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ABSTRACT

In order for battery manufacturers to have a sustainable business, the batteries
they produce must be as safe as possible. For lithium-ion batteries, reducing the
flammability of the electrolyte is considered to be one way to improve safety, which
might be achieved by adding flame retardants to the electrolyte. On the other hand,
sodium-ion batteries are attracting attention from academic researchers due to the
abundance of sodium reserves compared to lithium reserves. However, there are virtually
no studies about the safety of sodium-ion batteries. In this thesis, studies of these two
issues will be reported.

The reactivity of charged/discharged electrode materials for sodium-ion batteries
in different solvents and electrolytes at elevated temperature was studied using
Accelerating Rate Calorimetry (ARC). Hard carbon was studied as a negative electrode
material for sodium-ion batteries. The reactivity of sodium-inserted hard carbon in
solvents and electrolytes was investigated. Then, the reactivity of sodium-inserted hard
carbon was compared to lithiated graphite. NaCrO,, NayCoO, and NaNiysMn,sO, were
studied as positive electrode materials for sodium-ion batteries. The electrochemical
performance of these materials was investigated. The reactivity of charged NaCrO,,
Na,Co0O, and NaNipsMnosO, in solvents and electrolytes was studied using ARC.
Sodium bis(trifluoromethanesulfonyl)imide (NaTFSI) was studied as an electrolyte salt
for sodium-ion batteries. The electrochemical performance of hard carbon and NaCrO, in
NaTFSI/PC electrolyte was studied. The reactivity of sodium-inserted hard carbon and
deintercalated NaCrO; in NaTFSI/PC electrolyte was also investigated.

Triphenyl phosphate (TPP) was studied as a flame retardant additive for
lithium-ion batteries. Its impact on electrochemical performance of negative electrode
materials (petroleum coke and graphite) and positive electrode materials
(LiNi;3Mn;3Co0130, (NMC) and LiNipgCoq15Alp 0502 (NCA)) was studied using an
automated storage test, symmetric cells and Electrochemical Impedance Spectroscopy
(EIS). The reactivity of lithiated graphite, deintercalated NMC and NCA in electrolyte
containing TPP was investigated using ARC. Finally, the flammability of electrolytes
containing TPP was studied using a Self-Extinguishing Time (SET) test.
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CHAPTER 1 INTRODUCTION

1.1 Introduction to the safety of metal-ion batteries.

1.1.1 Introduction to the reactivity of battery materials

In order for battery manufacturers to have a sustainable business, the batteries
they produce must be as safe as possible. The safety record of Li-ion batteries has been
excellent because there are strict safety guidelines and battery manufacturers have paid
close attention to potential hazards in battery systems [1]. Manufacturers and scientists
have developed various test methods to measure the safety performance of lithium-ion
batteries, such as the oven test, short circuit test, overcharge test and so on [2]. One of the
most important considerations for battery safety is the relative reactivities of
charged/discharged electrode materials with electrolytes or solvents at elevated
temperatures. Finding materials having lower reactivity generally leads to a safer cell [2].

For university researchers, fundamental studies of the reactivities of electrode
materials with electrolytes or solvents can be made using calorimetry. Accelerating Rate
Calorimetry (ARC) can used for such studies. Richard and Dahn studied the reactivity of
lithium intercalated graphite with 1M LiPF¢/EC:DEC electrolyte using Accelerating Rate
Calorimetry (ARC), and proposed a reaction mechanism [3, 4]. MacNeil ef al. studied the
reactivity of various carbonaceous negative electrode materials and pointed out that the

reactivity was strongly dependent on the surface area of graphitic samples [5]. Jiang et al.
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studied the effects of additions of the salts (LiPFs and LiBOB) to solvents on the thermal
reactivity of lithiated graphite. They showed that additions of LiPF reduced the reactivity
of lithiated graphite due to the incorporation of thermally stable LiF in the solid
electrolyte interface (SEI) [6].

MacNeil and Dahn also studied the reaction of LipsCoO, with nonaqueous
solvents, and they showed that Liy sCoO, decomposed to LiCoO, and CoO or Co304, and
that O, was released in these reactions. The majority of the heat detected in these
reactions came from the combustion of solvent with released O, [7]. Jiang et al. studied
the reactivity of the series of LiNixCo.oxMnxO; (x=0.1, 0.2, 0.35, 0.45) in non-aqueous
solvents and electrolytes using ARC [8]. Zhou et al. studied the effect of Al-substitution
on the reactivity of LiNi;;3Mn;;3Co130, (NMC) with non-aqueous electrolytes, and they
found that Al-substitution greatly reduced the reactivity of NMC without significantly

impacting the electrochemical performance of the material [9].

1.1.2 Introduction to fire-related safety concerns of lithium-ion batteries

In most commercial lithium-ion batteries, carbonate solvents are used in the
electrolytes. Co-solvents, such as dimethyl carbonate (DMC), ethylmethyl carbonate
(EMC) and diethyl carbonate (DEC), have relatively low flash points as shown in Table
1.1. This creates potential fire hazards in various types of accidents and abuse. These
organic solvents serve as fuel for combustion processes in open air when cells are

ruptured and the electrolytes are ignited by accidental sparks, or by thermal runaway of
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lithium-ion batteries caused by electrical or mechanical abuse.

Table 1.1 Some physical properties of organic solvents

Solvent Trmetting/C Thoiting/"C Tfiash pointing/"C
Ethylene Carbonate 36.4 248 160
Propylene Carbonate -48.8 242 132
Dimethyl Carbonate 4.6 91 18
Diethyl Carbonate -74.3 126 31
Ethylmethyl Carbonate -53 110 26.7

(Please refer to Appendix A for the structure of these solvents)

Recently, lithium-ion batteries have been used in electric vehicles. The Chevrolet
Volt is a plug-in hybrid electric vehicle that has received many awards. However, in June
2011 a Volt that had been intentionally subjected to a 20 mph (32 km/h) side pole impact
crash test followed by a post-impact rollover, caught fire three weeks later in the test

center parking lot, burning nearby vehicles. The battery was found to be the source of the

fire [10]. Figure 1.1 shows the picture of the Chevrolet Volt before and after the fire.

Figure 1.1 A picture of the Chevrolet Volt before and after a fire
3



There are other reports related to fires in lithium-ion battery powered electric
vehicles. One accident happened in Shenzhen, China in May, 2012. An electric-powered
taxi caught fire 4 seconds after a crash with a car speeding at 180km/h. Three passengers
were killed in this accident. The lithium-ion batteries used in the electric taxi were made
using LiFePO, as the positive electrode material. Charged LiFePO4 does not show any
significant reactivity in solvents or electrolytes until 300°C [11]. This result indicates that
any large lithium-ion battery can create a fire situation if temperatures are high enough,
just like a tank of gasoline.

Reducing the flammability of the electrolytes/solvents in lithium-ion batteries
would be one way to reduce the fire related safety concerns. Ionic liquids are currently
heavily studied due to their non-flammability; however, they are still far away from
practical applications [2]. For the present non-aqueous organic electrolyte systems,
adding flame retardants to the electrolyte is one way of reducing the flammability [12],

which will be discussed in section 1.3.

1.2 Introduction to sodium-ion batteries.

The first commercial lithium-ion battery was produced by Sony Corp. in 1991.
Since then, this safe, low-cost, environment-friendly device has been a "hot-spot" of
scientific study and industrial manufacture. Li-ion cells have been widely used in various
portable electronic devices, such as cell-phones, cameras, laptop computers, medical

devices, satellites, space vehicles and submarines. Lithium-ion batteries are presently
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considered the best electrochemical storage device for powering electric vehicles based
on their high energy density and long cycle life [2]. Based on the amount of annual mine
production of 2012, the known lithium reserves could be used for 382 years [13].
However, such calculation does not consider the potentially increasing demand for
lithium reserves annually to support a possible world-wide adoption of electric vehicles.
Additionally, lithium is not as abundant as other elements, like Fe, Al and Na. It is also
concentrated non-uniformly on the planet. For example, 50% of the known reserves of Li
are in Bolivia [14].

Another battery system---the sodium-ion battery, has gained popularity recently
[15-27]. Compared to lithium, sodium is much more abundant and widely distributed as
indicated in Figure 1.2. Therefore, sodium-ion batteries could be more sustainable than

lithium-ion batteries.

Al
- a.1%

Il._ Calcharn, 5%

e (Samlumn, OB
— Prlassian, L5
Tt M, 2%
T pltwe, B
e -~ H\_ L, 0. MOGE

Figure 1.2 Abundance of elements by weight in the earth’s crust [28]



A sodium-ion cell is analogous to a Li-ion cell except Na replaces Li. A Na-ion
cell includes: a positive electrode, a negative electrode, and an electrolyte (as shown in
Figure 1.3). On paper, a Na-ion cell can be made in the same way as a Li-ion cell by
simply “replacing” “Li” with “Na” in the electrode materials and electrolyte. In reality, it
is not so simple because the negative electrode, lithiated graphite of a Li-ion cell does not
have an analogous sodium counterpart. Additionally, there are more concerns and

potential issues with sodium-ion cells, which motivate more study.
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Figure 1.3 A schematic of a sodium-ion battery

1.2.1 Positive electrode materials for sodium-ion batteries

1.2.1.1 Na,CoO,

NayCoO, was studied as the first positive electrode material for sodium-ion

batteries. In the 1980s, Delmas et al. reported the electrochemical properties of P2-type



Nay70Co0;, for sodium cells [15]. The designation “P2” means Na atoms in prismatic
sites and a unit cell containing two CoO, slabs. Figure 1.4 shows the crystal structure of
P2-Na,;3Co00; in a [110] projection. Recently, the same group published a detailed study
of the electrochemical properties of NayCoO, having a P2-structure [16]. Figure 1.5
shows the potential versus specific capacity of a Na/Nay 74Co0; cell. Several plateaus and
steps, which are related to several Na,CoO; two-phase and single-phase domains during
intercalation and deintercalation, could be observed. They also pointed out that
electrochemical intercalation/deintercalation could be the best way to control the accurate

sodium content when synthesizing NayCoOs.
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Figure 1.4 Crystal structure of P2-Nay3Co00; in a [110] projection (Na sites are filled
with a probability of 1/3)
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Figure 1.5 Potential versus specific capacity of a Nag74CoO, electrode in a
Na/Naj 74C00; cell as reported in ref. [16]. Reprinted by permission from Macmillan
Publishers Ltd: Nature Materials. Copyright 2010.

1.2.1.2 NaCrO;,

The electrochemical properties of O3-type NaCrO, as a positive electrode
material for sodium-ion batteries were first studied by Delmas ef al. in 1982 [17]. Figure
1.6 shows a view of the crystal structure of O3-NaCrO; in a [110] projection. Figure 1.7
shows the first cycle of their NaCrO, vs. Na cell in NaClO4/PC electrolyte. NaCrO,
showed very low capacity which corresponds to a deintercalated compound of Nag 3sCrOs.
This poor electrochemical performance suggested that NaCrO, was not satisfactory as a

battery material.
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Figure 1.6 Crystal structure of O3-NaCrO, in a [110] projection
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Figure 1.7 First cycle of NaCrO; vs. Na in NaClO4/PC electrolyte as reported in ref. [17].
Reprinted from Materials Research Bulletin, with permission from Elsevier. Copyright
1982



Recently, Komaba et al. reported promising electrochemical performance of
03-type NaCrO, through optimization of the synthesis route [18]. Figure 1.8 shows the
potential versus specific capacity of NaCrO,/Na cells cycled between 2.0 and 3.6 V in
NaClO4/PC electrolyte using a current density of 25 mA/g .The material delivered a
capacity of about 120 mAh/g during the first charge and showed good capacity retention
after 20 cycles. NaCrO; is one of the best candidate positive electrode materials for
sodium-ion batteries from the view of electrochemical performance. In fact, in March,
2011, Sumitomo Electric Industries announced a commercial secondary sodium-ion
battery using NaCrO, as the positive electrode material, a Na alloy as the negative
electrode material and sodium bis (fluoro sulfonyl) amide (NaFSA) as the molten salt

electrolyte. This battery is expected to be commercialized in 2015.
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Figure 1.8 Charge/discharge curve of NaCrO2/Na cells cycled between 2.0 and 3.6 V in
NaClO4/PC electrolyte using a current density of 25 mA/g as reported in Ref [18].
Reprinted from Electrochemistry Communications, with permission from Elsevier.
Copyright 2010
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1.2.1.3 NaNio,sMno_soz

O3-type NaNipsMnosO, was studied as a positive electrode material for
sodium-ion batteries by Komaba et al. [19]. Figure 1.9 shows the potential versus specific
capacity for a NaNipsMngsO,/Na cell cycled between 2.0 and 3.8 V, and the capacity
versus cycle number for the cell. A couple of potential-capacity plateaus can be observed,
which are related to the phase transitions: Hex. O3— Mon. O3— Hex. P3—Mon. P3.
NaNij sMng 5O, could deliver a capacity of 150 mAh/g during the first charge and cycle
well for at least 20 cycles. The same group also reported the electrochemical performance
of NaNij sMng sO,/hard carbon Na-ion cells, which is shown in Figure 1.10. The cell has
a voltage of 2.8 V. Assuming the capacity of NaNiypsMngsO, (~ 120 mAh/g)/hard
carbon (~ 240 mAh/g), the sodium ion cells could achieve about 60% of the practical
energy density of a conventional lithium-ion battery (3.7 V) using LiCoO, (~ 140 mAh/g)
and graphite (~ 350 mAh/g) [20]. These promising results indicate that it is possible to

make a sodium-ion battery.
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Figure 1.9 Charge/discharge curves of NaNipsMngsO,/Na cells cycled between 2.0 and
3.8 V, and the cycle performance of the cells as reported in ref. [19]. Reprinted with
permission from The Electrochemical Society. Copyright 2009.
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Figure 1.10 Charge/discharge curve and cycle performance of NaNipsMngsOy/hard
carbon Na-ion cells cycled between 1.0 and 3.8 V as reported in ref. [20]. Reprinted with
permission from John Wiley and Sons. Copyright 2011.

1.2.1.4 Na,FeysMny 50,

Researchers and manufacturers have tried to lower the cost of positive electrode
materials in lithium-ion batteries using cheaper metal elements, such as Mn and Fe, to
substitute for the more expensive ones, like Co and Ni. The same efforts have been tried
in sodium-ion battery materials. Recently, Komaba et al. reported the electrochemical
performance of P2-type NayFepsMnysO, as a positive electrode material for sodium-ion
batteries [21]. Figure 1.11 shows the electrochemical performance of NayFey sMng sO,/Na
half cells cycled between 1.5 and 4.3 V. P2-type NayFe(sMng 5O, could deliver a capacity
of about 190 mAh/g, which is one of the largest ever reported, and has good capacity
retention as well. Assuming the average voltage of NayFepsMngsO, vs. Na is 2.75 V, the

12
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energy density of NayFeysMng 5O, is estimated to be 520 mWh/g, which is competitive to
that of LiFePO4 (about 530 mWh/g) and slightly higher than that of LiMn,0O4 (about 450

mWh/g) [21].
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Figurel.11. Charge/discharge curves and cycle performance of Nay;FegsMng sO,/Na half

cells cycled between 1.5 and 4.3 V as reported in ref. [21]. Reprinted by permission from
Macmillan Publishers Ltd: Nature Materials. Copyright 2012

1.2.1.5 NaMIlOz, Nao,44Mn02, Na2/3Ni1/3Mn2/302

03 type monoclinic NaMnO; was studied as a positive electrode material for
sodium-ion batteries by Ma at al [22]. About 0.85 mol Na can be deintercalated and 0.8
mol Na can be reversibly intercalated when NaMnO,//Na cells were cycled between 2.0
and 3.8 V. The cycling performance of the cells was good and no obvious structural
changes could be observed. This result indicates the difference between Na and Li
manganese layered compounds, since layered LiMnO; converts to spinel LiMn,;O4 during
electrochemical cycling and this process causes a large loss of capacity [22].

Doeff at al. reported the structure and electrochemical performance of another

Na manganese compound, which is Nay4MnO, [23]. Nay4MnO, crystallizes in an
13



orthorhombic lattice (Pbam space group). Mn is located in five types of sites and Na is
located in two types of sites. In a Na//P(EO)sNaCF3;SOs//Na44MnO, polymer cell,
Naj44MnO; delivered a capacity of about 160 mAh/g when charged to 3.5 V [23]. The
electrochemical performance of NapsMnO, in a sodium-ion battery needs to be
investigated in the future.

Lu et al. reported the structural changes and electrochemical performance of
P2-Na,3Mn;,;3Ni;30; as a function of Na content [24]. The material achieved capacity of
160 mAh/g when charged to 4.5 V and showed good cycling performance. An in situ
XRD study showed that when x in NayMn,3Ni;30, was greater than 1/3, the compound
adopted the P2 structure. When x = 1/3, some O2-type stacking faults develop. When x <

1/3, a mixture of Na;;3Mny3Ni; 30, and Mn,3Ni 30, phases exists.

1.2.1.6 Other positive electrode materials for Na-ion batteries

Some new types of sodium intercalation compounds have been studied as positive
electrodes in sodium-ion batteries. Ellis et al. first synthesized the new compounds,
Na;MPO4F (M= Fe, Mn, Co, Ni) with space group Pbcn, and then studied their structural
properties and electrochemical performance vs. Li in test cells [25]. Recently, Komaba et
al. studied the electrochemical performance of carbon-coated Na,FePO4F for sodium-ion
batteries. They found that Na,FePO4F synthesized with 2% ascorbic acid delivered about
110 mAh/g of reversible capacity and that the rate capability was acceptable [26].

Tripathi et al. also reported structural and electrochemical properties of a new sodium
14



intercalation compound ---NaFeSO4F [27]. However, all these new compounds have not
received as much attention as the layered-structure compounds due to their relatively

poor electrochemical performance and complicated synthesis conditions.

1.2.2 Negative electrode materials

1.2.2.1 Hard carbon

Compared with positive electrode materials, there are far fewer scientific reports
on negative electrode materials for sodium-ion batteries. Only a very small amount of
sodium can intercalate into graphitized carbon, which is used as the negative electrode
material for lithium-ion batteries. Presently, nanoporous or hard carbon is the most
attractive negative electrode material for sodium-ion batteries. In this document, "hard
carbon" means carbon synthesized from certain carbonaceous precursors (such as wood,
sugar or phenolic resin) by pyrolysis in inert atmosphere at elevated temperature. Such a
synthesis does not allow the formed graphene sheets to stack in a parallel manner. As a
result, nanopores are formed in the carbon structure. Stevens et al. studied the mechanism
of sodium insertion in hard carbon by SAXS (small angle X-ray scattering), and they
explained that the insertion of Na into hard carbon could be divided into two parts:
sodium inserting between the parallel graphene layers and sodium inserting into the
nanopores [29, 30]. Figure 1.12 shows a schematic of the hard carbon structure and the

mechanism for sodiumy/lithium insertion into hard carbon.
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Figure 1.12 (Left) Charge/discharge curve of hard carbon vs. Li and hard carbon vs. Na.
(Right) A schematic of alkali metal insert into hard carbon. Taken from ref. [30].
Reprinted with permission from The Electrochemical Society. Copyright 2001.

Komaba et al. recently reported sodium/hard carbon cells with a stable capacity of
250 mAh/g for 50 cycles. The cells used hard carbon and sodium metal as the working
electrodes [20]. They also reported similar electrochemical performance for full cells

using NaNipsMny 50O, as the positive electrode and hard carbon as the negative electrode

[20].

1.2.2.2 Other compounds

Nanocrystalline Fe;O4 and a-Fe,O3 were also reported to have a capacity of 190
mAh/g in sodium cells with a voltage range between 1.2-4.0 V [31].
Senguttuvan et al. reported that Na,Tiz;O7 has the lowest voltage ever reported for

sodium insertion, which had a capacity of around 200 mAh/g at an average voltage of 0.3
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V [32].

Recently, some alloy negative electrode materials for sodium-ion batteries have
been studied [33, 34]. Ellis et al. reported the electrochemistry and structural changes that
occurred during sodium insertion and removal from Tin [33]. The alloy formed at full
sodiation was found to be Na;sSns. Three unknown intermediate Na-Sn phases were

found during sodiation [33].

1.2.3 Electrolyte

So far, there are few reports on electrolytes for sodium-ion batteries. There is a
recent report by Ponrouch et al. [35]. They finished a comparative study on electrolytes
with different salts (NaClO4, NaPF¢ and NaTFSI) and different solvents (PC, EC, DEC,
DMC, and THF) or solvent mixtures (EC:DMC, EC: PC and EC: DME). They studied
the viscosity, ionic conductivity and electrochemical and thermal stability of these
electrolytes. They found NaPF¢ in EC:PC electrolyte showed the best properties over all

[35].

