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Abstract

The objective of this study was to examine the link between radiographic measures
of bone quality and total knee implant migration as measured by radiostereometric
analysis (RSA). Two uncemented total knee arthroplasty studies (n=65) with RSA
and bone mineral density (BMD) exams up to two years post surgery, and one study
with cemented total knees with one year RSA data (n=18) were examined. Radio-
graph image texture analysis was used to characterize the bone microarchitecture,
and a feasibility study was conducted to determine if a given x-ray machine could
be used to obtain bone mineral density at the same time as the RSA exams.

Random Forest
TM

ensemble classification tree statistical models classified pa-
tients into groups based on implant migration with a range of cut-points. Models
based on bone texture parameters measured from the two year radiographs had a
sensitivity of 87.5% and specificity of 80% when classifying patients who had more
than 0.3mm maximum total point motion (MTPM) at two years using the one year
exam as reference. Other cut-points were examined, with models generally having
a lower specificity if the acceptable migration was smaller, and lower sensitivity if
higher migrations were tolerable. In a predictive model, post-operative bone texture
could be used to create a model with a sensitivity of 75% and a specificity of 80%
when predicting those subjects with cemented implants who went on to more than
0.4mm total migration by one year. Bone mineral density of the proximal tibia, as
determined by clinical scanners, was not found to increase the accuracy of implant
migration group classification.

An empirical fit to central regions of a purposed-built cross-wedge calibration
phantom returned residuals of less than ±1.5% for the bone-equivalent thicknesses.
The coefficient of variation of the region greyscale values in three images spread over
three days is under 4%, showing the stability of the system to hold a calibration
between phantom exams and patient scans. Scatter and dynamic range issues will
need to be considered for an accurate calibration across the full range of areal bone
mineral densities in the distal femur and proximal tibia.

xii



List of Abbreviations Used

AP anterior to posterior view.

BMD areal bone mineral density.

CT computed tomography.

DXA dual-energy x-ray absorptiometry.

FMP first moment of the power spectrum.

minFMP minimum FMP over 15◦ increments.
MTPM maximum total point motion.

OA osteoarthritis.
OOB out of bag (error estimate).

ROC receiver operating characteristic.
ROI region of interest.
RSA radiostereometric analysis.

SR Suite Stereoradiography Suite at the Halifax Infir-
mary allows for two multiplanar x-ray images
to be taken at the same time.

xiii



Glossary

arthroplasty

joint replacement surgery

aseptic loosening

mechanical loosening of the implant, without infection

beam hardening

average energy of x-ray beam shifts higher as it moves through material, due
to the preferential attenuation of lower energy photons

bone microarchitecture

how bone is laid out on mm to cm scales, as opposed to whole bone geometry
or bone matrix composition

bone mineral density

amount of hydroxyapatite mineral per square cm (areal measurement)

bone quality

no universally accepted definition, most often used to describe a bone’s ability
to resist fracture under load

calcium hydroxyapatite

crystalline calcium phosphate (Ca10(PO4)6(OH)2), mineral component of bone
matrix

calibration box

a box placed under the exam table which contains control and fiducial beads
in three dimensions to allow for spatial alignment of the two RSA exam images

calibration phantom

see cross-wedge phantom

cone-beam

x-ray photons generated at a point source expand out in a cone to cover the
detector area

continuous migration

implant does not stabilize after one year and has a change in position over the
second year greater than a prescribed cut-off

xiv



control beads

tantalum beads embedded in the control box; circled by metal washers that
show up in the images as halos around the bead

cross-wedge phantom

two step wedges placed perpendicular to each other to provide full spectrum
of material thickness combinations; for in vitro testing of x-ray measurement

dual-energy x-ray absorptiometry

using the attenuation properties of bone and soft tissue under low and high
energy x-ray to determine bone mineral density

first moment of the power spectrum

average spatial frequency weighted by the power of the spectra (Fourier trans-
form magnitude of the frequency squared), see Equation 3.1

fluence

total number of photons per unit area

flux

flow of photons per second per unit area

Fourier transform

transformation of a signal or image into the sum of sine waves

fractal dimension

measures self-similarity of a pattern over a number of scales

Gini coefficient

summary statistic to describe distribution of light over the pixels; 0=evenly
distributed, 1=all light in one pixel

histomorphology

study of microscopic anatomy

maximum total point motion

the point of the analyzed rigid body (either network of tantalum markers or
the model of the implant) which deviated the most from the reference exam

metaphysis

wide end of a long bone

xv



migration

displacement of the implant compared to its original location relative to the
tibia bone

osteoblast

bone cell that produces unmineralized matrix

osteoclast

bone cell that resorbs bone matrix

osteolysis

dissolution of bone

osteoporosis

thinning of trabecular bone and low bone mineral density as measured by
DXA

plastic deformation

with stresses above the elastic limit, the material permanently deforms

radiograph

two-dimensional x-ray image

radiopaque

opaque under x-ray radiation

radiostereometric analysis

method of precisely determining implant migration compared to the bone via
small radiopaque markers

Random Forest
TM

models

ensemble classifier with built-in error checking

region of interest

rectangular selection on the image to encompass the section of bone to be
analyzed

registration

process of aligning two images, e.g. the high and low energy image of the same
anatomy

resorption

assimilation of a substance

xvi



revision

replacing an implant, as opposed to primary arthroplasty

ROC curve

plot of false positive rate against true positive rate, generally different cut-
points of the model are plotted to show power of the model to predict outcome

sensitivity

true positive rate of a test

stress shielding

change in load pattern so the joint forces are channelled away from the peri-
articular bone; causes bone resorption

Stryker Peri-Apatite

The Stryker R© Triathlon R© Knee System with Peri-Apatite
TM

(Stryker Orthopaedics,
Mahwah, NJ); a total knee replacement implant system used in one of the un-
cemented studies

Stryker Triathlon

The Stryker R© Triathlon R© Knee System (Stryker Orthopaedics, Mahwah, NJ);
a total knee replacement implant system used in the cemented study

subchondral

below the cartilage

survivorship

probability that the implant remains unrevised

texture analysis

assessing the contrast, complexity, or roughness of an image using various
techniques

texture inpainting

method of removing artifacts in an image by replacing the artifact with the
best predicted combination of background texture

trabecular bone

bone matrix laid out on in a sponge-like pattern, found at the ends of long
bones

wavelet analysis

similar to the Fourier transform, but by using discrete wavelets instead of
continuous waves, spatial information is kept

xvii



Wright Medical Biofoam

The Wright Medical ADVANCE R© Knee System with Biofoam
TM

Cancellous
Titanium Tibial Base (Wright Medical Technology, Inc., Arlington, TN); a
total knee replacement implant system used in one of the uncemented studies
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Chapter 1

Introduction

1.1 Overview

In 2006, there were 37,943 hospitalizations for knee replacements performed across

Canada, not including Quebec, an increase of 140% over the previous decade [1] (see

Figure 1.1). While these procedures are highly successful within the first 10 years

post-surgery [2], in younger patients, who in general place higher physical demands

on their joints, implants are less likely to last [3]. Canadian knee arthroplasty rates

in the 45-54 age group increased over 300% in females between 1998 and 2007, and

more than doubled for males [1]. Revision surgery outcomes are less reliable, with

lower satisfaction rates than for primary procedures [4, 5, 6, 7]. The lifespan for

revision implants is shorter than primary [6, 8], further exacerbating the problem.

There are currently no patient-specific biometrics to assess risk of implant failure

for individual patients. This work examines the role of bone quality on implant

stability, as part of a greater effort to provide clinically relevant risk assessments

pre-surgery.

This chapter provides an overview of the state of arthroplasty today, implicated

causes of failure and measurement of implant stability, bone structure, and radio-

graphic imaging techniques. At the end of this chapter, hypotheses and rationale

for the work are outlined.

1.2 Osteoarthritis

Osteoarthritis (OA) is a complex disease of the synovial joints which may include

abnormal changes to bone, cartilage, meniscus, synovium, ligaments and other soft

1
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Figure 1.1: Number of hospitalizations for hip and knee replacements in Canada
(excluding Quebec) [1].

tissues; results in the breakdown of cartilage and bone [9]; and is the most common

diagnosis for joint arthroplasty [4, 1]. Symptoms of OA include joint pain, stiffness,

functional limitations, fatigue, mood changes, sleep disturbances and reduced qual-

ity of life [9]. Ten percent of Canadians are currently afflicted with osteoarthritis,

and 21% to 26% of Canadians will be impacted by arthritis or rheumatic conditions

by 2021 [10]. Arthritis and related conditions are the most commonly reported cause

for physical disability in Canada [11], and carry an economic burden equivalent to

0.8% of the GDP, or $5.9 billion in 1994, including reduced productivity [12].

The cause of OA is varied and not completely understood (see Table 1.1). Joint

stresses are a factor, but patient differences in soft tissue and joint structure and use

characteristics means that determining initiating and progression factors is difficult

[9].

Demographic trends of an ageing population, increased life expectancy, and grow-

ing obesity predict an increasing rate of arthroplasty procedures, and those combined

with the extension of joint replacement into a younger population means a higher

demand on the function of those new joints and an increased likelihood that re-

visions of these procedures will be required [5, 14]. Of the total knee replacement
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Table 1.1: Factors influencing osteoarthritis incidence or progression (adapted from
[13].
Systemic Factors Affecting
Joint Vulnerability

Intrinsic Joint Vulnerabili-
ties

Extrinsic Factors Acting
on Joints

age previous damage obesity
gender periarticular muscle weak-

ness
physical activity

genetic susceptibility malalignment
nutritional factors proprioceptive defect

procedures reported to the Canadian Joint Replacement Registry in 2006-2007, 55%

of patients were classified as obese (BMI ≥ 30) and a further 32% were overweight

(BMI of 25 to 29.9)[1]. Future demand is difficult to predict accurately, as there are

not only population demographics to take into account, but also shifts in lifestyle

habits, immigrant population, prevailing medical opinion on treatment options, and

new innovations [5]; in the US, forecasts range from three quarters of a million to

four million hip and knee replacements performed each year by 2030 [2, 15].

1.3 Arthroplasty

In Nova Scotia, the general (primary care) practitioner (GP) refers a patient to an

orthopaedic surgeon for diagnosis and treatment of knee OA. X-rays are ordered

before the specialist consultation, but may or may not be viewed by the GP before

referral. The surgeon discusses the patient’s experiences of pain and disability, views

the radiographs to look for joint space narrowing and other indicators of OA, tests

range of motion of the joint and watches the patient walk. From these, mostly

qualitative, analyses, the advisability of total joint replacement is weighed by both

patient and physician.

In 2004, the Canadian federal government listed joint replacements as one of five

procedures targeted for wait time reduction [1]. With a goal of surgery within 26

weeks from the time of the decision for surgery, currently 60-69% of knee patients

obtain their joint replacements within that window, but in Nova Scotia, even though

our wait times have been consistently decreasing, still less than 50% of patients

receive surgery within the target time frame [16].
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Along with high demand and health care resources, two other issues are impact-

ing the wait list times. Firstly, the lack of evidence based rationale for follow-up

post-arthroplasty has lead to a standard of care of yearly radiographic examinations

and follow-up with the orthopaedic surgeon [17, 2]. If a diagnostic method were

determined to predict those patients whose implants will likely remain stable for a

number of years, the burden of follow-up on the surgical and radiological staff could

be reduced, thus allowing for more replacement surgeries with current capacity, as

well as easing the need for long distance travel of many patients in Nova Scotia. Sec-

ondly, the limited lifespan of the implants themselves, as eluded to earlier, increases

the number of surgeries that must be performed.

1.3.1 Radiostereometric Analysis (RSA)

One of the difficulties in following patients post-arthroplasty, is determining if the

joint replacement is stable, as loosening is often asymptomatic [18]. Radiostereomet-

ric analysis (RSA) uses small, radiopaque tantalum beads inserted into the bone and

the polyethylene portion of an implant (or a model of the implant itself) to measure

the migration of the implant compared to its original location relative to the bone

to a high degree of accuracy [19]. Presently used for research and testing purposes,

it provides important information as to the long term status of an implant: Ryd et

al. [20] showed that the RSA measured migration at one and two years post surgery

has a predictive power of 82% (n=131) for implants at risk of continued loosening.

They further show that of 14 implants needing revision, 12 of them would have been

identified at two years with a combination of RSA migration measures. Grewal et

al. [21] also support the theory that early migration is connected to early failure: of

three groups with different types of implants (n=192, 75, and 118) followed up to 13

years post-operative, the clinical group that had the highest survivorship numbers

had the least migration at one year post-operative, and those with the most migra-

tion were in the group that also had the lowest survivorship rates (p¡0.05). While

knee replacement studies remain limited, there have been a few more studies in hip

arthroplasty, where there is some dispute about what constitutes “high migration”.

Some agree with Ryd et al.’s knee study that the rate between years 1 and 2 is the

important metric [22], but others point to an absolute migration value at 12 or 24

months[23, 24]. The type of implant fixation used in these trials may be part of the
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explanation for the difference, where uncemented implants migrate more initially in

comparison to cemented fixation, but stabilize[25, 26, 27].

The ability of RSA to identify implant designs with a higher risk of poor per-

formance in a couple of years with relatively small study numbers [28], when this

once took decades to uncover with survivorship studies, has been a real boon to

research and shows potential for patient follow up post-surgery[19]. This method

only provides a more precise tool to measure implant stability, however; it has no

way of predicting which patients will develop an at risk migration pattern to begin

with.

1.3.2 Implant Failure

Revising joint implants puts further strain on a health care system: in 2003, 7.5% of

knee replacement surgeries were revisions in the US [15], and these procedures are

more complex, with lower satisfaction rates than for primary procedures [29, 5, 7].

The lifespan for revision implants is shorter than primary [7], which perpetuates the

cycle.

The most common cause of implant failure is aseptic loosening [3, 15, 1]. Asep-

tic loosening can have a complex etiology involving fixation (both initial fixation

and later fatigue failure), implant design, joint alignment, mechanical environment

(gait mechanics, activity level, and any inappropriate loading), hydrodynamic pres-

sure, and wear particles from the replaced joint which can induce an inflammation

response and bone resorption (osteolysis)[30, 31, 32, 33]. Micromotions from high

strains at the bone-implant interface causing fatigue deformation or a failure of ini-

tial fixation are implicated in cell mediated bone resorption [34, 32, 35]. Osteolysis

is the dissolution of bone, most often seen as a series of pockets or lesions as an

immune response to wear particles triggers foreign-body inflammatory cells and a

bone resorption cascade [33]. An increase in hydrodynamic pressure from joint fluid

has also been suggested as a mechanical means of influencing the extent and distri-

bution of peri-implant osteolysis by turning on osteoclast activity [32]. Osteolysis

is generally asymptomatic [18], and any bone resorption can make revision surgery

more challenging and increase the chance of fracture [36, 37]. Unfortunately 2D x-

ray images are of limited value in diagnosing bone resorption: they can fail to show

lesions and radiolucent lines entirely, or underestimate the amount of bone loss due
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to the projection of the surrounding bone in the line of sight [18, 38].

In order to improve wait times and keep joint implants working well longer, and

for more people, we need to be able to determine which patients may have trouble

as early as possible, hopefully even before the first surgery.

1.4 Bone

Bone is a complex, living composite of organic molecules, inorganic mineral, and

a web of cells. Built up in a hierarchical manner (see Figure 1.2), collagen and

hydroxyapatite mesh together to form the bone matrix, and that bone matrix is laid

out in complex patterns depending on physiological loads and anatomical location.

1.4.1 Bone Composition

Bone matrix is comprised of an organic phase, an inorganic phase, and a cellular

population. The organic phase is largely type I collagen, which provides tensile

strength and toughness. The inorganic phase is mostly calcium hydroxyapatite

mineral, adding compressive strength and stiffness. The hydroxyapatite crystals are

positioned at the ends of, and between, the collagen fibres creating a matrix that

is both viscoelastic and rigid, and these bundles are used to build larger structures

[39]. Osteoblast cells produce the unmineralized bone matrix (osteoid) which is

later mineralized, and once they become trapped in the new bone they mature to

osteocytes which maintain the bone. Osteoclasts resorb bone and are needed for

bone turnover in cases of injury, remodelling initial woven bone into stress aligned

lamaller bone, or due to a change in force loading patterns.

