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Abstract

In the analysis of psychological and psychophysiological data, the relationship between two

variables is often assumed to be a straight line. This may be due to the prevalence of the

general linear model in data analysis in these fields, which makes this assumption

implicitly. However, there are many problems for which this assumption does not hold. In

this paper, we show that in the analysis of event-related potential (ERP) data, the

assumption of linearity comes at a cost and may significantly affect the inferences drawn

from the data. We demonstrate why the assumption of linearity should be relaxed and how

to model nonlinear relationships between ERP amplitudes and predictor variables within

the familiar framework of generalized linear models, using regression splines and

mixed-effects modelling.

This paper has been written in LATEX using Sweave and R, and the source

document is provided as supplementary material. The data, a pdf of this paper, the .Rnw

file used to write it, and the R code used to generate all of the analyses, tables, and figures

presented here are available in package nlEEG. The package is available as supplementary

material for this article, and also from http://hdl.handle.net/10222/22146. An

additional set of supplementary material entitled What’s Under the Hood: A Brief

Introduction to GAMM, is available from the same URL. These resources can be used to

work through the examples, and potentially act as a starting point for the reader’s own

forays into mixed-effects modelling.

Keywords: EEG; ERP; nonlinear relationships; GAMM; regression splines.
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Modelling Non-linear Relationships in ERP Data Using Mixed-effects Regression with R

Examples

Introduction

Event-related potential (ERP) datasets are commonly collected in cognitive

neuroscience experiments because they offer rich spatio-temporal information about brain

activity during perception, cognition, and action. The potential power of ERP data comes

with the cost that the datasets tend to be large and quite complex. Thus the richness of

the data demands analytical techniques that are appropriate to fully describe both the

complexity of the data, and control for factors that might interfere with such analyses. In

trying to deal with such complex data, it is very common to assume that the relationship

between ERP amplitudes/latencies and an independent variable is linear. For example, in a

study that investigates the relationship between age and amplitude of the N1 ERP

component, one would assume that a given increase in age is associated with a consistent

increase (or decrease) in the amplitude and/or latency of the N1, regardless of whether the

increase is from 23 to 24 years old or from 69 to 70 years old.

In reality, there are many problems for which the answer is not a straight line

(Rupert, Wand, & Carroll, 2003; Pinheiro & Bates, 2000; Wood, 2006; H. Wu & Zhang,

2006; Hastie & Tibshirani, 1990; Baayen, Kuperman, & Bertram, 2010; Tremblay &

Baayen, 2010; Kryuchkova, Tucker, Wurm, & Baayen, 2012) and ERPs are no exception.

For example, Carbon, Schweinberger, Kaufmann, and Leder (2005) investigated the effect

of “Thatcherized” faces (in which the eyes and mouth regions are turned upside-down) on

N170 amplitudes (a negative component occurring between 130 and 200 ms at

occipito-temporal scalp sites). Pictures of normal and Thatcherized faces were presented at

either 0, 90, or 180◦ rotation; only when presented upright are these perceived as severely

distorted. Carbon et al. (2005) found a nonlinear effect of rotation on N170 amplitudes in

response to faces: Upright Thatcherized faces elicited a smaller N170 than Thatcherized

faces rotated 90 or 180◦. The effect on N170 amplitudes of the latter two orientations,
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however, did not differ. Boutheina, Coutya, Langer, and Roy (2009) also investigated the

effects of picture rotation on N170 amplitudes. They used pictures of normal faces that

were rotated 0, 22.5, 45, 67.5, 90, 112.5, 157.5, or 180◦ and found a relatively complex

nonlinear effect on N170 amplitudes and latencies (see panel B of Figure 3 in Boutheina et

al., 2009). Numerous other examples of nonlinear effects on ERPs can be found in the

literature, in areas such as development (Webb, Long, & Nelson, 2005), rhythm perception

(Pablos Martin, Deltenre, Rossion, Hoonhorst, & Colin, 2007), and auditory processing

(Inui et al., 2010).

The studies mentioned above did not assume linearity, which is a step forward.

However, in keeping with the traditional ANOVA approach to statistical analysis, they

tested for nonlinear relationships using the common practice of discretizing the variables of

interest. That is, they have reduced inherently continuous measures, such as rotation angle

(or stimulus duration, interstimulus interval, magnitude, frequency, etc.) to factor variables

with only a few levels. Such a practice is likely attributable to the natural development of

cognitive neuroscience from behavioural approaches to studying cognition that traditionally

rely heavily on ANOVA models. However, it comes with problems of its own. Indeed, not

only does discretization induce bias into the analysis, but it also decreases statistical power

and increases the probability of finding spurious associations (Cohen, 1983; McCallum,

Zhang, Preacher, & Rucker, 2002). Fortunately, such factorization is neither desirable, nor

necessary to detect nonlinear relationships.1

1Although we advocate here that continuous variables should not be discretized, there are circumstances

in which such variables should be divided into categories. For example if the values of a variable happen to

be distributed in such a way that there are two distinct peaks separated by a large gap, then it would make

sense to dichotomize it. It goes without saying that an inherently binomial variable should be entered in a

model as a factor variable.
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Relaxing the assumption of linearity: A set of simple examples

Assuming linearity when it does not hold may lead one (i) to over-look important

structure in the data, (ii) to conclude that there is no relationship between two variables

when in fact there is one, and (iii) to under-estimate the strength of the relationship

between a dependent and an independent variable (Sahai & Ageel, 1997). To illustrate

these points, we simulated four data sets (based on the gamSim function from R package

mgcv; Wood, 2012; R Development Core Team, 2013) and compared models that assume

linearity to ones that do not (for the sake of this example, we will gloss over how the

assumption of linearity was relaxed for the latter analyses). In Figure 1, the panels on the

left show the models that were fitted assuming linearity, whereas the ones on the right

show the models that were fitted without making this assumption. In the first simulated

data set, shown in the top panels (A and B), the dependent (Y) variable does not correlate

with the predictor variable, and neither of the two models report that it does. The 2 point

difference in Akaike’s Information Criterion (AIC; Akaike, 1973) indicates that both models

are equivalent.2

Panels C and D show data in which there is a linear relationship between the

response and predictor variables, which is captured by both linear and nonlinear models.