1.3 Flame retardants as electrolyte additives for lithium-ion batteries

Flame retardants are chemicals used widely in thermoplastics, thermosets,
textiles and coatings that inhibit or resist the spread of fire. They can be divided in to

several different classed of chemicals:
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1. Minerals such as aluminum hydroxide, magnesium hydroxide, various
hydrates, red phosphorus and boron compounds [36].

2. Organohalogen compounds: These include organochlorines such as,
chlorendic acid derivatives and chlorinated paraffins; organobromines such as
decabromodiphenyl ether, decabromodiphenyl ethane, polymeric brominated compounds
such as brominated polystyrenes, brominated carbonate oligomers , brominated epoxy
oligomers (BEOs), tetrabromophthalic anyhydride, tetrabromobisphenol A  and
hexabromocyclododecane . Most, but not all, halogenated flame retardants are used in
conjunction with a synergist to enhance their efficiency. Antimony trioxide is widely used
but other forms of antimony such as the pentoxide and sodium antimonate are also used
[36].

3. Organophosphorus compounds such as organophosphates,
tris(2,3-dibromopropyl) phosphate, triphenyl phosphate, resorcinol bis- (diphenyl
phosphate), bisphenol a bis- (diphenyl phosphate), tri-o-cresyl phosphate, phosphonates
such as dimethyl methylphosphonate and phosphinates. There is also an important class
of flame retardants that contain both phosphorus and halogen, examples of such are the
chlorophosphates like tris(2-chloroisopropyl) phosphate and tris(1,3-dichloroisopropyl)
phosphate [36].

Mineral flame retardants are typically additives while organohalogen and

organophosphorus can be either reactive or additive. Additives are compounds that are
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added into materials with high flammability to reduce the flammability. Reactives are
compounds that react with the easily-flammable material through chemical reaction to
reduce the flammability. The basic mechanisms of flame retardancy vary dependent on
the specific flame retardant and the substrate. Additive and reactive flame-retardant
chemicals can function in the vapor or condensed phase [36].

There are several mechanisms that have been proposed for the function of flame
retardants.

1. Endothermic degradation.

Some compounds break down endothermically when subjected to high
temperatures. Magnesium and aluminum hydroxides are an example, together with
various carbonates and hydrates such as mixtures of huntite and hydromagnesite [36].
The decomposition removes heat from the substrate, thereby cooling the material. The
use of hydroxides and hydrates is limited by their relatively low decomposition
temperature, which limits the maximum processing temperature of polymers which they
are added to (typically used in polyolefins for wire and cable applications) [36].

2. Thermal shielding

A way to stop the spreading of flame over a solid material is to create a thermal
insulating barrier between the burning and unburned parts. Intumescent additives are
often employed; their role is to turn a polymer into a char, which separates the flame from

the material and slows the heat transfer to the unburned fuel [36].

19



3. Dilution of gas phase

Inert gases (most often carbon dioxide and water) produced by thermal
degradation of some materials act as diluents of the combustible gases, lowering their
partial pressures and the partial pressure of oxygen, and slowing the reaction rate [37].

4. Gas phase radical quenching

Chlorinated and brominated materials undergo thermal degradation and
release hydrogen chloride and hydrogen bromide, or if used in the presence of a synergist
like antimony trioxide, release antimony halides. These react with the highly reactive
H-and OH- radicals in the flame, resulting in an inactive molecule and a CI- or
Br- radical. The halogen radical has much lower energy than H- or OH-, and therefore

has much lower potential to propagate the radical oxidation reactions of combustion [38].

1.3.1 Organophosphorus flame retardant additives

The first report of a flame retardant additive in the electrolyte of a lithium-ion
battery was described by Prakash et al/ [39]. Figure 1.13 (a) shows DSC results of
lithiated graphite in different electrolytes. Prakash er al. found that adding a flame
retardant additive- Hexamethoxycyclotriphosphazene (HMPN) (1.68%) could
significantly reduce the overall heat produced due to the exothermic reactions. In addition,
for the electrolyte containing the flame retardant additive, the exothermic peak also
shifted to higher temperature. Figure 1.13 (b) shows ARC results for lithium metal

reacting with different electrolytes. For lithium metal in electrolyte without the flame
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retardant additive, the onset temperature of the exothermic reaction was 177.6°C, and the
maximum self-heating rate reached 0.68°C/min. As a comparison, the maximum
self-heating rate for the reaction between lithium metal and electrolyte with 10% HMPN
was 0.196°C/min at T=170.2°C. Figure 1.13b shows that the exothermic peak was
suppressed in the presence of flame retardant. This may be attributed to the passivation
layer on the surface of the lithium metal formed by the flame retardant additive. While
Li/electrolyte reactivity decreased, the electrochemical performance of LiNijgCo0¢20,//Li
half cells was not impacted negatively, which may due to the small amount of flame

retardant additive used (~ 1.5 wt%).

2.4 038
07 k
po2f @ £ b~
) = Without Flame-Retardant g 06 |- without Flame-Retardant
w 1.6 .+ With Flame-Retardant ¢ 05}
2 2
=12} @ 04
;" -
=] g 03 with Flame-Retardant
c 08 | T
= -
[}
Loal @
0 1 A 1 1 — 4
30 B84 138 192 246 300 150 200 250 300
Temperature, °C Temperature, °C

Figure 1.13 (a) DSC results of lithiated graphite in electrolytes with/without HMPN; (b)
ARC results of lithium metal in electrolytes with/without HMPN as reported in ref. [39].
Reprinted with permission from The Electrochemical Society. Copyright 2000

Since the report by Prakash et al., organophophorus compounds have been

studied as flame retardant additives for lithium-ion batteries. Organophophorus
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compounds were chosen mainly due to their great success as flame retardants in polymers,
and the deeper understanding of combustion of organic materials. Organophophorus
compounds provide flame retardation by two mechanisms: (1) char-formation, which is
similar to mechanism “2” discussed in last section; and (2) radical-scavenging, which is
similar to mechanism “4” discussed in last section [38].

Wang et al. studied trimethyl phosphate (TMP) as a flame retardant additive for
lithium-ion batteries [40]. When the TMP content exceeded a critical value, which
depended on the flammability of the co-solvents used, nonflammabiltiy of the electrolytes
was achieved. Figure 1.14 shows the lowest TMP content needed to ensure
nonflammability of various electrolytes containing TMP. The needed TMP content
increased in the following order: EC < PC < GBL < DEC < EMC < DME. Based on
previous work showing that radical species containing phosphate were detected in mass
spectroscopy experiments, they proposed that the radical containing phosphorus acted
like a trap to scavenge the main active agent for flame propagation, H- radicals [38].
They also derived an empirical equation to estimate the minimum amount (Nj;n;) of TMP
needed to achieve nonflammability in any binary electrolyte composition:

log Ny, =2.6-9.3(C,T,,/C,T}) (Equation 1.1)

imit
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Figure 1.14 The lowest TMP content needed to ensure nonflammability of various
electrolytes using different solvents from ref.[40]. Reprinted with permission from The
Electrochemical Society. Copyright 2001.

The quantity CpTy/CyTp is called “non-flammability index”, which is defined by
the atoms content of H or P (numbers of atoms) in the two electrolyte components and
their boiling points. Cy in Equation 1.1 is the number of H atoms in each molecule of the
solvent. Cp in Equation 1.1 is the number of P atoms in each molecule of the flame
retardant. Ty and Tp are the boiling points of the solvent and the FR respectively. Figure
1.15 shows the relationship between the nonflammability index and the lowest TMP
content needed to ensure nonflammability based on the result of Figure 1.14. The higher
the boiling point and the lower the H content of the co-solvent, the lower the
flammability that could be achieved. Hence, cyclic carbonates with higher boiling points
and lower H content, such as EC and PC, should be chosen as co-solvents to reduce
electrolyte flammability. At the same time, the effectiveness of a certain flame retardant is

proportional to its P content and inversely proportional to its boiling point. This result
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could guide the search for flame retardants with higher effectiveness.
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Figure 1.15 The relationship of nonflammability index and the lowest TMP content
needed to ensure nonflammability from ref. [40]. Reprinted with permission from The
Electrochemical Society. Copyright 2001

Figure 1.16 shows the thermal stability of natural graphite/LiCoO; (LiMn;Oy)
cells with different electrolytes measured using a Calvet-type calorimeter (Setaram C80)
[40]. The authors claimed that thermal stability of the cells was significantly improved
when 20% TMP was added to the electrolyte. The electrochemical performance of the
Li/LiCoO; cells was not impacted negatively by the presence of TMP [40]. However,
TMP shows poor reductive stability on a graphitic anode surface. It also cointercalated
into the graphite structure at 1.2 V, similar to PC. TMP also increased the impedance of

cells and caused poor capacity retention [40].
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Figure 1.16 The thermal stability of natural graphite/LiCoO, (LiMn,O4) cells with
different electrolytes as reported in ref. [40]. Reprinted with permission from The
Electrochemical Society. Copyright 2001

Following these two reports about HMPN and TMP, Xu et al. systematically
characterized these two compounds along with triethyl phosphate (TEP) and tried to
establish a correlation between the flame-retarding ability and cell performance of these
already known flame retardants (FRs) [41]. In order to characterize the flammability of
the electrolyte system quantitatively, a new test called the self-extinguishing time (SET)
test based on the standard test UL 94 HB (intended for polymetric or other solid samples),
was proposed. The new method normalized the extinguishing time to the amount of
electrolyte, which significantly improved the reproducibility of the test. It was also found
to be more suitable for samples of low flammability. The SET test will be discussed
further in section 2.10.

Figure 1.17 shows the normalized SET obtained vs. the weight percentage of

TMP, TEP and HMPN in various electrolytes. In all cases the FRs were tested up to 40%.
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The flammability of EC/EMC based electrolytes was reduced dramatically as the FR
content increased from 5%. However, the electrolytes were not totally nonflammable
even when 40% FR was added. The efficiency of TMP and TEP in reducing flammability

was nearly equivalent, and apparently better than HMPN [41].

SET/s/g

0 | | Non-lFlamm?ble
0 10 20 30 40 50 60
Flame Retardant Content (wt %)

Figure 1.17 Normalized SET thus obtained vs. the weight percentage of TMP, TEP and
HMPN in electrolytes as reported in ref [41]. Reprinted with permission from The
Electrochemical Society. Copyright 2002

Figure 1.18 shows the effect of these three FRs on the cathodic stability of the
electrolyte vs. a carbonaceous anode. It was found that when over 10% TMP was added,
the decomposition of TMP on the anode surface, which occurred at 0.5 V and intensified
with TMP concentration, made it impossible to use in a lithium-ion cell [41]. This result
agrees well with the conclusion of Wang et al. [40]. However, TEP and HMPN showed
very good stability on the anode material even when the concentration of FR was as large

as 50%, without detection of any decomposition of TEP or HMPN.
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Figure 1.18 Differential capacity of the graphite anode and the cathode in various TMP,
TEP and HMPN-containing electrolytes. The first cycles are shown and FR
concentrations are indicated followed by the columbic efficiency of the cathodic cycling.
Take from ref. [41]. Reprinted with permission from The Electrochemical Society.
Copyright 2002

Figure 1.19 summarizes the dependence of full cell performance (both
flammability and electrochemical performance) on FR concentration [41]. A relationship
between the flammability, the capacity utilization and the capacity retention (Rjgo;1 for
TMP and TEP, Rso; for HMPN) was established. Before the electrolyte flammability
could be reduced significantly by the addition of TMP (<15%), the capacity utilization

and capacity retention suffered. The presence of TEP seems to have little impact on the
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initial capacity of the cells even up to 50%. However, TEP addition degraded the capacity
retention, Rigo;1. HMPN showed good capacity utilization and capacity retention due to
its high stability on the surface of both the anode and cathode. However, considering its
insufficient flame-retarding ability, it was not possible to achieve a balance between

electrolyte flammability and electrochemical performance.
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Figure 1.19 Trade-off between the flammability and electrochemical performance of the
electrolytes as reported in ref. [41]. Reprinted with permission from The Electrochemical
Society. Copyright 2002

Based on the study of the three phosphorous-containing FRs discussed above,
Xu et al. modified the structure of alkyl phosphates by fluorination and characterized the
effect of the fluorinated phosphates on the flammability of electrolytes and the
electrochemical performance of the cells [42, 43]. They believed that F was one element
with low flammability which was similar to P, and that organofluorides could help to
form a stable SEI on the anode surface which could improve the electrochemical stability
of the FRs.

Three fluorinated phosphates, tris(2, 2, 2-trifluoroethyl) phosphate (TFP), bis (2,
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2, 2- trifluoroethyl) methylphosphate (BMP), and (2, 2, 2-trifluoroethyl)diethyl phosphate
(TDP), were synthesized. Some of the physical properties of these fluorinated phosphates
and their non-fluorinated counterparts are shown in Table 1.2. All fluorinated alkyl
phosphates show a lower boiling point and a higher melting point than the

non-fluorinated phosphates, as well as a lower dielectric constant.

Table 1.2 Some physical properties of different flame retardants from ref. [42]

FRs TFP BMP TDP TMP TEP HMPN
bp (°C) 178 203 210 197 215 | >250(dec.)
mp (°C) -19.6 225 -46 -56.4 50

£20°C 10.5 12 15 20.7 12

Cyet (WE%) 20 20 40 >40 >40 >40
1% CE4 0.911 0.884 0.734 0.825 0.825 0.915
1* CEc 0.770 0.790 0.760 0.801 0.801 0.801

(Cser: Concentration of the FRs needed to ensure nonflammbility of the electrolytes.

1* CE,: 1st cycle coulombic efficiency of control electrolyte (IM LiPFg in EC:EMC
(1:1 w/w)) containing 20% FR at graphitic anode.
1 CEc: Ist cycle coulombic efficiency of control electrolyte containing 20% FR at
nickel-based cathode.)

Figure 1.20 shows the self-extinguishing time (SET) of different electrolytes vs.
the percentage of FRs added to the electrolytes. The results for TMP, TEP and HMPN
were shown before in Figure 1.17. Electrolytes containing 20% TFP and BMP were
completely nonflammable (SET < 6 s/g); while up to 40% TDP was required to achieve
this goal [42]. TFP and BMP are better at reducing the flammability of electrolyte than

TMP, TEP and HMPN. TDP is not as effective as TFP and BMP, which could be due to
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insufficient fluorination. In addition to the intrinsic flame retarding ability of the
phosphate structure, fluorination of the alkyls appears to add extra flame retarding
properties to the molecules. Since the required FR concentration drops to 20%, it may be
possible to make a nonflammable electrolyte without sacrificing the electrochemical

performance of the cells [42].
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Figure 1.20 Normalized SET thus obtained vs. the weight percentage of TMP, TEP and
HMPN, TFP, BMP and TDP in electrolytes as reported in ref. [42]. Reprinted with
permission from The Electrochemical Society. Copyright 2003

The fluorinated phosphates showed generally improved cathodic stability except
for TDP [42]. Both TEP and BMP showed reductive decomposition at a potential of ~
1.0 V, which is higher than the potential of lithium intercalation and for the reduction of
carbonate solvents. Hence, it is reasonable to believe that the SEI will contain some

fluorine-containing organic compounds that might protect the graphite structure due to
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the absence of sustained decomposition of the FRs. Long term storage tests probed the
stability of electrolytes containing such FRs in fully charged lithium ion cells at 70°C.
However, TDP decomposes reductively at 0.5 V and the decomposition continues to
lower potential where lithiation of the graphite occurs. The SEI in this case is not as
protective as that which forms when TEP or BMP are present. Continuous decomposition
of co-solvent could lead to a thicker SEI film, which may increase the impedance of cells.
Such unstable cathodic performance disqualifies TDP as a FR for lithium-ion batteries.
Figure 1.21 shows the capacity retention of cells (after 100 cycles, defined as
Cio0) with different electrolytes containing different amount of FRs [43]. Both TDP and
HMPN cause a decrease in cell capacity, especially TDP, which causes severe
deterioration in cell performance due to its poor cathodic stability on graphitic carbon as
mentioned above. HMPN has good stability on both anode and cathode materials. The
drop in capacity as the HMPN concentration increases is believed to be the result of its
high viscosity or the high impedance of the SEI formed upon the decomposition of
electrolyte containing HMPN. On the other hand, both TFP and BMP showed a
maximum in capacity at concentrations lower than 20%; at higher concentrations the high
cell impedance is eventually overwhelming and subsequently cell capacity decreases, but

the rate of decrease is still less severe than HMPN-based electrolytes.
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Figure 1.21 Capacity retention of cells with different electrolytes containing different
amount of FRs as reported in ref. [43]. Reprinted with permission from The
Electrochemical Society. Copyright 2003

The stable performance of cells containing TFP and BMP suggests their feasibility
to be used in lithium ion cells. Overall, considering the electrochemical performance of
the cells and the flammability of the electrolytes, 20 % TFP or BMP could be used to
make a safer cell without negative impact on the cell’s performance. However, in a
following study, Xu et al. found that TFP reduced the rate capability and low-temperature
performance of the cells, due to high impedance introduced by TFP [43]. Finally, they
proposed a compromised electrolyte which could be between 15 and 20% TFP/BMP in
1.0 M LiPF¢/EC/EMC(1: 1 v/v) or 30% TFP/BMP in 1.0 M LiPF¢/PC/EC/EMC (1:1:3
v/v/v) . They considered the nonflammability and SEI stability of the electrolytes, as well
as the capacity utilization, rate capabilities, and low-temperature operation of cells. Such

electrolytes are completely or at least nearly nonflammable, thus effectively reducing the
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potential for safety hazards.

Since the pioneering work by Prakash ef al. and Xu et al., little research on flame
retardant systems for lithium-ion batteries was performed. However, recently flame
retardants are receiving more attention due to the perceived need in EV batteries.
Triphenyl phosphate (TPP) is now one of the most popular FRs for lithium-ion batteries,
and has been studied by Smart et al [44]. In fact, TPP was first studied as a flame
retardant additive by Amine ef al. in 2003 [45]. They only studied the concentration range
from 0 to 10%. They found that TPP-containing electrolyte showed very good anodic
stability up to 5 V in a cell with a glassy carbon electrode as the working electrode. Such
good anodic stability was also confirmed by good cycling performance of
LiNij 3Co¢0,/graphite full cells using an electrolyte with 5% TPP. UL 94 was used by
the authors to characterize the flammability of electrolytes containing different amounts
of TPP. They found that only 1% TPP significantly reduced the flammability of the
electrolyte and that 5% TPP gave the best flame retardant ability. They also used ARC to
study the reactivity of fully-lithiated graphite in electrolyte with/without TPP at elevated
temperature. A significant reduction of the exothermic heat generation was found in
electrolyte with 5% TPP, which was believed to be due to a protective coating formed on
the surface of graphite. However, based on the standard of “non-flammability” proposed
by Xu et al [41], Amine et al. failed to make a truly non-flammable electrolyte with only

5 % TPP.
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There are also several other organophosphorus flame retardant additives that
have been studied. Xiang et al. [46] studied dimethyl methylphosphonate (DMMP) as a
flame retardant additive for lithium-ion batteries. They found that 10 wt. % DMMP
created a non-flammable electrolyte and that the cell performance was not strongly
affected by the addition of DMMP [46].
Hu et al. [47] studied bis(N,N-diethyl)(2-methoxyethoxy)methylphosphonamidate
(DEMEMPA) as a flame retardant additive for lithium-ion batteries. They found that
adding 10% DEMEMPA could make a non-flammable electrolyte but the compatibility

between the electrolyte and natural graphite became worse [47].

1.3.2 Non-phosphorus flame retardant additives

Some non-phosphorus compounds with high flash point have been investigated as
co-solvents to achieve non-flammable electrolytes. Arai et al. used methy
nonafluorobutyl ether (MFE) as a co-solvent for lithium-ion batteries [48]. They found
LiCoO,/graphite 18650 cells with 1M LiBETI (lithium bis[pentafluoroethylsulfonyl]
imide) in MFE: EMC (2:8 v/v) showed the same electrochemical performance as the
baseline electrolyte 1M LiPF¢ in EC: EMC (3:7 v/v) at a low rate. The cells using such
electrolyte did not show any thermal runaway in a nail test which indicated a remarkable
improvement in safety. However, the rate capability of cells using MFE-based electrolyte
was really poor due to high impedance caused by MFE. In a following study, they found

that adding 0.5 M EC and 0.1 M LiPF¢ in a MFE-based electrolyte significantly improved
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the rate capability of the cells [49]. The authors believed that such electrolyte systems
based on MFE are candidates for safer lithium-ion batteries.

Isken et al. studied adiponitrile (ADN) as a co-solvent to achieve a
non-flammable electrolyte [50]. They used LiBF4 as the salt and ADN to replace DEC to
form an electrolyte with a flash point of 149°C, an increase of 110°C over the flash point
of the EC: DEC system. Graphite/Li and NCM/Li half cells showed very good rate

capability and capacity retention using such an electrolyte.