The elastic modulus (the amount of strain or deformation per unit of stress) of

bone tissue is highly correlated with mineralization and porosity, and a small change

in mineral density can have a disproportionately large effect on bone tissue strength

[41]. The relative amounts of bone mineral and collagen affect the mechanical prop-

erties of the tissue, as does the configuration: lack of collagen cross-linking has been

shown to influence fracture risk as it is the ductility of collagen that is able to absorb

and store energy [42, 43, 44].

As Wolff’s Law describes, healthy bone continuously evolves based on the me-

chanical environment, and adapts to the strains placed upon it through remodelling
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Figure 1.2: Hierarchical structure of bone [40].
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[39, 45]. This cellular response is altered by age and disease, with changes in bone

matrix composition and the ratio of bone formation to resorption [45].

The mechanical properties of the bone matrix are only part of the picture, how-

ever.

1.4.2 Bone Structure

Bone matrix is built up into a skeleton that is optimized to operate under physio-

logical stresses without snapping yet remaining lightweight. The long bones of the

femur and tibia have a shaft of thick, dense cortical bone distributed away from the

central axis, with a higher elastic modulus and strength when loaded longitudinally,

and which resists the tension which comes with bending moments [41]. At the ends

of the shaft, the bone flares out into the metaphysis, which is mainly comprised of

trabecular (spongy) bone with a honeycomb-like structure able to withstand com-

pressive forces without fracturing, which is important at the joints. The mechanical

properties of trabecular bone are derived from the number and separation of the

struts, their thickness, and their interconnectedness.

1.4.3 Effects of Disease States on Bone Structure

With a much higher surface area, trabecular bone has a higher turnover rate, thus

the locations with high trabecular bone content (femoral head, vertebrae) are where

osteoporosis first appears [46]. On a microarchitectural level, it appears first as a

thinning and removal of the interconnecting rods in trabecular bone, which decreases

the amount of bone mineral per given area, even though the bone matrix that

remains has the same amount of mineral as normal [39]. Osteoarthritic bone, on the

other hand, often has raised areal bone mineral density with subchondral sclerosis

as the horizontal trabeculae thicken. At the same time the bone matrix in this area

contains more water and is less mineralized, thought to be indicative of immature

bone due to high turnover as shown with elevated biomarkers of both bone formation

and resorption [47, 48].

Teasing out the sources of mechanical properties of bone is difficult, as bone

composition and architecture parameters can both be affected by the same biological

processes [45]. In addition, bone failure is dependent both on the local mechanical

properties of the bone and the external and internal forces that are applied; a



9

sufficient bone quality for every day activities might fail when loaded off-axis in a

fall [41].

1.4.4 Bone Responses Impacting Implant Stability

Theoretically, bone quality is thought to impact implant stability in a number of

ways. First, the implant may not become properly fixed to the bone from the

beginning (in the case of a cemented implant, a proper interdigitation of cement

with the pores of the trabecular bone must take place, and for uncemented implants,

the trabecular bone must grow into the rough texture provided on the surface of the

implant). Second, the bone may not be able to withstand the new loading pattern;

implant materials are stiffer than bone, and thus joint stresses get channelled down

the stem of the the implant into the interior distal portion of the metaphysis which

did not originally experience such loads from that direction. And thirdly, bone

resorption may occur at the implant or cement-bone interface. (See Bauer & Schils

1999 [32] for a more expanded description of implant failure mechanisms.)

Initial micromotion of the implant, which could be related to an initial lack of

fixation or low bone modulus, can have consequences: there is a limit to how much

an implant can move and still allow for bone ingrowth in uncemented designs (too

much leads to a fibrous encapsulation which leads to a higher risk of failure) [34],

micromotion aids the production of debris particles [30], and micromotion indirectly

activates osteoclasts [35]. Motion also can cause an increase in hydrodynamic fluid

pressure in the effective joint space, which also may lead to bone resorption [32].

Finite element analysis (FEA) of stresses in bone have shown the possibility of

plastic deformation of the trabecular bone due to implant loading [49, 50, 51]. While

these analyses are difficult to do rigorously, as every patient has a different bone

geometry, bone matrix quality, and joint alignment, studies have shown the global

stress distribution with three different types of implant fixation (cemented, proxi-

mally bonded hydroxyapatite coated, and press-fit) matched the clinical migration

and survival rates of these types of implants (n=39, 57, and 24 respectively) at 2

and 5 years (FEA designs by Taylor et al. [50, 51] and compared to survivorship

rates in Grewal et al. [21]). It is thought that an initial rapid subsidence is due to

the turn-over of necrotic bone from surgical trauma, but that the slower, continuous

migration in the medium term might be due to plastic deformation of the bone as
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the strains overwhelm the body’s ability to repair the damage [49]. Whether the

medium term migration is due to plastic deformation of trabecular bone, or whether

the bone is being resorbed and the implant migrating into the larger space is un-

clear. It does indicate, however, that the local bone environment is more important

than global bone properties for implant stability [52].

Resorption occurs in response to many factors: altered stress patterns, ageing,

inflammation induced osteolysis (from infection or particle debris), implant motion,

high fluid pressure, and metabolic disturbances [32]. Early analysis of aseptic loos-

ening pointed to osteolysis as the cause, and cement particles as the reason for the

osteolysis (then termed “cement disease” [53]), which led to the design of cement-

less implants. We now know that wear particles from all components of the implant

(e.g. polyethylene, metal, ceramic) and not just the cement do trigger some immune

reaction, but a large number of particles does not necessarily mean osteolysis occurs

[37]. It is thought that the particles follow the path of least resistance, and become

a threat when the reaction is happening in periprosthetic bone: the effective joint

space includes unbonded sections of the implant, places where the cement is frac-

tured or is defective, screw holes and cannulated stems, each allowing particles to

build up next to the implant and promote bone resorption where the bone is needed

most [32, 35, 54].

A brief comment about stress shielding. Bone resorption due to lack of loading

on periarticular bone after arthroplasty has been studied extensively. The stiffer

metal causes the joint forces to travel through the implant to the base of the shaft

instead of through the head of the bone, and the changed mechanical environment

means the dense periarticular bone is no longer needed. There have been many new

implant designs introduced attempting to minimize stress shielding, but while the

there are direct links between inflammation based osteolysis and implant failure,

the consequences of stress shielding are more in doubt. It has been a concern

theoretically in terms of long term implant stability and chance of periprosthetic

fracture [55, 56, 57], but this adaptive remodelling has been seen to be continuous

for up to 14 years while the implants remain stable [4], few clinical problems have

been related to this type of bone resorption, and it has rarely been found as an

isolated cause of implant failure [32, 58, 49]. It becomes more of an issue when an
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implant becomes loose through pathologic resorption, and needs replacement: in

such case there may be less bone for the revision implant to use as a base, and this

negatively impacts the success of revision surgery [59, 60, 55].

But even with these research results, the question still remains: which aspects

of “bone quality” are necessary for implant longevity? And can some of them be

measured using radiographic images?

1.5 Imaging Techniques

Most of the research into radiographic measures of bone quality centre on osteoporo-

sis diagnosis. The gold standard radiographic measure of bone quality: bone mineral

density (BMD) measures the mass of bone mineral per projected area (g/cm2) on

a two-dimensional x-ray image. More properly termed areal bone mineral density,

it is the basis of the World Health Organization’s definition of osteoporosis: “an

areal bone mineral density value that is 2.5 standard deviations or more away from

the young adult mean”. Being a two-dimensional measurement, BMD encapsulates

parameters of bone mineralization, porosity, and cross-sectional bone size and may

not be a good measure of volumetric or bone tissue density [60, 61, 62]. BMD neces-

sarily combines cortical and trabecular bone densities, thus will not be as sensitive

to trabecular bone turnover rates as three dimensional modalities [63]. Even with

all of these negative influences, BMD still explains 70% of the variance in stiffness

for femur and tibia bones, 73% of the ultimate strength and 81% of the penetration

strength of trabecular bone in vitro [60, 64, 65]. This does not completely translate

into fracture risk in vivo: 60% of fracture risk is explained on a population scale, as

proven in large epidemiological studies [66, 67, 68]. The correlation of bone mineral

density to mechanical properties of the bone may prove useful, as bone response

to the stresses transmitted through the implant have been implicated in implant

migration.

1.5.1 Dual Energy X-ray Absorptiometry

Visual analysis of plain radiographs can only reliably detect a decrease in density

once a minimum of 30% of the bone is lost [4, 69]. The current gold standard for
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high accuracy measurement of areal bone mineral density is dual-energy x-ray ab-

sorptiometry (DXA) which takes advantage of the x-ray attenuation properties of

the various body tissues. At energy levels used for diagnostic imaging, x-ray photons

interact with atoms in the tissues in two ways: (1) photoelectric absorption, where

the photon is absorbed and an inner shell electron is ejected from the atom, and

(2) Compton scattering, where the photon interacts with an outer valence electron

causing a change in direction of the photon. Photoelectric absorption is more effec-

tive in high atomic number atoms (for instance, calcium) vs. the hydrogen, carbon,

and oxygen found in soft tissue, but scattering is dependent only on electron density,

which is similar for all tissue types [70]. The total attenuation (scattering and ab-

sorption reduction of incident photons) at high and low energies provides a unique

fingerprint for each tissue type. The photon fluence that reaches the detector is the

number of photons emitted by the generator attenuated by the matter in the path

of the beam, as shown in equation 1.1 for a monoenergetic beam and single type of

matter [71], where If is the intensity at the detector, Io is the incident intensity, t

is the thickness of matter in the way of the beam, and μ is the linear attenuation

coefficient of that matter.

If = Ioe
−μt (1.1)

The attenuation coefficient is dependent on x-ray energy; for single energy beams the

coefficient is constant, and a simple exponential multiplier based on the thickness t

of the material relates incoming and transmitted intensity. It is worth noting that

photoelectric absorption dominates at lower x-ray photon energies and scattering at

high energies, thus two images are taken centred on the photoelectric and Compton

domains respectively [72, 73]. The atomic composition of the soft tissues (lean

muscle, adipose tissue) mean that their attenuation coefficients are similar, but

different from that of bone at lower energies. In this way the body can be broken

into two tissue types (“soft tissue” and “bone”) and when imaged using two different

x-ray energies, the attenuation equations allow for two equations with two unknowns

(1.2 and 1.3), providing the ability to solve for the thickness of bone [74].

If1 = Io1e
−(μbtb+μsttst) (1.2)

If2 = Io2e
−(μbtb+μsttst) (1.3)
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Figure 1.3: Example low and high energy x-ray spectra. Figure from Gulam et al.
2000 [75]. Copyright Radiological Society of North America, used with permission.

Dual-energy x-ray absorptiometry uses an electrical generator of photons, which

provides consistent, high flux beams at the cost of having a broad energy spectrum

(Figure 1.3). Assessment of bone mineral density for clinical diagnosis of osteoporo-

sis is now exclusively the domain of dedicated scanning equipment. Pencil-beam ma-

chines (in which the transmission of a highly columnated photon beam is recorded

by one pixel detector, which is scanned over the anatomy in question) have largely

been replaced with fan-beam designs (beams expand through a slit columnator to

record a row or few rows of pixels at a time). DMS-Lexxos (DMS Corporation;

Montpellier Prols, France) is the only company making cone-beam (2D) machines

that can image the hips and spine [76, 77].

Dedicated scanners are quite precise in the short-term (with a coefficient of

variation of 1 - 1.5% for spine BMD, and 2 - 2.5% for femoral neck for fan beam

detectors [67]), and a very stable calibration [62], although long-term effects of small

drifts in calibration and patient positioning and tissue composition changes can add

up to a minimum significant change of 6.5% [78]. While DXA scanning can be

very precise, it is under stringent conditions. Position and rotation must be strictly

controlled, as a change in the angle of the x-ray beam through the bone changes
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the path length of the photons and the region of bone being imaged [67, 4, 79, 80].

Standard operating procedures include instructions on positioning, including the use

of foam blocks and foot positioners to increase repeatability. Changing the outlined

region of interest (ROI) can also affect the resulting BMD value: an optimal ROI

is large enough for precise repositioning, but small enough to cover bone that has

uniform mechanical and physiological conditions [67, 78].

1.5.2 BMD and Arthroplasty

BMD has been tracked post-arthroplasty, mostly in terms of following the progres-

sion of stress shielding. Pre-operative BMD is not usually measured [58]. It has

been well documented that BMD in the area surrounding the implant decreases in

the first 12 weeks to 6 months after surgery, likely due to postoperative increased

bone resorption and decreased patient activity [58, 81, 82]. Longer term studies

have shown that BMD continues to decrease in the proximal periprosthetic zones

faster than normal ageing [4, 82, 83], but stabilizes and increases in other areas over

the following two years [81, 82, 57]. Studies of pre- and post-arthroplasty bone min-

eral density and knee and hip implant stability have had conflicting results. Some

research has shown that the percentage of mineral lost over time is related to initial

BMD [84, 52, 57], low initial BMD is correlated with early migration [26, 85], loose

implants have lower periarticular BMD [86, 87] or less change in BMD [26, 27], fail-

ure of cemented femoral hip implants are related to regional losses in BMD [86], and

for some surgeons, lower bone mineral density or poorer bone quality pre-operatively

has been the reason to choose a cemented implant over a press-fit design, as the ce-

ment is thought to compensate for variations in bone stock [85, 80, 58]. On the

other hand, other studies found that initial BMD was not related to percentage

lost post-arthroplasty [82, 83], nor was type of implant fixation implicated [52], no

evidence has been found that low BMD is related to long term loosening, migration,

or implant failure [27, 58, 54, 79, 88], and histomorphologic diagnosis of osteoporosis

shows no relationship with RSA measured migration at one year [89] or loosening

after 12.8 years [90]. It is difficult to compare study results, however, as loosening

has a multifactorial origin (see Section 1.3.2), and differing inclusion and exclusion

criteria, age and other demographics, activity levels, regions of interest, assessment

methodology, surgical technique, and implant type can all impact the outcomes.
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Figure 1.4: Trabecular bone structure seen in 2D projection radiographs

Which is to say that there’s no clear relationship between bone mineral density

and implant stability. Current research in the osteoporosis field is also attempting to

improve prediction of bone failure by adding other markers of bone quality, including

examining the microarchitecture of bone [91, 92].

1.5.3 Two Dimensional Bone Microarchitecture Assessment

As discussed in section 1.4, the layout of the trabecular bone at the ends of the

long bones impacts their mechanical function. This is the bone which needs to

supply some support for a total joint replacement implant, whether through the

interdigitation of cement with the sponge-like texture of trabecular bone or through

bone ingrowth into the rough exterior of an uncemented implant. While some of the

information is lost in two-dimensional projection imaging, the dominant structures

of the spongy bone can still be seen in radiographs (see figure 1.4). Image texture

analysis is a large area of study, and has been used previously in the medical field

(e.g. differentiating between normal and abnormal tissue and segmenting images

based on anatomical structures). Since the pattern that trabecular bone makes

on x-rays has already been used visually to determine pathology (e.g. the Singh

Index for osteoporosis), it is unsurprising that automated texture techniques have

been attempted on bone as well. Image texture analysis is generally split into three

classifications: (1) statistical methods (comparing grey scale intensity levels of each

pixel with their neighbours based on statistical techniques), (2) transform methods
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(usually using the Fourier transform to obtain spatial frequency data), and (3)

model methods (principally fractal based parameters, giving an indication of overall

roughness or complexity) [93, 94]. Table 1.2 contains an overview of the texture

analysis currently being applied to bone images (both in vitro and in vivo), almost

exclusively to add to the portrayal of bone quality in predicting fracture risk.

