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Solving the line-shape problem with speed-dependent broadening and shifting
and with Dicke narrowing. I. Formalism

D. A. Shapiro,1 R. Ciuryło,2,3 J. R. Drummond,2,* and A. D. May2,†

1Institute of Automation and Electrometry, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Russia
2Department of Physics, University of Toronto, 60 St. George Street, Toronto, Ontario, Canada M5S 1A7

3Institute of Physics, Nicholas Copernicus University, Grudzia¸dzka 5/7, 87-100 Torun´, Poland
~Received 5 June 2001; published 5 December 2001!

In this paper, we present a formalism for the exact calculation of spectral profile of an isolated line under-
going speed-dependent collisional broadening and shifting and Dicke narrowing. It is couched in the language
of the density matrix as in the closely related fields of transport phenomena, laser physics, and nonlinear optics.
The formalism isab intio in spirit, permitting the calculation of the line shape starting only from a given
interaction potential. The line shape is obtained by solving a transport/relaxation equation for the off-diagonal
element of the density matrix, a macroscopic quantity. The collision operator in the transport/relaxation equa-
tion, which is determined from the~microscopic! interaction between the active molecule and the perturber, is
presumed known.
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I. INTRODUCTION

Since the days of Boltzmann it has been recognized
the only viable treatment of systems that involve a la
number of particles is in statistical terms. In this theory
central role is played by a distribution function, which is
macroscopic quantity. For example, when one ignores
internal structure and describes the translational motion c
sically, the distribution functionf (t,rW,vW ) gives the probabil-
ity of finding a molecule within a cell centered about a po
at position rW and velocity vW at time t. The evolution of
f (t,rW,vW ) due to collisions is governed by the Boltzman
transport equation@1#

]

]t
f ~ t,rW,vW !52vW •“W r f ~ t,rW,vW !1ŜVCf ~ t,rW,vW !, ~1!

where the velocity-changing collision operator

ŜVCf ~ t,rW,vW !52E d3vW 8A~vW 8←vW ! f ~ t,rW,vW !

1E d3vW 8A~vW←vW 8! f ~ t,rW,vW 8! ~2!

is given in terms of the collision kernelA(vW←vW 8), which
describes the rate of transfer into the cell atvW from the cell
centered atvW 8. All microscopic aspects of the transport pro
lem are contained inA(vW←vW 8) and may be calculated for
given interaction between the molecules. Equation~1!, being
an integral-differential equation, is very difficult to hand
analytically even for an interaction described by a ve
simple function. On the other hand, Eq.~1! does not pose a
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problem when solved numerically and there now exists
considerable literature involving a variety of techniques a
approximations for the numerical treatment of transp
problems in statistical mechanics~see Ref.@2#, and refer-
ences therein!.

With the notable exceptions of neutron and Brillou
spectroscopy, all of spectroscopy involves particles w
internal degrees of freedom. In such cases, the class
Boltzmann equation is inadequate and one must resort to
density-matrix formalism of quantum mechanics, where
equation of motion is

]

]t
r̂entire5

1

i\
@Ĥ,r̂entire#, ~3!

whereĤ and r̂entire are the Hamiltonian and density-matr
operator for the entire system: active molecules, perturb
~bath!, and radiation field. For an example relevant to li
shapes see Refs.@3,4#. Two approximations,~i! the transla-
tional motion is treated classically and~ii ! the influence of
the active molecules on the bath~perturbers! is treated as
very weak, converts Eq.~3! to a Boltzmann-like transport
relaxation equation@5#, where the HamiltonianĤ and the
density matrixr̂ apply only to the active molecules.Ĥ con-
tains the interaction with the electromagnetic field. The d
sity matrix r̂ is a continuous function ofrW andvW and discrete
in the internal degrees of freedom. The additional transp
relaxation terms that appear in Eq.~3! arise from ‘‘tracing’’
over the degrees of freedom of the perturbers. As in
Boltzmann equation, the transport/relaxation coefficients
and will, in general, depend upon the speed of the ac
molecule and may only be determined from microscopic c
culations@6#.

There are several historical forms to the revised Bo
mann equation, Eq.~3!. It is referred to as the Wang-Chang
Uhlenbeck equation@7# if one ignores the degeneracy of th
internal levels and restricts the treatment to the diagona
ements of the density matrix~populations!. It is known as the

s.
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Waldmann-Snider equation, if degeneracy is included@8,9#.
This equation is also called the quantum-mechanical Bo
mann equation@9# or the quantum kinetic equation@10#. For
the off-diagonal elements~optical coherence!, it is known as
the generalized Waldmann-Snider equation. Recently, on
us has discussed@5# what might be called the generalize
Wang-Chang-Uhlenbeck equation. This captures all of
structure of the generalized Waldmann-Snider equation,
omits all polarization features. Polarization effects are intr
sically tied to the spatial degeneracy of the states of the
tive molecules or atoms.

