinite set to the finite sets
thogonal basis functions. Then the operator equation is re=0,1,2 . .. s,.cand we represent all operators by matrixes
placed by an infinite system ¢€omplex linear equations.  defined in this subspace. Solving this finite set of algebraic

Let us use an infinite set of orthonormal functiqu{z;), equations yields an approximate spectral profile. The ap-

wheres=0,1,2, ..., inwhich @o(v)=1. It is useful to in-  Proximated shape of line tends to the exact profilesgs
troduce the following “matrix element” notation —0. The quality of this approximation depends directly on
the choice of the subset of functio%(ﬁ) and on the di-
(sls")=(¢s,0s') =55 (1) mension,smat+1. The dimension can be chosen relatively
and small if we find the basic set of functions with fast conver-

gence. Thus, the general problem of determining a line shape
Al A is reduced to the art of choosing a set of basis functions and
(slA[s")=(¢s,Agy). 12 4 practical value 0Bmax-
As presented Eq14) is specific to each frequenay so

In terms of the basis functions, we can write the function ; . . S .
that the spectrum is evaluated point by point. As in line mix-

h(w,v) as ing [18] and Dicke narrowingj19], there is a way around this
® inconvenience, by applying a well-known diagonalization
h(w,0)= 2 Cs(w)qos(l;), (13) procedure to Eq(14). For the sake of brevity we do not do
$=0 that here.
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IV. SPEED-DEPENDENT BROADENING AND SHIFTING, velocity-changing collisions in the soft or weak collision ap-
AND DICKE NARROWING proach. This operator has the following form

The expressions given above are general and could in- 2
clude _such ir_nportant effects as speed—dependent veIociFy- “SVC: V(7mAU+ﬁU-J). (21
changing collisions, speed-dependent broadening and shift-
ing, and correlation between the velocity-changing and _ R )
dephasing collisions. However, we now limit the discussionThe corresponding operat&{,. can be written as
to the case where velocity-changing and dephasing collisions )
are uncorrelated. In this case we can write P v -3

Sle= V(fAU—u.vv> (22)

S=5+5vc, (18)
and differs fromS, . In some cases it may be more conve-
is the dephasing collision operator, nient to first deriveS,,c and to calculate its matrix elements

The real part of the dephasing collision operator is relateéj'rec_tIy rather than througpfthe use of &#6). Nevertheless,
to the speed-dependent collisional widittv) and the imagi-  for givenT'(v), A(v) andSy¢ or Syc, and a chosen set of
nary part is related to the speed-dependent collisional shif¢asis functions it is always possible to evaluate the matrix

& ; L(w) and solve the set of equations Ed4), to find the
A(v). The operatofy is generally written as shape of the line, numerically. We will show in the following

Whereévc is the velocity-changing collision operator aﬁg

éD: —T(v)—iA(v) (19) paper that there are no practical limitations to this procedure.
wherev is the speed of the active molecule. Only in the V. SUMMARY
absence of speed dependence dbesctually equal the i i ,
Lorentzian width and\ actually equal the collisional shift of [N this paper, we have considered the problem of an iso-

an isolated line. We are interested in the case where th{gt€d liné undergoing speed-dependent broadening and shift-
speed dependence may not be ignored. We assume that tg and Dicke narrowing. We use a density-matrix approach
microscopic scattering calculatiofsemiclassical or quan- N order to emphasize the connection to statistical mechanics
tum) for the absorber/perturber system have been carried odffansport phenomepalaser physics, and nonlinear optics.
so thatl'(v) andA(v) are known. When speed dependenceThe basic transport/relaxation equation was re-expressed us-
is significant it will almost certainly manifest itself in the N9 & nomenclature found in the treatment of transport phe-
spectral profile. For example, the line will not be Lorentziannomena and then, using a technique also found in that field,
[20,21), the width will not equal the thermal averageltfv ) we converted the equation to a set of co_upled I|ne_ar equa-
and the shift will not equal the thermal average/d ). tions. The connection between the solutions to this set of

Equations(15)—(17) tell us that we need to evaluate the equations and the spectral profile is given. Thus, if the colli-
sion operator describing the speed-dependent broadening and

shifting and translational motion is known as a result of mi-
croscopic calculations for a given intermolecular interaction,
Sf:SfD_{_S{/C’ (20) the numerical sqlution_ of the' macros_cqpic part of. the line-

shape problem is available, i.e., ab initio calculation of
Where the matri)st represents the dephasing C0||ision Op' the SpeCtral .profile Of an- iSO|ated Iine WIthOUt any adjustable
erator, i'e.'[SfD]sys/:<s|"SfD|S,>' and the matrixSI,C repre- parameters is now possible. In the following paper, we show

; - . g that calculations based on the formalism presented here can
sents the velocity-changing collision operator, [&ycls,s easily be carried out and we give, as an example, results for

=(s|Sicls"). colliding rigid spheres of arbitrary mass ratio and with
We noted above that the matr8{ can be evaluated di- broadening or shifting that is speed dependent.
rectly from the operato8 using Eq.(16). Nevertheless, we

would like to illuminate the relation between the opera@rs ACKNOWLEDGMENTS
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velocity-changing collisionsS, does not equan,C. We  Sounding. One of ugD.A.S) acknowledges the assistance
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monly used models for the velocity-changing collision op-00-02-17973, 00-15-96808nd the Ministry of Industry,
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matrix elements o’ to determine the line shape. With
given by Eq.(18) it follows that the matrixS' can be written
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