In osteoporosis studies, texture analysis was found to be not as good at pre-

dicting fracture risk as BMD, although combining texture and BMD gives a more

sensitive and specific predictor [112, 113, 108, 92]. Texture analysis has shown a sig-

nificant change in trabecular bone structure over time in the tibias of osteoarthritis

knee patients [98], and is potentially sensitive to hormone replacement therapy and

teriparatide treatment of osteoporosis, which BMD is not [91]. Different techniques

reflect different characteristics of the trabecular pattern, and vary in their relation

to BMD and biomechanical properties [99, 102], although most have shown signifi-

cant correlation with bone strength (including torque to breakaway of a wing blade

probe in cadaver femoral bones [97], and a high correlation between power spectrum

texture and elastic modulus [99]) and can give anisotropy measures important for

biomechanical responses that are missing in density values [103, 114].

Some suggest that the older statistical methods such as grey level co-occurrence

matrices are being superseded by multivariate image analysis such as the wavelet

transforms [93], although these methods still appear in papers published in the last

couple of years [95, 115]. The difficulty with the statistical methods are the shear

number of parameter options: multiple statistical analyses are conducted on the

matrices, which themselves are dependent on the number of pixels to compare, as

well as the distance between the pixels, and the direction. While there are published

results stating that this set or that have been found to correlate with medically

important indicators, none have described an exhaustive search of which variables

are best, and the optimal parameters are different for varying imaging techniques

[116]. Statistical methods have no link to physical structure, so there is no theory

to act as guide [116].

Fractal dimension is thought to reflect the complexity of the trabecular branch-

ing, and perhaps contain information about the 3D properties of the bone [105, 117].
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Table 1.2: Texture analysis of bone in the literature
Statistical Transformational Fractal

grey level
co-occurrence
parameters
[93] (theory, n=35 steel
images), [94] (n=33
bone specimens), [95]
(n=40 pairs of excised
femurs), [96] (n=54
BMD matched patients,
hips imaged) [97, 98, 99]

root-mean-squared of
the power spectrum
[100] (n=34 bone
specimens), [101] (n=42
with vertebral fractures
n=128 without,
postmenopausal women,
calcaneus images)

Fourier based fractal
[99] (n=28 bone
specimens) [102] (n=87
bone specimens),
[94, 103]

moments of power
spectrum
[38] (n=202 total hip
arthroplasty patients),
[99, 100, 101]

Minkowski
Dimension
[97] (n=14 pairs of
cadaveric femurs), [48]
(n=6 normal, n=5
osteoarthritic proximal
tibia images), [101, 38]

Laws masks
[104] (n=114
osteoporotic and n=182
age-matched patients,
calcaneus images) [98]
(n=18 OA hip
radiographs)

surface-area fractal
method
[103] (n=51 bone
specimens), [105] (n=43
osteoporotic patients,
spine images), [102, 48]

wavelet analysis
[106] (n=26 osteoporotic
and n=23 controls,
mandible images), [93]

box-counting
[107] (n=25 femur bone
specimens),[108] (n=30
radiographic and 16 CT
images of lumbar
vertebrae),[109] (n=26
vertebral specimens)
fractal signature
analysis
[110] (n=90 OA knees,
macroradiographs), [111]
(n=40 OA knees,
macroradiographs), [48]
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The texture on projection images does exhibit fractal properties even though histo-

logical sections of trabecular bone do not [91].

In the context of arthroplasty, one study of 202 hip replacements has looked at

bone texture in the context of aseptic loosening by means of correlation with osteol-

ysis. Wilkie et al. [38] determined that both the minimum of the directional FMP

(first moment of the Fourier power spectrum) and the Minkowski Fractal Dimension

of regions around the acetabular cup separated osteolytic and non-osteolytic cases.

This was a preliminary study however, and used radiographs that had confirmed

osteolysis by visual inspection: the power in this technique will only come if it can

determine loosening cases at a much earlier time frame, as conventional diagnosis

requires quite a bit of bone to have already been resorbed. To find out if such pa-

rameters predict later loosening requires either large longitudinal studies, or a more

sensitive measure of loosening than visual diagnosis of osteolysis.Another study by

Wigderowitz et al. [46] looked at the short term texture response of the tibia medial

and lateral compartments to a total knee replacement, and found a similar pattern

to accepted BMD changes: a decrease in trabeculae in the first year, with the values

of the fractal dimension returning to baseline by the third year, and a difference

between two regions attributed to load distribution.

1.5.4 Why Not 3D?

Two dimensional projection radiographs have advantages over the more information-

rich 3D modalities (CT and MRI) due to ease of use, low cost, short scan times,

and availability as a screening device on large populations [18, 60]. The volumetric

modalities also require modified techniques and algorithms in an attempt to remove

artifacts produced by metallic implants which can severely impact image quality

[118], and these techniques are not yet ideal. CT images are of lower precision and

resolution than radiographs, and incur a much higher radiation dose [119], with that

dose substantially increased again when an implant is present [118, 120]. There

have been many studies linking 3D bone properties to 2D projection parameters

[99, 121, 116], which gives us the ability to use the more accessible x-ray radiographs

to obtain bone quality surrogate variables.
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1.6 Purpose

The purpose of this study was to examine the link between radiographic measures

of bone quality on implant stability as measured by RSA. Radiograph image texture

analysis was used to characterize bone microarchitecture, and bone mineral density

scans determined information about bone matrix content. These parameters were

compared to assessed implant motions at one and two years after surgery, which Ryd

et al. [20] showed predicted future loosening. A feasibility study was conducted to

determine if the SR Suite at the Halifax Infirmary could be used to obtain another

measure of bone quality, bone mineral density, as well as RSA measured migration.

1.7 Objectives and Hypotheses

Objective 1

Create an algorithm to assess bone microarchitecture of the knee, and combine

with bone mineral density data from DXA scans. Evaluate the links between these

measures of bone quality and uncemented total knee arthroplasty stability in the

first two years post-operative as measured by RSA migration.

Rationale 1

Bone microarchitecture and bone matrix composition are both known to affect

the mechanical properties of bone. FEM studies of implant-bone interaction show

that stress concentrations which exceed the bone’s ability to elastically deform and

recover result in fatigue damage which alters the tight fit between the implant and

the bone. RSA studies have shown that early continuous migration of an implant

predicts later failure via mechanical loosening, and that migration between one and

two years is predictive of continuous loosening. Implant stresses overwhelming bone

mechanical properties may be one of the factors causing early continual migration.

Hypothesis 1

A model based on radiographic derived bone microarchitecture and bone min-

eral density parameters will identify study participants with RSA measured implant

migration between one and two years above and below a set cut-point.
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Approach 1

A total of 65 uncemented knee replacement study participants have been fol-

lowed for two years, and have had RSA and DXA scans at post-operative, 3, 6,

12, and 24 months. Image texture analysis was conducted on the RSA exam radio-

graphs. Random Forest
TM

statistical models were built using texture and mineral

density parameters to determine if it is possible to classify implant migration out-

comes based on bone quality.

Objective 2

Evaluate the links between peri-operative radiographic measures of bone quality

and cemented total knee arthroplasty stability in the first year post-operative as

measured by RSA migration.

Rationale 2

An extension of Rationale 1, this hypothesis examines the predictive ability of

these bone quality parameters: can an exam taken before surgery (here using avail-

able images taken one to two days after surgery as a proxy for pre-operative bone

condition) assess risk of implant instability?

Hypothesis 2

A model based on radiograph derived bone microarchitecture parameters calcu-

lated from immediately post-operative x-ray images will predict study participants

with RSA measured implant migration at one year above and below a set cut-point.

Approach 2

A total of 16 cemented knee replacement study participants have been followed

for one year, and have had RSA exams with digital x-ray images taken at post-

operative, 3, 6, and 12 months. Image texture analysis was conducted on the RSA

exam radiographs. Random Forest
TM

statistical models were built using texture pa-

rameters to determine if it is possible to classify implant migration outcomes based

on bone quality.
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Objective 3

Assess the feasibility of obtaining bone thickness from x-ray images using the

radiographic equipment in the SR Suite at the Halifax Infirmary.

Rationale 3

With a known volumetric density of cortical bone, the areal BMD can be de-

termined if cortical bone equivalent thicknesses are measured from the radiograph

attenuations. Two dimensional image based bone mineral density measurement has

been successfully conducted in research on the hand. Using the SR Suite instead of

dedicated DXA scanners offers much higher spatial resolution, and the potential to

use x-ray exams for multiple purposes to reduce patient exposure.

Hypothesis 3

An empirical calibration of the system using an x-ray phantom with bone and

soft-tissue mimicking materials will accurately identify the material thicknesses from

high and low energy image greyscale values and maintain the calibration over one

day.

Approach 3

A cross-wedge phantom was designed to cover the full range of bone and soft

tissue thicknesses found in CT scans of 50 early OA study participants. X-ray expo-

sure levels were tested to determine if a large spread in energies between high and

low images was possible, and determine exposure levels which do not oversaturate

thin areas while still being high enough to penetrate thick areas. An algorithm was

written to take the greyscale values in the high and low energy images and fit a sec-

ond order polynomial to link those values to the known thicknesses of the phantom.

The fit was then used to reassess the phantom images to determine the uncertainty

of the thickness measurements over the whole image.
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1.8 Structure of the Remainder of the Thesis

Chapter 2 outlines the study data used in these projects, including specific infor-

mation on the SR Suite equipment, RSA and DXA exams. Chapter 3 examines

Hypotheses 1 and 2, describing the methods and results of obtaining radiographic

image based bone microarchitecture parameters and determining if models based on

these and bone mineral density can help classify study participants based on implant

migration. Hypothesis 3 is investigated in Chapter 4, where the methods and results

of cross-wedge phantom testing are described. Chapter 5 includes a discussion of

the results, the limitations of these experiments, and directions for future work.



Chapter 2

Total Knee Arthroplasty Clinical

Studies

Currently there are two uncemented total knee arthroplasty studies being conducted

by the Department of Orthopaedics Research at the QEII Health Sciences Centre,

and one continual-enrolment study of cemented hip and knee replacements which

are monitored using radiostereometric analysis. Informed consent was obtained from

all study participants in accordance with the requirements of the Capital Health

Research Ethics Board. All exam data was anonymized by study coordinators before

analysis.

2.1 Uncemented Knee Studies

2.1.1 Wright Medical Biofoam

The Wright Medical ADVANCE R© Knee System with Biofoam
TM

Cancellous Tita-

nium Tibial Base (Wright Medical Technology, Inc., Arlington, TN) (“Wright Med-

ical Biofoam”) is an uncemented tibial implant with foamed metal exterior to allow

for bone ingrowth. The tibial implant provides the option to either use screws or

not. Participation in this study was offered to subjects referred to three orthopaedic

surgeons who fit the inclusion and exclusion criteria listed below, until 50 partici-

pants were enrolled. The study participants were randomized to receive screws or

no screws, and the objective of the study is to assess whether screws have an effect

on implant stability.

23
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Inclusion Criteria

1. Symptomatic osteoarthritis of the knee indicating surgical intervention

2. Between the ages of 21 and 80 inclusive

3. Ability to give informed consent

Exclusion Criteria

1. Significant co-morbidity affecting ability to ambulate

2. Flexion contracture greater than 15◦

3. Extension lag greater than 10◦

4. Tibial subluxation greater than 10 mm on standing AP radiograph

5. Prior arthroplasty, patellectomy or osteotomy with the affected knee

6. Lateral or medial collateral ligament instability (> 10◦ varus/valgus)

7. Leg length discrepancy greater than 10 mm

8. Active or prior infection

9. Morbid Obesity (BMI > 40)

10. Medical condition precluding major surgery

11. Severe osteoporosis or osteopenia

12. Neuromuscular impairment

A total of 51 study participants were enrolled, with two withdrawn due to in-

sufficient RSA beads visible for migration calculations. Joint replacement surgery

took place between June 2008 and January 2010, with 45 completed 2 year RSA

and DXA BMD scans available for analysis at the time of this work.

2.1.2 Stryker Peri-Apatite

The Stryker R© Triathlon R© Knee System with Peri-Apatite
TM

(Stryker Orthopaedics,

Mahwah, NJ) (“Stryker Peri-Apatite”) has a coating that encourages bone ingrowth.

This design has a shorter flanged stem than the Wright Medical Biofoam, and is

used in a muli-centre trial in Halifax and Perth, Australia. Due to the differences

in patient population and x-ray equipment used, only the 18 study participants en-

rolled in Halifax are used in these analyses. Subjects referred to two of our surgeons

were recruited based on the following inclusion and exclusion criteria:

Inclusion Criteria
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1. Symptomatic osteoarthritis of the knee indicating surgical intervention

2. Between the ages of 21 and 80 inclusive

3. Ability to give informed consent

Exclusion Criteria

1. Significant co-morbidity affecting ability to ambulate

2. Flexion contracture greater than 15◦

3. Extension lag greater than 10◦

4. Tibial subluxation greater than 10 mm on standing AP radiograph

5. Prior arthroplasty, patellectomy or osteotomy with the affected knee

6. Lateral or medial collateral ligament instability (> 10◦ varus/valgus)

7. Leg length discrepancy greater than 10 mm

8. Active or prior infection

9. Morbid Obesity (BMI > 40)

10. Medical condition precluding major surgery

11. Severe osteoporosis or osteopenia

12. Neuromuscular impairment

Of the 18 subjects enrolled, 2 withdrawn at the time of primary surgery (one

due to a missed exclusion, the other due to a deformity of the tibial plateau, unable

to be determined before surgery), and 1 required revision after the first year for

loosening. Primary surgeries occurred between April 2009 and April 2010, with 13

completed 2 year RSA and DXA BMD scans available for analysis.

2.2 Cemented Stryker Triathlon Study

There is a third study that began in the fall of 2010, with ongoing recruitment,

which is open to those referred to one of 6 surgeons, scheduled for total hip or

knee replacement, who are able to provide informed consent and attend required

RSA exam follow-ups at the Stereoradiography (SR) Suite at the Infirmary. No

other exclusion criteria is applied. All knee implants included in these analyses are

Stryker R© Triathlon R© Knee System (Stryker Orthopaedics, Mahwah, NJ) (“Stryker

Triathlon”), using cement fixation, and these study participants do not receive bone
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mineral density scans. There is one subject with a Zimmer R© Gender Solutions R©

NexGen R© System knee, but the exam images had no usable regions of interest due

to the spread of radiopaque cement further into the periprosthetic bone. Because

this study started after the installation of the digital x-ray detectors, post-operative

bone architecture can be examined and compared to later implant migration to test

predictive value. However, only one year data (n=18) are available for analysis at

the time of this report, and there is less support in the literature that one year

migration values are useful in predicting later implant failure.

2.3 X-ray Detectors

Since July of 2010, the x-ray detectors used in the SR Suite are Canon CXDI-

55C general radiography digital plates (Canon USA, Inc., Lake Success, NY) with

2208x2688 160 μm square pixels, 3.1 lp/mm resolution, and 12-bit grey scale range

(4096 intensity levels). Exams completed before that date used the Agfa MD4.0

computed radiography system (Agfa HealthCare NV, Mortsel, Belgium), which had

a lower effective resolution which resulted in the trabecular structure of the bone

being not clearly visible. For this reason, only those RSA exams taken with the

digital Canon detectors were used for the following texture analysis.

2.4 Radiostereometric Analysis

During surgery, small tantalum spheres 0.8 to 1.0 mm in diameter are inserted into

the proximal tibia bone and the polyethylene insert of the tibial implant, in accor-

dance with the ISO 16087 Implants for surgery—Roentgen stereophotogrammetry for

assessment of micromotion of orthopaedic implants standard for uniplanar analy-

sis. Tantalum is both biocompatible and radiopaque; the high contrast markers are

easy targets for the semi-automated RSA analysis software during follow up exams

comparing the relative positions of the implant to the bone.

Each Radiostereometric Analysis exam saves two x-ray views of the knee (Figure

2.1). These exams are taken with 90 kVp and 6.4 mAs for the average subject.

The Model-Based RSA (MBRSA) software (version3.3, Medis Specials, Leiden, The

Netherlands) takes these two images with known equipment geometry and back
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Figure 2.1: SR Suite at the Halifax Infirmary. Dual x-ray heads at a 30◦ angle
to vertical and a calibration box (HalifaxBox007, Halifax Biomedical Inc., Mabou,
NS, Canada) under the table which houses the RSA spatial reference beads and the
digital detector plates.

projects the path of the beams which created each marker shadow on the image.