A treatment similar to Refs.@3,5#, but purely classical,
was given much earlier by Rautian and Sobelman@11#. There
is a clear advantage to using the density-matrix formalism
permits a direct connection between the theoretical treatm
of a range of subjects, such as the theory of spectral
shapes, the theory of mass transport, the theory of nonli
optics, and the theory of gas lasers. This enlarges our un
standing of physics and also allows us to borrow powe
techniques used in one area and use them constructive
another. Here, we adopt a numerical treatment used in tr
port phenomena, to the problem of determining the spec
line shape of an isolated line. Numerical solutions are
quired, since the new equation, like the Boltzmann equa
is also an integral-differential equation and does not have
analytical solution without highly simplified assumptions
simple models for collision kernels~cf. @12,13#!.

From the practical point of view it is important to use a
efficient and flexible method in the numerical calculations
is well known that Boltzmann-like operator equations can
solved using a complete set of orthogonal basis functio
This method, which is widely used in statistical physics@2#
has already been applied to the line-shape problem@14,15#.
Podivilov et al. @14# calculated the Dicke narrowed lin
shapes of ions in dense plasma. The shapes of spectral
were calculated by Robert and Bonamy@15# in the case
where collisional broadening and shifting is spee
dependent. They described the translational motion using
Keilson-Storer model@16# for the collision kernel, but ig-
nored the Doppler shift. We treat the general problem us
the same well-known method@2,14,15#, in principle, starting
from the intermolecular interaction. We focus on the mac
scopic part of the problem, i.e., on a solution of the transp
relaxation equation for the off-diagonal elements of the d
sity matrix assuming that the microscopic part of t
problem has already been solved i.e., the collsion operato
the transport/relaxation equation has already been calcu
starting from the interaction between the active molecule
the perturber.

This paper is divided into a number of sections. In t
second section, we present the fundamental transp
relaxation equation describing the off-diagonal element
the density matrix. We show its connection to the absorpt
coefficient and transform it in order to treat it in a mann
parallel to the methods commonly used to handle mass tr
port in statistical mechanics. In the third section, we borr
further from the theory of mass transport and convert
transport/relaxation equation into a set of coupled lin
equations that is generally applicable to the case of an
01250
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lated line. In the fourth section, we specialize the formali
to the case where velocity changing collisions and depha
collisions are statistically uncorrelated. This completes
formalism that, in principle, permits one to calculate t
spectral profile of an isolated line with no adjustable para
eters. We finish with a summary and conclusions.

II. TRANSPORT ÕRELAXATION EQUATION

As indicated above, the theory of the shape of an isola
absorption line can be formulated in terms of the dens
matrix @5#. For linear spectroscopy and an isolated line it
sufficient to consider a two-level system interacting w
weak monochromatic electromagnetic radiation. To first
der in the fieldE, the resonant part of the off-diagonal el
ment of the density matrix for the active moleculer2 can be
written @5# asr25 i%(v,vW )nim i f E exp@2i(vt2kW•rW)#, where
ni is the total population in the initial statei andm i f is the
matrix element of the dipole transition between the init
statei and the final statef. In our scalar treatment, we writ
the field asE exp@2i(vt2kW•rW)# wherev is the frequency and
kW is the wave vector. In the rotating-wave approximati
%(v,vW ) satisfies the following transport/relaxation equatio

%0~vW !52 i ~v2v02kW•vW !%~v,vW !2Ŝ%~v,vW !, ~4!

where thev0 is the resonant frequency and%0(vW ) describes
the initial or zero-field velocity distribution of the molecule
or atoms in statei. In this paper, we assume that the initi
distribution is the normalized Maxwellian velocity distribu
tion f m(vW )5(pvm

2 )23/2exp(2v2/vm
2 ). Here vm5A2kBT/mA

is the most probable speed of the absorber,mA is the mass of
the absorber,kB is Boltzmann’s constant, andT is the tem-
perature of the gas. The collision operatorŜ describes the
influence of the perturbers~bath! on the off-diagonal ele-
ments of the density matrix of the active molecules. It
proportional to the density of perturbers.

From a solution for the density-matrix operatorr̂, one can
readily find the polarization,P, ~dipole moment per unit vol-
ume! using P5Tr@ r̂m̂#, where m̂ is the dipole operator.
With r̂ known to the first order inE it follows thatP can be
written asxE, where x is the complex susceptibility, the
imaginary part of which is related to the absorption coe
cient @5#. It follows that the line-shape function~normalized
to unity! describing the dependence of the absorption on
frequency of absorbed radiation can be calculated as the
part of a velocity integral and written as

I ~v!5
1

p
ReE d3vW %~v,vW !. ~5!