1.4 Scope of this thesis

There are only a few reports of the reactivity of charged/discharged electrode
materials with solvents and electrolytes for sodium-ion batteries. The first part of this
thesis concentrates on a sweeping study of the reactivity of various charged positive
electrode materials and discharged negative electrode materials for Na-ion batteries.
Reactivity with non-aqueous solvents and non-aqueous electrolytes containing various
electrolyte salts will be reported.

Flame retardant additives are thought to be the most efficient method to reduce
fire-related safety concerns of lithium-ion batteries. However, there is a lack of
systematic studies of flame retardant additives since the reports of Xu et al [41, 42, 43].
The second part of this thesis will focus on a systematic study of the impact of triphenyl

phosphate, which is one of most popular flame retardant additives, on the electrochemical
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performance of both negative and positive electrode materials and on safety related
properties (reactivity of the electrode materials and the flame retarding ability).

Chapter 2 describes the experimental techniques used in this thesis. Chapter 3
starts with the study of the reactivity of negative electrode materials for sodium-ion
batteries in non-aqueous solvents and electrolytes. Chapter 4 then describes the reactivity
of positive electrode materials. Chapter 5 gives the experimental results about of the
properties of NaTFSI as a salt for sodium-ion battery. Chapter 6 shows the impact of
triphenyl phosphate on the electrochemical performance of both negative and positive
electrode materials for lithium-ion batteries as well as the impact of TPP on cell safety.

Conclusions and suggestions for future work are given in Chapter 7.
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CHAPTER 2 EXPERIMENTAL TECHNIQUES

2.1 Synthesis of electrode materials

2.1.1 Hard carbon

precursors [51]. Hard carbon made from oak at 1100°C delivered the highest reversible
capacity, Cyey, and the second smallest irreversible capacity, Ciy, (bigger than maple at

1100°C). It is also very easy to make wood into a pellet, which can be used as a pellet

electrode in coin-type cells directly after pyrolysis.

Table 2.1 Synthesis conditions and properties of hard carbon from different sources [51].

Table 2.1 describes different hard carbon samples synthesized from different

Reprinted with permission from The Electrochemical Society. Copyright 1997.

Figure 2.1 shows the synthesis of nanoporous or hard carbon. First, 1.8 cm
diameter by 1mm thick discs of oak or maple (Piercy’s Lumber Yard, Halifax, N. S.,

Canada) were heated at 1°C/min to 700°C where they were held for 1 hour under an

T, | Heating] Ar flow Surf. area| G, Crev
sample | Sample | (°C) rate rate - Rt(A) R (mzig} (mAh/g)|(mAh/g) Remak
(°C/min})| (cc/min)
sx126i14| oakl 1600| 25 150 6.58 | 2.66 4.6 30 193
sx126i18 oak2 1400 25 150 6.11 2.26 4.7 34 265
sx126i22 oak3 1200 25 150 5.94 2.02 4.8 49 332
sx126i26 oakd 1100 25 150 547 1.78 12.1 118 562
sx126i6 oak5 1000 25 150 553 1.85 134 152 517
sx126il0 oaké 900 25 150 525 1.85 124.2 141 536
sx126il filbert 1000 25 150 5.72 1.95 179 191 406
sx126i3 | walnutl [ 1000 | 25 150 5.97 1.85 60.1 142 476
sx126i24 | walnut2 | 1100 25 150 5.69 1.87 11.2 131 508
sx126i4 | almond | 1000 25 150 5.93 2.00 46.4 176 383
sx126i5 | bsugar |1000| 25 150 5.84 | 2.02 123 125 447 |brown sugar
sx126i0 | maplel | 1000 25 150 5.58 1.98 62.7 134 500
sx126i25| maple2 | 1100 25 150 5.54 1.86 10.7 52 535
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argon flow of 150 cm’/min for a preliminary pyrolysis to remove the majority of the
decomposition products. During this step, the oak or maple was carbonized; the discs
shrunk, remained a single sturdy piece and lost about 80% of their initial mass. Then
these discs were heated under vacuum at 1100°C and transferred directly to a glove box

for cell assembly according to the procedures in [52]. This step minimizes irreversible

capacity, as shown by the work of Xing et al. [52].

Original pellet from oak Heated at 700°C in Argon

Transfer to glove box without
Vacuum heating at 1100°C contacting air

Figure 2.1 Process of making hard carbon pellet electrodes from pyrolysed oak



2.1.2 Transition metal hydroxide precursor.

A transition metal hydroxide precursor NipsMngs(OH), was made using a

continuously-stirred tank reactor (CSTR). Figure 2.2 shows the CSTR.

Figure 2.2 Photograph of the continuously-stirred tank reactor (CSTR) [53].
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Nickel (II) sulfate hexahydrate (98%, Alfa Aesar), manganese sulfate
monohydrate (Alfa Aesar, 98%), sodium hydroxide (Alfa Aesar), and ammonium
hydroxide (28.0-30.0%, Sigma-Aldrich) were used to prepare solutions with deionized
water which was deaerated by boiling for 10 minutes.

A coprecipitation reactor with a 2 L jacketed reaction vessel (a in Figure 2.2)
equipped with pH (b in Figure 2.2) and temperature controllers (¢ in Figure 2.2) was used.
Reagents were added using digital peristaltic pumps (Masterflex L/S 07524, d in Figure
2.2) and sodium hydroxide addition was automatically controlled by the pH controller
and added as required by a peristaltic pump (e in Figure 2.2) on the reactor. Reaction
contents were maintained at a temperature of 60°C and the contents of the reactor were
stirred by an overhead stirrer at 1000 rpm. Nitrogen was bubbled (60 sccm) into the
reactor throughout the reaction [53].

A volume of 1 L of a 1 M NHjs(aq) solution made in de-aerated water was added
to the reactor vessel and was heated to 60°C. The reaction proceeded with the addition of
10.0 M NHj(aq) at 0.005 L/h and 2.0 M MSO4 (M = Ni, and Mn in equimolar ratios,
Aldrich, 98%) at 0.025 L/h. A concentration of 5.0 M NaOH (Aldrich, 98%) was
automatically added to the reaction contents to maintain the desired pH. The reaction
vessel was fitted with an overflow pipe and the reaction contents were pressurized with
nitrogen to ensure a constant volume during the reaction. The residence time, given by

the total flow rate of the reagents and the reactor volume, was set to be 20 h. After
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reaction, the solid material was filtered and washed with 3 L deaerated deionized water in

several rinses.

2.1.3 Sodium transition metal oxides

Sodium transition metal oxides were synthesized using solid state reaction.
NaCrO, was made by heating stoichiometric ratios of Na,COs (Aldrich, 99.5%) and
Cr,0O3 (Aldrich, 98%) at 900°C in argon for 5h. NayCoO, was synthesized by heating
stoichiometric ratios of Na,CO; (Aldrich, 99.5%) and CoCOs (Alfa, 99%) at 950°C in air
for 24h. NaNipsMny 5O, was made by heating stoichiometric ratios of Na,COj3 (Aldrich,
99.5%) and NigsMngs(OH), at 850°C in air for 24h and then quenching into liquid
nitrogen. After quenching, NaNipsMnosO, sample was transferred into a glove box

quickly for future use.

2.1.4 Sodium foil

A method to make good sodium foils for coin cells was also developed based on
a home-made furnace because of the lack of commercial sodium foil. Figure 2.3 shows
the method used to make sodium foils. All the operations in this process were made in an
argon-filled glove box. First, a homemade temperature-controlled furnace was set to
135°C, which was higher than the melting point of sodium metal (melting point: 97.72°C).
Then about 0.1g of commercial sodium rods (Sigma Adrich) was put into the furnace for

10 min. After liquid sodium formed, it was poured into a mold made from two
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polypropylene plates and hand pressed for one minute. In this way, a sodium foil was

formed and was then punched for use in coin cells.

Figure 2.3 Process of making sodium foil. a). A home-made temperature-controlled
furn-ace; b). Liquid (molten) sodium in a stainless vessel; ¢) a piece of sodium foil on the
polypropylene plate; d) a punched sodium foil that is ready for coin-cell assembling

2.2 X-ray diffraction

X-ray diffraction (XRD) is the most widely applied technique to identify crystal
structure, phase composition and grain size. A Siemens D5000 diffractometer equipped
with a copper target X-ray tube and a diffracted beam monochromator was used for the

diffraction measurements (Figure 2.4).
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Figure 2.4 Siemens D5000 diffractometer.

Two different kinds of samples were prepared for XRD measurements: (1) newly
synthesized electrode materials to identify their structure and lattice constants and (2)
samples before and after ARC measurements in order to study the reaction between the
electrode materials and electrolytes or solvents. Different sample holders were used for
these two different types of samples.

The holder for the new electrode material samples was made from a stainless
steel plate. The sample was tightly packed in a well in the center of the plate. The second
type of samples are air sensitive materials that cannot be studied in air. The sample holder
shown in Figure 2.5 was used to prevent air exposure during the diffraction measurement.
An aluminized mylar shroud was sealed to the semi-circular frame using Torr-seal

vacuum epoxy (Varian) [54]. A small amount of sample was placed on a
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zero-background silicon wafer. During an XRD measurement, X-rays can pass through
the mylar layer to reach the sample but air cannot. The XRD sample holder is then placed
into the diffractometer mount to ensure that the surface of the sample holder is coincident

with the goniometer center.

Powder sample

Zero
background
silicon wafer
Aluminized
mylar shroud
O ring

Figure 2.5 Air sensitive XRD holder

2.3 Electrode preparation for ARC or electrochemical testing

2.3.1 Thin film electrodes for electrochemical tests.

Thin film electrodes were made to test the electrochemical properties of the
materials prepared. About 0.8 g of the active electrode material, such as NaCrO, or hard
carbon, was mixed with 0.1 g Super-S carbon black (MMM Carbon, Belgium), 0.1 g
polyvinylidene difluoride (PVDF) (Arkema Inc.) and about 1 g N-methyl pyrroldinone
(NMP) (Aldrich) in a 30 ml vial. The slurry was spread on an aluminum foil (positive) or
copper foil (negative) after stirring in a planetary mixer (Mazerustar KK50S) for 5

minutes, and then the electrode was dried in an oven overnight at 100°C.
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2.3.2 Pellet electrodes for ARC

One ARC experiment requires approximately 100 mg of active electrode
material. In order to prepare enough material all at once, about 4 g of electrode material,
with the same ratio of PVDF, Super-S carbon black and NMP as for the thin film
electrode was used. The mixture was put into a stainless steel vial with four stainless steel
beads. The vial was put onto a low-energy ball milling machine for milling for about 1h.
Then the slurry was put into an oven at 100°C for drying. When the slurry was dry, the
powder was lightly ground in a mortar and then passed through a 300 um sieve. About
250 mg electrode powder was then placed in a stainless steel die and pressed with 13.8
MPa to produce an approximately 1 mm thick pellet electrode. When studying the
reactivity of sodium intercalated hard carbon, discs made from wood were used as the

pellet electrodes (see section 2.1.1).

2.3.3 Cell construction for thin-film electrodes

The electrochemical cells were assembled from the parts shown in Figure 2.6 in
an argon-filled glove box. The 2325 type coin cell has stainless steel top and bottom
casings. The prepared electrode was placed in the center of the bottom casing and the
desired electrolyte was added. A polypropylene separator was placed above the electrode.
Celgard 2502 type separator was used for EC/DEC based electrolyte and Celgard 3501

type separator was used for PC based electrolyte. Then the negative film electrode was
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put on the top of the separator. The negative film electrode, depending on the particular
cell type, was normally made of a piece of lithium or sodium foil. A stainless steel spacer
and spring were added to maintain pressure on the electrode stack. The cell top, on which
there was a polypropylene gasket, was then placed on the top of the spring and the cell
was crimped shut, which sealed the electrodes from the environment. When the
electrochemical cells were removed from the argon-filled glove box, stainless steel tabs
were welded onto the two sides of the cells for electrical contact. 1M LiPF¢ in EC:DEC

(1:2, v/v) was used as the control electrolyte for the lithium cells described in this thesis.

Casing Top (Negative Terminal)

Gasket

Stainless Steel Spring

Stainless Steel Spacer

Counter/Reference Electrode
Separator

Working Electrode

Casing Bottom (Positive Terminal)

il

Figure 2.6 Construction of a 2325 size sodium coin cell
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2.3.4 Cell construction for pellet electrodes

The construction of cells with pellet negative or positive electrodes was slightly
different from the thin film cells. The pellet electrode was placed in the center of the
bottom casing with enough electrolyte to wet the pellet electrode completely. Then three
pieces of separator were put onto the pellet, to cover it completely in order to avoid a
short circuit. Then a stainless steel spacer was added on top of the lithium or sodium foil,
which was used as the counter electrode, and no spring was needed here because of the

large thickness of the pellet. The crimping step was the same as for the thin film cell.

2.3.5 Cell testing

All assembled cells were tested on a charger provided by E-One Moli Energy
(Maple Ridge, BC, Canada). The thin film cells were cycled between certain voltage
ranges, for example, NaCrO,/Na cells were cycled between 2.0 V and 3.6 V using a
current density of 25 mA/g. The pellet cells were charged or discharged using special test
procedures, called signature charge (Rsig) or signature discharge (Disg), which were
equivalent to constant voltage charging or discharging [55]. These special test procedures
stabilized the electrode to a desired potential, such as 3.6 V for NaCrO; or 0 V for hard

carbon.
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2.4 Theory of accelerating rate calorimetry (ARC)
2.4.1 Introduction to reaction kinetics

When a reactant is converted to products by a single-step thermally induced

reaction, it is common to write

Cil_f = k(1) f(a) (Equation 2.1)

where t is the time, T is the temperature and o is the fractional degree of conversion of
reactants (0 <o <1) to products. It is common to assume that the temperature dependence

of the rate of constant, k(T"), can be separated from the reaction model, f(«), and that

Ell

k(T) = ye " (Equation 2.2)

where E, is the activation energy, kg is Boltzmann's constant and v is the frequency factor
[56]. The reaction model, f'(«), can be derived from a number of physical situations and
examples are given in Table 2.2 [57]. Table 2.2 contains a column for the reaction model
type, a column for the differential equation describing the extent of conversion and
columns used to describe exponents in a “universal” equation for the thermal

decomposition of solids [57],

c;_“ — ke (1- @) (- In(1—- @)’ (Equation 2.3)
t
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Table 2.2 Reaction models typically applied to describe the thermal decomposition of
solids [57].

da ” "
Reaction model ar ka"(1-a)' (-In(l-a))”

m n p
1 One-dimensional diffusion ka™ -1 0 0
2 ko 1 0 0
3 Power law ka'"? 0.5 0 0
4 Power law k" 06667 | 0 0
5 Power law ko™ 0.75 0 0
6 Zero order k 0 0 0
7 Contracting sphere k(1-a)’” 0 0.6667 0
8 Contracting cylinder k(1-a)"” 0 0.5 0
9 First order k(l-a) 0 1 0
10 Second order k(1-a)’ 0 2 0
11 Avarami-Erofeev k(1-a)(=In(1- a))m 0 1 0.5
12 Avarami-Erofeey k(1-a)(-In(l-a))* | 1 0.6667
13 Avarami-Erofeev k(1-a)(=In(1- 0‘))3/4 0 1 0.75

The wvariables in Equation 2.3 can be chosen to describe most solid thermal
decomposition mechanisms from simple n™ — order to diffusion-controlled reactions. In

order to describe the reaction kinetics accurately, it is necessary to determine f(«), E,

and y.
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2.4.2 Accelerating rate calorimetry

Accelerating Rate Calorimetry is one kind of adiabatic calorimetry, and it has

been typically used as a method to determine reaction kinetic information, such as f(«),
E, and vy as discussed in the last section.

In an ARC experiment, the self-heating rate is given by

ar _ _h_,da
da C dt

fot

(Equation 2.4)

where h is the total heat which can be evolved by the sample due to the reaction (Joules)
and Cyy is the total heat capacity of the reactants and the sample bomb (JK"). h/Ciot
corresponds to the temperature rise, AT, from the onset of the exothermic reaction to the
end of it.
Combining Eqn. 2-1 and Eqn. 2-4, the following equation is obtained and used
for the initial self-heating rate.
dT

’ =ATk(T) f («,) (Equation 2.5)

Taking the natural logarithm of both sides, gives

dr E .
In(—) = In(HAT) - Equation 2.6
n( dt) n(yATf (o)) o7 (Eq )

where the substitution for the rate constant, k(7"), (Eqn. 2-2) has been made here. Hence,
a plot of the natural logarithm of the initial self-heating rate versus 1/T has a slope related

to the activation energy, E,, and an intercept related to the frequency factor, 7.

50



Simulations of ARC profiles for typical zero-order and first-order reactions are
shown in Figure 2.7 and Figure 2.8. Four starting temperatures 140°C, 150°C, 160°C and
170°C were used. E, was selected to be 1.6 eV, which is close to that found in
experiments on LipsCoO; in electrolyte [7]. AT was set to be 60°C. y was selected so that
the ARC simulation would produce a measurable self-heating at 140°C. ¢, was selected
to be 0.001. Table 2.3 lists the values of the parameters used for the simulations of the

reaction models given in Table 2.2

Table 2.3 Parameters used to calculate ARC profiles for the chosen reaction models of
Table 2.2

Reaction Model E, (eV) Y a
6 1.6 5x10'° 0.001
9 1.6 5x10'° 0.001

1000 3 _
—~ 100 — _
[=N:

E [
O 10 3 .
~ |
o 4L i
= i
5

0.1F _

0.01 - (R R AT SR NN SR R NS RS N |

140 150 160 170 180 190 200 210 220 230
Temperature (°C)

Figure 2.7 Calculated ARC profiles for zero order kinetics (model 6 in Table 2.2) using
the parameters for model 6 in Table 2.3.
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Figure 2.8 Calculated ARC profiles for first order kinetics (model 9 in Table 2.2) using
the parameters for model 9 in Table 2.3.
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2.5 Introduction to the ARC machine

A simple schematic diagram of an Accelerating Rate Calorimeter is shown in
Figure 2.9. A temperature sensor (a thermocouple) is attached to the surface of the
sample holder to monitor the temperature of the sample. If the sample holder is heated by
an exothermic reaction, a difference between the sample and jacket temperatures is
detected. The heaters then heat the jacket so it has the same temperature as the sample.
Hence, there is no heat flow between the sample holder and the jacket. The sample holder
is therefore maintained under adiabatic conditions and it self-heats due to the exothermic
reactions occurring within it. The temperature of the sample (T) is measured versus time

(t) and the self-heating rate (dT/dt) vs. T is usually plotted.
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Heater

| Heated Jacket
Sample | Termp Top Zone Temp
Sensor Sansor
Side Zone \ Sample Holder Bottomn Zone
Temp Sensor oz ‘/ Temp Sensor

Figure 2.9 Schematic of the Accelerating Rate Calorimeter (ARC)

Figure 2.10 shows a picture of an ARC with its outside blast shell open. The blast
shell is added mainly for safety concerns as the ARC can be used to study the thermal
instability of explosives. When the cover is lifted up, there is a thermocouple (type N)
suspended in the center of the jacket and an ARC sample tube is hooked on the tip of the
thermocouple as shown in Figure 2.11. There are also heaters and thermocouples located

in the top, bottom, and side zones around the jacket, which cannot be seen in this picture.

Cover of the
Heated Jacket

Blast shell
Insulator around

Heated Jacket
Figure 2.10 A picture of the ARC when the blast shell is open
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Thermocouple ARC sample tube

Heated Jacket Insulator around

Heated Jacket

Figure 2.11 An ARC sample tube hooked on the tip of the sample thermocouple

The ARC sample holder was made from a 6.35 mm (0.250°") outer diameter
stainless steel (type 304) seamless tube with a wall thickness of 0.015 mm (0.006°")
(MicroGroup, Medway, Mass.). The stainless steel tubing was cut into 39.1 mm (1.540”)
long pieces shown in Figure 2.12a. A dime is shown in Figure 2.12 to indicate the size of
the stainless steel tubing. The sample tubing was sonicated twice in acetone for cleaning.
One end of the tubing was flattened and then welded inside an argon-filled glove box
using Tungsten Inert Gas (TIG) welding with a Miller Maxstar 91 ARC welder, equipped
with a Snap Start II high frequency ARC starter. A small piece of stainless steel foil was
attached to the surface of the tubing for hooking the thermal sensor in the ARC
experiment. The sample holder is shown in Figure 2.12b. A certain amount of electrode
material, such as NaysCrO,, and solvent or electrolyte was then added to the tube in an

argon-filled glove box. The other end of the tube was clamped and welded shut with the
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sample held in a large copper block as a heat sink [58]. TIG welding was performed
under a flow of argon and essentially melted the end of the tube together. Then the

sample holder in Figure 2.12c was ready for the ARC experiment.

Figure 2.12 ARC tubes for ARC experiments at various stages of sample preparation.

2.5 Scanning electron microscopy

Scanning electron microscope (SEM) was used to image materials with micron
and submicron-sized particles. All SEM images were obtained with a Hitachi S 4700

field-emission scanning electron microscope.