The intersection of these paths defines the true marker position in 3D space (see

figures 2.2 and 2.3). The markers in the bone can be aligned in images at different

time points, and any change in position of the implant relative to that rigid body

is due to the migration of the implant. As per ISO 16087 recommendations, the

maximum acceptable rigid body error was set to 0.35mm, and software identified

bead positions were double checked if the error exceeded 0.30mm. The condition

number maximum was set to 100, although very few exams exceeded 40, and were

checked at this smaller value. All RSA measured implant migration of these studies

was completed by Halifax Biomedical Inc. (Mabou, NS, Canada).
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Figure 2.2: Stereoradiography equipment set-up for taking RSA images. The x-
ray generator heads at the top of the drawing are angled at 30◦ from vertical, the
participant’s anatomy is positioned in the field of both beams, and two images
are taken (the two detectors are in the grey-shaded and white sections below the
calibration box). Courtesy ISPRS [19]

Figure 2.3: Tracing the ray paths backwards from the images allows for a 3D recon-
struction of the RSA bead locations.
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Migrations are measured via medial-lateral (x), superior-inferior (y), and anterior-

posterior (z) translations and anterior tilt, internal rotation, and adduction an-

gles. The maximum any point moves is captured by maximum total point motion

(MTPM), which is the most often used RSA parameter in the literature.

2.4.1 RSA Precision

Using markers placed in the implant and bone, double exam analysis has shown the

95% confidence interval range for the repeated measurement RSA translations in the

Wright Medical Biofoam study (n=44 double exams) to be 0.14mm to 0.39mm in

translation.However, there can be sight line issues with the beads that are injected

into the polyethylene insert in the tibial implant, as it is in close proximity to

the radiopaque femoral and metal tibial components. Unless three of the same

beads are unobscured by implant overlap in exams in question (here the 2 year, 1

year and post-op exams), it is difficult or impossible to determine the migration of

the implant. When this happens, the model-based calculation of migration in the

MBRSA software is conducted. Instead of matching the rigid body created by the

markers in the polyethylene, the software matches a 3D model of the implant itself

to the outlines seen in the 2D x-ray images (see Figure 2.4). Our group’s double

exam testing showed confidence interval ranges similar to marker based migration

in translation.

There are three inherent difficulties in assessing the precision of the MTPM

measurement. First, it is a magnitude of a vector and thus always positive, so while

the other measurements vary around a mean of zero, the average error in MTPM will

always be a positive value (bias). Second, the errors are not normally distributed,

so finding the standard deviation or confidence interval as a measure of variance is

inappropriate. And third, this is a measure of the maximum movement of any one

point in the rigid body - if that point were hidden on the next exam, the MTPM

value will change. The median MTPM error in the double exams for the Wright

Biofoam study is 0.26mm for marker-based analysis, and 0.39mm for model-based,

with a range of 0.053 to 1.502mm for the latter.

There are a limited number of study participants with available one and two year

data, and further restricting the results to only those with the more accurate marker

based migration dropped the available pool by an additional 8% for comparing to
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Figure 2.4: Matching the model of the implant (wire frame) to the x-ray image of
the implant. [19]

post-operative position, and 32% for two year with one year as reference. In order

to keep consistent, all implant migrations were therefore calculated using the model

based analysis.

2.5 Bone Mineral Density Scans

Both the Wright Medical Biofoam and Stryker Peri-Apatite study participants had

bone mineral density scans of both knees, AP and lateral views. Scans were con-

ducted using a Lunar Prodigy (GE Healthcare, Waukesha, WI) dedicated DXA

scanner by a qualified radiation technologist within 1 month pre-operatively and 2

weeks post-op, then at 3 months, 6 months, 12 months and 24 months, using the

following protocol.

2.5.1 DXA Protocol

1. The subject was positioned parallel to the lines on the table, with

the leg to be scanned straight and the knee cap was straight up.

A foam positioner was placed under the knee with the tapered end

toward the thigh.
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2. The subject’s foot was strapped into a vertical position using a foot

positioner.

3. The positioning laser was adjusted to 10cm below the patella.

4. Scans were conducted over the knee such that they started and

stopped in areas with at least 1-2cm of tissue on each side of the

bone.

5. Both right and left knee AP views were scanned, and the resulting

image was checked for correct detection of the bone edges.

6. For lateral views of both right and left knees, the subject rotated

their whole body in the direction of the knee to be scanned such

that the knee lay stable on the table, and flexed the knee to ap-

proximately 45◦ (verified with a goniometer).

7. The laser was positioned in tissue next to the femur on a line parallel

to the table line directly above the centre of the knee joint.

8. The final scanned image had the knee centred, the patella com-

pletely shown, and bone edges detected appropriately.

The scan data is assessed by our orthopaedics research team using the enCORE

software (Lunar Prodigy enCORE 2007, ver. 11.40.004, General Electric Company,

Madison, WI) that is packaged with the Lunar Prodigy equipment. Regions of

interest were chosen on each side of the stem of the implant and three 1cm deep

regions below the implant (see Figures 2.5 and 2.6), and were outlined by hand

based on a standard operating procedure outlined below. The enCORE software

then calculated the bone mineral density for the region outlined.

2.5.2 DXA Analysis Method

In the enCORE software, the ROI tool was selected from the Analy-

sis toolbar. The ROIs were created in the following order, to ensure

consistent numbering.

1. Region 1 in the AP view of the operated side covered the bone area

from under the baseplate of the implant to the base of the stem, on

the lateral side (see Figure 2.5. The polygon tool was used to outline

the bone, with vertices added as needed to avoid the implant and
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Figure 2.5: Regions of interest on
anterior-posterior bone mineral density
scans.

Figure 2.6: Regions of interest on lateral
bone mineral density scans.

curve along the edge of the bone. Note that the software ignores

everything outside of the yellow bone edge detection line, and the

blue implant masked region.

2. Region 2 was created in the same way as region 1 for the medial

side of the bone.

3. Region 3 was created by first choosing the rectangular region option,

and drawing a rectangle 1cm high (as given by the region statistics

on the right panel), and as wide as the bone below the stem of the

implant. ROI 3 was placed immediately distal to the stem

4. Region 4 and 5 were created in the same manner as ROI 3, and

stacked distally in order (see Figure 2.5).

5. The ’Calculate’ option was clicked to obtain bone mineral density

for each region.

6. Regions on the lateral view were created in the same manner, with

ROI 1 posterior, and ROI 2 anterior of the implant.

7. The region templates were saved and copied to the unoperated side

for both AP and lateral views.

The 24 month scan includes a double exam to assess in vivo precision. Two

analysts did separate analyses of these scans, and one of our staff calculated the
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differences between the two sets of results: 95% of the anterior to posterior (AP)

BMD values are within ± 13.7% of the average ROI value in the AP view, and all

but one region is within ± 12.6% in the lateral view. This is variation due to ROI

placement only, and is much higher than standard precision of hip and spine scans

with this equipment (Lunar quotes < 1.0% CV in their technical specifications,

whereas we are finding a maximum CV of 6.7%). This is likely due to incomplete

masking of the implant (making it possible to capture metal in the region) and lack

of precise landmarks for placing edges of the ROIs.



Chapter 3

Bone Texture Project

As discussed earlier, image texture analysis is a recognized means of obtaining in-

formation about the microarchitecture of the trabecular bone. The Singh Index for

parameterizing the patterns of hip trabeculae is a visual means of obtaining similar

information and has been in use since 1970 to assess osteoporosis, although it suf-

fers from interobserver variability [122, 123]. While this type of analysis has been

examined quite a bit in relation to fracture risk prediction, and in one instance for

distinguishing osteolytic versus healthy bone [38], it has never been used to predict

knee implant migration.

First, the set of texture parameters to be analyzed needed to be chosen. Before

these parameters could be calculated, standard region size and placement needed to

be determined, and image artifacts had to be removed.

3.1 Image Texture Parameters

Of the texture analysis techniques from the literature outlined in section 1.5.3, the

statistical methods (e.g. grey level co-occurrence matrices) and Law’s masks had

too many potential parameters for the small study sizes used here. The Fourier-

based fractal method was cautioned against in the literature due to discontinuities

at the boundaries of the region, and the binary image techniques were avoided

due to the difficulty in setting a “bone-not bone” threshold for each region. Early

tests showed variability of the parameter results were an issue with the root-mean-

squared of the power spectrum (using the method of Vokes et al., who also found it

to have the most variation of all their tested parameters [124]), and the surface-area

34
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fractal method (following Lynch et al. 1991 [48]). Thus four of the techniques from

the literature were chosen for full analysis: the first moment of the Fourier power

spectrum (FMP), the minimum directional value of same (minFMP), the Minkowski

Fractal Dimension, and the wavelet energies from image wavelet decomposition.

The Gini coefficient from economics and astrophysics research was added to these

chosen texture parameters, as a unique way of examining contrast in the region.

More details and methods for calculating each are described below.

3.1.1 Fourier Power Spectrum Parameters

The first moment of the Fourier power spectrum looks at the coarseness/fineness

of the trabecular structure, and in that way can distinguish between the thin and

closely spaced trabeculae in osteoporotic bone with the wide spaced thick trabecular

structure of healthy bone [124]. FMP and minFMP were calculated based on the

equations 3.1 and 3.2 from Wilkie et al. and Chinander et al. papers [38, 100],

with the minFMP being the minimum directional FMP in equation 3.2 over 15◦

increments.

FMP =

∑
m

∑
n

√
m2 + n2|Fm,n|2∑

m

∑
n |Fm,n|2 (3.1)

dirFMP (θi ≤ arctan
n

m
< θi+1) =

∑
m

∑
n

√
m2 + n2|Fm,n|2∑

m

∑
n |Fm,n|2 (3.2)

In these equations, |Fm,n|2 is the power of the 2D Fourier spectrum at frequencies

m (along the horizontal) and n (along the vertical), and is found using the built-in

Matlab (ver. R2008b, MathWorks, Natick,MA) algorithm fft2 (see Figure 3.1).

Vokes et al. also use a similar method, although they calculate
√
m2n2 weighted

by the power spectrum instead of the weighted mean spatial frequency found with√
m2 + n2, which is unique to their group [125, 124].

3.1.2 Fractal Dimension

Pothuaud et al. found a significant relationship between the fractal dimension of a

two dimensional bone image and the three dimensional porosity and connectivity of

the trabecular bone [126]. The Minkowski Fractal Dimension calculated here was

analyzed using the Matlab imdilate and imerode functions via the same process
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Figure 3.1: Example bone region with its Fourier power spectrum.

as outlined in Wilkie et al. 2008 and others [38, 127, 97], giving a roughness, or

complexity, measurement.

Vg(r) =
N∑

i=1

N∑

j=1

[(f ⊕ rg)− (f ⊗ rg)] (3.3)

MINKg = lim
r−>0

log[Vg(r)/r
3]

log[1/r]
(3.4)

In this method a “volume” difference (Vg) between the dilated and eroded versions

of the ROI over a range of structuring element sizes (r, used in the dilation/erosion

process) is compared to the scale of the structuring element (see equations 3.3 and

3.4). In essence, this finds the number of pixels along the boundary at different

scales. The fractal dimension is derived from the slope of a logarithmic plot of the

volume difference Vg/r
3 against 1/r. ⊕ symbolizes the dilation function, and ⊗

the erosion function. Smooth boundaries would show a zero slope (the number of

pixels at the boundary increases linearly with the dilation/erosion element size), self-

similar rough fractal boundaries have a linear slope on the log-log plot. All global

fractal dimensions calculated here begin with a 3x3 square structuring element,

which is multiplied by the scale values 1 to 10 to cover increasing scales.

In Figure 3.2 the solid line shows the linear fit to all of the volume vs. element
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Figure 3.2: Slope of the linear fit to volume vs. structuring element size is the
Minkowski Fractal Dimension. The solid line includes all points and the dashed line
ignores the most smallest and largest structuring elements, corresponding with the
highest and lowest spatial frequency changes.

size points, whereas the dashed line focuses on the most fractal region of the image,

bypassing the smallest and largest structuring element sizes where the fractal di-

mension begins to change. The fractal dimension corresponding to the slope of the

dashed line is used in all subsequent analyses.

3.1.3 Wavelet Analysis

According to Faber et al., wavelet transforms had significant differences between

normal and osteoporotic bone [106]. The wavelet decomposition is a standard func-

tion in the Matlab Imaging Toolbox, more often used for compressing and enhanc-

ing images. This method has the advantage over Fourier analysis by keeping both

frequency and location information, since it fits finite wavelets instead of global

sine and cosine functions, and examines structures at several different scales. Mat-

lab’s wavedec2 function returns the wavelet decomposition of the matrix based on

the given wavelet; here the parameters were chosen according to Bharati et al.

[93], with the first Coiflet wavelet and a three level decomposition conducted. The

wenergy2 function returned the energy corresponding to the approximation of the

image (global) and the energy percentages for the horizontal, vertical, and diagonal

details. The global approximation contained overall patterns such as photon inten-

sity variations over the region, and thus acted as a powerful high pass filter when
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Figure 3.3: Wavelet decomposition of the same bone region as figure 3.1.

this coefficient was ignored [93]. It was the strength of the pattern details where the

bone texture measures were sought.

[ decompVect , matS]=wavedec2 ( imageROI , 3 , ’ c o i f 1 ’ ) ;

[ Ea ,Eh ,Ev ,Ed]=wenergy2 ( decompVect , matS ) ;

In these Matlab commands, Eh, Ev, and Ed are the energies in the horizontal,

vertical, and diagonal wavelet details, and were used in subsequent analyses. The

three level decomposition provides three energies for each of Eh, Ev, and Ed. Figure

3.3 shows a graphical depiction of an example wavelet decomposition.

3.1.4 Gini Coefficient

The Gini Coefficient is a summary statistic used in economics to describe the amount

of inequality of wealth in a population. Based on the Lorenz curve, which is a

straight line with a slope of 1 in an equal distribution and a curve which falls below

that for any inequality, the Gini coefficient is a ratio of the area between the Lorentz

curve and the line of equality compared to the total area under the line of equity (see

Figure 3.4). Thus a totally equal distribution would have a Gini coefficient of 0, and

a completely unequal (all the measured value in one location) has a Gini coefficient
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Figure 3.4: Lorentz curve used in economics to show distribution of wealth: equal
distribution is a straight line at a 45◦ angle, any inequality curves below that line.
The Gini Coefficient is the ratio of the areas A:A+B, where a value of 1 means all
the wealth resides with one person, and a value of 0 is completely equitable.

of 1. This summary of distribution need not be based on money; Abraham et al.

[128] used it to define the concentration of light in galaxies to distinguish between

spiral and elliptical morphologies (elliptical galaxies have their light concentrated

more centrally). In osteoporosis, the trabecular bone appears “washed-out” or low

contrast compared to healthy bone; the Gini coefficient may pick out a difference

in contrast and be related to bone quality in a similar way as the contrast assessing

root mean squared of the power spectrum has been found to be significantly different

between a groups of women with (n=42) and without (n=128) vertebral fractures

[125]. Equation 3.5 is the basis for the computer-optimized equation 3.6, in which

the pixel greyscale values are sorted first, then equation 3.6 is calculated.

G =
1

2Xn(n− 1)

n∑

i=1

n∑

j=1

|Xi −Xj| (3.5)

G =
1

Xn(n− 1)

n∑

i=1

(2i− n− 1)Xi(n > 2) (3.6)

Both versions are as published by Abraham et al. [128]. Xi andXj are the individual

greyscale values of the pixels, X is the average pixel value, and n is the number of

pixels.
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3.2 Choosing Bone Regions of Interest

The size and placement of regions of interest on the bone needed to be chosen. The

greatest area of bone turnover is periarticular, as this is the region most influenced by

osteoarthritis pre-operatively as well as stress-shielding post-operatively. Although

shown to increase stability, implant stresses are channelled through the stem and

may impact bone properties near the tip, and the areas distal to the tibial implant

and proximal to the femoral implant ought to reflect the general bone health of

the area. Thus six regions of interest (ROIs) were chosen: one on each side of the

implant under the tibial tray, one on each side of the stem at the distal end, one

below the tibial implant and one above the femoral implant (Figure 3.11 will show

an example after the ROI size calculation below).