The imaginary part of this integral is related to the functi
describing the frequency dependence of the index of ref
tion @5#.

As in the treatment of the diagonal element of the dens
matrix in statistical mechanics it is useful to express the o
diagonal element%(v,vW ) as
1-2
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%~v,vW !5 f m~v !h~v,vW ! ~6!

and to define the operatorŜf ~which is related to the collision
operatorŜ) by the equation

Ŝf m~v !h~v,vW !5 f m~v !Ŝfh~v,vW !. ~7!

If we insert Eq.~6! into Eq. ~4! we obtain

152 i ~v2v02kW•vW !h~v,vW !2Ŝfh~v,vW !, ~8!

which can be used to determine the functionh(v,vW ). A very
similar equation was given much earlier and applied to
vestigate the dynamics of time-dependent processes
simple classical fluids@2,17#. Furthermore, if we define the
scalar product (a,b) of functionsa(vW ) andb(vW ) as @2#

~a,b!5E d3vW f m~vW !a* ~vW !b~vW !, ~9!

then Eq.~5! for the shape of line can be written as

I ~v!5
1

p
Re„1,h~v,vW !…. ~10!

Thus, there is a direct connection between the solution of
~8! and the spectral profile. However, as indicated abo
there are no known analytical solutions to Eq.~8! for a col-
lision operator containing speed-dependent effects an
physically realistic treatment of the translational motion.
this case, only a numerical approach to the line-shape p
lem is viable. The expression for the shape of a line, Eq.~10!
is very close to the expression for the self-structure fac
used in statistical physics@2#.

III. SYSTEM OF COMPLEX LINEAR EQUATIONS

The complexity of the collision operatorŜ or Ŝf dictates
that we use an efficient numerical method for solving
transport/relaxation equation. It is well known in quantu
and statistical mechanics that a solution to this kind of
erator equation can be found using a complete set of
thogonal basis functions. Then the operator equation is
placed by an infinite system of~complex! linear equations.

Let us use an infinite set of orthonormal functionsws(vW ),
wheres50,1,2, . . . , in which w0(vW )51. It is useful to in-
troduce the following ‘‘matrix element’’ notation

^sus8&5~ws ,ws8!5ds,s8 ~11!

and

^suÂus8&5~ws ,Âws8!. ~12!

In terms of the basis functions, we can write the functi
h(v,vW ) as

h~v,vW !5(
s50

`

cs~v!ws~vW !, ~13!
01250
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where the expansion coefficientscs(v) depend on the fre-
quency,v. Inserting Eq.~13! into Eq. ~8!, we obtain an in-
finite system of complex simultaneous linear equations
the coefficientscs(v). This set of equations can be written
matrix form as@15#

b5L ~v!c~v!, ~14!

where the column vectorb, contains one in the top positio
and zeros elsewhere, i.e.,@b#s5ds,0 . The column vector
c(v) consists of the coefficientscs(v), i.e., @c(v)#s
5cs(v). The matrixL (v) depends on the frequencyv and
can be given in the following form

L ~v!52 i ~v2v0!11 iK2S f , ~15!

where1 is the unit matrix, i.e.,@1#s,s85ds,s8 , K is the matrix
that represents the Doppler shift, i.e.,@K #s,s85^sukW•vW us8&,
and S f is the matrix that represents the collision operat
i.e., @S f #s,s85^suŜf us8&. Note it follows directly from Eqs.
~7! and ~9! that

^suŜf us8&5E d3vW ws* ~vW !Ŝf m~vW !ws8~vW !. ~16!

This means that the matrixSf can be obtained directly from
the operatorŜ. Inserting Eq.~13! into Eq. ~10! we have
@2,15#

I ~v!5
1

p
Rec0~v!. ~17!

Thus, the line shape can be evaluated if the solution to the
of algebraic equations is known.

A variety of techniques@2# have been used in statistica
mechanics to find approximate solutions to equations
Eq. ~14!. In this application to the line-shape problem, w
simply limit the infinite set to the finite sets
50,1,2, . . . ,smax and we represent all operators by matrix
defined in this subspace. Solving this finite set of algebr
equations yields an approximate spectral profile. The
proximated shape of line tends to the exact profile assmax
→`. The quality of this approximation depends directly o
the choice of the subset of functionsws(vW ) and on the di-
mension,smax11. The dimension can be chosen relative
small if we find the basic set of functions with fast conve
gence. Thus, the general problem of determining a line sh
is reduced to the art of choosing a set of basis functions
a practical value ofsmax.