2.6 Surface area measurement

Single-point Brunauer-Emmett-Teller (BET) surface area measurements were
performed on electrode materials using a Micromeritics Flowsorb II 2300 surface area
analyzer. The amount of N, gas absorbed a as monolayer of atoms at 77K on the surface
of the samples is a measure of its surface area. Before testing, the sample was placed in a

U- shaped glass tube, weighed, and degassed at 150°C under a N/He mixture (3/7, v/v)
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for about 1.5 hour. The glass tube was then immersed in liquid N, for adsorption and
after that, in a beaker filled with tap water for desorption at room temperature. Both
adsorption and desorption were considered complete when the change in the BET result
was less than 0.02 m” g™'. The final surface area result was obtained from the desorption

data of the single-point BET measurement.

2.7. Measurement of the solubility of NaPF¢ or NaF in different solvents

Tests for the solubility of NaPF¢ or NaF in different solvents were made as
described below: Twenty mL solvent was put into a vial and then a mass of salt
corresponding to 0.05 or 0.2 M was added to the solvent and the vial was shaken for 5
min. If the solution became clear, another 0.05 or 0.2 M salt was added to the solution
and shaken. These operations were repeated till the solution became and remained

cloudy.

2.8 Automatic storage system.

Figure 2.13 shows a home-made 190-channel storage system that was used in the
automatic storage experiments in this thesis. The storage system has a Keithley
Instruments model 2750 scanning voltmeter equipped with scanner cards with
mechanical relays. The scanner cards connect the cells to the voltmeter only once every 6
hours for only 1 second. Additionally, the input impedance of the Keithley 2750 is > 10

GQ, so the measurements were made at conditions which approximate true open circuit.
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Petroleum coke (Conoco-Phillips)/Li half cells were assembled as described in section
2.3. The cells were discharged (lithiated), charged (delithiated) between 0.005 V and 1.5
V at C/10. Then the cells were discharged to the desired potential (0.005, 0.1, 0.2, 0.4,
0.6 or 0.8V) and held until the measured current decreased to C/100. Then the cells were
transferred to the storage system. All the cells were stored in constant temperature boxes
at 30.0 or 60.0°C which are stable to + 0.1°C. The cells were stored for 500 hours while
the open circuit potential was monitored. The entire system is controlled by a
computer-running software developed in-house with VB.Net. This system is described in

reference [59].

Figure 2.13. A picture of the 190-channel automated cell storage system
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2.9 Symmetric cells.

Thin film electrodes and graphite/Li half cells were made following the
procedure described in Sec. 2.3.1. These half cells were used to lithiate electrodes to pair
with an identical delithiated (uncycled) electrode in the symmetric cell. The graphite half
cells were discharged (lithiated), charged (delithiated) then discharged again between 5
mV and 1.2 V using a constant current corresponding to a charge or discharge in 20 hours
(C/20) and held at 5 mV until the measured current decreased to the corresponding C/100
current. A Maccor series 4000 cycler was used for these steps.

After the half cells had completed the cycling described above, they were taken
back into the argon-filled glove box with freshly punched 13 mm diameter graphite
which had been dried under vacuum at 120°C for at least 6 hours. The half cells were
carefully disassembled (making sure not to create a short across the cells) and the
lithiated graphite was recovered. This lithiated electrode was then rebuilt in a new 2325
coin-type cell with a fresh electrode and fresh electrolyte of the same composition. A
fresh electrode was used for the graphite/graphite symmetric cells to ensure that the
amount of active Li in the electrodes was not larger than either electrode’s capacity (due
to the SEI formation on the fresh electrode) preventing possible lithium plating during
cycling.

When constructing the symmetric cells, one polypropylene blown microfiber
(BMF — available from 3M Co. 0.275 mm thickness, 3.2 mg/cm®) separator was used in
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place of the 2 Celgard 2300 separators used in the half cells. The symmetric cells were
then sealed with Torr Seal (Varian, USA) around the gasket between the can and cap in
order to ensure virtually no electrolyte leakage during cycling at elevated temperatures.
The symmetric cells were then cycled using a charger provided by E-One Moli Energy
(Maple Ridge, BC, Canada) with a constant current between voltage limits of +/- 0.5 V.

The details of construction and properties of a symmetric cell are described in ref [60]

2.10 Electrochemical impedance spectroscopy measurement.

Electrochemical impedance spectroscopy (EIS) measurements were conducted on
symmetric graphite/graphite cells after 20 cycles. The cells were cycled at 30 + 0.1°C
with a rate of C/10 between -0.5 and +0.5 V and then discharged to 0.0 V and held until
the measured current dropped below C/100 before impedance measurements were taken
at room temperature (21 + 1°C) using a Maccor FRA 0356. AC impedance spectra were
collected with ten points per decade from 10 kHz to 10 mHz with a signal amplitude of

10 mV.

2.11 Self-extinguishing time (SET) tests

Self-extinguishing time tests were carried out following the procedure described
by Xu et al [41]. However, two similar methods were employed to study the
method-dependence of these results. In the first method, the cotton tip end of a cotton

swab (Life Brand, Canada) having an ellipsoidal shape about 0.4 cm in diameter and
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about 0.8 cm long was used. The cotton swab was placed in a watch glass as shown in the
left panel of Figure 2.14. Figure 2.14 shows two cotton swab tips although only one was
used in the SET test. The cotton swab tips had 100 mg of electrolyte added with a syringe.
In the second method, a small sphere of glass wool was placed on aluminum foil as
shown in the right panel of Figure 2.14. Figure 2.14 shows two glass wool spheres
although only one was used in the SET test. These glass wool spheres had 100 mg of
electrolyte added with a syringe. In both methods 1 and 2, the balls were ignited using a
barbeque lighter and the time that it took for the flame to extinguish was recorded. The
SET was obtained by dividing the time the flame burned by the electrolyte mass

according to the procedure in the literature [41].

Q-tip cotton balls on Glass wool on Al foll
a watch glass

Figure 2.14 Illustration of the two different SET test methods used in this work: (right
panel) Method 1: Cotton swab tip on a watch glass; (left panel); Method 2: glass wool on
Al foil.
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CHAPTER 3 STUDIES OF THE REACTIVITY OF NEGATIVE
ELECTRODE MATERIALS FOR SODIUM-ION BATTERIES IN

SOLVENTS AND ELECTROLYTES.

3.1 Hard carbon

3.1.1 Sample preparation

Please refer to Section 2.1 for the synthesis of the hard carbon sample used. This

sample will be called “HC” for compactness.

3.1.2 Electrochemical performance of hard carbon

Figure 3.1 shows the first discharge curve of a Na/HC cell. The electrolyte was
IM NaClO4/PC and the discharge rate was C/80. The cells with pellet electrodes destined
for ARC experiments were not charged so the irreversible capacity could not be checked
in these cells. However, the inset in the lower panel of Figure 3.1 shows the
discharge-charge curve of a Na/HC cell with a typical film electrode showing that the
irreversible capacity is around 90 mAh/g. The hard carbon sample can deliver a capacity
of about 320 £ 10 mAh/g during the first discharge. The curve can be divided into two
parts: the sloping region, which is related to sodium inserting between the parallel
graphene layers and the long plateau at very low potential which is related to sodium

inserting into the pores of hard carbon [30]. These features agree well with reference [30].
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The first discharge curve of Li/HC cells is also shown in Figure 3.1. The nanoporous

carbon delivers a capacity of about 405 £ 10 mAh/g during the first discharge.
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Figure 3.1 Potential versus specific capacity of Na/HC and Li/HC cells measured during
the first discharge. The first cycle of a Na/HC half cell with a typical film electrode is
shown as an inset in the bottom panel.
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3.1.3 Reactivity of sodium-inserted hard carbon (Na:HC) in different solvents and
electrolytes

Figure 3.2 shows the self-heating rate vs. T of 70 mg Li:HC or 70 mg Na:HC in
the same mass of solvent or electrolytes (The notation Li:HC or Na:HC is used to
represent hard carbon loaded with as much as Li or Na as possible in a room temperature
electrochemical cell. The samples do not contain plated Li or Na). Li:HC shows much
better thermal stability than Na:HC in both solvent and electrolytes. The onset
temperature of the reactions between Li:HC and solvent or electrolyte is around 160°C,
and the both reactions do not exceed the maximum heating rate of the ARC, 20°C/min in
the test temperature range. Na:HC, on the other hand, has an onset temperature of 150°C
in solvent and 130°C in NaPF¢/EC:DEC electrolyte. The reactions involving Na:HC
exceed the maximum tracking rate of the ARC before 270°C. Na:HC reacting with
NaPF¢/EC:DEC electrolyte exceeds the tracking rate of the ARC below 200°C. The
reactivity of Na:HC in 1M NaClO4/PC is also shown in Figure 3.2. This experiment
shows an even lower onset temperature (around 70°C) than NaPFg-based electrolyte.
Even though Na:HC in NaClO4/PC electrolyte did not reach the maximum tracking rate
of the ARC, as did Na:HC in NaPF¢/EC:DEC, it appears that NaClO4/PC is probably not
suitable for Na:HC electrodes in sodium-ion batteries because it reacts at a detectable rate

with Na:HC at a relatively low temperature.
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Figure 3.2 Self heating rate (SHR) vs. temperature of 70 mg Li:HC or 70 mg Na:HC
reacting with 70 mg of electrolyte or solvent. Li:HC with EC:DEC (1:2 v/v) (Blue);
Na:HC with EC:DEC (1:2 v:v) (Black); Li:HC with IM LiPFs in EC:DEC (1:2 v/v)
(Green); Na:HC with 1M NaPF¢ in EC:DEC (1:2 v/v) (Red); and Na:HC with 1M
NaClOy4 in PC (Cyan), as indicated by the legend in the Figure.

Figure 3.3 shows the self-heating rate vs. T of 70 mg Na:HC in the same mass of
EC, DEC and DMC in the left panels, and shows the XRD patterns of the products of the

reactions after the ARC tests in the right panels. For DMC and DEC, there are
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exothermic peaks at very low temperature (around 60°C to 70°C), which means that

Na:HC reacts with DMC and DEC at this temperature. This could be problematic for the

elevated temperature operation of Na-ion cells with nanoporous hard carbon electrodes

that use large DEC or DMC fractions in their electrolytes. Each of EC, DMC and DEC

react strongly with Na:HC once the temperature increases to near 150°C. DEC has the

lowest onset temperature, followed by DMC and finally EC.
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Figure 3.3 Self heating rate (SHR) vs. temperature of 70mg Na:HC in 70mg EC, 70mg
DEC, 70mg DMC and the XRD patterns of the products after ARC tests, respectively.
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The right panels of Figure 3.3 show that the XRD patterns of all these three
products have similar Bragg peak positions, suggesting products with a similar crystal
structure. As is well known, lithiated graphitized carbon reacts with EC, DEC and DMC
to form lithium alkyl carbonates, among other products [12]. It is possible that Na:HC
reacts with these solvents to give similar reaction products. Figure 3.4 shows the XRD
pattern of product of the reaction of Na:HC with DMC, which is compared to a reference
XRD pattern and a calculated (using Rietica) XRD pattern [61] (based on the crystal
parameters given in ref. [62]) of sodium methyl carbonate. The experimental result agrees
with the reference and calculated patterns very well, which shows that Na:HC reacted
with DMC to form sodium methyl carbonate. By analogy, it can be proposed that Na:HC
will react with solvents like EC, DEC or DMC at elevated temperature to produce sodium

alkyl carbonates, as shown in the equations below:

I I :
Na+ H,C—O0—C—0O—CH, > Na—O—C—O—CH, (Equation3.1)

0 0
I I .
Na+ H,C—C—0—C—0—C—CH, — Na—C—0—C—0—C—CH, (Equation
H2 H2 H2 H2
3.2)
L - o j
2Na+2 O O — NaO—C—O—g—g—O—C—ONa (Equation 3.3)
2 2
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Figure 3.4 Reference, calculated and experimental XRD patterns of sodium methyl
carbonate. The experimental pattern is the product of the reaction of Na:HC and DMC
after the ARC experiment.

Figure 3.4 showed the product Na:HC reacting with DMC is sodium methyl
carbonate. Similar statements cannot be conclusively made for the products of Na:HC
reacting with DEC or EC because there are no reports of the structures of these
compounds for comparison to the data in Figure 3.3. Sodium methyl carbonate is very
stable in air, unlike lithium alkyl carbonate, which is very air-sensitive [12]. Assuming

air-stable sodium alkyl carbonates are the main SEI components in sodium-ion batteries,
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it may be possible to make the SEI of the negative electrode ahead of time. In this way no
capacity loss to SEI formation will occur.

The left column in Figure 3.5 shows the self-heating rate vs. T of 70 mg Na:HC in
the same mass of EC, DEC and EC:DEC (1:2 v/v), and the right column shows the XRD
patterns of the products after the ARC tests. As described above, the reactions of Na:HC
with EC and DEC occur in the same temperature range, so the products of the reaction of
Na:HC with EC:DEC should come from both EC and DEC. Figure 3.6 shows an
expanded view of the three XRD patterns from 10° to 40°. By comparison of the three
patterns, the XRD pattern of the product of the reaction of Na:HC with EC:DEC (red line)
has some peaks due to DEC reaction products (black line), such as the peaks at 18° and
28°, and some other peaks from EC reaction products (green line), such as peaks at 26.5°
and 30.5°. Therefore, both EC and DEC contribute to the reaction of between Na:HC

and EC:DEC.
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Figure 3.5 Self heating rate (SHR) vs. temperature of 70 mg Na:HC in 70 mg EC, 70 mg
DEC or 70 mg EC:DEC (1:2 v/v) and the XRD patterns of the products after ARC tests,

respectively.
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Figure 3.6 Expanded version of the XRD patterns (from 10° to 40°) of the products of
Na:HC reacting with EC, DEC and EC:DEC, respectively.
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The left column in Figure 3.7 shows the self-h-eating rate vs. T of 70 mg of
Na:HC in the same mass of EC, DEC and 1M NaPFg in EC:DEC (1:2 v/v), and the right
column shows the XRD patterns of the products after the ARC tests. Figure 3.8 shows an
expanded view of the XRD patterns. The comparison of the three patterns shows almost
all peaks from DEC reaction products appear in the product of the reaction with Na:HC
and the electrolyte. There are also peaks that arise, especially the peak at around 38° from
EC reaction products. It is not possible to state that the reaction products with electrolyte
only arise from DEC, but it appears that the DEC products dominate the pattern which is

different from the solvent case described by Figures 3.5 and 3.6.
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Figure 3.7 Self heating rate (SHR) vs. temperature of 70 mg Na:HC in 70 mg EC, 70 mg

DEC or 70 mg 1M NaPF¢ in EC:DEC (1:2 v/v) and the XRD patterns of the products
after ARC tests, respectively.
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Figure 3.8 Expanded view of the XRD patterns (from 10° to 40°) of the ARC products, of
Na:HC reacting with EC, DEC and 1M NaPF¢ in EC:DEC (1:2 v/v), respectively.

Why are the reaction products different when NaPFs is present? First, there is
very little, if any NaF observed (shown as red lines in Figure 3.7). Figure 3.9 shows the
weight versus temperature as measured by TGA for NaPF¢ and LiPFs. NaPF4 does not
decompose significantly below 300°C which may explain why little NaF is observed in
the XRD patterns of the Na:HC after heating with electrolyte. By contrast, LiPF starts to
decompose slowly to LiF and PFs [6, 63] below 100°C and the decomposition is
completed by 200°C which helps explain why LiF is the majority product found after

ARC experiments of LiCg in electrolyte.
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Figure 3.9 TGA experiments on NaPFs and LiPFs. The samples were heated at 5°C/min
in argon gas.

One possible explanation for the different reactivity of Na:HC in electrolyte
compared to in solvent might be strong “coordination” between NaPF¢s and EC.
Preferential coordination of salts in mixed solvents does exist in lithium-ion battery
systems, such as the case of LiPF¢ and EC, because LiPF¢ has the largest solubility in EC
[12]. Such coordination could also affect the reactivity of mixed solvents and electrolytes
with negative electrode materials loaded with lithium or sodium [12, 64]. This is because
DEC and DMC are more reactive than EC and PC. If a thermally stable salt like NaPFg

coordinates more strongly to a less reactive solvent in a solvent mixture, then the
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reactivity of the solvent mixture with Na:HC will increase as salt is added because the
more reactive component will not be coordinated to the salt and will be free to react.
Table 3.1 shows the approximate solubility of NaPFg in different solvents as measured in
this work. NaPF has the largest solubility in EC, which probably means that NaPFq will

coordinate most strongly to EC in a solvent mixture involving EC and DEC or DMC.

Table 3.1 Solubility of NaPFs in DMC, DEC, PC and EC

Solvent
DMC DEC PC EC
Dielectric constant (40°C) 3.12 2.82 64.4 89.6
Solubility (0.2 M) 0.6 0.8 1.0 1.4

This may provide an explanation for the increased reactivity of Na:HC in
electrolyte. As NaPF is added, EC coordinates to the salt, leaving the more reactive DEC
available to react with the Na:HC. Therefore the reaction of Na:HC in electrolyte is
similar to that of Na:HC reacted with DEC, and the products come primarily from DEC.
Since NaPF; does not decompose at low temperatures it apparently does not form NaF to
cover the surface of the Na-containing carbon. The solubility of NaF in EC, DEC, PC and
DMC was tested and found to be less than 0.05 M. Therefore, any formed NaF was not
simply dissolved away.

Figure 3.10 shows the self-heating rate vs. T of 70 mg Na:HC in the same mass

of EC:DEC, EC:DMC and in 1M NaPF; electrolytes of each solvent mixture. Figure 3.10
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shows that adding NaPFs makes the Na:HC more reactive than it is in solvent alone. As
discussed above, if NaPF¢ coordinates with EC, adding NaPF¢ reduces the contribution of
EC to the thermal stability of Na:HC in electrolyte and the reaction of Na:HC in
electrolyte is approximately the same as the reaction between Na:HC and DEC or DMC
only. Figure 3.3 showed that DEC and DMC react with Na:HC at lower temperatures
than EC. Therefore in NaPF¢-containing electrolytes made of EC and DEC or DMC the

reactivity of Na:HC is more severe than in the mixed solvent alone.
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Figure 3.10 Self heating rate (SHR) vs. temperature of 70 mg Na:HC in 70 mg EC:DEC
(1:2 v/v), 70 mg EC:DMC (1:2 v/v), 70 mg 1M NaPF; in EC:DEC (1:2 v/v) or 70 mg IM
NaPFg in EC:DMC (1:2 v/v).
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Figure 3.11 shows the self-heating rate vs. T of 96 mg Na:HC in 40 mg of NaPF,
in EC:DEC (1:2 v/v) electrolytes with different molarity. As the molarity of the
electrolyte increases, the ARC samples showed increasing reactivity, because more
NaPF¢swas added into the solvent and coordinated to EC, leaving the more reactive DEC
available to react with the Na:HC. Assuming that each Na' and each PFg are coordinated
by four EC molecules, a concentration of about 1.33 M would be required to exhaust all
the EC molecules available in EC: DEC (1:2). Therefore it is possible that most of the EC
molecules could be involved in the co-ordination at a concentration of 1.0 M. This

speculation can explain why Na:HC is more reactive in NaPFg electrolyte than in

EC:DEC solvent.
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Figure 3.11 Self heating rate (SHR) vs. temperature of 96 mg Na:HC in 40 mg 1 M, 0.5
M, 0.25 M or 0 M (solvent only) NaPF¢ in EC:DEC (1:2 v/v).

75



3.1.4 Summary

The reactivity of Na:HC in different solvents and electrolytes was studied using
ARC tests. Na:HC shows higher reactivity than Li:HC in solvent and electrolytes. The
XRD results showed that Na:HC reacts with DMC to form sodium methyl carbonate. In
EC:DEC solvent, Na:HC reacts with both EC and DEC and the products are derived from
both EC and DEC. Adding NaPF¢ to make mixed electrolytes decreases the thermal
stability of Na:HC probably because NaPF¢ coordinates more strongly with EC rendering
it less reactive than the other solvent components. Therefore, the reaction of Na:HC with

electrolyte is similar to the single reaction of Na:HC with DEC or Na:HC with DMC.

3.2. Comparison of the reactivity of Na,Cs and Li,Cs with non-aqueous solvents and
electrolytes

Graphite and HC were made into Li/graphite and Na/HC electrochemical cells.
The Li/Graphite cells reached a final capacity before disassembly of 320 £ 10 mAh/g and
the Na/HC cells reached a specific capacity of 320 £ 10 mAh/g as shown in Figure 3.1.
The specific surface areas of graphite and HC were measured to be 0.7 + 0.1 m*/g and 2.1
+ 0.1 m?/g, respectively.