As it was determined that some of the texture parameters are dependent on the

size of the region, the number of pixels in width and height needed to be fixed for

each. Set too large, and there is a much greater chance of having the region contam-

inated by beads, bone overlap with the fibula, or going off the bone completely. Set

too small, and spatial information is lost and variability goes up, meaning a slight

movement in the ROI placement will produce a relatively large change in parameter

value.

3.2.1 ROI Size Test: Methods

To test the effect of size on variability, an unoperated knee x-ray without the cali-

bration box or antiscatter grid was used and three set of ROIs were laid down in a

brick-like pattern across the proximal tibia, with sizes 32, 64, and 128 pixels square

(Figures 3.5, 3.6, and 3.7). Each region was then moved by 3 pixels in each of the

8 directions to simulate precise human positioning of the region. The variation in

the texture parameters over this small local region was compared to the variation

over the whole distal tibia as given by the range in all the ROIs. To test the effect

of moving the region to avoid an image artifact (such as an implant screw), the

range in texture parameters was calculated for three regions together: the upper

left 64x64 pixel region combined with the region to the right and below.

3.2.2 ROI Size Test: Results

The box plots in Figure 3.8 show high variability in the 32x32 pixel regions when

the position of those regions were changed slightly, with a coefficient of variation as
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Figure 3.5: 32x32 pixel region locations
for variability tests.

Figure 3.6: 64x64 pixel region locations
for variability tests.

Figure 3.7: 128x128 pixel region locations for variability tests.
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much as 45% in the wavelet energies. 64x64 regions have variations up to 23% in

diagonal wavelet energy. The 128x128 test ROIs were very stable (fractal dimension

coefficients of variation less than 0.25%, and the rest of the parameters less than

14%).

The true danger of parameter variability is swamping the signal between images.

This was examined by comparing the distribution of values in the 64x64 test ROIs

from placement variability, and the variation from moving the ROI by looking at

the range in values in the first two regions of the upper left top row and the first

region in the row below, with the values obtained from the radiographs of the study

participants in the same periarticular location. Figure 3.9 shows an example of

a good range in bone parameter values across the study population (c) vs. the

placement and movement variability (a and b), and figure 3.10 shows a texture

parameter movement variability which is a considerable percentage of the population

range. Plots for the remaining parameters are included in the appendix.

3.2.3 ROI Sizes Selected for Bone Analysis

The algorithms to calculate these parameters require rectangular regions of interest,

which are difficult to place on peri-prosthetic bone without overlapping the implant

or overreaching the edge of the bone. The high variability in the smallest 32 pixel

square regions suggests building up a non-rectangular region or skirting around an

obstacle using the combination of small regions is not feasible. 64x64 pixel regions

have about half the variability of the small regions, but no region larger than this

is able to fit under the tibial tray of an implant while avoiding screws in the Wright

Medical Biofoam study. Even with this size, a lot of images still need to be discarded

for the periarticular regions. While the 128 pixel square regions were the most

stable, only the distal tibia and proximal femur might have room for that size. The

algorithms for the parameters examined here require rectangular regions.

Countering the need for reducing variability is capturing the aspects of the bone

most likely to reflect a problem that will impact implant stability: large regions have

stable parameters because they find a global value over a substantial piece of the

anatomy, whereas changes to bone in the few millimetres proximal to the implant

can cause implant migration [49].

The minFMP and Gini Coefficient parameters showed high variability over three
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Figure 3.8: Fractal Dimension over test regions. Top plot shows variability for 32x32
pixel regions when position shifted by 3 pixels in each of 8 directions (ROI diagram
in Figure 3.5). Middle and bottom plot are the same for 64x64 pixel and 128x128
pixel regions, diagrammed in figures 3.6 and 3.7.
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Figure 3.9: Diagonal Wavelet Energy 1.
(a) Wavelet energy values for upper left
64x64 ROI when moved ± 3 pixels; (b)
Wavelet energy values for (a) plus same
for ROI to the right and below to model
moving the ROI to avoid contamination;
(c) Wavelet energy values for periarticular
64x64 ROIs all 2 year study participants.

Figure 3.10: Gini Coefficient. (a) Gini val-
ues for upper left 64x64 ROI when moved
± 3 pixels; (b) Gini values for (a) plus
same for ROI to the right and below to
model moving the ROI to avoid contam-
ination; (c) Gini values for periarticular
64x64 ROIs all 2 year study participants.

(a) View 1 (b) View 2

Figure 3.11: Region of interest size and placement.
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regions on the upper left on the test image compared to the range of values over

all subjects in the same area. This suggests that if moved regions are used as part

of the statistical analysis, these texture parameters should not be used to try to

discriminate between subjects. It is worth noting that the wavelet energies, which

had the highest coefficients of variation in the placement tests above, have the lowest

range percentage compared to population variability.

Based on a balance between the number of usable images and maximizing the

size of the regions, the regions beside the stem were set at 85x95 pixels, the distal

tibia set to 200x100 pixels, and the proximal femur to 300x150, along with the 64x64

pixel periarticular regions (see Figure 3.11).

3.3 Artifact Removal

3.3.1 Background Trend Correction

The generated x-ray flux is not uniform over the whole image, which will affect

the number of photons received at the detector independent of any absorption or

scattering along the way. To assess whether this nonuniformity will affect the calcu-

lated texture parameters, images were taken at standard RSA settings with only the

calibration box and antiscatter grid in the path before the detectors. The overall

background trend was then calculated using the Fit Polynomial plugin for ImageJ

(ver. 1.43u, National Institutes of Health, USA).

A similar fit was made to a typical bone region to test whether the variation

over the ROI is due to changes in the photon intensity over the region (which would

be seen in the background fit), or due to changes in the bone structure itself.

3.3.2 Background Trend: Results

Figure 3.12 shows the overall background trend, and Figure 3.13 shows that over the

region, the background trend variation is less than 10% of the fit to the average bone

intensities in the same location. Note that RSA images are automatically rescaled

to maximize viewing contrast, which means both the flat field images and bone

images are scaled from 0 to 4095. Consequently, the ranges for the background

trend are actually higher than would be seen on bone images, which rescale the
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Figure 3.12: Polynomial fit to background only image (=background intensity vari-
ation). x- and y-axis are pixels in the original image, z-axis is greyscale value. Note
greyscale values in all figures are inverted, low values = low attenuation.

Figure 3.13: Polynomial fit to bone region (=average bone intensity variation),
compared to background intensity variation (note: background greyscale values are
not adjusted to the smaller range they would be in actual exam images).
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background over a smaller range, and the comparison between the two are even

more distant. Therefore no background trend subtractions are conducted during

the following analyses.

3.3.3 Antiscatter Grid

Photons scattered by the intervening material may still hit the detector, just coming

from a different angle than the transmitted photons. Because the atom that caused

the interaction is no longer in the direct path between the generator and the detector,

these photons add a haze or noise to the final image. The majority of photons

reaching the detector have been scattered at least once (80% of photons have been

reported to be scattered in 2D imaging [129]). In the SR Suite, to reduce the amount

of scattered photons recorded, lead plates are adjusted within the x-ray head to

only project x-rays over the necessary area; this columnation of the beam prevents

photons from outside the area being scattered back into the relevant portion of the

image, as well as reducing dose. On the detector side, an antiscatter grid is used.

These preferentially block photons coming in at an angle different than that of the

primary beam (Figure 3.14).

The antiscatter grid used for the RSA exams has very small lead septa inter-

spaced with radiolucent fibre at a line rate of 44 cm−1 from smit röntgen (Veenpluis,

Netherlands), which improves the primary-to-scattered ratio to 6.4. During normal

clinical use, these thin strips of lead successfully absorb sharp angled scattered ra-

diation without obstructing the final image. When examining small bone regions

which a high resolution detector, however, the individual regions of the bone now

have strong horizontal lines which all but obscure the trabecular pattern, as in

Figure 3.15.

3.3.4 Antiscatter Grid Removal: Method and Results 1

Since the lines are horizontal, in a visually obvious pattern, two related methods

were first tried to remove this interference. In the first case, the average change

in brightness from one row to the next was subtracted from the image. A related

high spatial frequency filtering via a median and maximum filter tried to remove

the fluctuations on a scale of 7 rows.

In some cases, namely small areas with an aligned grid, subtracting the average

change worked well. However, the grid lines were not always perfectly horizontal,



48

Figure 3.14: Antiscatter grid preferentially absorbs scattered photons. Reprinted
by permission of the Society of Nuclear Medicine from [130] (Figure 10).

Figure 3.15: Horizontal antiscatter grid lines on example region of interest.
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especially over larger scales. When a lead septum in the antiscatter grid crosses rows

of pixels, a deep absorption occurs over a group of pixels in the first row, followed

by a lesser absorption amount distributed over two rows, then the peak absorption

completely moves into a new row. This makes using a relative brightness model

impractical. Extending the filter over a larger number of rows introduced artifacts,

affecting the underlying bone texture.

3.3.5 Antiscatter Grid Removal: Method and Results 2

The next attempt read the background image (with only the calibration box and

grid, mentioned earlier in section 3.3.1) into a Matlab matrix, and subtracted it

from the subject exam image matrix, with the intent of subtracting off not only the

grid, but also the calibration box artifacts such as the control bead halos which are

also superimposed on the bone.

Unfortunately two issues proved this also unworkable: (1) the antiscatter grid is

slid into a slot in the calibration box without fixation, and any small movement of the

box means the exact pixels that are shadowed by the grid lines change, and (2) the

Canon software automatically adjusts the greyscale values of the image to optimize

it for viewing in the saved clinical exams. The latter means that a complicated, and

unknown, polynomial scaling of pixel intensities is needed to match the brightnesses

of the control beads or the antiscatter grid lines between background and clinical

images.

3.3.6 Antiscatter Grid Removal: Method and Results 3

One of the textural analysis parameters, wavelet energy decomposition, breaks the

image region into horizontal, vertical, and diagonal patterns. This decomposition

was conducted, the horizontal energy was suppressed to 20%, 10%, and 1% of orig-

inal, and the image was reconstructed using Matlab’s waverec2 function (see code

in Section B.1). A test of this method of removal was conducted using a region

on a bone x-ray image without an antiscatter grid in place. Texture analysis was

completed using the methods outlined in section 3.1, then antiscatter grid lines were

virtually overlaid on the region by adding the line brightness changes from one of

the RSA exams to the bone ROI matrix. The virtual antiscatter grid was removed
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Figure 3.16: Antiscatter grid lines removed.

by suppressing the horizontal energy to 10% as outlined above, and the bone tex-

ture parameters were recalculated on the newly cleaned image and compared to the

original values.

In the reconstructed image, the horizontal lines are effectively suppressed, as

seen in figure 3.16. Comparing the original no grid texture parameter values with

the grid subtracted version (using the 10% horizontal energy version) found the

results to be within 1% of the original for the fractal dimension, and within 8% for

the other texture parameters aside from the Gini coefficient which was 12% lower

than baseline. Of the different levels of horizontal energy reduction were tested,

the suppression to 20% was too little and the grid lines remained visible, and 1%

of the original horizontal wavelet energies was too much suppression and caused

bone texture to be blurred (Figure 3.17). All regions used in the following texture

analysis have had the horizontal wavelet energies reduced to 10% to remove the

effect of the antiscatter grid lines. Because of this, the horizontal energies were not

used as texture parameters themselves when comparing to implant migration.
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Figure 3.17: Antiscatter grid removal test: horizontal pattern levels at 20%, 10%,
and 1%.

3.3.7 Tantalum Marker Bead Removal: Methods

The tantalum beads inserted into the bone have a high x-ray attenuation coefficient,

which makes them easy to detect on the x-rays, both by human eyes and computers.

They do, however, affect the results of texture parameter analysis, as they interrupt

the patterns of the trabecular bone. Tests were conducted to assess removing them

from the regions of interest.

A threshold was set to isolate the brightest 150 pixels in a given region, then

only those who are grouped together were kept. By requiring 35 contiguous pixels,

isolated bone density peaks in the trabecular structure were ignored. These cho-

sen regions were then dilated to grab the dimmer rim(s) of one or more markers.

Once the marker has been subtracted from the image, a prediction of what the bone

would have looked like underneath the marker has to be added back in or the tex-

ture analysis will produce erroneous results. A statistical-based texture inpainting

algorithm [131] searches the unmasked background and finds the pattern most likely

to match the edges of the affected area and works inward to recreate the masked

region. Figure 3.18 shows the progression of marker masking, inpainting, and grid
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Figure 3.18: Region with bone marker: bone marker masked, masked area inpainted,
and grid removed.

removal.

3.3.8 Tantalum Bead Removal: Results

The human brain is very good at assessing pattern, and will immediately pick up

when something is off: in none of the bone areas with inpainted markers were the

original locations of the markers visually distinguishable. A computational check

using the same technique as with the antiscatter grid was conducted for verification,

and the change in the parameters when a marker was added, masked, and inpainted

was less than 1% of the baseline for all parameters.

The order of operations has been tested: attempting to clean off the grid before

removing the beads distorts the bead enough (see Figure 3.19) to cause the above

masking technique to incompletely cover the new bead area and the resulting cleaned

image contains artifacts. It is possible that adjusting the masking technique would

account for this variation, but since the marker-then-grid technique works well, it

was not pursued further.

This same technique proved equally able to handle the ends of staples or screw

tips, but is limited in the area that can be masked. Unfortunately this technique



53

Figure 3.19: Antiscatter grid lines removed before marker: distortions of marker
shape make identification of the marker area more difficult.

proved unfeasible for removing the tantalum bead markers in the calibration box, as

these beads have a washer surrounding them which casts a halo on the image. The

main problem is the large extent these halos cover. The inpainting program needs

a considerable background-to-masked area ratio to successfully fill in the missing

pieces: masking a halo or a section of implant on the chosen scale of the bone

regions of interest for this project created obviously incorrect texture inpainting.

3.4 Algorithm for Determining Microarchitecture Parame-

ters

A Matlab program was written which read in the radiograph, and displayed the

image on a graphical user interface. Rectangular regions of interest pre-sized to the

number of pixels chosen in section 3.2.3 were presented for placement on the first

image, and these positions were saved. By registering each image to this baseline

image using the Matlab function dftregistration, an initial guess for each ROI

position was made, and each region was then shown on the GUI interface in turn

for adjustment and acceptance.

The optimal region positions were determined based on Wright Medical Biofoam

implant landmarks (Figure 3.11). The Stryker Peri-Apatite implant has flanges in

approximately the same position as the Biofoam version, although the Biofoam im-

plant has a central stem that continues more distally than the end of the former.

To keep the same region of bone analyzed, the beside-the-stem regions were centred
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vertically at the end of the PA implant, and the distal tibia ROI was placed approx-

imately 100 pixels (one ROI height) below the implant, which roughly corresponds

to the base of the Biofoam implant. The Stryker Triathlon implant is the cemented

version of the Stryker Peri-Apatite design, and the same ROI placements were used.

However, since these implants were cemented, the ROIs were shifted a millimetre

or two away from the edge of the implant to not capture radiopaque cement in the

analysis. Any visible cement was avoided, and additional ROI movement was noted

if it was necessary.

If the regions placed above were accepted as viable, any bone markers or staple

edges in the region were removed as well as the horizontal lines from the antiscat-

ter grid. A maximum of three bone markers can be consistently removed with the

masking algorithm described in section 3.3.7; usually all that was required was a

minor shift of the region to keep the number of bone markers within this range.

A change in the threshold for choosing the bright pixels would allow more popu-

lated regions, if it were required. The region pixel values, in a matrix, were then

sent to sub-functions for the calculation of the first moment of the power spectrum

(FMP), minimum directional FMP, fractal dimension, wavelet decomposition, and

Gini coefficient, using the equations described in section 3.1.