Indeed, the nonlinear model fit results in a straight line since there is no nonlinearity in the

relationship, and the AIC values indicates that both models are just as likely given the

data. The simulated relationship between the dependent and independent variables in

2AIC is a relative measure that indexes how likely a model is given the data (relative to other models).

It is calculated as 2 × the number of parameters in the model - 2 × the log likelihood of the model (i.e., more

complex models will tend to have higer AIC values). Statistical models can be compared by way of AIC,

where those with smaller values reflect more likely models. By convention, we consider that two models

differ if the difference in AIC value is equal to or greater than 5, meaning that the model with the lower AIC

is 12 times more likely given the data than the one with the higher AIC. We refer the interested reader to

Symonds and Moussalli (2011) and Burnham, Anderson, and Huyvaert (2011) for more details about AIC

and model selection.
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panels E and F is quadratic. The model for which linearity is assumed (panel E) not only

fails to capture the quadratic relationship, but it also falsely concludes that there is no

significant relationship between X and Y. The model shown in panel F, however, is able to

capture the quadratic trend and comparison of the AIC values for the two models confirms

that this is a better fit. In panels G and H, the simulated relationship is more complex,

taking on a “wavy” function. Although the model for which linearity is assumed does find

that there is a significant relationship between X and Y, the actual nature of the

relationship is only part of the underlying truth. This leads the model to under-estimate

the strength of the relationship between X and Y, and the accuracy of the prediction varies

as a function of X. Conversely, the model for which linearity is not assumed, illustrated in

panel H, is able to capture the true nature of the relationship, and correspondingly has a

much lower AIC value.

Modelling Non-linear Relationships

Testing for nonlinear relationships can be seen as a natural extension of testing for

linear relationships. Linear regression is familiar to virtually anyone with a modicum of

training in statistics, and allows one to test for a linear relationship between two variables

as shown in the left-hand columns of Figure 1. Thus for example in the analysis of the

effects of image rotation in the Carbon et al. (2005) study described above, the levels of

rotation could have been treated as values along a continuum of possible rotation angles,

rather than as categorical levels. The problem with this approach, as demonstrated in the

examples in Figure 1, is that if the relationship is nonlinear then a linear fit will not be

optimal. In contrast, pairwise testing of different “levels” of rotation is able to detect which

(if any) pairs of levels differ. Certain relationships can also be detected using a set of linear

contrast weights, as in Helmert or polynomial contrasts. However, this approach does not

generalize easily to many levels of a factor, and because each pairwise or contrast test

assumes independence correction for multiple comparisons should be applied — potentially
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Figure 1 . Assuming linearity (left column; red lines) versus not assuming linearity (right

column; blue lines).

weakening sensitivity to extant effects.

Non-linear relationships can be modelled without discretization by applying a series

of linear transformations to the predictor variables. Regression splines, which are thought

to be the ideal series of transformations and the most computationally efficient (Wood,

2006, p. 148), are curves made up of sections of polynomials joined together at points
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termed “knots” so that they are continuous in value, as well as first and second derivatives.

The specific spline equation used in the model fitting algorithm we use here (i.e.,

generalized additive mixed-effects regression; see below) is from Gu (2002):

R(x, k) =
[(k − 1

2)2 − 1
12 ][(x− 1

2)2 − 1
12 ]

4 −
[(|x− k| − 1

2)4)− 1
2(|x− k| − 1

2)2 + 7
240 ]

24 (1)

where x is a vector of covariate values and k is a knot location.

The spline function merely serves to transform variables. The actual modelling of the

data will be performed with generalized additive mixed-effects modelling, which we briefly

describe below.

Generalized Additive Mixed Effects Modelling

Generalized additive mixed-effects modelling (GAMM) is a relatively recent

development in statistics (e.g., Hastie & Tibshirani, 1990; Gu & Wahba, 1991; Wood, 2006)

and has recently been applied to ERP data in several published papers, including Tremblay

(2009), Tremblay and Baayen (2010), and Kryuchkova et al. (2012).3 Mixed-effect

modelling (e.g., GAMM) is a natural tool for modelling repeated measures (Lin & Zhang,

1999; H. Wu & Zhang, 2006; L. Wu, 2010), including repeated measurements in ERP data

(Bagiella, Sloan, & Heitjan, 2000; Vossen, van Breukelen, Hermens, van Os, & Lousberg,

2011). This type of model captures the dependency between repeated measurements – such

as for example within subjects as well as within stimuli – by modelling the

variance-covariance matrix of the error term. Details about mixed-effects modelling, as well

as its potential advantages over repeated measures ANOVA, can be found in a number of

recent papers and books (Bagiella et al., 2000; Pinheiro & Bates, 2000; Faraway, 2005;

3Generalized additive (mixed-effect) modelling is a widely accepted data analysis method that has been

used in well over a thousand papers from a wide variety of domains of inquiry. See section Domains of Inquiry

in which GAMM has been Used in supplementary material What’s Under the Hood: A Brief Introduction to

GAMM.
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H. Wu & Zhang, 2006; Gelman & Hill, 2007; Baayen, 2008; Baayen, Davidson, & Bates,

2008; Quené & van den Bergh, 2008; Zuur, Ieno, Walker, Saveliev, & Smith, 2009; L. Wu,

2010; Vossen et al., 2011).

A GAMM is a non-parametric regression model with the general additive structure:

g(µij) = X∗i θ + f1(x1i) + f2(x2i) + f3(x3i, x4i) + . . .+ εij + Zijαi, (2)

where µij ≡ E(Yij), Yij is a response variable (e.g., amplitude), X∗i is a row in the matrix

for a strictly parametric model component, θ is the corresponding parameter vector, the

f(x)’s are smooth functions of the covariates, εij are N(0, σ2) measurement errors, and

Zijαi are N(0, D(σ2)) random effects (Hastie & Tibshirani, 1990; Faraway, 2005; Wood,

2006; Keele, 2008). The basis we use here for our smooth functions, f(x), are the regression

splines defined in Equation (1).