Figure 3.12 shows the self-heating rate vs. T of 70 mg Li:Graphite or 70 mg
Na:HC in the same mass of solvent or electrolyte. Adding LiPF¢ to the solvent
significantly reduces the reactivity of Li:Graphite, which agrees well with a previous
report [6]. On the other hand, adding NaPFs increases the reactivity for Na:HC as

evidenced by a reduction in the onset temperature for the self-heating exotherm and a
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dramatic increase in self-heating rate compared to the salt-free solvent. The reason for the
increasing reactivity of Na:HC in electrolyte has been investigated in the last section. The
improved thermal stability of Li:Graphite in electrolyte has been attributed to the
formation of LiF [6]. Since LiF is a stable inorganic solid, the formation of LiF improves
the thermal stability of the layer of reaction products on the surface of the lithiated
graphite and this is why the addition of LiPFs decreases the reactivity of LiCe with

electrolyte [6].
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Figure 3.12 Self heating rate (SHR) vs. temperature of 70 mg LiCe or 70 mg Na:HC in 70
mg EC:DEC (1:2 v/v) (Li:MCMB: Green, Na:HC: Blue)or 70 mg IM LiPF¢ in EC:DEC
(1:2 v/v) (Red)or 1M NaPF¢ in EC:DEC (1:2 v/v) (Black), as indicated by the legend.
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3.2.1 Summary

The reactivity of sodium intercalated hard carbon in EC:DEC solvent or in
NaPF¢ EC:DEC electrolyte was studied by ARC and the results were compared to the
reactivity of LiCs with solvent or LiPFs EC:DEC electrolyte. Adding NaPF¢ does not
decrease the reactivity of Na:HC as adding LiPF¢ does for LiCs. This is because NaPFy is
stable at elevated temperature (in the ARC test temperature range) and does not
decompose to form stable inorganic salts, such as NaF, to decrease the reactivity. At the
same time, NaPF¢ coordinates to EC and increases the reactivity of Na:HC in NaPFg

EC:DEC electrolyte because the remaining DEC is more reactive than EC.
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CHAPTER 4 STUDIES OF THE REACTIVITY OF POSITIVE
ELECTRODE MATERIALS FOR SODIUM-ION BATTERIES IN

SOLVENTS AND ELECTROLYTES.

4.1 NaCrO;,
4.1.1 Synthesis of samples.

A NaCrO, sample was prepared by heat treatment of stoichiometric ratios of
Na,COs and Cr,0; at 900°C in argon for 5 h. The specific surface area of the sample was
0.63 + 0.05 m%/g as measured by single point BET analysis. A LiCoO, sample was
obtained from E-One Moli/Energy Canada Ltd. (Vancouver, BC) with a specific surface
area of 0.27 m%/g. A LiFePO, sample was obtained from Hydro-Québec, Canada with a

specific surface area of 23.9 m”/g.
4.1.2 XRD and SEM

Figure 4.1 shows the powder XRD pattern of the NaCrO, sample. All the
observed Bragg peaks matched the reference peak positions of NaCrO, (JCPDS # 250819,
space group: R-3m). The lattice constants, atom positions and cation disorder were
refined using the Rietveld method. The refined lattice constants of NaCrO, were found to
be a=2.976 A and c=15.969 A. The Na/Cr cation disorder was less than 0.1%. Figure 4.1
also shows SEM images of the NaCrO, sample. The powder consisted of

well-crystallized particles of 1~3 um diameter.
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Figure 4.1 Diffraction pattern of synthesized NaCrO, and Rietveld profile
refinement.Circles and lines correspond, respectively, to the observed and calculated
intensities. The differences between the observed and calculated patterns and the
referenced peak positions of NaCrO, corresponding to JCPDS # 250819 are also shown.
SEM images of the NaCrO, powder are shown in the inset. The inset also shows an
expanded view of the region of the XRD pattern between 67° and 80° to demonstrate the
quality of the fitted pattern to the data.

4.1.3 Electrochemical performance of Na/NaCrO; half cells

Figure 4.2 shows the initial potential versus specific capacity curve for the first

charge and discharge of a Na/NaCrO, coin cell cycling between 3.6 and 2.0 V. The cell
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delivers a capacity of about 110 mAh/g during the first charge, indicating that Nag sCrO,
has formed at the end of charge. A couple of potential-capacity plateaus can be observed,
which are related to the phase transitions: Hex. O3— Mon. O3— Mon. P3 [19]. The
cycling performance is also shown as an inset. Only a few cycles are shown here, because
two-electrode coin cells with a Na metal counter electrode are easily short-circuited due
to very severe Na dendrites. This sample should have good cyclability according to
Komaba’s report [19]. Improvements focused at dendrite reduction in Na-metal
containing coin-cells have been made through introducing polypropylene blown
microfiber (BMF, 0.275 mm thickness, 3.2 mg/cm?, 3M Co.) as separators in the cells.

Please refer to Figure 5.2 to find the improved cyclability of a Na/NaCrO; cell.
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Figure 4.2 Potential versus specific capacity of a NaCrO; electrode in a Na/NaCrO,
coin-type cell. The cell was charged and discharged between 3.6 and 2.0 V using a
current corresponding to 25 mAh/g. Specific capacity versus cycle number is shown in

the inset.
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4.1.4 Reactivity of deintercalated NaCrQO; (~NaysCrQO3) in solvents and electrolytes

The bottom panel of Figure 4.3 shows the self-heating rate vs. temperature, T, of
100 mg of NaysCrO,, LipsCoO; or LigFePOy4 in the same mass of solvent (EC: DEC).
NaysCrO;, shows an initially unexpected lack of reactivity during the test temperature
range (50°C to 350°C). There is no measurable heat released. On the other hand, the
LigsCoOs: solvent sample started to react at around 120°C and exothermic behaviour
occurs up to the end of the testing range. LigFePO4 shows low reactivity but eventually
shows a brief exotherm beginning around 300°C.

As it is well-known, deintercalated LiyCoO, shows high reactivity in solvents due
to the oxygen release from the decomposition of LiysCoO; at elevated temperature and
subsequent solvent combustion [7]. Deintercalated LiFePO, is very stable due to the
strong bonding between O* and P°* in (PO,)’" [65], but it still shows some limited
reactivity in solvent at sufficiently high temperature [11]. NaysCrO, shows even less
reactivity than LigFePOs, and to our knowledge, this is the first time a de-intercalated
layered oxide has shown little exothermic behaviour during heating in non-aqueous

solvent to 350°C.
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Figure 4.3 Self heating rate (SHR) vs. temperature of 100 mg Nay sCrO,, LipsCoO, or
LigFePO, in the same mass of EC: DEC (1:2 v/v) or 1M NaPFg in EC: DEC (1:2 v/v),
and the electrolyte itself. The legend indicates which curve corresponds to which sample.
Some experiments on Nay sCrO, were repeated three times as indicated.

The top panel of Figure 4.3 shows the self-heating rate vs. temperature of 100 mg
of NajsCrO; in the same mass of 1M NaPF¢/EC: DEC electrolyte and the self-heating

rate for 100 mg of the electrolyte itself. NaysCrO; also shows very high thermal stability
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in electrolyte. There is no exothermic reaction until around 250°C and the total heat
released is small. Given that the electrolyte itself shows a similar response, it is possible
that much of the exothermic signal from the NaysCrO,/electrolyte sample comes from
only the reaction of the electrolyte itself. NaysCrO, shows much better thermal stability
than LipsCoO, and LixNi;3sMn;3Co,30; in electrolyte [7, 11, 66].

Why does de-intercalated NaCrO, have so little reactivity with non-aqueous
solvent or electrolyte? One explanation could be the high stability of NaysCrO, at
elevated temperature. Figure 4.4 shows the weight versus temperature as measured by
TGA for NagsCrO,. The TGA result indicates that Nay sCrO, loses less than 1% weight
after heated to 350°C in argon, compared to more than 3% weight loss of LiysCoO;

which decomposes to LiCoO; and Co304 [67] when heated to 350°C.
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Figure 4.4 TGA experiments on NagysCrO,. The samples were heated at 5°C/min in argon
gas
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The left column of Figure 4.5 shows the XRD patterns of the products of heating
Nay sCrO; after ARC (with solvent) and TGA (dry NaysCrO,). Figure 4.5 also shows the
XRD patterns of fresh Nay sCrO,, obtained directly from a charged coin cell, and pristine
NaCrO; for comparison. The XRD pattern of Nay sCrO; after TGA shows the same peaks
as fresh NaysCrO, which match the reference peak positions of Nays;CrO, (JCPDS #
381205). Additionally, there are a weak set of other peaks that have appeared after the
TGA experiment.

Figure 4.5 shows that the XRD pattern of the product of Nay sCrO, reacting with
solvent after ARC shows different peaks. Two phases can be identified from the XRD
pattern. The first phase is O3-NaCrO, which matches the peak positions of pristine
NaCrO,. The XRD pattern of second phase, which matches the set of weak peaks from
the TGA experiment on NagsCrO,, is more clearly observed by subtracting the NaCrO,
portion of the pattern from the initial data. The top panel in the right-hand column of
Figure 4.5 shows the pattern of the second phase. Based on the lack of heat evolved in the
ARC experiment and the little mass loss and few structural changes of NaysCrO, after
TGA, which suggests little oxygen evolution from the solid, and the identification of one
of the two phases as NaCrO,, a scenario is proposed for the reaction occurring in the

ARC experiment. The reaction between Nay sCrO, and solvent in the ARC experiment is:

Na, ,CrO, M)%NaCrOZ + % Cro, ;+ %502 (Equation 4.1)
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Figure 4.5 (left column) XRD patterns of a) pristine NaCrO,, b) NagsCrO, prepared by
charging an Na/NaCrO; cell to 3.6 V, ¢) the product of Naj sCrO, after a TGA experiment
in argon, d) the product of NajsCrO, reacting with solvent in an ARC experiment to
300°C. (right column) XRD patterns of €) same as (a) with the NaCrO, substracted
showing only the P3-CrO, f) calculated pattern of P3-CrO,, g) calculated pattern of
03-CrO; and h) calculated pattern of O1- CrO,.
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In Equation 4.1, only a small amount of oxygen, 6, will be released, which can
explain the low reactivity of NaysCrO; in solvent. The question now is whether the XRD
pattern of the second phase is consistent with a layered CrO,.s structure. Manthiram et al.
reported the crystal structure of P3-structure CoO,.5 prepared by chemical oxidation of
03-LiCoO, [68]. Lattice constants of a= 2.8578 A and c=14.0019A and space group
R3m were used to calculate the XRD pattern of P3-CrO, using Rietica. The result is
shown in the second panel of the right column in Figure 4.5 which agrees fairly well with
the experimental peaks from the second phase displayed in the panel above. For
comparison, calculated XRD patterns of O3-CrO, and O1-CrO;, using appropriate lattice
constants, are also shown. The experimental pattern agrees best with the calculated
pattern of P3-CrO, and this supports our assumption about the reaction that occurred in
the ARC (Reaction 4.1). Attempts to carefully refine the XRD pattern of P3-CrO,.; using
Rietica failed, because the experimental peak positions are not exactly located at the
calculated positions. This can be due to the presence of stacking faults as can be expected
during the transition from the O3 to P3 structure. Work to determine these stacking faults
using the DiFFaX program [69, 70] to obtain the best agreement with experiment will be
discussed in next section. The XRD pattern of the product of NaysCrO, heated in
electrolyte is not shown for brevity. That pattern also shows the NaCrO, and CoO,.s

phases. This explains the high thermal stability of NaysCrO, in electrolyte and supports
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the assumption that the small exothermic reaction in the ARC experiments on

Nay sCrOy/electrolyte originates from the decomposition of the electrolyte itself.

4.1.5 Calculations of the XRD pattern P3-CrO, with different type of stacking faults

A stacking fault is a mistake in the stacking sequence of the layers in a layered
crystal structure. Stacking faults occur in a number of crystal structures, but the most
common example is in close-packed structures. Face-centered cubic (fcc) structures differ
from hexagonal close packed (hcp) structures only in stacking order. When stacking one
hexagonal close packed layer on top of another, the atoms are not directly on top of one
another—the first two layers are identical for hcp and fcc, and labelled AB. If the third
layer is placed so that its atoms are directly above those of the first layer, the stacking
will be ABA—this is the hep structure, and it continues ABABABAB. However, there is
another possible location for the third layer, such that its atoms are not above the first
layer. Instead, it is the atoms in the fourth layer that are directly above the first layer. This
produces the stacking ABCABCABC, and is actually a cubic arrangement of the
atoms. A stacking fault happens, for example, if the sequence ABCAB(stacking
fault) ABCABC were found in an fcc structure.

In alkali transition-metal oxides, a stacking fault can be defined by the sequence
of MO, slabs. Figure 4.6 shows the crystal structure of P3 and O3 type layered-CrO,
viewed in a 110 projection. The CrO, slabs in a unit cell are marked. In a P3-type

structure, the stacking order of the CrO, is aB_BcA AbC_Ca as shown in Figure 4.6 (“ ”
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is prismatic site for alkali atoms), while in a O3-type structure, the stacking order of CrO,
slabs is aB_ AbC _BcA Ca (“ ” is octahedral site for alkali atoms). Hence, an O3-type

stacking fault happens if the sequence aB_ BcA AbC CaB_AbC AbC Ca is found in a
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Figure 4.6 Crystal structure of P3 and O3 type layered-CrO, viewed in 110 projection

The program DIFFaX can be used to simulate powder X-ray diffraction patterns
from crystals containing coherent planar stacking faults. This program exploits the
recurring patterns found in randomized stacking sequences to compute the average
interference wave function scattered from each layer type occurring in a faulted crystal. It
has been used to simulate the nature of the stacking faults in T2, O2 and O6 type

Liy3(CoxNij3xMny3)O0; by Lu et al. as well as many other compounds [69].
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To simulate the X-ray diffraction pattern of a stacking faulted structure using
using DIFFaX, one must specify the layers, 1, that make up the structure as well as the
probability,a;;,of finding layer j stacked after layer i. The interlayer translation vector, R,
must also be specified. In O3 and P3 type CrO,, there are only 3 types of layers in one
unit cell as indicated as 1, 2, 3 in Figure 4.6. Table 4.1 shows the layer stacking
probabilities and stacking vectors in O3-P3 structure (x is a variable, 0<x<1). If x=1, the

structure 1s O3 and if x=0 the structure is P3.

Table 4.1 Layer stacking probabilities and stacking vectors

i-j a;j for O3-P3 Rx;j Ry;; Rz;
1----1 0 0 0 0
1----2 X 0.3333 0.6667 1
1----3 1-x 0.6667 0.3333 1
2----1 1-x 0.6667 0.3333 1
2----2 0 0 0 0
2----3 X 0.3333 0.6667 1
3---1 X 0.3333 0.6667 1
3----2 1-x 0.6667 0.3333 1
3----3 0 0 0 0

Figure 4.7 shows the simulated X-ray diffraction patterns for O3-P3 intergrowth
structures of CrO, sheets. Table 4.2 shows the layer structure factor and lattice constants

used in calculations. These calculations were made by varying x from 0 to 1. The red
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lines indicate the changes to the (012) and (104) peaks as the amount of stacking fault
varies. Figure 4.8 shows the calculated XRD pattern of P3-type CrO, with 10% O3-type

stacking faults. It agrees quite well with the experimental results.

Table 4.2 Atomic coordinates of the CrO, layer used for the calculation (a=b=2.859A,
C=4.6783A, y=120°)

X y z Occupation
Cr 0 0 0 1
01 1/3 2/3 0.25 1
02 2/3 173 0.25 1

- ‘\
S| |
2 u P3 X=1
Z /\ tos
@ | 1| 08
9 \ / 0.7
= | 0.6
Jv 0.5
| f ! 0.4
— | o
—] | 02
0.1
: 03 X=0
10 30 | |50 70 90

Scattering angle (deg.)
Figure 4.7 Simulations showing the effect of O3-P3 inter-growth. The calculations were
made for 0 <x <1.0
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Figure 4.8 Calculated XRD pattern of P3-type CrO2 with 10% O3-type stacking faults

and the experimental result from Figure 4.5 (e). The inset shows an expanded view of the
XRD pattern from 58° to 82°.

4.1.6 Summary

In this section, O3-Type NaCrO, was successfully synthesized by solid state
reaction and showed good electrochemical performance. The thermal stability of
deintercalated NaysCrO, was studied by ARC and NaysCrO, shows virtually no

reactivity with non-aqueous solvent between room temperature and 350°C. The reactivity
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is even less than that of LigFePOj in the same solvent. Nay sCrO; also shows high thermal
stability in NaPF¢-based electrolyte, better than that of LipsCoO; or LixNi;3sMn;3Co130,
in electrolyte. Through an XRD investigation, NaysCrO, is believed to transform to
NaCrO; and P3-CrO,s during reaction with solvent or electrolyte. There is apparently
minimal oxygen release and this is the reason for the high thermal stability of NaysCrO,.

These findings could have profound implications for the safety of Na-ion batteries.

4.2 Na0,65C002
4.2.1 Synthesis of samples.

A NayCoO; sample was prepared by heat treating a stoichiometric mixture of
Na,CO3 and CoCOj3 at 900°C in air for 24 h. The composition, x, was determined to be x
= 0.65 + 0.01 by Atomic Absorption Spectroscopy using a Varian SpectrAA 55B. The
specific surface area of the sample was 0.99 + 0.05 m*/g as measured by single point

BET analysis.

4.2.2 XRD and SEM

Figure 4.9 shows the powder XRD pattern of the initial NagsCoO, sample. All
the observed Bragg peaks matched the reference peak positions of P2-Naj71C00.9602
(JCPDS # 301182, space group: P63/mmc) well and no impurity phases could be detected.
The lattice constants, atom positions and cation disorder were refined using the Rietveld

method. The calculated lattice constants of Nag ¢sC00O, were found to be a = 2.829 A and
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c=10.941 A. Figure 4.9 also shows SEM images of the Nag sCoO, sample. The powder

consisted of well-crystallized particles of 5 ~ 10 um diameter.
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Figure 4.9 Diffraction pattern of synthesized Nag¢sCoO; and Rietveld profile refinement.
Circles and lines correspond, respectively, to the observed and calculated intensities.
The differences between the observed and calculated patterns and the referenced peak
positions of Nag7;C009s0, corresponding to JCPDS # 301182 are also shown.
Expanded version of XRD pattern (from 30° to 80°) and SEM images of the Nag sCoO;

powder are shown in the inset. The inset in the inset also shows an expanded view of the
data and calculation from 62° to 70°
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4.2.3 Electrochemical performance of Naj¢Co00O,/Na half cells

Figure 4.10 shows the potential versus x in NayCoO, of a Na/Naj¢CoO; cell.
The cell was first discharged to 2V versus Na and then charged to 4.3 V followed by a
second discharge to 2 V. The curve shows many plateaus and steps, which are related to
the existence of biphasic and single-phase domains [16]. The potential-composition
behaviour in Figure 4.10 agrees quite well with the earlier work of Delmas et al. [16].
When charged from its initial composition of NagsCoO; to 4.3 V, the material delivers a
capacity of 70 mAh/g, corresponding to the removal of about 0.3 mole of Na per mole of

Co
4.4 T T T T

2 N 1 N 1
0.3 0.5 0.7 0.9

Sodium Content (x)

Figure 4.10 Potential versus specific capacity of a NageCoO, electrode in a
Na/Naj 65C00, coin-type cell. The cell was charged and discharged between 4.3 and 2.0
V using a current corresponding to 5 mA/g.
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4.2.4 Reactivity of deintercalated NaeCo00; (~Nap3C00;) in solvents and
electrolytes

The bottom panel of Figure 4.11 shows the self-heating rate versus temperature of
0.1 g Nag35C00, reacting with 0.1 g of EC:DEC. The experiment started at 50°C.
Nay35C00, shows a relatively high reactivity in solvent. The onset temperature of the
exothermic reaction is about 140°C (as given in the lower panel), and three significant
exothermic peaks were observed till the end of the test (300°C). The top panel of Figure
4.11 shows the self-heating rate vs. temperature of 100 mg of Nag35C00O; in the same
mass of solvent EC:DEC, 0.5M NaPF¢EC:DEC (1:2 v/v) and 1M NaPF¢/EC:DEC (1:2
v/v). In these experiments, the ARC was initially forced to 115°C at 5°C/min, before
exotherm searching initiated. With salt added, Naj35C0o0O, shows more reactivity at low
temperature than in solvent alone. There is an exothermic reaction starting at around
115°C, and followed by another exothermic reaction starting at around 195°C in the
samples containing NaPF¢. The total heat released by the first exothermic reaction, as
measured by the temperature increase, AT, indicated in Figure 4.11, seems to be roughly

proportional to the molarity of the electrolyte.
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Figure 4.11 Self heating rate (SHR) vs. temperature of 100 mg Nay35C00O; in the same
mass of EC: DEC (1:2 v/v), 0.5M NaPF; in EC: DEC (1:2 v/v) or IM NaPF¢ in EC: DEC
(1:2 v/v). The starting temperature of ARC samples was set to 50°C (lower panel) or
115°C (upper panel) and the end temperature was set at 180°C, 230°C or 300°C. The
legend indicates which curve corresponds to which sample. The letters, a — f, indicate
where samples were stopped for XRD experiments reported in Figures 4.11a — 4.11f,
respectively.