The texture of all available images was analyzed. If an artifact required moving

the region, up to approximately the size of the small region (64 pixels) was allowed

in each direction for the peri-implant regions, and the height of the distal tibia or

proximal femur region in the vertical direction for those regions. If the obscuration

could not be skirted within that window, or the region extended past the edge of

the bone, the region was rejected. All results were output to a comma separated

value file readable by spreadsheet and statistical software packages.

3.5 Bone Parameter Results and Statistical Analysis

About 15% of accepted regions were moved away from the optimal location, and all

moved regions were noted.

A table of all regions and texture parameters for each region was then sorted by

study participant and stereoscopic image view (1 & 2). In order to keep as complete

a set of input variables as possible, the regions that were moved were kept, thus two
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of the total 10 texture parameters (minFMP and Gini coefficient) were discarded as

they are highly variable on an individual local scale compared to the range across all

study participants. The remaining 8 texture parameters (FMP, fractal dimension,

and 6 wavelet energies) for each of the 11 regions over the two views adds up to a

total of 88 parameters. This presented a problem, as this is more than the number

of participants in either study group.

The intention of this analysis is to predict migration classification using measures

of bone quality, which requires statistical models with supervised learning. From

initial examination of the data, it was seen that these parameters do not have an ob-

vious relationship with the migration outcomes, and linear regression did not prove

a useful technique. Breiman argues that model-based statistics have several short-

comings, including difficulty in accurately determining the goodness-of-fit, especially

when using nonlinear combinations of variables [132]. He found that although vari-

able relationships were more difficult to interpret, algorithm-based statistics were

more accurate in predicting outcomes.

An adaptive technique, decision trees recursively split the data space, choosing

an input variable and cut-point for that variable to divide the results into two groups,

separating the average outcome for each group as much as possible. Each subgroup

is then subdivided based on whichever input parameter best separates that data

into clearer outcomes. In the case of classification trees, new data can be entered

into the top (root) of the tree, travel down the branches based on how the observed

parameters compare to the node splits, and reach a terminal leaf which classifies the

observations to which outcome is most probable based on the fitted model (Figure

3.20). Classification trees do not a priori define a model for the fit and can include

multiple splits on the same variable allowing for nonlinear and even nonmonotone

relationships to be modelled [133].

Any individual statistical model has its drawbacks, and classification trees are

no exception. The very flexibility of the modelling makes it quite easy to overfit the

training data, creating a model that perfectly fits the sample, but is therefore likely

to have higher errors when applied to another sample (high variance). Ensemble

techniques ameliorate the drawbacks of individual models by creating a collection.

While trees have high variance, they have low bias, and by averaging an ensemble
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Figure 3.20: An example of a decision tree.

of trees, the variance is reduced. The most accurate results occur when the trees

are diverse.[134]

Random Forest
TM

models [135] are an ensemble of decision trees, with a two-

step method to increase diversity in the individual trees. The first step is bagging

(bootstrap aggregating), where subsets of the original data are drawn randomly with

replacement. Two-thirds of the data are used to train the model, and one-third is

held in reserve to give an out of bag (OOB) error estimate. The second step is

in the creation of the nodes of the decision tree: instead of finding the best input

variable out of the whole set to provide the split, a random sample (m) of the input

variables is available for comparison. For classification trees, a suggested one-third

of the input variables are examined at each node, although in most cases the fit is

robust to the size of m. Each choice in the creation of these models is now based

on a random subset of data and of input variables. This reduces the correlation

between trees, which can hamper efforts to reduce variance. The achieved reduction

in variance means, effectively, that overfitting is seldom seen with Random Forest
TM

classification [134].

Because of the use of variable subsets, Random Forest
TM

models have been used

extensively in overparameterized systems (the so-called “small n, large p” problem)

[133]. The built-in error checking (both the OOB for the individual trees, and a
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final cross-validation error estimate for the whole forest by averaging all the trees

corresponding to samples that do not include each variable in turn) means small

datasets do not need to be split into training and validation sets. As Breiman

points out, the more predictor variables available, the more potential information,

and that connections may be found in combinations of these variables; which may be

why his research found Random Forest
TM

analysis to be more accurate in prediction

than data modelling [132].

The forest can also be used to filter the input variable set to determine the most

important predictors. There is a package available (“Boruta”) in the R statistical

program (R version 2.12.2, The R Foundation for Statistical Computing) which uses

this ability of Random Forests
TM

to determine which parameters have an impact on

the final classification: it doubles the input variables, permuting the second set. If

the classification result is better with the true parameter than the permuted one

(within a set limit), it is important.

In order to determine links between input variables and outcome classifications,

Random Forest
TM

analysis requires a complete data set. For this study many indi-

vidual regions of interest were rejected for contamination, thus if only those images

with all regions accepted are kept, the study population would be reduced to less

than five. Region subsets were therefore created to maximize the number of partic-

ipants within each group, but to also allow for the possibility that a combination of

regions would give a better model than each alone.

The Boruta package was run on each region subset (usually around 36 input

variables), and the important or tentatively important variables extracted (usually

1-5 variables were deemed potentially important). Those few important variables

were put through the Random Forest
TM

analysis, which creates a predictive model

which minimizes the out-of-bag classification error rate.

Receiver operating characteristic (ROC) curves are a standard graphical repre-

sentation of sensitivity (true positive rate) versus 1-specificity (false positive rate)

of a test. When different cut-points of the input model are used, there are trade offs

between sensitivity and specificity: in order to catch all of the positive outcomes,

more negative ones will be incorrectly labelled positive, and vice versa. This gives

a characteristic bow shape to the ROC curve, where the point on the curve closest
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to the upper left corner (100% true positive rate, 0% false positive rate) is the one

with the lowest total classification error. In this study, the forest model already

determines the fit with the lowest OOB classification error, so in essence it chooses

that point of the curve closest to (1,0).

3.5.1 Migration Output Classification

As was mentioned in the introduction, RSA measured migration within the first

few years has been shown to be a predictor of risk for aseptic loosening, the most

common cause of implant failure. The most referenced research on this link is by Ryd

et al. in 1995 [20], who found that 81% of a pool of 131 cemented and uncemented

implants with a change of magnitude of the migration vector (MTPM) between

one and two years greater than 0.2mm would go on to further loosening (defined

as more than 0.2mm in any 2 year time frame, although often seen as a continual

migration over time). They quote an accuracy of 0.2mm for their RSA technique,

which used film-digitized images assessed with computational rigid body kinematics.

Of 14 revision cases, 12 would have been identified at 2 years using a combination

of change in MTPM from one to two years and the absolute migration value at two

years, although no mention is made of how many of the unrevised implants were

also flagged using these criteria.

There is a dearth of long-term follow-up studies of knee arthroplasty with RSA

analysis [136]. Pijls et al. in 2012 [137] showed the results of their study comparing

hydroxyapatite coated (n=24) implants to non-coated (n=20) and cemented (n=24)

versions at 11-16 years. Before 10 years they had three cases of aseptic loosening,

one had early continual migration (5.92mm over the first 3 years), one had high

initial migration that appeared to stabilize, and one was stable then developed late-

term osteolysis, which was seen by an increase in implant migration around 7 years

post-op. They had 3 cases of continual migration after 10 years, but only one of

those is the study participant still living and considered at risk for aseptic loosening.

With these small numbers of aseptic failures, it isn’t possible to prove whether the

0.2mm cut point between one and two years is a good indicator of aseptic loosening

for their study.

In order to retain as many data points as possible, the analysis for this work is

based on model-based RSA calculations of migration (see section 2.4). The median
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2 year MTPM for the Wright Medical Biofoam study increases from 0.81mm to

1.16mm when using model-based versus marker based analysis for the same study

participants; the Stryker Peri-Apatite median increases from 0.60mm to 0.82mm.

CAD models of the implants were used to fit the implant position, which have been

shown in vitro to be less accurate than both marker based and scanning the actual

implant used [138].

Maximum total point motion (MTPM) is a vector, although only the magnitude

is calculated. To find the true change in MTPM, the RSA analysis must use the

earlier image as the reference for the migration of the later image (e.g. 1-2 year

change in MTPM must use the 1 year images as the reference). Only Pijls et al.

[137] specifically state they recalculated change in MTPM in this way. On the

other hand, the direction of the MTPM vector may not be clinically relevant, as

bone resorption allowing for an anterior-posterior tilt range of motion for example

may show up as tilted on one side in one set of images and the other on the next,

with similar absolute MTPM magnitudes: the fact that the vector moved over that

space may or may not be important. Both methods are calculated here, the vector-

based MTPM calculation gives larger changes, as expected. Subtracting the vector

magnitudes, 22% of the uncemented study participants have a change in MTPM

larger than 0.2mm, which is similar to the Ryd study who had 31% classified at risk

at that time with a combination of implant fixation types. Using the 1 year exam

as reference and finding the full vector change, however, has 87% of implants with

greater than 0.2mm migration; the cut-point would have to be set to 0.6mm to have

a similar at risk percentage.

Due to the use of both vector and magnitude subtracted MTPM and the use of

the less precise model-based RSA migration values, a number of different cut-points

have been used to divide the results, and models created for each to see whether the

bone quality parameters can be used to correctly identify the participants in each

group. These results can then be used at a later date when longer-term results clearly

identify those implants who are continuous migrators or develop aseptic loosening,

to see if these bone models could have predicted outcomes.
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3.6 Migration Classification Results

3.6.1 Change in Maximum Total Point Motion Between One and

Two Years

Of all the regions of interest, two were continually found important in Random

Forest
TM

models which best minimized the out-of-bag classification error for change

in MTPM: the distal tibial region in the one view of the double exam image and

the beside-the-stem regions in the second radiograph (the image in which the fibula

is overlapped with the tibia).

A subset of data using only these two regions was created, and any images that

did not have acceptably unobstructed bone for both regions were discarded. As

regions that needed to be moved slightly to avoid obstructions were kept, only FMP,

fractal dimension, and vertical and diagonal wavelet energies (three each) were used

as descriptive variables. Both magnitude-subtracted and one-year reference change

in MTPM was used as the outcome, with binary groups created using cut points of

0, 0.1, 0.2, and 0.3mm for magnitude-subtracted MTPM (ΔMTPMmag) and 0.2mm

to 0.7mm at 0.1mm intervals for one-year reference MTPM (ΔMTPM1yrRef ). The

cut points were chosen such that there are at least 6 implants in the smaller group.

Small numbers in a group make it difficult to train the Random Forest
TM

model,

and lead to a lack of robustness: flipping the classification of one implant can change

the sensitivity or specificity by a large fraction.

The Boruta package was run to find the important descriptive variables for each

classification. For ΔMTPM1yrRef , models based on one parameter (the second di-

agonal wavelet energy in the region beside the stem) proved the most discriminative

for three out of the six cut-points, and provided similar results for two more. Adding

a second variable to the model (the first diagonal wavelet energy in the same region)

did increase both sensitivity and specificity for classifying implants with more or less

than 0.6mm of motion in the second year (75% sensitivity, 100% specificity). True

positive and false positive rates for the single-variable model for all cut-points are

given in Table 3.1. A graphical representation of the same data is given in Figure

3.21, in a manner similar to an ROC curve (see section 3.5 ). Instead of varying

the cuts on an input model, the lowest error results, as chosen by forest model, are

plotted for each of six outcome classification cut-points. Thus Figure 3.21 is in fact
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Table 3.1: Sensitivity and (1-Specificity) of Random Forest
TM

models classifying
change in MTPM at 2 years with 1 year as reference.
Cut-Point 0.2mm 0.3mm 0.4mm 0.5mm 0.6mm 0.7mm
True Positive Rate 0.94 0.875 0.6 0.64 0.625 0.17
False Positive Rate 0.5 0.2 0.21 0.11 0.06 0.12

the equivalent of stacking six ROC curves on the same graph (one for each output

classification scheme), but only retaining the best point on each curve.

The same method was applied to the ΔMTPMmag results. Here both the distal

tibia and proximal to the stem ROIs were important in the optimal models. Using

the FMP of the proximal stem region and the a vertical wavelet energy from the

distal tibia region, the most sensitive and specific models to distinguish change in

migration based on a 0mm (68% sensitivity, 50% specificity) and 0.1mm (50% sen-

sitivity, 93% specificity) cut-points was found. Taking the proximal stem parameter

individually however created more sensitive models for both the 0.2mm (40% sen-

sitivity, 85% specificity) and 0.3mm (57% sensitivity, 89% specificity) cut-points.

None of these models were as able to distinguish true classifications in ΔMTPMmag

as the models based on ΔMTPM1yrRef .

3.6.2 Change in Subsidence Between 1 and 2 Years

Total point motion is the most referenced RSA indicator of implant stability in the

literature, but its clinical significance is unclear. Historically, measures of subsidence

and liftoff (negative and positive motion along the y-axis), and varus angle were most

assessed. Li & Nilsson found a non-linear relationship between bone mineral density

and subsidence and lift-off, where participants with both low and high BMD had

more migration than those with average values [85].

Tests conducted assessing the ability of these bone architecture and bone mineral

parameters to explain variability in x and z direction migrations found no significant

links. A diagonal wavelet model based on the distal tibial region had a sensitivity

of 90% and a specificity of 70% when classifying groups based on lift-off versus

subsidence (cut-point of 0mm in the y direction). A three parameter model using

vertical and diagonal wavelet energies of the same proximal stem region that was

found to be helpful in classifying MTPM changes above was overall the best at

classifying migration based on subsidence cut-points of -0.05mm (78% sensitivity,
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Figure 3.21: Ability of Random Forest
TM

models based on the diagonal wavelet
energy in the stem proximal ROI to correctly identify implant migration based on a
number of cut-points. Each point represents the minimized out-of-bag classification
error, and thus the best result of a standard ROC curve.
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71% specificity) and -0.1mm (44% sensitivity, 83% specificity).

3.6.3 Predicting Future Migration

While adding bone quality assessment tools to existing RSA setups may prove to

be beneficial, an even more valuable aspect of these analyses is the possibility that

an x-ray exam pre-surgery could assess risk of future implant instability.

A preliminary study testing the predictive feasibility these parameters used the

immediately post-operative (as a proxy for pre-operative) and 1 year exams of 18

cemented knee replacement study participants. As this study only began in the fall

of 2010, further study data is not yet available. As has been discussed, contamination

of bone regions or areas too small to completely fill the designated ROIs necessitate

making smaller subsets of data to have a complete set of descriptive variables. In

this study, the smallest subset had 13 subjects, and the ability to categorize based

on change in MTPM from post-operative to one year was assessed using the bone

quality parameters calculated from the post-operative images. Figure 3.22 shows

the sensitivity and specificity of a model based on the vertical wavelet energy in a

periarticular region. This model found a sensitivity of 75% and a specificity of 80%

when predicting those study participants who went on to more or less than 0.4mm

total migration by one year.
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Figure 3.22: Ability of Random Forest
TM

models based on vertical wavelet energy in
a periarticular ROI at the post-op exam to correctly identify 1 year total migration
of a cemented implant based on a number of cut-points.



Chapter 4

2D Dual-Energy X-ray

Absorptiometry Project

4.1 Overview

The current gold-standard measure of “bone quality” is bone mineral density as

determined using dual-energy x-ray absorptiometry (see Section 1.5.1). This project

examines the case for, and technical requirements of, adding bone mineral density

assessment to the current Stereoradiography (SR) Suite at the Halifax Infirmary.

Current dedicated scanning equipment sacrifices spatial resolution for reduced

dose levels; the Lunar Prodigy system (GE Healthcare, Waukesha, WI) has a res-

olution less than 0.5 line pairs/mm (less than 1 pixel per mm) [139], whereas the

Canon CXDI-55C digital detectors in the SR Suite (Canon USA Healthcare Tech-

nologies, Rockville MD) have 3.1 line pairs/mm. For a general bone health pa-

rameter, the lower spatial resolution likely is not an issue, but this same systemic

bone mineral density status has not been implicated in long-term implant loosening

[27, 58, 54, 79, 88]. However, local changes in bone mineral levels surrounding the

implant could theoretically be linked to local mechanical strength and affect fatigue

failure of the bone, and thus the lack of spatial resolution in current systems may be

masking real bone mineral density changes associated with implant migration [34].