Like ANOVA, GAMM also fits within the generalized linear mixed effects model

(GLMM). ANOVA and GAMM differ in that (1) GAMM can model more complex

random-effects structures (e.g., crossed, independent random effects; Baayen et al., 2008;

Quené & van den Bergh, 2008); (2) GAMM is robust to violations of sphericity if the

correct random effect structure is used (Bagiella et al., 2000; Baayen et al., 2008; Vossen et

al., 2011), eliminating the need to correct for this post hoc using methods that are known

to be either overly conservative (Greenhouse-Geisser) or liberal (Huynh-Feldt), (3) GAMM

enables one to appropriately model imbalanced data (Bagiella et al., 2000; Gelman & Hill,

2007; Baayen et al., 2008; Vossen et al., 2011), a common situation in ERP data, and (4)

the model fitting objective is augmented by a “wiggliness” penalty enabling one to model

non-linear relationships that do not over- or under-fit the data in a manner that reduces

subjectivity and circularity (Wood, 2006; Kriegeskorte, Simmons, Bellgowan, & Baker,

2009).

To fully make use of these capabilities, data should not be averaged across trials or

any other variable. Rather, a GAMM should be fitted on the un-averaged (“single trial”)
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data. Beyond allowing robust, accurate estimates of variance, this practice has the added

benefit of allowing one to model nonlinear relationships between dependent and

independent variables in multi-dimensional space.

Striking a Balance Between Model Fit and Model Smoothness. By

specifying the model in terms of smooth functions rather than detailed parametric

relationships it is possible to avoid otherwise cumbersome and unwieldy models. The

“wiggliness” of a smooth function (i.e., the trade off between over- and under-fitting the

data) is controlled by the integrated square of the second derivative of a covariate,∫ 1
0 [f ′′(x)]2dx, multiplied by λ, a smoothing parameter (Wood, 2006). As λ tends towards

infinity, the estimate of f(x) will become a straight line, whereas λ = 0 will result in an

un-penalized (wiggly) estimate. One way of (objectively) determining λ is through

generalized cross validation (GCV). As Hastie and Tibshirani (1990) put it, “it is a way to

let the data show us the appropriate functional form” of a smooth (p. 1; emphasis is theirs).

The GCV objective is to minimize the error between the model-predicted value of a

missing data point and its real value. In brief, the flexibility of a GAMM is determined by

λ and GCV rather than by the number and location of spline knots (Wood, 2006).

Number of Knots and Knot Locations. By default, knot are located at a

covariate’s quantiles. Given that model smoothness is determined by λ and GCV, the exact

number of knots to use is not generally critical. Nevertheless, it should be large enough

that one is reasonably sure of having enough degrees of freedom to represent the underlying

“truth” reasonably well, but small enough to maintain reasonable computational efficiency

(Wood, 2006, also see the help page for function choose.k in R).

Probability Values for Smooth Terms. To calculate a smooth’s probability

value, a Wald statistic, T is first computed:

T = f ′V ∗f f (3)

where f is the vector of values of a smooth term, and V ∗f is the rank r pseudo-inverse of the
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corresponding Bayesian covariance matrix Vf , and r is the estimated degrees of freedom

(edf) for the term (Wood, 2013). T is then compared to a χ2 distribution with degrees of

freedom equal to edf for the term plus α (e.g., 0.05) times the number of estimated

smoothing parameters.

Confidence Intervals. Smooths have Bayesian confidence intervals around them,

which are obtained by taking the quantiles from the posterior distribution of the f(x)’s

(Marra & Wood, 2012).

Goals of the Present Study

The goal of this paper is to demonstrate how relaxing the assumption of linearity can

lead to better modelling of ERP data. We also demonstrate how to model nonlinear

relationships using GAMM. This paper has been written in LATEX using Sweave and R, and

the source document is provided as supplementary material. The data, a pdf of this paper,

the .Rnw file used to write it, and the R code used to generate all of the analyses, tables,

and figures presented in this paper are available in package nlEEG. The package is available

as supplementary material or from http://hdl.handle.net/10222/22146.4 The paper

also has a second set of supplementary material entitled What’s Under the Hood: A Brief

Introduction to GAMM also available from http://hdl.handle.net/10222/22146. These

resources can be used to work through the examples, and potentially act as a starting point

for the reader’s own forays into GAMM analysis. This paper can, however, be read and

understood without viewing the accompanying R code.

Example ERP Data

The ERP data used here was collected in the context of an immediate free recall

experiment described in Tremblay (2009) and Tremblay and Baayen (2010). The goal of

this experiment was to investigate whether frequently used four-word sequences, such as

4The R code chunks contained in this paper are also available as individual .R files in folder

nlEEG/vignettes/Rcode chunks.
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end of the year, I don’t really know, and at the same time, may be (de)composed via the

application of compositional rules or stored and retrieved as wholes (in which case they

should show effects of the frequency of co-occurrence of the four-word sequence). This was

achieved by examining whether the frequency of such phrases affected early ERP

components such as the anterior N1 (N1a) and the posterior P1. Both of these components

peak approximately 110–150 ms after stimulus presentation, and were previously found to

be modulated in studies of single words by linguistic variables including frequency and

length (Sereno, Rayner, & Posner, 1998; Assadollahi & Pulvermüller, 2003; Hauk &

Pulvermüller, 2004; Hauk, Davis, Ford, Pulvermüller, & Marslen-Wilson, 2006; Murphy,

Roodenrys, & Fox, 2006; Penolazzi, Hauk, & Pulvermüller, 2007). Tremblay (2009)

reported that higher-frequency four-word sequences indeed elicited more negative N1 and

less positive P1 amplitudes than low-frequency sequences.