Figure 4.12a shows a XRD pattern of the products of heating Naj35CoO; in
solvent to 180°C, Figure 4.12b shows a XRD pattern of the products of heating

Na35C00; in solvent to 230°C and Figure 4.12c shows a XRD pattern of the same
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reactants heated to 300°C. Co304 can be identified in both Figures 4.12a and Figure 4.12b.
A similar scenario to the reaction mechanism of LiypsCoO, heated in solvent [7] is
proposed for Naj 35C00,. Naj35C00, decomposes to NayCoO, (with x > 0.35) and Co304
and releases O; to combust the solvent. In Figure 4.12a, some peaks can be identified as
NayCoO; (x~0.7) (the referenced peak positions of Nay;CoO, are shown as blue lines).
As the temperature increased, more Co3;O4 could be identified (shown in Figure 4.12b),
while there is less peak intensity from NayCoO,. In Figure 4.12c, only very
well-crystallized CoCOj can be identified. During the cooling process after the ARC test,
cobalt oxide reacted with high pressure CO,, originating from the combustion of solvent,
to form CoCOj;. No Na-containing compound (such as Na,CO; or NaHCO;) can be
observed in Figure 4.12c, perhaps to due to low crystallinity. The three steps of the
reaction can be described as:

First exotherm;

1 1 1
Na, ;CoO, —*—— Na, ,CoO, +—Co,0, +—0,
2 6 (oxygen combusts with solvent)

Second exotherm;

1 1 _ 1

5 Na,.CoO, — 3 Co,0, + Na-containing compounds + 3 O, (oxygen combusts
solvent)
Third Exotherm:

§C0304 — Co +§O2 or §C0304 — CoO +é02 (oxygen combusts solvent)
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Figure 4.12 (left column) XRD patterns of a) Nag35C00; in solvent heated to 180°C, b)
Na35C00; in solvent heated to 230°C, ¢) Nag35C00, in solvent heated to 300°C; (right
column) XRD patterns of d) Nag35Co0O, in 1M NaPF¢ based electrolyte heated to 180°C,
e) Nag35C00, in 0.5 M NaPFs-based electrolyte heated to 300°C, f) Nag35CoO, in 1M
NaPFg-based electrolyte heated to 300°C. Reference peak positions of some compounds
are shown by lines with different colors (indicated in the Figure)

In order to investigate what happened to the created Naj;CoO; (Figure 4.12a)
during the reaction, the reaction of as-synthesized NagsCoO, with solvent was also
studied using ARC and the resulting reaction products were studied by XRD. Figure
4.13a shows the self-heating rate versus temperature of 0.1 g of Nay35CoO; in 0.1 g
EC:DEC and Figure 4.13d shows the XRD pattern of the products of the reaction after

heating to 300°C. Figure 4.13a contains the same data set as the bottom panel of Figure
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4.11 and Figure 4.13d contains the same data set as Figure 4.12c. Figures 4.13a and 4.13d
have been included for comparison with the rest of the data in Figure 4.13. Figures 4.13b
and 4.13c show the self-heating rate versus temperature of 0.1 g of as-synthesized
Na ¢5C00; in 0.1 g EC:DEC where the experiments were terminated at 230°C and 300°C,
respectively. Figure 4.13c also contains the data from Figure 4.13b so that the
repeatability of the results to 230°C can be demonstrated. Figures 4.13¢ and 4.13f show
the XRD patterns of the products of the reactions from the ARC experiments in Figures

4.13b and 4.13c, respectively.
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Figure 4.13 (left panel) Self heating rate (SHR) vs. temperature of a)l00 mg

Naj35C00; in 100 mg EC: DEC (1:2 v/v) heated to 300°C, b) NagCoO, in the 100 mg

EC: DEC (1:2 v/v) heated to 230°C, ¢) NagesCoO, in the 100 mg EC: DEC (1:2 v/v)

heated to 300°C. (right panel) XRD patterns of d) Nag35C00O; in solvent heated to 300°C,

e) Nag¢sCo0; in solvent heated to 230°C, f) NagesCoO, in solvent heated to 300°C.

Reference peak positions of some compounds are shown by lines with different colors.
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Figure 4.13a shows that Naj35CoO, shows three distinct exothermic peaks while
Figure 4.13c shows that as-synthesized Naj ¢sCoO, shows two distinct exothermic peaks.
Figure 4.12a demonstrated that the first exothermic peak of the reaction between
Nap35C00, and solvent was the formation of Nag;CoO, and Co03;04. The second
exothermic peak in Figure 4.13a matches the exothermic peak in Figure 4.13b and the
first exothermic peak in Figure 4.13c, strongly suggesting that this peak is caused by the
same reaction process. Figure 4.13e shows that the reaction product after heating
Nay¢5C0o0; in solvent to 230°C is mostly Co3;04, some remaining Nay;CoO, and some
NaHCOs. These products, apart from the NaHCOs, agree with the products observed in
Figure 4.12b collected after the second exothermic peak in Figure 4.13a.

Figure 4.13f shows the XRD pattern of the reaction products after heating
Nay 65C00; and solvent to 300°C. This XRD pattern shows primarily Co and NaHCO;.
The XRD pattern in Figure 4.13d for the reaction products between Nag3sCoO, and
solvent shows primarily CoCOs, formed by the reaction of formed CoO and CO; during
cooling. The differences between the products in Figures 4.13d and 4.13f are caused by
the increased amount of Na present in the experiment in Figure 4.13f, leading to the
formation of NaHCO3;, the consumption of CO, and oxygen, hence eliminating the
formation of CoCQOj;. Table 4.3 summarizes the results of the reactions between

Nay 35C00; or Naj ¢sC00O; and solvent or electrolytes.
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The right column of Figure 4.12 shows the XRD patterns of products of heating
Nag35C00; in electrolyte with different molarities to 180°C and 300°C (as indicated by
positions d and e in Figure 4.11). By comparison with Figure 4.11, Naj35C00, shows
quite different reactivity in electrolyte than in solvent. The XRD patterns help explain
why this is the case as they show the presence of completely different compounds. In all
three XRD patterns in the right column of Figure 4.12, a new phase, NaCoF3, can be
identified. The fluorine in this phase can only come from NaPFs. This result means that
NaPFs, which is normally used as the salt in the electrolyte of sodium-ion batteries [24],
can react with Nay 35Co0O; at elevated temperature. The analogous reaction does not occur
for LixCoO; in LiPFs-based electrolytes because LiCoF; is not known. Additionally, the
analogous reaction does not occur in NayCrO; in NaPFg-based electrolytes as discussed in
section 4.1.4 because NaCrF; does not exist. The presence of NaCoF; also explains why
the total heat released during the first exothermic reaction found in the in ARC trace of
Nay 35C0o0,/electrolyte is related to the concentration of NaPFg in electrolyte as shown in
the top panel of Figure 4.11. NaCoF; is formed after the first exothermic reaction (at
180°C), as shown in the top right panel in Figure 4.11. The reactions that occur at
elevated temperatures in Nag3sCoOs/electrolyte mixtures in the ARC experiments are

summarized in Table 4.3.
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Table 4.3 Reaction products between NayesCoO, or Nag3sCoO, and solvent or
electrolytes heated in ARC experiments to different temperatures.
Solid Reactant | Liquid Reactant | Final Products observed by | Figure
Temperature XRD experiments
°C)
Nag35C00, EC:DEC 180 C0304 and Nag7Co0O, | 4.12a
Nag35C00, EC:DEC 230 Mostly Co304 4.12b
Naj35C00; EC:DEC 300 (recall, CoCO:s (created 4.12¢
XRD at room during cooling)
Temperature)
Nag 5C00; EC:DEC 230 C0304, NaHCO:s, 4.13¢
small Nagy7Co0,
Nag 5C00, EC:DEC 300 Co and NaHCO; 4.13f
Nag35C00, 1M NaPF 180 NaCoF3 , Nay7,CoO, |4.12d
EC:DEC and Co304
Nay35C00,; 1M NaPF 300 NaCoF; and CoO 4.12f
EC:DEC
Nagp35C00, 0.5 M NaPF 300 NaCoF; and Co 4.12e
EC:DEC

4.2.5 Summary

In this section, P2-type Naj¢CoO, was successfully synthesized by solid state

reaction and showed good electrochemical performance. The thermal stability of

deintercalated NajsCoO; (~Nay35C00,) was studied by ARC and Naj35Co0, shows

relatively high reactivity in solvent and in NaPFe¢-based electrolyte. Through an XRD

investigation, the reaction mechanism of Nag35C00O; in solvent is believed to be similar
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to LipsCoO; in solvent. Naj35C0o0, decomposes to Nay7Co0; and Co304, and releases O,
at the same time, which combusts the solvent, generating heat. Nay;CoO, is also not
stable at elevated temperature in solvent as it reacts to form NaHCOj; and cobalt oxides or
cobalt metal releasing more O, to combust more solvent. In electrolyte, NaPF¢ rapidly
reacts with Nap3sCoO, to form NaCoF; and CoO/Co at elevated temperature.
Additionally, this reaction to form NaCoF; may proceed slowly at the temperatures of
battery operation. These results are instructive for the future design of electrolytes and

electrodes to be used in sodium-ion batteries.

4.3 NaNio.sMno_soz
4.3.1 Synthesis of the sample.

NipsMng s(OH), was prepared by a coprecipitation synthesis that was described
in Section 2.2.2. Then NiypsMngs(OH), was mixed with a stoichiometric amount of
Na,COj; and grinding in an automatic grinder. A NaNiysMngsO, sample was obtained by
heat treating the mixture at 900°C in air for 24 h. The specific surface area of the sample

was 0.62 £ 0.05 m?/g as measured by single point BET analysis.
4.3.2 XRD and SEM

Figure 4.14 shows the powder XRD pattern of the initial NaNiy sMngsO, sample.
All the observed Bragg peaks matched those reported in the literature quite well [19].

The lattice constants, atom positions and cation disorder were refined using the Rietveld
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method. The calculated lattice constants of NaNip sMng sO, were found to be a = 2.968 A
and ¢ = 15.909 A. The Na/Ni cation disorder was less than 2% based on the refinement.
Figure 4.14 also shows SEM images of the NaNiypsMnysO, sample. The powder

consisted of well-crystallized particles of 3 ~ 5 um in diameter.
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Figure 4.14 Diffraction pattern of synthesized NaNipsMngsO, and Rietveld profile
refinement. Circles and lines correspond, respectively, to the observed and calculated
intensities. The differences between the observed and calculated patterns are also shown.

SEM images of the NaNiysMng 5O, powder are shown in the inset. An inset showing an
expanded view of the XRD pattern between 68° and 79° is also shown
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4.3.3 Electrochemical performance of Na/ NaNiysMnsO; half cells

Figure 4.15 shows the initial potential, V, versus specific capacity, Q, curve for
the first charge and discharge of a Na/NaNiysMn, 5O, coin cell cycling between 3.8 and
2.0 V. The cell delivers a capacity of about 125 mAh/g during the first charge, indicating
that NagsNigsMnysO, has formed at the end of charge at 3.8 V. A number of
potential-capacity plateaus can be observed, which are related to the phase transitions:
Hex. O3— Mon. O3— Hex. P3—Mon. P3 [19]. The dQ/dV versus V curve is also shown
as an inset, which clearly shows the plateaus observed in the charge-discharge curve as

peaks in dQ/dV vs. V.
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Figure 4.15 Potential versus specific capacity of a NaNijpsMngsO, electrode in a Na/
NaNij sMng 5O, coin-type cell. The cell was charged and discharged between 3.8 V and
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2.0 V using a current corresponding to 10 mA/g.

4.3.4 Reactivity of deintercalated NaNipsMns0O, (~NaysNipsMnys0;) in solvents
and electrolytes

Figure 4.16 shows the self-heating rate versus temperature of 0.1 g
Nay sNipsMng 50, reacting with 0.1 g of EC: DEC, 0.1 g 1M NaPF4 in EC: DEC (1:2 v/v).
The experiment started at 50°C. NagsNipsMngsO, shows a relatively high reactivity in
both solvent and electrolyte. The onset temperature of the exothermic reaction is at about
175°C in solvent, and the exothermic reaction continues until the experiment end
temperature (300°C). The NagsNigsMngsOa/electrolyte case shows quite different
exothermic behaviour. The first exothermic peak starts at around 120°C and ends at
around 160°C. Then there is another exothermic reaction beginning at 225°C (for NaPFg
in EC: DEC)/ 240 °C (for NaPF; in PC), which lasts till the experiment end temperature.
The ARC result for 0.1 g NagsNipsMngsO; heated in 0.1 g 1 M NaPF¢/PC electrolyte is
also shown in Figure 4.16 for comparison. NagsNipsMnysO, shows a very similar
reactivity in NaPF¢/PC as it does in NaPF¢/EC:DEC apart from the second exotherm
occurring at 240°C instead of 215°C. It is believed that NagysNigsMngsO;, has the same

reaction mechanism in NaPF¢/PC as in NaPF¢/EC:DEC at elevated temperature.
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Figure 4.16 Self heating rate (SHR) vs. temperature of 100 mg Nag sNipsMngsO; in the
same mass of EC: DEC (1:2 v/v), IM NaPF¢ in EC: DEC (1:2 v/v) and 1M NaPFg in PC.
The legend indicates which curve corresponds to which sample.

0.001
|

There are few reports which study the details of the reaction mechanism between
charged Lij sNip sMnO, and solvent or electrolyte at elevated temperature, even though its
reactivity has been reported [71, 72]. Based on TGA experiments on charged LiMnO,
and LiNiO, [67], it is expected that NasNipsMnysO, will decompose at elevated

temperature, liberating oxygen. In the presence of solvent or electrolyte the
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decomposition will occur at a lower temperature since the liberated oxygen can combust
the solvent.

In order to probe the expected the reaction mechanism, XRD tests were carried
out to investigate the products of heating NajsNipsMnysO; in solvent and electrolyte.
Figure 4.17 shows the XRD patterns of the products after heating Nay sNipsMng sO, with
electrolyte (4.17¢) or solvent (4.17d) to 300°C, and all the products have been identified
by the position of their Bragg peaks as indicated in Figure 4.17. The reaction of
Nay sNipsMng 50, heated with solvent gives products of nickel manganese oxide and Ni
metal. MnCOj is believed to form due to the reaction of manganese oxide and CO;
during the cooling process, similar to formation of CoCO; when Na,CoO, was heated in
solvent as discussed in section 4.2.4.

Figure 4.16c shows that NaMnF;, NaNiF; or Na(Ni,Mn)F; were identified as
products when Nag sNipsMnysO, was heated in electrolyte, which is similar to the case
when Na;CoO, reacts with NaPFs-containing electrolyte which was discussed in section
4.2.4. There is a Bragg peak at 19° which is not labeled in Figure 4.17c. This peak is
thought to arise from NasMnFg, NasNiFs or Nas(Ni,Mn)Fs as will be discussed further

below.
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Figure 4.17 XRD patterns of a) dry, unheated NaysNipsMngsO,, b) NagsNipsMngsO-
heated to 175°C in electrolyte, ¢) NagsNigsMngsO; heated to 300°C in electrolyte and d)
Nay sNipsMnysO, heated to 300°C in solvent after the ARC tests. Reference peak
positions of some compounds are shown by lines with different colors (indicated in the
Figure)
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Figure 4.17b shows an X-ray diffraction (XRD) pattern of the product of heating
Nay sNipsMngsO, with electrolyte to 175°C (right after the first exothermic reaction of
Nay sNipsMng sOs/electrolyte in Figure 4.16). Figure 4.17a shows the XRD pattern of
fresh NagsNipsMngsO, for comparison. In Figure 4.17b, besides unreacted
Nay sNigsMng s0,, the isostructural compounds NazMnFs, NazNiFg or Nas(Ni,Mn)Fsand
the isostructural compounds NaMnF;, NaNiF; or Na(Ni,Mn)F;3 could be both identified.
Therefore, the first exothermic peak in Figure 4.16 is related to NagsNigsMngsO;
reacting with NaPFg to form sodium manganese/nickel fluorides. Considering the very
small amounts of NazMnFg, NasNiFg or Na3(Ni,Mn)Fg that could be found after heating
to 300°C, it is reasonable to believe that NazMnFg, Na;NiFs or Na3(Ni,Mn)Fs formed at
lower temperature and transformed to NaMnF;, NaNiF; or Na(Ni,Mn)F; at higher
temperature. It is believed that the first exothermic reaction in Figure 4.16 stops when the
NaPF in the electrolyte is used up. That is why there is still unreacted Nay sNip sMng 5O
remaining in the XRD pattern in Figure 4.17b. Table 4.4 summarizes the results in Figure

4.17.
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Table 4.4 Reactants and reaction products found after the ARC experiments of Figure
4.16 as described by Figure 4.17. Products of the reaction of NaxNij sMng sO, with PVDF
as detailed in Figure 4.18 are also listed

Reactants Final Products Found by XRD Figure
Temp.
0
NaNiy sMng 50, 300 NaNip sMng 50, 4.18d
NaNip sMng 50, + 10% 300 NiMnOj; + NaF 4.18b
PVDF + 10% Super S
Nag sNigsMnysO, + 10% | 300 NiMn;04 + (Ni,Mn)O + NaF 4.18a
PVDF + 10% Super S
Nay sNipsMnys0, + 10% 300 (Ni,Mn)O + MnCOs (on cooling) + Ni + NaF 4.18¢c +
PVDF + 10% Super S + 4.17d
EC:DEC solvent
Nag sNipsMngs0, + 10% 175 Na(Ni,Mn)F; + Na3(Ni,Mn)F¢ + unreacted 4.17b
PVDF + 10% Super S + Nag sNig.sMng 502
IM NaPF¢ EC:DEC
electrolyte
Nag sNigsMngsO, + 10% | 300 (Ni,Mn)O + Na(Ni,Mn)F; + NaF 4.17c

PVDF + 10% Super S +
IM NaPF¢ EC:DEC

electrolyte

Figures 4.17c and 4.17d show that NaF was identified as a reaction product even

when Nag sNipsMngsO, reacted with solvent where no NaPF¢ was present. The only

source of fluorine in NagsNipsMngsO,/solvent reaction is the binder, polyvinylidene

fluoride (PVDF).
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A series of experiments were designed to investigate the possible reaction
between NagsNipsMngsO, and PVDF. Figure 4.18a shows the XRD patterns of the
products of heating dry NajsNipsMngsO; electrode powder (containing 10% by weight
of PVDF) to 300°C in the ARC. Figure 4.18b shows the XRD pattern of the reaction
products after heating dry fresh NaNiysMn sO, electrode powder (containing 10% PVDF)
to 300° in the ARC. Figures 4.18c and 4.18d show the XRD patterns of the products of
Nay sNigsMng 5O, (with 10% PVDF) reacting with solvent and fresh NaNiysMngsO, (No
PVDF) alone, respectively, after heating to 300°C in the ARC. Figure 4.18d shows that
fresh NaNiy sMng sO, did not show any structural change when heated to 300°C, however,
when it was mixed with PVDF and then was heated. Figure 4.18b shows that a significant
change structural change occurred due to the formation of NaF and NiMnOs. Therefore,
even uncharged fresh NaNijsMng sO, can react with PVDF at elevated temperature. This
could be a concern if NaNipsMng 50, is used as positive electrode material in a sodium
ion battery with PVDF as the binder. Figure 4.18a shows that dry charged
Nay sNigsMng 5O, and PVDF show similar reaction products to fresh NaNiysMng 5O, and
PVDF except for the formation of more complicated Ni and Mn oxides. NaF is also a
product. The results in Figure 4.18 explain how NaF was formed when Nay sNipsMng s0O,,
with PVDF was heated in solvent. It is also reasonable to believe that NaF appears as one
product of heating NagsNipsMngsO, in electrolyte due to the reaction of

NaysNipsMngys0, with PVDF, not from any reaction with NaPFs. The reactants and
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reaction products found at 175°C and at 300°C in the experiments of this study are also

summarized in Table 4.4.
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Figure 4.18 XRD patterns of a) NagsNipsMng 5O, electrode powder (containing PVDF), b)
dry NaNipsMngsO, electrode powder (containing PVDF), ¢) NagsNigsMngsO, with
solvent and d) fresh NaNiysMngsO, after heating to 300°C in the ARC. Reference peak
positions of some compounds are shown by lines with different colors.
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4.3.5 Summary

In this section, O3-Type NaNipsMn,sO, was successfully synthesized by solid
state reaction and showed good -electrochemical performance. The reactivity of
deintercalated NaNipsMnysO, (~NagsNipsMngsO;) was studied by ARC and it was
found that NagsNigsMngsO, shows relatively high reactivity in solvent and in
NaPFg-based electrolyte. An XRD investigation of the products of the reactions between
NaxNipsMngsO, (x = 0.5 and x = 1) allowed the exotherms observed in the ARC
experiments to be understood. A summary of the reaction products observed for the
various experiments is given in Table 4.4.