Along with accessing greater spatial resolution, using the Stereoradiography

Suite x-ray equipment to obtain BMD will also allow all the x-ray based bone qual-

ity parameters to be gathered at the same time, with the same equipment, and may

reduce the number of exposures needed for each patient, if images taken for one

type of analysis could be used for others.

65



66

This project is based on a similar work by Gulam et al., which validated obtaining

BMD of the phalanges from dual-energy images using standard 2D x-ray equipment

[75]. The intent of this project is to show proof-of-concept for cone-beam DXA

analysis of the knee, by assessing the ability to empirically calibrate an algorithm

linking high and low energy image intensities to the known material thicknesses of

an x-ray phantom designed during this project, and by testing the ability of the

equipment to hold a calibration over a day or more.

4.2 X-ray Phantom Design

Since the x-ray generators produce polyenergetic beams, the single-energy exponen-

tial equations 1.2 and 1.3 are no longer directly solvable. As the x-ray beam passes

through the anatomy, lower energy photons are preferentially attenuated, the av-

erage beam energy is shifted higher (“beam hardened”), and the logarithm of the

beam intensity now has a non-linear relationship with the absorber thickness [140].

One method to overcome this challenge is an empirical fit between the known ma-

terial thicknesses of a calibration phantom, and the resulting high and low energy

image intensities. A second order polynomial fit to the data is used here, similar to

the approach of Chuang & Huang [141] and Brody et al. [142], following Equations

4.1 and 4.2, with l and h being the greyscale intensity of the low and high energy

region respectively, and b and c the empirically fit coefficients.

bone thickness =
(
b1 + b2l + b3h+ b4l

2 + b5h
2 + b6lh

+b7l
2h+ b8lh

2 + b9l
2h2

) (4.1)

soft tissue thickness =
(
c1 + c2l + c3h+ c4l

2 + c5h
2 + c6lh

+c7l
2h+ c8lh

2 + c9l
2h2

) (4.2)

When conducting this empirical calibration, it is important that the calibration

phantom covers the full range of soft tissue and bone thicknesses which may be

measured, as the calibration cannot be extrapolated outside of the known values.

A series of 50 CT knee scans of early OA patients [143] was examined to determine

the maximum thicknesses of bone and soft tissue. To calculate bone thickness, a

threshold was selected to separate the bone pixels in the volumes, then mock AP and
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Figure 4.1: Cross-wedge phantom for calibrating empirical DXA equations. Alu-
minum simulates bone under x-ray, acrylic for soft tissue.

lateral views were created by summing all the pixels in those directions. The total

values for the summed pixels was then divided by the equivalent cortical density in

Houndsfield units to obtain a cortical bone equivalent thickness over the image from

both views.

Standard materials used in creating x-ray phantoms include aluminum as a proxy

for cortical bone, due to a similar atomic number and hence x-ray attenuation

properties, and acrylic for soft tissue [61]. Aluminum is more dense than bone,

however, so samples of aluminum and standard bone-equivalent plastic were scanned

in two microCT scanners to compare attenuation.

4.2.1 Final Phantom Design Specifications

The peak bone thickness value measured from the CT images was found to be

8.69cm, where the cortical shell of the posterior femur lined up precisely with the

lateral line of sight. Soft tissue was measured directly from the CT slices, with a

maximum across the thigh above the patella of 16.0cm.

The linear x-ray attenuation of aluminum was found to be 1.3 ± 0.008 times

higher than the bone equivalent plastic in the CT scans. Thus the maximum alu-

minum thickness needed for the x-ray phantom was 6.68cm.

In order to cover all combinations of bone and soft tissue, a cross-wedge phantom
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design was used (see Figure 4.1), where steps of acrylic run perpendicular to the

aluminum steps. The thickness of each step was set to span the most common

thicknesses at the proximal tibia (much smaller than the maximum values), with

the thicker levels adjusted to get a better spread in image brightness values, as the

greyscale values and thickness are exponentially related. The aluminum wedge has

four steps of 0.9525, 1.905, 4.445, and 6.83cm using stock 6061 bar aluminum, and

the acrylic wedge has 1.763, 6.995, 12.228, and 16.662cm thick steps. The footprint

is around 20cm square, including the “no step” regions on both wedges (which then

encompass air to maximum thickness in each direction), which provides a stable

base and is on the same scale as a knee to provide an estimation of scattering and

noise. The aluminum bars are aligned using vertical carbon fibre rods threaded

through common holes on each end of the step, and are long enough to also pass

through a similar hole at the end of the acrylic wedge for support and alignment.

The phantom was constructed by Dr. David Holdsworth’s group at Robarts Imaging

Institute (London, ON, Canada), and shipped for testing at the Halifax Infirmary.

4.2.2 Phantom Positioning and Background Subtraction

During imaging, the x-ray photons are generated at a point-source, then expand in

a cone shape to cover the detector area (thus 2D x-ray imaging is often called “cone-

beam imaging”). The angle the x-rays are to the horizontal surface of the detector

causes the geometry of the object to be distorted, and this distortion depends on

the distance that the object is from the source and the detector.

Due to the cone-beam distortions, it was determined that the acrylic wedge,

instead of aligning precisely with the edge of the aluminum phantom, needs to be

moved inward by about 2cm so the projected segments have approximately the

same area. If the acrylic wedge is exactly aligned with the the aluminum one, with

a common carbon fibre post through both, the top step of the acrylic phantom

was projected beyond the footprint of the aluminum. Not being able to use the

carbon fibre rod to support the weight of the acrylic wedge necessitated the use of a

small acrylic post propped under the overhanging side (seen on the left side of the

cross-wedge images as a small bright square).

This type of system also produces an incident beam that is not completely uni-

form over the surface of the detector. To ameliorate the effect of this on the DXA
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calibrations, an image was taken with no phantom at both high and low energies,

and a second order polynomial fit was made to this background image (see section

3.3.1). This background trend matrix was then subtracted from the phantom image

matrix before analysis was conducted.

4.3 X-ray System Settings

As two sets of images are taken, at two different energy levels, consideration must

be paid to the possibility of the patient moving between images. The characteristics

of the system that contribute to this time between images are the time it takes to

expose and transfer the image to the computer, and the time to set up the next

image. Image registration post-processing can aid in removing motion that does

occur, although is not expected to be as much of a problem with extremity images

as it is with chest dual-energy subtraction, which commonly uses DXA to remove

the ribs from lung images and has required the development of sophisticated image

alignment algorithms. Nevertheless, it is simpler to reduce the chance of motion to

begin with rather than try to remove it later. The image transfer and second image

set-up times are beyond the scope of this project, but minimizing the time to expose

the image was taken under consideration when choosing exposure levels.

The polyenergetic spectra produced by the x-ray generator have considerable

spread (Figure 1.3). It is advisable to keep the peak energies for the high and low

images as separated as possible to minimize the overlap of the spectra in both images,

and keep the defining equations for bone mass assessment independent [74]. Of the

dedicated DXA scanners, Hologic (Marlborough, MA) now uses 100kVp low energy

and 140kVp high, Lexxos (DMS, Nimes, France) uses 75kVp and 140kVp, and Lunar

(now GE Healthcare, Waukesha, WI) uses one 76kVp beam with a rotating filter to

provide the low energy image. The new Canon CXDI-55C digital detectors at the

Halifax Infirmary may be more sensitive than these systems, allowing for necessary

contrast even at lower energies.

All tests were conducted with one x-ray source 150-160cm perpendicular above

the detector, with two set-ups: (1) having the RSA calibration box between the

phantom and the detector and (2) the phantom placed directly on the detector

(Figure 4.2).
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Automatic exposure control (AEC) was used for the first images to attain a

ballpark figure for exposure variables at voltage settings which give a large separation

between high and low energy images. These settings were then adjusted to prevent

oversaturation, which leads to the same greyscale levels being assigned to the air

segment as to the thinnest wedge sections.

4.3.1 X-ray System Settings: Results

The low energy settings using the AEC were 60kVp, 630mA, and 250ms, the high

energy images were taken at 140kVp, 500mA, 25ms, with a 0.6mm copper filter;

all images also have the lowest energy photons removed via the permanent 1.6mm

aluminum system filter. The voltage settings remained the same, but subsequent

manual entry of current and time was limited by software controls for such high

current values (the software prevents the user from entering settings which might

damage the generator system), so all the following low energy images use 320mA,

and all high energy images 250mA. Setting the current to the maximum allowed

minimizes the time for the same total exposure.

The original AEC exposure was too high to be able to distinguish between the

air segment and the low thickness aluminum or acrylic, as the saturation limit of

the detectors was reached. The exposure times, with the new lower currents, were

adjusted to 160ms and 50ms respectively when the RSA calibration box was in

the path of the beam, with a total exposure of 51.2mAs and 12.5mAs. Without

the calibration box, the exposure times were dropped to 100ms for the low energy

image and 25ms for the high energy image. Figure 4.3 shows the low and high energy

images of the cross-wedge phantom, with the phantom directly on the detector.

4.3.2 Holding Calibration

The Canon software automatically adjusts the greyscale values of the images for op-

timum bone viewing before saving clinical images, which will not allow for intensity

calibration between images. However, the raw images are held in a temporary folder,

so those were retrieved for all the tests. Two images taken at different times on the

same day with the same settings (with the phantom repositioned in between), and

another taken two days later, were compared to determine how much the average

greyscale values change between shots.
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Figure 4.2: Example DXA test set-up: top of the image has the x-ray generator
head, the cross-wedge phantom is on the table, and in this case under the table is
the RSA calibration box with the digital detectors housed in the bottom.

(a) Low Energy (b) High Energy

Figure 4.3: Low and high energy images of the cross-wedge phantom.
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(a) Cross-wedge low energy image (b) Greyscale values along the yellow line in preceding
image

Figure 4.4: Line profile of greyscale values along the second aluminum step of the
cross-wedge phantom.

The coefficient of variation (CV) of four different regions on these images was

a maximum of 3.5%, without adjustment for the intensity variation of the incident

beam over the image area (background trend subtraction). The phantom was in the

same general location each time, but some of that 3.5% is likely due to a spatial

change in the field of view. Repositioning these regions on the same image gave a

CV of less than 1%.

4.4 Material Thickness Calibration Results

4.4.1 Algorithm

The unprocessed images were read into Matlab, and an algorithm written to dy-

namically chose regions of interest with a graphical user interface using the imrect

function. The average greyscale value in the low and high energy images for those

region matrices was determined, and a fit to Equation 4.1 using the greyscale val-

ues and known aluminum thicknesses was found to obtain the empirical coefficients

using Matlab’s backslash operator (A\B, where A is the matrix of coefficients, and

B is the vector of know thicknesses).

Region placement requires consideration due to the distorting effects of the cone-

beam system (see section 4.4.2). The regions used for calibration were kept toward

the centre of each segment unless otherwise noted (Figure 4.5).
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Figure 4.5: Small regions of interest placed for calibration of DXA algorithm. Lo-
cations were chosen to avoid the effects of cone-beam distortions and scatter on the
average greyscale level.

4.4.2 Phantom Image Properties

Using 60kVp, 320mA, and 160ms for the low energy image, and 140kVp, 250mA,

50ms with a 0.6mm copper filter for the high energy image with the calibration box,

and 100ms for the low and 25ms for the high energy image without the box, the

difference between no material and the thinnest steps of the wedges is visible. This

is excellent energy separation compared to the dedicated DXA scanners. Setting the

acrylic wedge around 2cm before the end of the aluminum wedge provided image

segments of differing aluminum and acrylic thickness that are approximately equal

area. A line profile of the greyscale values along the second aluminum step is shown

in Figure 4.4, with clearly distinguishable differences between each of the acrylic

thicknesses.

The change in intensity along the highest aluminum step is more problematic.

Even with higher exposure levels, or changing the voltage, the greyscale values create

a continuous curve over the length of the step, instead of discrete steps (see Figure

4.7). A number of factors are likely influencing this result: the absolute change

in greyscale value from the thinnest to thickest acrylic with that much aluminum
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(a) Greyscale values of a centre segment (b) Greyscale values of the lower left segment of
the phantom (thickest acrylic, no aluminum)

Figure 4.6: Example greyscale value distributions of two segments of the cross-wedge
phantom.

in the way is small; the amount of scattered photons in these thick regions will

be a lot higher, adding more haze to the results; and the detectors have a limited

dynamic range. The technical specifications suggest that the detectors can handle a

change of 80dB in intensity values. Calculating the ideal intensity ranges using the

single energy equations (1.2 and 1.3) shows that these thicknesses would produce a

78dB range of intensity over the image, so adding in broad spectrum energies and

experimental variability, the dynamic range of the system may very well be affecting

these results.

Figure 4.6 shows the distribution of the greyscale values in both directions of

two segments of the cross-wedge phantom, thus expands the trends seen in the line

profile in Figure 4.4. The centre segment plot is typical of most regions: instead

of a flat profile, where the constant thickness causes a constant brightness on the

image, there is a slope. In the centre segment, this slope gives greyscale values ±
12% of the average value from the peak to the trough. The higher values are along

the edges of the segment that connect to thicker steps, and the lower values are

against the thinner steps. The lower left segment is showing a more complicated

pattern, however. This is the thickest acrylic step, and there is no aluminum below

it. Instead of a simple slope, this segment shows a double saddle trend. For the

segments showing this valley trend in greyscale value, the average value in the dip

was used for calibration.
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(a) Cross-wedge low energy image (b) Greyscale values along the yellow line in preceding
image

Figure 4.7: Line profile of greyscale values along the thickest alumimum step of the
cross-wedge phantom.

4.4.3 Coefficient Fit Results

Using any 3 region by 3 region square only, the Matlab algorithm finds a perfect

solution to the nine coefficients in equations 4.1 and 4.2, and using those coefficients

finds exactly the thicknesses used for the calibration. This restricts the range of

thicknesses that can be determined by analyzing the images to those within the limits

of that 3x3 region. When using more regions, the system is now overdetermined,

with more equations than unknowns. Matlab’s backslash operator automatically

uses a least squares fit in these situations.

As was seen in the line profiles (Figures 4.4 and 4.7), it is difficult to pick the

true greyscale values of the thickest regions, as many factors lead to blurring. So

the next test used regions from the three middle columns (aluminum thicknesses

0.95 to 4.44cm) and top four rows (acrylic thicknesses 0 to 12.23cm) to calculate

the empirical coefficients. Using those coefficients with the same region greyscale

values gives aluminum thickness results within -0.48% and +1.3% of actual. Figure

4.8 shows the polynomial fit to the calibration data (red dots).

If centred regions on all 25 segments were naively used, the complex greyscale

trend seen in Figure 4.6 means that the average value of the region in the thickest

segment ends up being lower than the next step down. An empirical fit to these

nonmonotonic values has given thickness values up to 31% lower than true aluminum

dimensions for some segments (see Figure 4.9). Thus distorted sections of the image

can greatly affect the coefficient fit.
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(a) Fit seen from above (b) Fit seen from below

Figure 4.8: Polynomial fit of known aluminum thicknesses of 12 central segments to
high and low energy greyscale values. x- and y-axes are greyscale values /10000, the
z-axis is aluminum thickness in cm. Fit curve is within 1.3% of given thicknesses
(red dots).

(a) Fit seen from above (b) Fit seen from below

Figure 4.9: Polynomial fit of known aluminum thicknesses for all segments to high
and low energy greyscale values. Fit curve is within 31% of given thicknesses (red
dots).
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(a) Aluminum-only decomposed image (b) Acrylic-only decomposed image

Figure 4.10: Decomposed images using empirical calibration based on middle three
columns and top four rows. Note that calibration is not valid outside of these
regions, so variation in the peripheral regions is expected.

4.4.4 Applying Calibration Over Whole Image

With the coefficients found, the polynomial equations can then be applied to the

whole images to create “bone-only” (or aluminum only) and “soft-tissue” only im-

ages. With the cross-wedge phantoms, the former should look like a set of vertical

bars, and the latter a set of horizontal bars. Figures 4.10(a) and 4.10(b) are based

on the more precise calibration over the three aluminum steps and four acrylic steps,

so note that the calibration is not accurate past these thicknesses. In an ideal set-up,

the three middle columns up until the last row should be a single value each in the

aluminum-only image, and the three middle segments of each of the top four rows

should be a single value each in the acrylic-only image. Only the aluminum image

will be used for DXA calculations.