However, additional data were collected in this study that were not analyzed in

Tremblay (2009) or Tremblay and Baayen (2010). In the present paper, we investigate

whether working memory capacity, the length of the second word of a sequence, and the

position in a list where a four-word sequence was presented (i.e., whether it was presented

first, second, . . . , fifth, or sixth in a block), and their interaction affected ERPs in the

memory task.5

In the analyses presented here we focused on the N1a as the ERP component of

interest. The N1a is known to be sensitive to spatial attention as well as lexical frequency,

probability of occurrence, and word length (e.g., Luck, 2005; Murphy et al., 2006; Penolazzi

et al., 2007, and references cited therein). For instance, high-frequency words elicit greater

N1a amplitudes than low-frequency words, and longer words elicit larger N1a amplitudes

than shorter ones. Because in this paper our focus is on demonstrating nonlinear analysis

5The second word of a sequence appeared, more often than not, right where the fixation cross was

presented (centre of the screen). Thus, the second word of a sequence was the first word that participants

saw. It stands to reason that the longer the second word of a sequence, the greater the amplitude of the N1

should be given that longer words elicit larger anterior negativities (Murphy et al., 2006).
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and comparing it to a linear approach, we limited our analyses to a single electrode (Fz,

located along the midline, midway between the nose and the vertex of the head) where the

N1a component was maximal, and we do not discuss the implications of our results with

respect to the cognitive or linguistic literature. Nevertheless, we do provide the R code to

perform a GAMM analysis of the whole scalp, as well as results, in section GAMM

Analysis of Entire Scalp in 80–180 ms Window in supplementary material What’s Under

the Hood: A Brief Introduction to GAMM.

Participants

Ten right-handed female students from the University of Alberta were paid for their

participation in the experiment. (Mean age = 23.4; SD = 1.6; min/max = 22/27). All were

healthy native speakers of English, had normal or corrected-to-normal vision, and did not

report any neurological deficits. Participants had a mean handedness score (Oldfield, 1971)

of 79.5/100 (SD = 15.8). We assessed participants’ reading span and working memory

capacity (henceforth WMC) using an adaptation of the Daneman and Carpenter (1980)

test presented on a PC using E-Prime (Mean WMC score = 73/100; SD = 10.4).

Study design

The stimulus list consisted of 432 four-word sequences taken from the British

National Corpus (Davies, 2004). Some examples are end of the year, I don’t really know, at

the same time, I have to say, it would be a, at the age of, this is not a, we’ve got to get, and

I think it’s the. Frequencies, which were obtained from the Variations in English Words

and Phrases search engine (Fletcher, 2008), ranged from 0.03 to 105 occurrences per

million. The stimuli were divided into 72 blocks. Each block was divided into 18 trials,

where in each trial six four-word sequences were randomly presented one at a time in the

middle of the screen with an inter-stimulus interval of roughly 4000 ms. Sequences

subtended on average ∼ 5◦ x 0.4◦ visual angle; the longest four-word string (becoming

increasingly clear that) subtended ∼ 8◦ x 0.4◦ visual angle. At the end of each trial (i.e.,
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after having seen six four-word sequences), participants were prompted to type in as many

sequences as they could recall.

EEG Recordings and Processing

Electroencephalogram (EEG) recordings were made with active Ag/AgCl electrodes

from 32 locations according to the international 10/20 system

(www.biosemi.com/headcap.htm) at the midline (Fz, Cz, Pz, Oz) and left and right

hemisphere (Fp1, Fp2, AF3, AF4, F3, F4, F7, F8, FC1, FC2, FC5, FC6, C3, C4, T7, T8,

CP1, CP2, CP5, CP6, P3, P4, P7, P8, PO3, PO4, O1, O2), as well as the right and left

mastoids, and referenced online at the common mode sense active electrode. Electrodes

were mounted on a nylon cap. Eye movements were monitored by electrodes placed above

and below the left eye and at the outer canthi of both eyes, which were bipolarized off-line

to yield vertical and horizontal electro-oculograms (EOG). Analog signals were sampled at

8,192 Hz using a BioSemi (Amsterdam, The Netherlands) Active II digital 24 bits

amplification system with an active input range of ±262 mV per bit and were band-pass

filtered between 0.01 and 100 Hz. Note that Biosemi uses active electrodes and therefore

can tolerate high scalp impedances.6

The digitized EEG was initially processed off-line using Analyzer version 1.05 (Brain

Products GmbH, Gilching, Germany): It was re-referenced to the average of the right and

left mastoids, downsampled to 128 Hz (using an Analyzer script), band-pass filtered from

0.01 to 30 Hz using a forward-backward filter combination where each of the filters was

comprised of a two pole zero phase infinite impulse response Butterworth filter, and

corrected for eye movements and eye blinks by regressing out the vertical and horizontal

EOGs (Gratton, Coles, & Donchin, 1983). The processed signal was then segmented into

6As mentioned in http://www.biosemi.nl/forum/viewtopic.php?t=486&highlight=impedance, for

active electrodes “EEG currents do not (significantly) flow via the electrodes because the input impedance of

all current biopotential amplifiers is very high. So, typical electrode impedances (smaller than a few hundred

kOhm) do not influence measured EEG voltages”. Our impedances were around 25 Ohms.
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epochs of 3000 ms (1500 ms before and after stimulus onset). Each epoch was baseline

corrected on the 1500 ms segment immediately preceding stimulus onset.

An mp4 movie of the scalp topographies through time can be downloaded from

http://hdl.handle.net/10222/22146. Figure 2 is an animation of the scalp topography

through time. The very first frame of the animation depicts the scalp topography at time

t = 141 ms where the N1a was maximal. It is apparent from the scalp animation as well as

from the bottom panel of Figure 2, that a negative deflection around electrode Fz — the

N1a — began at t ∼ 78 ms, peaked at time t = 141 ms (∼ −5µV ), and returned to baseline

at time t ∼ 180 ms. Our window for analysis was thus chosen as 80–180 ms.

Results

The three predictor variables (fixed effects) under investigation were (1) the position

of the four-word sequence in the set of six items presented in a block (Position), (2) the

length of the second word in the four-word chunk (Length)7, and (3) the working memory

capacity of the participant (WMC). These predictor variables were transformed prior to

plotting or analysis. We first mean-centered Position, Length, and WMC by subtracting

the mean of a variable from each of its values. The main purpose of this centering was to

increase numerical stability and remove any spuriously high correlation that may arise

between random intercepts and random slopes as well as between fixed and random

variables (Hofman & Gavin, 1998; Kreft & De Leeuw, 1998; Baayen, 2008). We first

present the results from the behavioural analysis and then move on to the ERP analysis.