Briefly: 1) NayNigsMnsO; reacts with PVDF to form NaF and transition metal
oxides at temperatures above 175°C; 2) Nag sNiysMng sO, reacts with EC:DEC solvent to
form (Ni,Mn)O, Ni and MnCO3; (on cooling) and 3) NagsNigsMngsO, reacts with 1M
NaPF¢ EC:DEC to produce the additional products Nas(Ni,Mn)Fs and Na(Ni,Mn)Fs. The
Na3(Ni,Mn)Fs converts to Na(Ni,Mn)F; at higher temperature. The reaction between
Nay sNipsMng 5O, and NaPFg occurs at the lowest temperature, creating a new exotherm
in the ARC traces, not observed when NaPFj is not included in the reaction. These results
are instructive for those concerned with the design of electrolytes, binder and electrodes

to be used in sodium-ion batteries.
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CHAPTER 5 THE REACTIVITY OF CHARGED ELECTRODE
MATERIALS WITH SODIUM
BIS(TRIFLUOROMETHANESULFONYL)IMIDE (NATFSI)

BASED-ELECTROLYTE AT ELEVATED TEMPERATURES

5.1 Thermal stability of NaTFSI

NaN(CF3S0;,),, called NaTFSI, is a useful salt for the electrolyte of Na-ion
batteries. Figure 5.1 shows the fractional remaining weight versus temperature as
measured by TGA for NaTFSI and NaPF¢. NaPF¢ does not decompose significantly
below 300°C while NaTFSI does not decompose until about 400°C. Figure 5.1 also
shows that NaClO4 does not decompose till more than 500°C. This results indicates that

NaClO4 has the best thermal stability of the three pure salts and that NaTFSI is more

stable than NaPF
1.2 . T : : : . . .
c
2
[}
= 0.8
E’ —— NaPF;
-% —— NaTFSI
£ -
o NaClO,
g 0.4
kel
0 .
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©
(I
O i 1 i 1 i 1 i 1 i
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Temperature (°C)

Figure 5.1 Fractional remaining weight verus temperature in TGA experiments on NaPFg
and NaTFSI. The samples were heated at 5°C/min in argon gas.
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5.2 FElectrochemical performance of NaCrQO, and hard carbon in NaTFSI
based-electrolyte

Figure 5.2 shows the potential versus specific capacity curve for the first charge
and discharge of a Na/NaCrO, coin cell cycling between 2.0 and 3.6 V. The cell delivers
a capacity of about 120 mAh/g during the first charge, indicating that NaysCrO; has
formed at the end of charge. A couple of potential-capacity plateaus can be observed,
which are related to the phase transitions: Hex. O3— Mon. O3— Mon. P3 (this has been
discussed in section 4.1.3 and indicated in Figure 4.2). The initial capacity is slightly
higher than in Figure 4.2 where NaClO4/PC electrolyte was used. The cycling
performance is also shown as an inset. The cell shows good capacity retention over the 30
tested cycles. The cycling performance of a cell using NaClO4/PC electrolyte is shown
for comparison. There is an odd “dip” in the capacity cycle number curve near cycle 5.
The origin of this dip is unknown, but it might be caused by initially poor wetting of the
polypropylene BMF separator by the PC-based electrolyte. The same feature is observed
in the hard carbon cells as will be discussed below. Based on the results in Figure 5.2,
NaTFSI shows good compatibility with the NaCrO, positive electrode in sodium-ion

batteries.
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Figure 5.2 Potential versus specific capacity of a NaCrO; electrode in a Na/NaCrO,
coin-type cell using NaTFSI/PC electrolyte. The cell was charged and discharged
between 3.6 and 2.0 V using a current corresponding to 25 mA/g. Specific capacity
versus cycle number is shown in the inset.

Figure 5.3 shows the potential versus specific capacity curve for the first 10
cycles of a Na/hard carbon coin cell, cycling between 2.0 and 0.005 V, with NaTFSI/PC
electrolyte. The cell shows a capacity of around 300 mAh/g during the first discharge.
The reversible capacity is around 200 mAh/g. The cycling performance is also shown as
an inset. Except for the “dip” discussed above, the Na/hard carbon half cells show good
cycling performance using NaTFSI/PC electrolyte. The reversible capacity of hard
carbon in NaTFSI/PC electrolyte (~200 mAh/g) is lower than it was in NaClO4/PC

electrolyte (~240 mAh/g) [20]. This may be an effect of different impedance between the
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two cells, causing the former to reach the lower cutoff potential too early. Based on

Figure 5.3, it appears that NaTFSI is compatible with the negative electrode material.
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Figure 5.3 Potential versus specific capacity of a hard carbon electrode in a hard
carbon/Na coin-type cell. The cell was charged and discharged between 2 and 0.005 V
using a current corresponding to 25 mA/g. Specific capacity versus cycle number is
shown in the inset.

5.3 The reactivity of charged electrode materials with NaTFSI-based electrolyte

Since NaTFSI in PC shows a good compatibility with both positive and negative
electrode materials, it is important to investigate the reactivity of charged electrode
materials in NaTFSI/PC electrolyte. Figure 5.4 shows the self-heating rate vs.

temperature, T, of 100 mg of Nay sCrO, in the same mass of solvent (EC:DEC or PC) and
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electrolyte (NaPF¢/EC:DEC or NaTFSI/PC). Chapter 4 showed that NajsCrO; has a
surprisingly low reactivity in EC:DEC because NajsCrO, decomposes to NaCrO, and
layered-structure CrO,.s with a very small amount of O, release. Nay sCrO, also had very
low reactivity in electrolyte as shown in section 4.1.4. Here, NaysCrO, also shows a
similar negligible reactivity in PC and there is almost no measurable heat released during
the test temperature range (50°C - 350°C). The mechanism for the low reactivity should
be the same as it is in EC:DEC. NaysCrO, has a lower reactivity in NaTFSI/PC
electrolyte than it does in NaPF¢/EC:DEC, which may result from the higher thermal

stability of the salt itself (Figure 5.1).
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Figure 5.4 Self heating rate (SHR) vs. temperature for 100 mg NaysCrO; in the same
mass of EC:DEC, PC, NaPF¢EC:EDC and NaTFSI/PC. The legend indicates which
curve corresponds to which sample.
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Figure 5.5 shows the self-heating rate vs. temperature, T, of 70 mg of Na:HC in
the same mass of solvent (EC:DEC or PC) or electrolyte (NaPF¢/EC:DEC or NaTFSI/PC).
The results of Na:HC reacting in NaClO4/PC and NaPF¢PC are also shown for
comparison. Na/HC shows a high reactivity in EC:DEC and an even higher reactivity in
NaPF¢/EC:DEC due to the coordination between NaPF¢ and EC as described in Section
3.1. Na:HC shows a slightly lower reactivity in PC than in EC:DEC. The starting
temperature of the exothermic reaction is 180°C in PC compared to 150°C in EC:DEC
and the maximum self heating rate (SHR) is smaller in the PC case. However, Na:HC
shows different reactivity in PC based electrolytes. A strong exothermic peak was
observed starting from 90°C when Na:HC was heated in NaClO4/PC electrolyte.
When NaPF¢ or NaTFSI are used instead of NaClO4, then the reaction between
electrolyte and Na:HC does not onset until about 140 or 150°C, compared to 120°C in

NaPF¢/EC:DEC.
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Figure 5.5 Self heating rate (SHR) vs. temperature of 70 mg sodium inserted hard carbon
(Na:HC) in the same mass of EC:DEC, PC, NaPF¢/EC:EDC, NaPF4/PC, NaClO4/PC or
NaTFSI/PC. The legend indicates which curve corresponds to which sample.

Based on the ARC results for Nay sCrO, and hard carbon in different electrolytes,
it can be concluded that NaTFSI in PC will not increase the reactivity of charged
electrode materials with electrolytes at elevated temperature compared to other
electrolytes that have been studied. In fact, the use of NaTFSI may even lower the

reactivity of the charged negative electrode material to some extent.
5.4 Al-corrosion of NaTFSI

Pure LiTFSI is not currently used in Li-ion batteries because it causes corrosion

of the Al positive electrode current collector. By analogy, it is interesting to see the
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impact of NaTFSI on the Al current collector. Figure 5.6 shows the cyclic voltammogram
of an Al/Na cell tested at room temperature. During the first anodic sweep, the current
increased abruptly around 4.15 V vs. Na/Na' and persisted during the cathodic sweep
until 3.5 V. During the next cycles, Figure 5.6 shows that the current increase occurred
near 3.9 V during the anodic sweep and again persisted during the cathodic sweep until
3.5 V. This hysteresis and the persistent current over many cycles indicate Al-electrode
corrosion [73]. Such Al-electrode corrosion may block the application of NaTFSI for

high voltage positive electrode materials of Na-ion batteries.
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Figure 5.6 Cyclic voltammogram of an Al/Na cell using NaTFSI/PC electrolyte at a
sweep rate of 10 mV/s.
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5.5 Summary

In this chapter, sodium bis(trifluoromethanesulfonyl)imide (NaTFSI) was studied
as a salt for the electrolyte of sodium-ion batteries, mainly with respect to safety. It
shows higher thermal stability than NaPFs when heated in inert gas. Na/NaCrO, and
Na/hard carbon half cells achieve good electrochemical performance using NaTFSI/PC
electrolyte, which indicates NaTFSI has good compatibility with both positive and
negative electrode materials. Deintercalated NaCrO, (~ NagsCrO;) and sodium-inserted
hard carbon show similar or even slightly lower reactivity in NaTFSI/PC electrolyte at
elevated temperature when compared to other known electrolytes (NaPF¢/EC:DEC,
NaClO4/PC, etc). However, the pure NaTFSI-based electrolyte causes Al corrosion at
high potential. These results demonstrate that NaTFSI is a good candidate for the
electrolyte salt of sodium-ion batteries, at least in situations where the positive electrode

potential is not so high as to cause Al corrosion,
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CHAPTER 6 TRIPHENYL PHOSPHATE AS A FLAME

RETARDANT ADDITIVE FOR LITHIUM-ION BATTERIES

6.1 The impact of TPP on electrochemical performance of negative electrode
materials

6.1.1 Electrochemical performance of petroleum coke/Li cells with different
electrolytes

Figure 6.1 shows the potential versus specific capacity curve for the initial
cycles of coke/Li half cells using control electrolyte and electrolyte with 40% TPP.
Cells with 40% TPP show smaller capacity than the control cells at 30°C due to increased
impedance as can be observed from the voltage step at the discharge-charge switch point.
At 60°C, adding TPP does not impact the capacity due to higher electrolyte conductivity.
Figure 6.2 shows the irreversible capacity versus TPP content during the first cycle of
coke/Li cells. The irreversible capacity corresponds to irreversible lithium consumption
in SEI growth. Figure 6.2 shows that there is no large impact on the irreversible capacity
due to the addition of TPP. All cells at a given temperature have almost the same
irreversible capacity showing that adding TPP, even at concentrations as high as 40%, does
not increase the lithium consumption during SEI growth. Table 6.1 lists the specific
capacity for the first discharge, first charge and the irreversible capacity of cells with 0, 5,
10, 20 and 40% TPP tested at 30°C. Table 6.2 lists similar information for cells tested at

60°C. Tables 6.1 and 6.2 show that TPP has little impact on the irreversible capacity.
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Figure 6.1 Potential versus specific capacity for the first discharge-charge cycle of
coke/Li half cells using control electrolyte and electrolyte with 40% TPP. Temperatures
are indicated in the various panels
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Figure 6.2 The irreversible capacity measured during the first cycle of coke/Li cells with
different concentrations of TPP at 30°C and 60°C (results for duplicate cells are shown).

Table 6.1 First discharge specific capacity, first charge specific capacity and irreversible
capacity for coke/Li cells tested at 30°C with different amounts of TPP in the electrolyte.

Concentration.  offl* discharge capacity|l® charge capacity|lrreversible
TPP (%) (mAh/g) (mAh/g) capacity (mAh/g)
0 (control) 247 199 48

0 (control) 246 195 51

S 254 210 44

S 257 206 51

10 243 199 44

10 248 201 47

20 233 188 45

20 239 193 46

40 223 177 46

40 216 170 46
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Table 6.2 First discharge specific capacity, first charge specific capacity and irreversible
capacity for coke/Li cells tested at 60°C with different amounts of TPP in the electrolyte.

Concentration. off1® discharge capacity|l® charge capacity|lrreversible capacity]
TPP (%) (mAh/g) (mAh/g) (mAh/g)
0 (control) 273 211 62

0 (control) 276 220 56

5 290 233 57

5 283 224 59

10 275 218 57

10 269 216 53

20 265 215 50

20 253 204 49

40 280 222 58

40 277 220 57

Figure 6.3 shows the open-circuit voltage (OCV) versus time curves from the
storage experiments at 30°C and 60°C on coke/Li half cells stored at 0.005 V (left panels)
and at 0.4 V (right panels). The cells contained different concentrations of TPP, as
indicated in the different panels of Figure 6.3. Figure 6.3 shows that all cells with TPP
show similar OCV increase at 30°C compared to the controls, no matter if the cells were
stored at 0.005 V or at 0.4 V. At 60°C, all cells with TPP show smaller OCV increase

with time, especially cells having 40% TPP.
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Figure 6.3 The open-circuit voltage (OCV) versus time of coke/Li cells at 30°C and 60°C
stored at 0.005 V (left panel) and 0.4 V (right panel) with different concentrations of TPP
as indicated in the Figure. Results for duplicate cells are shown.
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The OCV increase can be converted to an amount of lithium extracted through
reaction with electrolyte during the 500 hour storage period [74]. This is done by noting
that:

dQ =] dQ/dv dv. Equation 6.1
The differential capacity, dQ/dV vs. V for a coke/Li cell was measured and shown in
Figure 3 in ref. [75]. Then it was used to convert the potential changes during storage to
capacity changes in stored charge using Eqn. 6.1. Figure 6.4 shows the results for the
cells stored at 30°C. Figure 6.4 shows that the amount of Li converted to SEI during
storage decreased with increasing potential but was not strongly affected by TPP content.
Figure 6.5 shows the results for the cells stored at 60°C. Figure 6.5 shows that the amount
of Li converted to SEI during storage decreased with increasing potential and also
decreased strongly with TPP content. Therefore, it appears that in the presence of TPP at
60°C, a more stable SEI film is formed that limits reactions with intercalated lithium. If
this more stable film has lower impedance than the standard SEI (formed in standard

electrolyte), it will be a better SEI. However, as shown below, it has higher impedance.
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Figure 6.4 Amount of Li in mAh/g removed from Li,Cs during storage at 30°C plotted as

a function of the storage potential and the amount of TPP in the electrolyte.
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Figure 6.5 Amount of Li in mAh/g removed from Li,Cs during storage at 60°C plotted as

a function of the storage potential and the amount of TPP in the electrolyte.
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6.1.2 Electrochemical performance of graphite/graphite symmetric cells with
different electrolytes

Graphite/graphite symmetric cells were described in section 2.9 in this thesis.
Figure 6.6 shows the voltage versus specific capacity for the first 20 cycles of
graphite/graphite symmetric cells with different concentrations of TPP cycled using
currents corresponding to C/10 at a temperature of 30.0 = 0.1°C. Graphite/graphite
symmetric cells show similar performance to the controls until greater than 20% TPP is
added to the electrolyte. Cells with 30 or 40% TPP show evidence for increased capacity
loss during the first 20 cycles and also for increased impedance as can be discerned by

the “gap” or polarization between the charge and discharge curves.
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Figure 6.6 Voltage versus specific capacity for a graphite/graphite symmetric cells with

different concentrations of TPP cycled at C/10 and at a temperature of 30.0 £ 0.1°C.

Only the first 20 cycles are shown.
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Figure 6.7 shows the specific capacity versus cycle number for the
graphite/graphite symmetric cells with different concentrations of TPP cycling at 30°C +
0.1°C (duplicate cells are shown). The reader is directed to reference [60] to review the
expected behaviour for graphite/graphite symmetric cells. One expects capacity loss with
cycling even in the control cells due to continual SEI growth and the lack of excess Li
atoms in the cell. Figure 6.7 shows that the TPP-containing cells show progressively
smaller capacity with TPP content compared to the control cells. Based on the results
for petroleum coke, adding TPP does not cause excessive consumption of lithium at the
graphite electrode. Therefore the capacity reduction in Figure 6.7 with TPP content is an
impedance effect as discussed further below. Figure 6.7 also shows that in all cases, by
70 cycles, the rate of capacity loss of the TPP-containing cells approximately matches

that of the control cells.
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Figure 6.7 The specific capacity versus cycle number of graphite/graphite symmetric
cells with different concentrations of TPP cycled at C/10 at a temperature of 30.0 *
0.1°C.

Figure 6.8 shows the charge/discharge voltage polarization measured during the
cycling of the graphite/graphite symmetric cells containing different amounts of TPP.
Here, the polarization is taken to be the difference between the average charge and

discharge voltage calculated using the following equation,

.[ Chargev(q)dq _ .[ Dischargev(q)dq

Charge Q Discharge

Equation 6.2
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In all cases, the polarization increases with cycle number, with the rate of increase

becoming more severe for the cells with higher TPP contents. Figure 6.8 suggests that

there is some issue with TPP in the graphite/graphite cells that leads to ever-growing cell

impedance. The TPP content in the electrolyte reaches 1M at 27% TPP. If TPP

co-ordinates very strongly to Li', then the desolvation of the Li" at the electrode surfaces

could lead to an increased charge transfer resistance with TPP content. This could explain

the offset in the initial values of AV with TPP-content observed in Figure 6.8, but not the

increased rate of impedance growth with cycle number for cells with higher TPP

contents.
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Figure 6.8 Charge-disharge potential polarizations, AV, in units of volts, plotted versus
cycle number for the cells described by Figure 6.7.
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Figure 6.9 shows the AC impedance results for the graphite/graphite symmetric
cells with different TPP contents after 20 cycles. The AC impedance spectra were
collected at 30°C. To aid in the discussion of these spectra, quantities R;, R, and R are
defined in Figure 6.9 for the green data points, corresponding to 30% TPP. The resistance
R, which is the high frequency intercept on the real axis, can be associated with the
electrolyte resistance. For the cells with 0, 10 and 20% TPP, R, and R3 are not
distinguishable. However, for TPP contents of 30 and 40%, a new semicircle in the AC
impedance spectrum appears and the locations on the real axis where there are minima in
the imaginary impedance have been labelled as R, and Rj;. Further experiments are
required to correlate the differences R, — R; and R; — R, to physically meaningful
impedances in the cell like the charge-transfer resistance and the current
collector/electrode interface, for example. Therefore, simply the variations of R, — R; and
R3; — R, with TPP content are tabulated in Table 6.3. Table 6.3 shows that the initial high
frequency impedance, R;, which corresponds to the electrolyte resistance, increases from
about 4 Q to about 11 Q as the concentration of TPP in electrolyte increases. Table 6.3
also shows that the diameters of the lower frequency semicircles, R; - R; and R; — R; also
increase with TPP content. This agrees with the results in Figure 6.9 which implied a
larger low frequency impedance for cells with larger TPP content. The origin of the

impedance increase with TPP content is not understood at this time.
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Figure 6.9 The negative imaginary impedance plotted versus the real impedance for
graphite/graphite symmetric cells with different concentrations of TPP. The results were
obtained for the cells described in Figures 6.6, 6.7 and 6.8, after 20 cycles. The frequency
range extended from 0.01Hz to 100 kHz and the data were collected at 30°C

Table 6.3 Measured impedance results for graphite/graphite symmetric cells with
different concentration of TPP after 40 cycles.

electrolyte R (Q) R>-R; () | R3-R; (Q)
control 4.2 13.6

10% TPP 5.2 15.4

20% TPP 54 17

30% TPP 9.8 18 5.7

40% TPP 10.9 24 7.3
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6.1.3 Summary

The effect of TPP on the electrochemical performance of negative electrode
materials was studied using coke/Li half cells with automated storage and with
graphite/graphite symmetric cells. The studies on the coke/Li cells showed that increased
TPP concentrations did not increase irreversible capacity during the first cycle at either
30 or 60°C. The storage experiments showed that Li was not extracted from Li,Cgs more
rapidly in the presence of TPP, in fact, the rate of extraction was reduced at 60°C for cells
containing TPP compared to control cells. These experiments suggest that TPP does not
accelerate SEI growth, but, instead leads to a more stable SEI. This does not mean a
better SEI.