As presented Eq.~14! is specific to each frequencyv so
that the spectrum is evaluated point by point. As in line m
ing @18# and Dicke narrowing@19#, there is a way around this
inconvenience, by applying a well-known diagonalizati
procedure to Eq.~14!. For the sake of brevity we do not d
that here.
1-3
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IV. SPEED-DEPENDENT BROADENING AND SHIFTING,
AND DICKE NARROWING

The expressions given above are general and could
clude such important effects as speed-dependent velo
changing collisions, speed-dependent broadening and s
ing, and correlation between the velocity-changing a
dephasing collisions. However, we now limit the discuss
to the case where velocity-changing and dephasing collis
are uncorrelated. In this case we can write

Ŝ5ŜD1ŜVC , ~18!

whereŜVC is the velocity-changing collision operator andŜD
is the dephasing collision operator.

The real part of the dephasing collision operator is rela
to the speed-dependent collisional widthG(v) and the imagi-
nary part is related to the speed-dependent collisional s
D(v). The operatorŜD is generally written as

ŜD52G~v !2 iD~v !, ~19!

where v is the speed of the active molecule. Only in t
absence of speed dependence doesG actually equal the
Lorentzian width andD actually equal the collisional shift o
an isolated line. We are interested in the case where
speed dependence may not be ignored. We assume tha
microscopic scattering calculation~semiclassical or quan
tum! for the absorber/perturber system have been carried
so thatG(v) andD(v) are known. When speed dependen
is significant it will almost certainly manifest itself in th
spectral profile. For example, the line will not be Lorentzi
@20,21#, the width will not equal the thermal average ofG(v)
and the shift will not equal the thermal average ofD(v).

Equations~15!–~17! tell us that we need to evaluate th
matrix elements ofŜf to determine the line shape. WithŜ
given by Eq.~18! it follows that the matrixSf can be written

Sf5SD
f 1SVC

f , ~20!

where the matrixSD
f represents the dephasing collision o

erator, i.e.,@SD
f #s,s85^suŜD

f us8&, and the matrixSVC
f repre-

sents the velocity-changing collision operator, i.e.,@SVC
f #s,s8

5^suŜVC
f us8&.

We noted above that the matrixSf can be evaluated di
rectly from the operatorŜ using Eq.~16!. Nevertheless, we
would like to illuminate the relation between the operatorsŜ

and Ŝf . For the dephasing collisions it follows from Eq.~7!

thatŜD5ŜD
f and that the matrix element ofŜD

f may be evalu-
ated if G(v) andD(v) are known. However, in general, fo
velocity-changing collisions,ŜVC does not equalŜVC

f . We
illustrate this with a simple example. One of the most co
monly used models for the velocity-changing collision o
erator is the Fokker-Planck operator, which describ
01250
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velocity-changing collisions in the soft or weak collision a
proach. This operator has the following form

ŜVC5nS vm
2

2
Dv1“

W
v•vW D . ~21!

The corresponding operatorŜVC
f can be written as

ŜVC
f 5nS vm

2

2
Dv2vW •“W vD ~22!

and differs fromŜVC . In some cases it may be more conv
nient to first deriveŜVC

f and to calculate its matrix elemen
directly rather than through the use of Eq.~16!. Nevertheless,
for given G(v), D(v) and ŜVC

f or ŜVC , and a chosen set o
basis functions it is always possible to evaluate the ma
L (v) and solve the set of equations Eq.~14!, to find the
shape of the line, numerically. We will show in the followin
paper that there are no practical limitations to this procedu

V. SUMMARY

In this paper, we have considered the problem of an i
lated line undergoing speed-dependent broadening and s
ing and Dicke narrowing. We use a density-matrix approa
in order to emphasize the connection to statistical mecha
~transport phenomena!, laser physics, and nonlinear optic
The basic transport/relaxation equation was re-expressed
ing a nomenclature found in the treatment of transport p
nomena and then, using a technique also found in that fi
we converted the equation to a set of coupled linear eq
tions. The connection between the solutions to this se
equations and the spectral profile is given. Thus, if the co
sion operator describing the speed-dependent broadening
shifting and translational motion is known as a result of m
croscopic calculations for a given intermolecular interactio
the numerical solution of the macroscopic part of the lin
shape problem is available, i.e., anab initio calculation of
the spectral profile of an isolated line without any adjusta
parameters is now possible. In the following paper, we sh
that calculations based on the formalism presented here
easily be carried out and we give, as an example, results
colliding rigid spheres of arbitrary mass ratio and wi
broadening or shifting that is speed dependent.
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