Behavioural Results

We investigated whether Length, Position, WMC, and their interactions affected

the probability of correctly recalling a four-word sequence. In order to be correctly recalled,

a four-word sequence had to be recalled exactly. That is, if the target sequence was in the

7The second word was chosen because it most often overlapped the center of the monitor where subjects

fixated between trials
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middle of, any response other than in the middle of was considered to be incorrect (e.g., in

the middle, in the middle and, in the middle of a, or at the middle of). However, we

accepted minor misspellings such as in the mdle of or n the midle of.

Table 1

Result of the behavioral analysis. Pos = Position. Lngth = Length, WMC = Working

Memory Capacity. edf = estimated degrees of freedom.

edf Chi.sq p-value

Pos 4.6 367 < 0.001

Lngth 7.8 23.3 0.004

WMC 1 4 0.045

Pos:Lngth 5.5 11.3 0.136

Pos:WMC 8.4 30.8 0.001

Lngth:WMC 1 2.5 0.112

Pos:Lngth:WMC 9.5 14.3 0.325

The optimal GAMM model is summarized in Table 1. The model included significant

Position× Length and Position×WMC interactions. Note that although the summary

table states that p-value for the Position× Length interaction was greater than 0.05, it

can be concluded from both the AIC comparison and the 95% confidence interval that this

interaction should remain in the model.8 Results of the behavioural analysis are depicted in

Figure 3. In panel (A), it can be seen that Length had a small effect on the probability of

correctly recalling a four-word sequence. More specifically, recall probabilities were greatest

when the second word was 2 to 6 letters long at positions 5 and 6. Panel (B) illustrates the

Position×WMC interaction, which exhibited an overall recency effect whereby more

recently presented four-word sequences were more likely to be correctly recalled. The

8We do not consider the 3-way Position × Length ×WMC or the 2-way Length ×WMC interactions

given that p > 0.05 and they were not warranted by way of AIC comparisons.
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recency effect possibly reflected an advantage in activation strength for the sequences that

were presented more recently within a block (Jones & Oberauer, 2013). However, it was

more pronounced for participants with higher working memory capacity scores.

Furthermore, people with a WMC score below 0.7 did not reliably recall four-word

sequences presented in positions 1, 2, and 3, whereas people with a WMC score above 0.7

exhibit a small primacy effect in position 1.

ERP Results

Discretized Variables and ANOVA

Although our main goal in this paper is to demonstrate the application of nonlinear

analysis using continuous variables, we first show the data treated categorically. Position

was treated as having 6 levels while Length and WMC were dichotomized as high/low

based on a median split. Figure 4 shows waveforms and mean N1a amplitudes for each

level of each of these three variables. No effect of Length is apparent in this figure.

However, there do appear to be amplitude differences for different levels of Position

(middle panel) — in particular, items that appeared first in the lists show a more negative

N1a than subsequent positions. As such, there may be a nonlinear relationship between

Position and N1a amplitude. The bottom panel also suggests the possibility of an effect of

WMC, where participants with a higher WMC showed a more negative N1a than those

with a lower working memory capacity.

Figure 5 shows waveforms and mean amplitudes for two- and three-way combinations

of levels of the independent variables (corresponding to the two- and three-way interactions

in an ANOVA model). There is a possible Length × Position interaction, where long words

in first position may have elicited a more negative N1a than short words in first position.

There also may be a Length × WMC interaction and a WMC × Position interaction. In

the former case, shorter words may have elicited a smaller N1a in participants with a low

working memory capacity. In the latter case, the position effect on N1a amplitudes may
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have been stronger in participants with high than low working memory capacity. Finally,

there is possibly a three-way interaction (bottom panel), where long words in the first

position elicited a more negative N1a in participants with low than high working memory

capacity (the leftmost black and red bars). We performed a repeated measures ANOVA to

test these observations. It revealed that only the main effect of Position was reliable

(F (5,96) = 6.2, p < 0.001).

GAMM Analysis Assuming Linearity

The present analysis (using only the parametric component of GAMM) simply

treated each variable as continuous. Results are shown in Table 2. This model suggests

that there was a significant main effect of Position and a significant Length×WMC

interaction. These effects are depicted in Figure 6.

The Position effect shown in panel (A) suggests that the amplitude of the N1a

decreased (became more positive) as position increased.9 It is illustrated in panel (B) that

the length of the second word of a sequence modulated the amplitude of the N1a. More

specifically, it increased (became more negative) as the working memory capacity score of a

participant increased for words 1 to 6 letters long, but decreased (became more positive)

for words 7 to 12 letters long.

While it is notable that these effects were found under the assumption of linearity,

Figure 4 suggested that Position had a nonlinear relationship with N1a amplitude.

Describing the source of this main effect would necessitate drawing inferences over the six

levels of Position from a relatively large number of pairwise comparisons.10 Fitting a single

nonlinear function to Position could simplify the description and interpretation of the

9Because the N1a has a negative polarity, we refer to less negative amplitudes as “decreases” and more

negative amplitudes as “increases”.
10While contrasts such as Helmert could also describe this relationship somewhat more parsimoniously,

we had no a priori assumption as to the shape of the relationship between Position and N1a amplitude so

the choice of appropriate contrast weights would have to be made post hoc.
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effect without recourse to cumbersome post hoc testing. In addition, it may be the case

that the assumption of linearity missed important structure in the data. In the next

section, we explore models for which linearity is not assumed.

Table 2

Model for which linearity was assumed. Pos = Position. Lngth = Length, WMC =

Working Memory Capacity.