Graphite/graphite symmetric cells with TPP were studied in cycling and AC
impedance studies. The cycling studies showed lower capacity for cells with higher TPP
contents and a greater rate of increase of charge-discharge polarization with cycling for
cells with higher TPP content. Both of these observations are consistent with higher
impedance for cells with higher TPP content. The continual increase in the
charge-discharge polarization is troublesome and suggests that whatever SEI is formed in
the presence of high TPP content has components that lead to high impedance.
Impedance reducing additives should be tried in the presence of TPP to see if this effect

can be mitigated. Some initial results of such efforts will be reported in section 7.2.2.
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These results show that when high concentrations of TPP are used, high enough to
perhaps impart some reasonable flame retardant properties, there are impedance related
problems that develop at the negative electrode. These are not related to an unstable SEI,

but instead to a SEI that appears to have impeded Li transport.

6.2 The reactivity of charged electrode materials with electrolytes containing TPP

In the previous section, the impact of triphenyl phosphate (TPP) as a flame
retardant additive on the electrochemical performance of negative electrode materials was
studied using studies involving symmetric cells, automated storage tests and AC
impedance spectroscopy. The impact of TPP on positive electrode materials has been
reported as well [76]. It was found that a more stable SEI on the negative electrode
material was formed in the presence of TPP but that this film had larger impedance.
Similarly the presence of TPP was found to strongly increase the impedance of positive
electrode symmetric cells with either Li[NiggCo.15Alp05]O2 (NCA) or NMC electrodes
[76]. In the case of graphite/graphite and NCA/NCA symmetric cells, charge-discharge
capacity retention in the presence of TPP equivalent to that in the absence of TPP was
observed. In the case of the NCA/NCA symmetric cells, 2% vinylene carbonate, was
required to achieve acceptable performance of cells with 30 or 40% TPP by volume [76].

The NMC/NMC symmetric cells showed inferior performance compared to the
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NCA/NCA cells in the absence and presence of TPP for reasons that we do not yet
understand.

These results suggest that it may be possible to make Li-ion cells with up to 40%
TPP that function adequately. The major remaining question is whether such cells would
provide a safety advantage over cells without TPP. The answer to such a question must
involve studies of the reactivity between the charged electrode materials and
TPP-containing electrolyte and studies to determine if TPP does impart flame retardant
properties to the electrolyte.

In this section, the performances of NMC/NMC symmetric cells containing TPP
previously published are first summarized. The reactivity of lithiated graphite and
deintercalated NMC and NCA in electrolytes containing different amounts of TPP were
studied using ARC. The flame retardant properties of electrolytes containing TPP was
judged by self-extinguishing time (SET) tests. These results are an appropriate
supplement and continuation of our previous work on the impact of TPP on the

electrochemical properties of both positive and negative electrode materials.

6.2.1 Impact of TPP on the electrochemical performance of NMC/NMC and
graphite/graphite symmetric cells.

Figure 6.10 shows the specific capacity versus cycle number for the NMC/NMC
symmetric cells with 0 (control), 10% and 40% TPP cycling at 30°C + 0.1°C (duplicate
cells are shown). TPP increases the capacity fading of NMC/NMC symmetric cells

compared to control cells. The impact of TPP on graphite/graphite symmetric cells was
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shown in Figure 6.7. The capacity fading of NMC/NMC symmetric cells (Figure 6.10)
and the reduction of the initial capacity of graphite/graphite symmetric cells (Figure 6.7)
became more significant as the TPP content increased. These changes are caused
primarily by the increased impedance of the surface films caused by the TPP containing

electrolyte [76], which was discussed in section 6.1.2 as well.
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Figure 6.10 The specific capacity versus cycle number of NMC/NMC symmetric cells
with different concentrations of TPP in their electrolytes as indicated. The cells were
cycled at C/10 at a temperature of 30.0 £ 0.1°C. Results for two cells are shown for each
TPP concentration and results for control cells are included in each panel for comparison.

6.2.2 Impact of TPP on the reactivity of NMC and graphite in electrolytes

Figure 6.11 shows the self-heating rate vs. temperature, T, as measured by
accelerating rate calorimetry, of 70 mg of LiC¢ in the same mass of various electrolytes
with different concentrations of TPP. LiCs shows less reactivity in electrolytes containing

10% TPP or 40% TPP than it does in the control electrolyte in the temperature range
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between 100 and 200°C. The LiCs samples with 40% TPP show similar reactivity to the
control sample above 200°C as well. This result indicaxtes that adding TPP does not

intensify the reactivity of lithiated graphite in electrolyte at elevated temperature.

100 3 ' I ! I ! I !
; 0 TPP
10% TPP
10% TPP
10F (duplicate run)
~~ ; 40% TPP “ »
= 40% TPP P RN -
g 1L (duplicate run) \N\«?m\l{\:m ]
O E ‘ MWWM,‘% “v‘ﬂ"‘“‘“““"”’“w”"‘*"’w""\W’*'J":‘ “’/‘m f \Y“-W‘t\‘m{w"”’v. :
Q/ ; ”’ HM\ “‘ e
+— i \\\ ]
E 01F ! H\‘
5 b “L':
o
0.01F ]
0.001 : ' : ' :
100 200 300

Temperature(°C)

Figure 6.11 Self heating rate (SHR) vs. temperature for 70 mg lithiated graphite (LiCg), in
the same mass of electrolytes containing different amounts of TPP. The legend indicates
which curve corresponds to which sample.

Figure 6.12 shows the self-heating rate vs. temperature, T, of 94 mg of
deintercalated NMC in 30 mg of electrolytes with different concentrations of TPP. Unlike
lithiated graphite, charged NMC shows quite different reactivity in electrolyte containing
TPP compared to control electrolyte at elevated temperature. A new exothermic peak at

around 200°C can be observed in all experiments with TPP-containing electrolytes and
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the maximum self heating rate of this peak increases with the content of TPP. This
indicates a higher reactivity of charged NMC in the presence of TPP. Even though
charged NMC does not reach thermal runaway in these experiments with electrolyte
containing 40% TPP, the higher reactivity at lower temperature is a serious concern.
This means TPP may lead to increased reactivity at the positive electrode side in cells
under conditions of electrical or mechanical abuse. Ideally, the addition of a flame

retardant would not impact, or would even reduce, the electrode/electrolyte reactivity.
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Figure 6.12 Self heating rate (SHR) vs. temperature of 94 mg of charged NMC (4.2 V vs.
Li/Li"), in 30 mg of electrolytes containing different amounts of TPP. The legend
indicates which curve corresponds to which sample.
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Figure 6.13 shows the self-heating rate vs. temperature, T, of 70 mg of
deintercalated NCA in 30 mg of electrolyte with different concentrations of TPP.
Charged NCA shows higher reactivity than deintercalated NMC in control electrolyte,
which agrees well with previous reports [77]. Unlike NMC, NCA shows lower reactivity
in electrolytes containing 40% TPP during the whole temperature range of the ARC test.
It does not reach thermal runaway as in control electrolyte, where thermal runaway is
reached at around 225°C. The reason for the difference between NMC and NCA is not
understood. Future work should explain how TPP impact the reactivity of different

cathode materials.
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Figure 6.13 Self heating rate (SHR) vs. temperature of 94 mg of charged NCA (4.2 V vs.

Li/Li"), in 30 mg of electrolyte containing different amounts of TPP. The legend indicates
which curve corresponds to which sample.
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6.2.3 Impact of TPP on the flammability of electrolyte

Figure 6.14 shows the SET plotted vs. the concentration of TPP in electrolytes
that use EC:DEC or EC:DMC as solvents. Results from the test methods 1 and 2
described in the section 2.11 are shown. In each case the SET was calculated by the
average of 8 measurements and the error is less than 10% of the plotted value. There are
clear differences between the results measured using cotton swab tips in a watch glass
and glass wool spheres on Al foil. Which of these methods indicates results relevant to
the events that occur in a burning Li-ion battery? The answer is unknown. It is worth
noting that cotton balls and glass wool were both used in the reported references [41, 47].
Those references do not report how the cotton balls or glass wool spheres were supported.
The SET result in Figure 6.13 using cotton swab tips on a watch glass shows a nearly
linear relationship between the SET and TPP concentration, suggesting that 40% TPP
would be very effective as a flame retardant. However, the SET results in Figure 6.13
measured using glass wool on Al foil give an entirely different conclusion. There is
virtually no effect of TPP in reducing the SET. The disagreement between the results
measured by methods 1 and 2 strongly suggest that it cannot be guaranteed that TPP will

have any flame retardant effect in burning Li-ion batteries.
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Figure 6.14 Self-extinguishing time (SET) for electrolytes containing various
concentrations of TPP. Results using the two test methods are shown. The solid lines
are guides for the eye.

Due to the differences between SET results from methods 1 and 2, small pools
of electrolyte on flat surfaces were ignited with the barbeque lighter. The results were not
measured quantitatively, but mirrored the results found for the glass wool on Al foil
(method 2) where additions of TPP had virtually no effect on the SET. This research on
TPP began due to convincing, but apparently incomplete (based on Figure 6.14), reports

that TPP imparts flame retardant properties to the electrolyte. It is extremely clear that a
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standard test method to judge the flame retarding effect of electrolytes containing flame
retardants needs to be developed and that whatever method is developed must actually

have relevance to events that occur in the abuse of Li-ion batteries.

6.2.4 Summary

Studies with graphite/graphite, NCA/NCA, NMC/NMC symmetric cells suggest
it may be possible to develop electrolytes containing up to 40% TPP that allow
adequately functioning Li-ion cells to be made. The reactivity between lithiated graphite
and electrolyte at elevated temperature, as measured by ARC, is no worse in the presence
of TPP. By contrast, charged NMC shows a distinctly higher reactivity at temperatures
between 180 and 220°C in electrolytes containing TPP than in control electrolyte.
However, TPP improves the thermal stability of charged NCA. The reason for the
different performance of NMC and NCA in electrolytes containing TPP is not understood.
These results indicate that adding TPP would not intensify the reactivity of negative
electrode material but would make an NMC positive electrode more reactive at lower
temperature. TPP may not be an ideal flame retardant additive.

SET results suggest that TPP is an effective flame retardant using one method and
that it is not using another method. The SET test is clearly very method-dependent and
almost certainly will not give a valid indication of how a proposed flame retardant will
behave in a Li-ion battery abuse scenario. Researchers need to develop methods relevant

to Li-ion battery abuse scenarios to judge the impact of proposed flame retardants.
147



CHAPTER 7 CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

7.1.1 Thermal Stability of sodium-ion battery materials

The thermal stability of sodium-ion battery materials were studied in this thesis
using accelerating rate calorimetery.

Hard carbon was studied as a negative electrode material. The reactions between
Na:HC and different solvents and electrolytes were investigated. Na:HC reacted with
carbonate solvents (EC, DEC, DMC) to form sodium alkyl carbonates. Na: HC showed
lower reactivity in solvents (EC:DEC and EC:DMC) than in NaPFe-based electrolytes.
This was due to the coordination between NaPFg and EC, which left more reactive DEC
and DMC free to react with Na:HC. Na:HC also showed higher reactivity in both solvent
and electrolyte than lithiated graphite.

NaCrO,, Naje;CoO, and NaNiypsMnysO, were studied as positive electrode
materials for sodium-ion batteries. NaCrO, showed good electrochemical performance
and deintercalated NaCrO, (~ NaysCrO,) showed superior thermal stability in both
solvent and electrolyte. NajsCrO, was found to decompose to NaCrO, and P3-type
CrO,.s at elevated temperature, where a tiny amount of O, was released to, causing the
extremely low reactivity of NaysCrO,. The DIFFaX program was used to model O3-type

stacking faults in P3-type CrO,.5. About 10% O3-type stacking faults were discovered in
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the CrO,; sample. Nay¢CoO, showed acceptable electrochemical performance as a
positive electrode material for sodium-ion batteries. However, deintercalated Nay ¢sCoO;
(~ Nag35Co0;) showed high reactivity in both solvent and electrolyte. Nag35C00,
decomposed to Nap;Co0; and Co30s4, and released O, at the same time, which
combusted the solvent, generating heat. Nay;CoO, was also not stable at elevated
temperature in solvent as it reacted to form NaHCO; and cobalt oxides or cobalt metal
releasing more O, to combust more solvent. In electrolyte, NaPFg rapidly reacts with
Naj35C00, to form NaCoF; and CoO/Co at elevated temperature. NaNipsMngsO, had
good electrochemical performance when tested in a NaNipsMngsO,/Na half cell.
Deintercalated NaNipsMnysO, (~NagsNipsMnsO,) showed high reactivity in both
solvent and electrolyte. It was found that Nay sNiy sMng sO, decomposed to (Ni,Mn)O, Ni
and MnCOj; (on cooling) and released O, to combust the solvent. NaysNipsMngsO-
reacted with 1M NaPF¢s EC:DEC to produce the additional products Na3(Ni,Mn)F¢ and
Na(Ni,Mn)F;. Nag sNipsMnysO, and even uncharged NaNiy sMny 5O, reacted with PVDF
to form NaF at low temperature.

Sodium bis(trifluoromethanesulfonyl)imide (NaTFSI) was studied as a salt for
the electrolyte of sodium-ion batteries. Na/NaCrO, and Na/hard carbon half cells all
showed good electrochemical performance using NaTFSI/PC electrolyte. Deintercalated
NaCrO;, (~ NagsCrO;) and Na:HC showed similar or even slightly lower reactivity in

NaTFSI/PC electrolyte at elevated temperature when compared to other known
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electrolytes (NaPF¢/EC:DEC, NaClO4/PC, etc). However, the pure NaTFSI-based
electrolyte caused Al corrosion at high potential.

These studies aim to investigate the advantage/disadvantage of sodium-ion
batteries from the point of view of thermal stability. From the study of hard carbon as
negative electrode material, sodium-ion batteries that include hard carbons as negative
electrodes would likely show a higher tendency to self-heat than lithium-ion batteries in
both solvent and electrolyte. NaCrO, shows very good thermal stability in both solvent
and electrolyte, which is better than any known lithium layered transition metal oxide and
even LiFePO4. However, both NagesCoO, and NaNipsMngsO, show new thermal
stability concerns which were not discovered in related lithium systems (LiCoO, and
LiNij sMny s0,) before, like the reactions between electrode materials and electrolyte salt
and reactions between the electrode material and binder. All these results are instructive
for those concerned with the design of electrolytes, binder and electrodes to be used in
sodium-ion batteries. NaTFSi is a good candidate for the electrolyte salt of sodium-ion
batteries; however its application is limited to situations where the positive electrode
potential is not so high as to cause Al corrosion or when corrosion inhibiting additives are

used.

7.2.2 Triphenyl phosphate (TPP) as a flame retardant additive for lithium-ion
battery

The impact of triphenyl phosphate (TPP) on the electrochemical performance,

reactivity of lithium-ion battery materials and the flammability of electrolytes were
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comprehensively studied. TPP negatively impacted the electrochemical performance of
both negative electrode and positive electrode sides, which was due to the high
impedance caused by TPP. TPP also increased the reactivity of deintercalated
LiNi;sMn;3Coy3 at high temperature while it did not change the reactivity of lithiated
graphite much. Adding 40% TPP to electrolyte could make the electrolyte non-flammable
as determined by a Self-Extinguishing Time (SET) test. However, SET test results

strongly depended on the experimental method used.

7.2 Future work

7.2.1 Study of the reactivity of new sodium intercalated compounds for sodium-ion
batteries

. Recently, different types of new sodium compounds were synthesized and
studied for potential use in sodium-ion batteries. As discussed in Chapter 1, Na,MPO4F
(M= Fe, Mn, Co, Ni) and NaFeSO4F were studied by Nazar et al [25, 27]. Based on the
experience in lithium-ion batteries, fluorides and phosphates all have very good thermal
stability, such as LiFePO4 and LiVPO4F [78]. So it is possible that Na,MPO4F (M= Fe,
Mn, Co, Ni) and NaFeSO4F will have very good thermal stability and they could be good
choices for positive electrode materials of sodium-ion batteries based on safety
considerations. Additionally, some new sodium intercalation compounds were studied as
negative electrode materials for sodium-ion batteries. Na,Ti;07, studied by Senguttuvan

et al., showed a capacity of around 200 mAh/g at an average voltage of 0.3 V [32]. The
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electrochemistry of Sn-based alloy negative electrode materials were also studied [33].
The reactivity of these compounds should be studied by ARC and compared to results of

known electrode materials, such as NaCrO, and hard carbon.

7.2.2 Improvement of the performance of TPP-based electrolytes for lithium-ion
batteries

The negative impact of TPP on the electrochemical performance of lithium-ion
batteries was the high impedance caused by TPP. Recently, Burns et al. studied the effect
of trimethoxyboroxine (TMOBX) on the impedance of LiCoO,/graphite and
LiNi;3Mn;3Coy/30,/graphite wound cells. It was found that TMOBX significantly
reduced the impedance of the full cells without impacting the capacity retention or
columbic efficiency much [79]. It was also found that the combination of vinylene
carbonate (VC) and TMOBX gave the best cell performance over all, considering
impedance, capacity retention and columbic efficiency [79]. Hence, it is reasonable to
introduce TMOBX and VC into the electrolytes containing TPP. It is expected that the
impedance of the cells could be reduced by the function of TMOBX and VC, while the

non-flammability of the electrolyte could be retained.
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Figure 7.1 The negative imaginary impedance plotted versus the real impedance for
coke/coke symmetric cells with different electrolytes.
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Figure 7.1 shows the initial results of the impact of TMOBX and VC on the
impedance of petroleum coke/ petroleum coke symmetric cells containing 30% and 40%
TPP. It is clear that TMOBX could reduce the impedance of cells significantly. Other

work on this issue is in process.

7.2.3 Study of other flame retardants as additives for lithium-ion batteries.

Recently, more and more attention has been paid on the studies of flame
retardant additives for lithium-ion batteries. However, most studies are lacking systematic
investigation of the impacts of FRs on the different properties of lithium-ion batteries.
Hence, more comprehensive understandings of known FRs, such as TMP, TEP, DMMP
and etc, are needed through work similar to that described in Chapter 6.

Furthermore, based on our studies and other reports [41, 43], more than 20%
FRs are needed to reduce the electrolyte flammability. This could increase the cost of
electrolytes and increase the cost of lithium-ion batteries. Considering the negative
impact of such high concentration of FRs in the electrolyte on the electrochemical
performance of lithium-ion batteries, it is necessary to develop new types of FRs, which
are not limited to organophosphorus or organohalogen compounds. It is also valuable to

develop solvents with low flammability as described in ref. [49].
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7.2.4 Fundamental understanding of function of additives on the electrochemical
performance of lithium-ion batteries.

A small amount of additives could improve the performance of lithium-ion
batteries significantly [75, 79]. Additives are very economical and effective. However,
most of the reports about additives focus on the results that can be observed. More
fundamental understanding of the function of additives in lithium-ion batteries are
lacking. For example, TMOBX was proved to reduce cell impedance significantly, but
the reason for the impedance reduction is unknown [79].

It is believed that many additives function by modifying the properties of
passivation films on the surface of the negative electrode or the positive electrode. It is
necessary to apply more characterization methods, like Raman spectroscopy, infrared
spectroscopy, X-ray photoelectron spectroscopy and etc., in such studies to understand

how additives modify the surface films on electrodes.

7.2.5 Studies the reactivity of other layered-structure sodium transition metal oxides
as positive electrode materials for Na-ion batteries

In Chapter 1, some other layered-structure sodium transition metal oxides, such
as NayFeysMngsO, and Nay;3Mn,3Ni 30, were discussed as positive electrode materials
for Na-ion batteries. Their structural and electrochemical performance have been reported
[21, 24]. However, it is also important to investigate the reactivity of such materials in
solvents and electrolytes at elevated temperature through ARC. Their reactivity will be an

important consideration for their potential application in Na-ion batteries.
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Recently, Sathiya et al. reported the structural and electrochemical performance
of NaNi;sMn;;3Co,,30; as a positive electrode material for Na-ion batteries [80]. It is also
valuable to study the reactivity of such material. Furthermore, different Na-NMC

(NaNiyMn,Co,0,) composites could be synthesized and studied.

7.2.6 Can Na-ion batteries work in aqueous electrolytes?

There have been research works about lithium-ion batteries in aqueous
electrolytes [81, 82]. Aqueous electrolytes can provide extremely high conductivity and
extremely low cost, even though the voltage of cells is relatively low. Recently, Aquion
Energy has announced sodium-ion batteries with aqueous electrolyte. They use NaMnO,
as the positive electrode, activated carbon as the negative electrode and Na,SO4 in water
as the electrolyte. The batteries show excellent electrochemical performance. Even
though these batteries do not have competitive volumetric energy densities with
lithium-ion batteries, they are quite suitable for energy storage. The company announced
full scale production of such batteries in 2013 [83]. Future work should be carried out to
study the impact of additives in aqueous electrolyte on the electrochemical performance
of sodium-ion batteries. It is also interesting to try other positive electrode materials in

aqueous electrolyte system.
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APPENDIX A
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