Estimate Std.Error t− value p− value

Pos 0.142 0.018 8.0 <0.001

Lngth −0.037 0.029 −1.3 0.198

WMC −0.645 1.376 −0.5 0.639

Pos:Lngth 0.005 0.010 0.5 0.635

Pos:WMC −0.255 0.167 −1.5 0.125

Lngth:WMC 0.472 0.152 3.1 0.002

Pos:Lngth:WMC −0.034 0.095 −0.4 0.722

Moving Away from the Assumption of Linearity

The possibility of nonlinear relationships between our predictor variables and N1a

amplitude is supported by Figure 7, in which mean N1a amplitude at each sampled level of

each variable are plotted, along with a form of best-fitting nonlinear functions (lowess

smooths).11 The Length effect (top left panel) appears to be curved with relatively

constant (and small) N1a amplitudes from values 1 to roughly 6, after which N1a

amplitude increases with increasing word length. The effect of Position (bottom left panel)

shows an opposite pattern. The amplitude of the N1a is most negative in the first position,

less so in second, third, and fourth positions, and then increases slightly in the fifth and

11A lowess smooth uses locally-weighted polynomial regression. ‘Local’ is defined as a window of a certain

span around each data point (e.g., 50 data points to the left and to the right). Each data point within a

window is influenced (i.e., weighted) by its “neighbours”. See ?lowess in R for more details.
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sixth positions. The WMC effect (top right panel) is more complex, with an initial

increase in N1a amplitude from the lowest to low-middle WMC levels, followed by a

decrease and then a subsequent increase for people with the highest WMC.

We thus fitted a GAMM without assuming linearity. It included a three-way

interaction Position× Length×WMC and all lower order interactions and main effects,

with by-subject and by-item random effects. We allowed the model to use up to 227

degrees of freedom, but GAMM deemed that 55 degrees of freedom were needed to

appropriately model the data. This model was more likely given the data than the one

assuming linearity (model assuming linearity: df = 9, AIC = 357382; model not assuming

linearity: df = 55; AIC = 357228; difference: df = 46, AIC = 154). Results are provided

in Table 3. The plot of the three-way interaction is shown in Figure 8.

Table 3

Model for which linearity was not assumed. Pos = Position. Lngth = Length. WMC =

Working Memory Capacity. edf = estimated degrees of freedom.

edf F p− value

Pos 4 27.6 <0.001

Lngth 1 1.0 0.332

WMC 1 0.2 0.629

Pos:Lngth 9 2.9 0.001

Pos:WMC 12 4.5 <0.001

Lngth:WMC 4 2.8 0.016

Pos:Lngth:WMC 24 1.6 0.020

As in the analysis assuming linearity, here we found a significant main effect of

Position. This confirmed the pattern observed in both Figures 4 (discretized variables)

and 7 (continuous variables) whereby N1a amplitudes were largest for words in the first

position but were more or less consistent across subsequent positions. The lack of
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significant main effects for Length or WMC are also consistent with the linear analysis,

suggesting that although the nonlinear curves shown in Figure 7 appeared to describe the

data more closely than a straight line would have, nevertheless these relationships were not

statistically reliable.

More striking differences between the linear and nonlinear analyses reside in the

interaction structure of the models. While the linear model only included a significant

Position×WMC interaction, the model for which linearity was not assumed contained a

significant three-way interaction Position× Length×WMC. Recall that this interaction

was predicted above based on our examination of the plots shown in Figure 5. The

three-way interaction is depicted in Figure 8, where the Length × WMC interaction is

plotted at each Position. Note that regions shaded in white correspond to portions of a

surface where the 95% confidence interval included 0 µV . Given the principle of marginality

(Venables, 1998), we did not attempt to interpret the two-way interactions or main effects.

Figure 8 shows a complex relationship between Position, Length, and WMC. It is

apparent that the amplitude of the N1a increased with Position, and that the strongest

N1a occured at Position 6 as can be evidenced by the dark blue areas in the panel for this

position. Moreover, the areas shaded in white indicate that the significance of the N1a

decreased as Position increased, that is, the regions where the 95% confidence interval

included 0 µV became larger and larger: Whereas the whole surface was essentially

significant at positions 1 and 2, the N1a at positions 4, 5, and 6 was less and less reliable,

especially for longer words and for participants with a WMC score below 0.65. Starting at

position 4, the amplitude of the N1a elicited by 8–12 letter words was essentially 0 µV

while the N1a to 3 letter words became increasingly unreliable. At position 6, only 1–2 and

4–8 letter words exhibited a significant N1a, and only for participants with a WMC score

above 0.65.

In the behavioural analysis, we had found that Position, Length, and WMC affected

the probability of a four-word sequence being correctly recalled. More specifically, (i)
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sequences for which the second word was longer were less likely to be correctly recalled, (ii)

more recently presented four-word sequences were more likely to be correctly recalled, (iii)

this effect was more pronounced for people with higher WMC scores, and (iv) people with

a lower WMC score correctly recalled four-word sequences only when they were presented

in the last three positions. Our ability to relate the ERP results back to behaviour,

however, is seriously compromised by the fact that we conflated successfully- and

unsuccessfully-recalled sequences. In the next section, we attempt to characterize the

relationship between the probability of recall of a four-word sequence and N1a amplitudes.

We additionally investigate whether the length of the second word of a sequence, the

working memory capacity of a participant, and the position in which a sequence was

presented modulated this relationship.

Linking Behaviour and Scalp-recorded Potentials

In order to relate the behavioural and ERP results, we first computed the probability

of recall of each four-word sequence for each participant from the model obtained in the

behavioural analysis. We subsequently fitted a GAMM that included a four-way interaction

Position× Length×WMC× Probability of Recall to N1a amplitudes. Results are

provided in Table 4 as well as in Figure 9.

This model was much more likely than the previous one (model with 3-way

interaction: df = 55, AIC = 357228; model with 4-way interaction: df = 106, AIC =

351639; difference: df = 51, AIC = 5589). The four-way interaction was significant

(F (40, 53229) = 0.4, p < 0.001) thus suggesting that the N1a was not only affected by

Position, Length, and WMC, but was also modulated by Probability of Recall. In Figure

9, each row corresponds to one of the quantiles of the Probability of Recall variable (0, 0.16,

0.25, 0.39, and 0.92) whereas each column corresponds to one of five Length values (1, 4, 6,

9, and 12). The most noteworthy feature in Figure 9 is the increase of N1a amplitudes with

the probability of correctly recalling a four-word sequence. Specifically, it was equal to 0
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Table 4

Linking behavioural and ERP data. Pos = Position. Lngth = Length. WMC = Working

Memory Capacity. PrRec = Probability of Correct Recall. edf = estimated degrees of

freedom.

edf F p− value

Pos 4 8.2 <0.001

Lngth 1 2.7 0.100

WMC 1 0.2 0.693

PrRec 3 3.1 0.019

Pos:Lngth 5 3.4 0.002

Pos:WMC 11 2.9 <0.001

Lngth:WMC 1 2.3 0.128

Pos:PrRec 5 2.5 0.019

Lngth:PrRec 1 2.2 0.141

WMC:PrRec 1 1.1 0.317

Pos:Lngth:WMC 12 0.6 0.903

Pos:Lngth:PrRec 3 3.3 0.010

Pos:WMC:PrRec 12 1.2 0.264

Lngth:WMC:PrRec 6 2.2 0.031

Pos:Lngth:WMC:PrRec 40.0 0.4 <0.001

µV when the probability of recall was 0, but increased to -15 µV at position 1 for longer

words in people with higher WMC scores when the recall probability was 0.92.

It is known that the N1a is associated with attention, and that attended items

typically elicit higher N1a amplitudes (e.g., Luck, 2005; Penolazzi et al., 2007, and

references cited therein). If the N1a indexes the amount of attentional resources allocated

to encoding a sequence, then it can be concluded that the successful recall of a four-word



NON-LINEAR RELATIONSHIPS IN ERP DATA. 24

sequence is associated with the allocation of greater amounts of attentional resources

during the encoding phase. Furthermore, longer sequences presented in the first few

positions required greater amounts of attention in order to be correctly recalled, and people

with higher WMC scores were able to allocate more attentional resources to these items

than people with lower WMC scores.

Discussion

Relaxing the assumption of linearity enabled us to gain a better understanding of the

data by capturing important structure that was overlooked in the model for which linearity

was assumed. Indeed, only a main effect of Length and a Position×WMC interaction

were uncovered in this model whereas the one for which linearity was not assumed revealed

a significant three-way interaction Position× Length×WMC. Moreover, even if these

interactions would have reached significance in the model assuming linearity, the

association strength between N1a amplitudes and these interactions (as indexed by the

percentage of deviance explained, a type of effect size) would have been much lower than in

the one for which linearity was not assumed, as can be seen in Table 5. In the model for

which linearity was not assumed, the Position main effect and the Length×WMC

interaction accounted for roughly twice as much deviance as in the one assuming linearity

(i.e., double the effect size). Moreover, the Position×Length×WMC in the former model

accounted for 337 times more deviance than the same interaction in the latter model (i.e.,

this effect was 337 times greater). It is important to note that the extra amount of deviance

explained by the model for which linearity was not assumed is not due to data over-fitting.

Indeed, the effects depicted in Figures 8 and 9 were obtained by penalized regression and

GCV – a data-driven approach that strikes a balance between under- and over-smoothing

the data. If the effects should have been a straight line, GAMM would have penalized them

to that extent, as it did in the examples provided in panels (B) and (D) of Figure 1.

By not assuming linearity, we were also able to push our understanding of the data
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Table 5

Percentage of the deviance explained by each fixed-effect term of the model assuming

linearity and the one not assuming linearity. The terms in bold face correspond to ones that

were significant in the model for which linearity was not assumed. Overall, the model for

which linearity was assumed accounted for 2.75% of the variance whereas the one for which

it was not assumed accounted for 2.88% of the variability in the data (including random

effects).

AssumingLinearity NotAssumingLinearity

Pos 0.115400 0.204800

Lngth 0.000200 0.000000

WMC 0.000100 0.000200

Pos:Lngth 0.000200 0.073000

Pos:WMC 0.003400 0.136400

Lngth:WMC 0.017600 0.035100

Pos:Lngth:WMC 0.000400 0.134800

even further by allowing the Length×WMC smooth surfaces at each Position to vary

according to the probability of correct recall of a four-word sequence. The results obtained

from this model – shown in Figure 9 – were in close agreement with the continuous

averages illustrated in Figure 7. More specifically, the N1a (1) increased as Length

increased, (2) was smaller for people with intermediate WMC scores (for low recall

probabilities), and (3) was greater in the first few positions. In the remainder of the

discussion, we tackle a few questions that may have arisen while reading the paper.

When Can a Continuous Variable be Discretized. As mentioned in the

Introduction, discretizing an inherently continuous variable comes at the cost of decreasing

statistical power, increasing the probability of false positives, and increasing the probability

of false negatives (Cohen, 1983; McCallum et al., 2002). If for some reason or another a
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researcher is interested in dichotomizing a variable, this should be done on the results of an

analysis where continuous variables where used and linearity was not assumed. A threshold

for category membership can then be derived from the model predicted values.

Hypothesis Testing and Exploratory Analyses. It is often believed that not

assuming linearity implies that one is conducting an exploratory analysis. Although it may

be true in some cases, an analysis in which linearity is not assumed may just as well be

based on a priori hypotheses. Both types of analyses can be performed with the same

analysis pipeline used here. That is, a hypothesis can be deemed true or false by virtue of

the effect of interest being present or not in the most likely model.

Overfitting. It is the belief of some researchers that once the assumption of

linearity is relaxed, the risk of fitting idiosyncratic features of the data is greatly enhanced.

Given that GAMM uses GCV to strike a balance between over- and under-fitting the data,

the fitting of idiosyncratic features is unlikely to arise (see section Generalized Cross

Validation in supplementary material What’s Under the Hood: A Brief Introduction to

GAMM for more details and some examples). An example of this was shown in Figure 1

(i.e., GAMM did not over-fit the data). The analysis pipeline also includes the viewing of a

smooth’s 95% confidence interval, which further protects against over-fitting. Portions of

the smooth for which 0 (the baseline) is included in the confidence interval are considered

to be flat (however wiggly they may be).

Sample Size. It is sometimes thought that in order to perform mixed-effects

modelling one needs a sufficient number of observations. One should not forget that a

repeated-measures ANOVA is also a mixed-effects model, which is often used to model

small data sets without any problems. The reason we analyse our data at the single-trial

level is not because we need a large sample size to perform mixed-effects modelling, but

rather to account for sources of bias that would otherwise be lost during the averaging

process and irreversibly affect the averages. For example, it affords us the possibility to

account for unequal sample sizes between groups, a situation that commonly arises in ERP
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data (some trials and/or channels are usually removed). If we were to aggregate the data

as is traditionally done, it would appear to contain an equal number of data points in each

cell, but in fact the averages would be biased (i.e., they would have been obtained from

unequal sample sizes). Another reason regards the removal of outlier data points. If the

data is un-averaged, data points with undue influence can be removed based on model

residuals, thus making the results more generalizable. If the data is first averaged, outlier

data points will have irreversibly affected the averages. In our experience, the need to

average the data has only come about for computational tractability.

Note that an analysis for which linearity is not assumed can always be used whatever

the size of the data (and still find significant effects). Some examples of this using real data

sets with sample sizes between 56 and 180 are provided in file

chunk25-smallSampleSizeExamples.R (which can be found in the .Rnw file or in folder

nlEEG/vignettes/Rcode chunks of supplementary material nlEEG).

Model Convergence Problems. Model convergence problems are most likely to

arise when (1) the researcher is attempting to fit a model with too many predictor variable

relative to the number of data point in the data, (2) there are too many redundant

predictor variables (high collinearity), and/or (3) the random effect structure is too

complex. In the first case, one should not include in the model more predictor variables

than the sample size divided by 15 (e.g., 990 data points / 15 = 66 variables). In the

second case, the researcher should deal with the collinearity present in their data in some

way or another (see, e.g., Tremblay & Tucker, 2011). In the third case, the researcher

should fit his or her model with simpler and simpler random effect structures until the

model converges. The most important random effects to include in a model are crossed

by-subject and by-item random intercepts, which in our experience are always warranted,

as well as by-subject adjustments for regions of interest (to account for both individual

variation in the scalp distribution of the effects as well as individual spatial correlations

between levels of regions of interest; Newman, Tremblay, Nichols, Neville, & Ullman,
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2012). Note that, in our experience, models including these random effects always converge.

In some analyses of ERP data, adding by-item random intercepts, and especially by-item

random smooths, results in models that are computationally intractable. This forces us,

unfortunately, to omit them from our models. With smaller sample sizes, computational

tractability becomes less of a problem and one can usually include these random effects.

Conclusion

In order to deal with the complexity of ERP data, it is very common to assume that

the relationship between ERP amplitudes/latencies and independent variables is linear.

This assumption does not always hold, however. Although in some ERP studies the

assumption of linearity has been relaxed, these studies have typically employed the

common practice of discretizing continuous variables, which has been shown elsewhere to

be suboptimal.

In this paper, we have demonstrated how nonlinearities in ERP data can be modeled

using generalized mixed-effects modelling in R. This revealed that the assumption of

linearity may lead one to draw incorrect inferences from his/her ERP data. More

specifically, we have illustrated how the assumption of linearity may (i) increase the

probability of false negatives, (ii) if a relationship is obtained, provide a limited or incorrect

representation of the true relationship between variables, and (iii) under-estimate the

strength of the association between variables.

In spite of the clear potential advantage of nonlinear analyses in capturing the true

structure of the data, the greatest limitation of this technique is probably the added

complexity in interpreting the results. In the present case we have demonstrated that this

complexity is not necessarily uninterpretable however, and indeed the results provide a

much richer understanding of the data than could be provided by linear assumptions.

On a closing note, whether or not a researcher predicts that the relationship between

a response variable and an independent variable is linear, if the independent variable is
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continuous and has an adequate distribution we believe that linearity should never be

assumed. If the relationship is in fact linear, GAMM will conclude that it is linear (as was

illustrated in Figure 1, panel D) and results will be that much more convincing. If the

relationship emerges as non-linear then theory can be adjusted.
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Figure 2 . Scalp topography at time t = 141 ms where the N1a was maximal. Blue colors

indicate negative amplitudes while red colors indicate positive amplitudes. Green indicates

an amplitude of 0 µV . The bottom panel shows the average waveform of each of the 32

electrodes overlaid on top of each other (each electrodes is graphed with a different color).

The x-axis represents time in milliseconds and the y-axis is amplitude in µV . A vertical

black bar marks the peak of the N1a component. An animation depicting the evolution of

the scalp topography from -100 to 600 ms can be viewed with Acrobat Reader. To play

the animation, click on one of the “triangle buttons” right below the figure. The triangle

pointing toward the left will play the animation backward. The one pointing to the right

will play it going forward. The animation can be manipulated by clicking on the “<” and

“>” buttons to move the animation one frame at a time backward or forward, respectively.

The “|<” and “>|” buttons make the movie start from the beginning or go to the end,

respectively. The “->|<-” button to the right restores the animation to it’s default speed.

The “-” and “+” buttons to its left and right make the animation go slower or faster,

respectively.
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Figure 3 . Results of the behavioural analysis. (A): Effect of the Position× Length

interaction on the probability of correctly recalling a four-word sequence. (B): Effect of the

Position×WMC interaction. Bluer colors reflect smaller probabilities of correctly

recalling a sequence whereas redder ones indicate higher probabilities. The numbers

appearing on the contour lines are recall probabilities. Regions shaded in white included a

probability of correct recall of 0 in their 95% confidence interval.
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shown using the same color coding as in Figure 2. The scale is provided at the bottom of

the figure. The small numbers on the black lines are isovoltage lines with the voltage in

microvolts provided.
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Figure 8 . Results of the GAMM analysis were linearity was not assumed. Each panel

shows the Length × WMC interaction at each position. The amplitude of the N1a is shown

using the same color coding as in Figure 2. The scale is provided at the bottom of the

figure. The small numbers on the black lines are isovoltage lines with the voltage in

microvolts provided. Regions shaded in white correspond to portions of the smooth that

included 0 µV within the surface’s 95% confidence interval.
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Figure 9 . Four-way interaction Position×Length×WMC ×ProbabilityofCorrectRecall.

Each panel shows the WMC × Position model predicted N1a amplitudes for one of five

lengths (columns) and probability of recall values (rows). In each panel, the x - and y-axes

are WMC and Position, respectively. Lngth = Length. PrRec = Probability of Recall.

Details are as for Figure 8.
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