Increased noise is seen in the dual-energy subtracted images, as noted by Warp &

Dobbins [144]: compare the line profile of the third aluminum step in the aluminum

only image (Figure 4.11) against the original image line profiles. The combination of

sources of experimental uncertainty, including noise, scatter, and cone-beam distor-

tions, give calculated variations in thickness in the aluminum-only image between

-35% and +63% of actual perpendicular projected amounts over the calibrated area.
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Figure 4.11: Line profile along the third aluminum step (fourth column) in the
aluminum-only decomposed image. Y values are equivalent to aluminum thickness
in cm *1000.

4.4.5 RSA Calibration Box Effects

The images used for the above tests are of the phantom directly on the detector.

Having the RSA calibration box in the way, even with the increased air gap and an

antiscatter grid, adds more noise to the image (see Figure 4.13). For tests with the

RSA calibration box in the field of view, the calibration regions also needed to avoid

the control bead markers and their associated washer halos. The spread of these

artifacts can be seen in Figure 4.12, and force some regions away from the optimal

positioning.

Between moving regions to avoid control bead artifacts (thus introducing more

scatter effects and potentially overlapping with cone beam distorted areas), and

increased scatter from the calibration box, the polynomial fits had residuals of up

to ±20% for the aluminum thicknesses when the same greyscale values used in the

calibration were placed back in the equations, as opposed to the less than 1.5%

errors seen without the RSA calibration box.

4.5 Final Notes

Since the SR Suite operates two x-ray generator heads, it was thought that it might

be possible to obtain AP and lateral views of the knee at the same time, by setting

each at a 45◦ angle to the vertical and repositioning the subject. However, the tracks

that the heads move on are not extensive enough to allow for this configuration and

have the x-ray photons reach the detectors on both sides. The standard RSA set-up
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Figure 4.12: Low energy cross-wedge image with RSA calibration box between the
phantom and the detectors. Note the bright control beads with halos around them
from the calibration box which need to be avoided when placing regions for DXA
calibration.

(a) Cross-wedge low energy image (b) Greyscale values along the yellow line in preceding
image

Figure 4.13: Line profile of greyscale values along the second alumimum step of
the cross-wedge phantom, with RSA calibration box between the phantom and the
detector. Compare noise to Figure 4.4.
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with the detector heads at 30◦ from the vertical necessitates the overlap of the fibula

and tibia in at least one image. The overlapping bone region was rejected in the

previous texture analysis, and will confound BMD measurement. It may be possible

to use the second image to measure the fibula BMD to subtract off the overlapping

version, although the accuracy of this technique will depend on how symmetrical

the fibula profile is for each patient.

No attempts were made to clean the images of shot noise (dependent on number

of photons), or dark current noise of the detectors. The field of view was limited

by columnators to restrict the photon beam to only the area needed, which helps

prevent extra scattered photons from other objects bouncing back into the portion

of the image that is needed.

A word on dose considerations: digital detectors need less exposure than film or

computed radiography to obtain clear images, and standard knee radiographs incur

very little dose compared to average background radiation (about 65% of the average

US daily background dose, and one-thousandth the dose of a pelvic CT scan), but

they still expose the patient to about five times the radiation of a standard DXA

scan [144, 145, 146].



Chapter 5

Summary and Discussion

5.1 Overview

The objective of this study to examine links between radiographically measured

bone quality parameters and total knee replacement implant migration. Compu-

tational tools were designed to calculate image texture parameters that have been

previously linked with 3D bone microarchitecture, as well as an additional one which

theoretically could help distinguish between healthy high contrast trabecular struc-

tures and the washed out appearance of thin struts. Combining these parameters

with measured bone mineral density provided a set of descriptive variables which

were used to train Random Forest
TM

statistical models to assess sensitivity and

specificity of classifying study participants based on implant migration. Addition-

ally, the feasibility of determining bone thickness (linked to areal BMD through a

single density factor) using the SR Suite radiography equipment was examined by

creating an empirical fit to a purpose-built double step wedge x-ray phantom.

5.2 Conclusions and Discussion

Hypothesis 1

A model based on radiographic derived bone microarchitecture and bone min-

eral density parameters will identify study participants with RSA measured implant

migration between one and two years above and below a set cut-point.

Conclusions 1

Texture analysis requires high spatial resolution in order to examine trabecular
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bone structure. Thus only the two year images from the uncemented studies could

be analyzed for these parameters. The use of model-based RSA analysis was needed

to minimize the number of study participants lost due to lack of migration data,

as insufficient bead matching in the more accurate marker-based technique would

have prevented up to 32% of the study population from being analyzed. 88% of

this study population would be classified “at risk” using the Ryd et al. [20] cut-

point of 0.2mm when using model-based RSA MTPM at 2 years with 1 year exam

as reference. Finding the vector based change in MTPM is the likely reason the

average change much higher than in the reference study, as a subtraction of the two

year MTPM from the one year motion, with both using the post-operative exam

as reference, 22% would be classified at risk which is lower than the 31% in the

Ryd study. With the same percentage “at risk”, the vector based change in MTPM

cut-point would be around 0.6mm.

Random Forest
TM

models were built which had a maximum sensitivity of 87.5%

and specificity of 80% when classifying subjects who had more than 0.3mm maxi-

mum point motion of their implant at two years when the one year exam was used

as reference. If 0.6mm proves to be a clinically significant indicator of future loosen-

ing, a second model had a sensitivity of 75% and specificity of 100% for classifying

the implant migration of subjects based on bone texture. Other cut-points were

examined, with models having a lower specificity for a tighter acceptable migration

outcomes, and lower sensitivity if higher migrations were acceptable.

Subtracting the magnitude of the MTPM vectors at two years and one year gave

smaller average values of migration over this time frame, as it does not include the

change in direction. Models were not as sensitive when classifying this outcome, with

a sensitivity of 50% and a specificity of 93% for a two parameter model determining

groups based on a 0.1mm cut-point. Using the literature based 0.2mm cut-point for

an “at risk” population, a one parameter model has a true positive rate of 40% and

a true negative rate of 85%. For classification based on subsidence of the implant

between one and two years, a three parameter model has a sensitivity of 78% and a

specificity of 71% for a 0.05mm cut-point.

Most of the important parameters in the classification models were based on the

image region wavelet decomposition. These were also the parameters which had the
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lowest variability when the region was moved on a single image (placement error)

compared to the range of values for all the study participants. The first moment of

the power spectrum (Fourier analysis) was helpful in the models which classified the

magnitude subtracted MTPM outcome measure. One distal tibia, proximal stem,

and peri-articular region were found important for the various models; the femoral

ROI was not helpful in these classifications.

Bone mineral density was not found to increase the ability of the models to clas-

sify implant migration groups.

Limitations and Discussion 1

The clinical relevance of migration thresholds using model-based RSA techniques

is not yet known. Future analysis of this study population will determine which

implants go on to continuous migration, and whether these models would identify

those implants at the two year mark.

The small study sizes means limited data to train the Random Forest
TM

ensemble

models. All cut-points which had only a small number of images in one group fared

poorly at classifying that small group. Larger data sets will be needed to find the

clinically relevant definitions of “stable” and “at risk”, and create robust models to

predict those at risk.

It has been shown that the relatively small amount of soft tissue available around

the knee can cause variation in the soft-tissue baseline calculated by the software

used in calibrating the BMD algorithms, and thus the coefficient of variation in knee

scans has been shown to be anywhere from 2.5-18.7% [147, 148, 149]. Occasionally,

the bone edge detection within the software can exclude some of the tibia or include

large portions of soft tissue. The latter can be adjusted, either in manually choosing

the bone edge or being very precise in ROI placement, but the former cannot be

reversed. The important changes in the bone matrix may also be local to the peri-

implant interface and may be obscured by the large regions of interest used here.

It is encouraging, however, to see that the bone texture parameters have been

able to identify study participants based on implant migration patterns even in this

small study.
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Hypothesis 2

A model based on radiograph derived bone microarchitecture parameters calcu-

lated from immediately post-operative x-ray images will predict study participants

with RSA measured implant migration at one year above and below a set cut-point.

Conclusions 2

A one parameter model based on post-op bone texture found a sensitivity of

75% and a specificity of 80% when predicting those study participants who went on

to more or less than 0.4mm total migration by one year. Although these data also

were using model-based RSA, the average one year MTPM for the cemented implant

is in agreement with cemented studies in the literature [21, 150, 20] even with the

median MTPM 0.11mm higher for the model-based migrations than marker-based

(comparing study participants with both modes available).

While the participant numbers are too small to show robust links, the ability of

the model to correctly categorize migration patterns for one of the chosen cut-points

suggests that further research ought to be pursued in this area.

Limitations and Discussion 2

The cemented Stryker Triathlon study used for this analysis is currently in the

beginning stages, and only 18 total knee arthroplasty study participants had one

year migration results available at the time of this work. Setting different cut-points

for one year migration was difficult due to the small sample size, with some groups

only having 3 participants. Thus the exact results of these tests should not be ex-

amined as a robust indication of classification ability of these models, but as a pilot

study which suggests that it is possible that pre-operative bone texture could be

predictive of later implant migration. It would be especially enlightening to wait for

2 year data on a larger group of participants (this is a continuous enrolment study)

to assess the predictive capability of post-op bone on the more accepted one to two

year migration patterns.

Hypothesis 3

An empirical calibration of the system using an x-ray phantom with bone and
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soft-tissue mimicking materials will accurately identify the material thicknesses from

high and low energy image greyscale values and maintain the calibration over one

day.

Conclusions and Limitations 3

A cross-wedge calibration phantom was designed and built using measured thick-

nesses of bone and soft tissue of the knee from CT scans of OA study participants.

Aluminum was used as the bone equivalent material, and acrylic was used for soft

tissue.

The coefficient of variation of the region greyscale values in 3 images spread over

3 days is under 4%, even without removing the background trend from incident

energy variation, showing the stability of the system to hold a calibration between

phantom exams and patient scans.

An empirical fit to central regions of the cross-wedge calibration phantom re-

turned residuals of less than ±1.5% for the aluminum thicknesses, which would be

the ones used to determine bone mineral density of the proximal tibia. Wedge seg-

ment greyscale values were not constant over each region, even though the materials

were at a constant thickness; scattered photons are likely to blame for the sloped

intensity trends. The average value in the centre of the segment was used for cali-

bration, but using that value to calibrate the fit will obviously mean the calculated

thicknesses of the rest of the segment will deviate from the known amount.

The thickest regions of the phantom presented difficulties, as image distortions

from the angled cone-beam x-rays, scattered photons, and potential difficulties with

the dynamic range of the system added up to a potential break in the monotonic

relationship between thickness and greyscale level (the thickest regions showing less

attenuation than the next step down). This leads to much higher residuals between

the actual thickness and the empirical fit (> 30% for the aluminum thicknesses).

In summary, the incident energy remained consistent over a period of at least

three days, and the algorithm provided an empirically fit model to translate greyscale

intensity values from high and low energy projection images to known material

thicknesses. Noise, scatter, and cone-beam projection distortions were not corrected

in these tests.
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5.3 Future Work

With time, continuous migration status on the uncemented study participants, and

one to two year data for a larger pool of cemented knee arthroplasties will become

available, to more rigorously determine if these models are clinically useful. A larger

study population would also allow for more strict rules for region placement (as

regions with artifacts could be discarded), reducing the variability in the parameter

values.

The bone mineral density of the proximal tibia was not able to add value to

the bone texture model classifications the subjects into groups based on migration

patterns. A higher spatial precision with software calibrated specifically for the knee

may find that bone mineral is in fact an indicator of the bone’s ability to withstand

implant stresses.

A new design of calibration phantom for calculating BMD from 2D x-ray images

which focuses on the range of bone and soft tissue thicknesses within the expected

regions of interest (i.e. the proximal tibia) rather than making sure all areas of

the image would be accurately measured may avoid issues of excessive scatter and

dynamic range issues. A phantom designed to align with the cone-beam angles so

the actual thickness of each material seen by the beam is known may assist in finding

true calibration accuracy. Noise and scatter modelling will likely be necessary for a

clinically useful system, and should incorporate anatomical based models.

The potential of the multiple viewpoints available in the RSA images remains

untapped; integrating these bone quality parameters into the MBRSA software to

determine the location of the regions of interest in 3D space may provide informative

relationship links between the regions, and allow for precise removal of the implant

to examine periprosthetic bone more closely.

It must be remembered that bone is just part of the overall human system, and is

unlikely to be predictive in isolation. While the small numbers of study participants

here prevented adding yet more descriptive variables, clinically relevant metrics like

pre-operative varus angle, patient BMI, gait patterns, and activity level are likely to

be important in discriminating which patients are more at risk of implant loosening

and failure.
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5.4 Summary

There is currently no bone health predictor of implant stability for surgical decision

making and follow-up. Patients are assessed for surgery qualitatively by orthopaedic

surgeons using such metrics as range of motion, joint space narrowing as seen on

radiographs, and by observing the patient walk. While RSA measured implant mi-

gration is highly precise and can find implant loosening much earlier than standard

radiographs, it is not helpful in planning pre-surgery. With demand for knee replace-

ments increasing with an ageing and obese population, and with increased demands

on those new knees, finding patient-specific biometrics of arthroplasty success could

make a big difference in the burden of joint replacement on both patients and the

health care system.

The pilot studies outlined here show the potential for radiograph-derived bone

quality parameters to predict implant migration. Future work with larger studies,

and incorporating other metrics such as gait and limb alignment, has the exciting

opportunity to create a patient-specific score to give both surgeons and patients a

better assessment of the personal risks and benefits of arthroplasty surgery.



Bibliography

[1] Canadian Institute for Health Information. Hip and Knee Replacements in
Canada – Canadian Joint Replacement Registry (CJRR) 2008-2009 Annual
Report. Ottawa, Ont: CIHI; 2009.

[2] Jones DL, Westby MD, Greidanus N, Johanson NA, Krebs DE, Robbins L,
et al. Update on hip and knee arthroplasty: current state of evidence. Arthritis
and Rheumatism. 2005 Oct;53(5):772–80.

[3] Lidgren L, Robertsson O. Annual report 2007: The Swedish Knee Arthro-
plasty Register. Lund, Sweden: Lund University Hospital Department of
Orthopedics; 2007.
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[80] Kröger H, Miettinen H, Arnala I, Koski E, Rushton N, Suomalainen O. Evalu-
ation of periprosthetic bone using dual-energy x-ray absorptiometry: precision
of the method and effect of operation on bone mineral density. Journal of Bone
and Mineral Research. 1996 Oct;11(10):1526–30.
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Appendix A

Supplementary Figures

A.1 ROI Placement Variability

The following box plots show the rest of the variables not included in section 3.2.

All (a) plots are of the given texture parameter assessed while the upper left 64x64

pixel region on the test radiograph (see Figure 3.6 is shifted ± 3 pixels; all (b)

plots include the ROI to the right and below to mimic moving the region to avoid

contamination; all (c) plots are the ranges of that parameter from the study patient

population using periarticular 64x64 pixel regions.
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Figure A.1: Fractal Dimension.
Figure A.2: Fractal Dimension with ROI
image undergoing top-hat filtering.

Figure A.3: Minimum directional FMP
(first moment of power spectrum).

Figure A.4: Second diagonal wavelet en-
ergy.
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Figure A.5: Third diagonal wavelet en-
ergy. Figure A.6: First vertical wavelet energy.

Figure A.7: Second vertical wavelet en-
ergy. Figure A.8: Third vertical wavelet energy.



Appendix B

Matlab Functions

B.1 Background Removal Function

function cleanROI=removeGrid(knee_roi)

%

% function takes a given region of interest, decomposes into wavelets,

% reduces the horizontal wavelet component to 10% in order to filter

% off horizontal grid lines

% Inputs: chosen bone region of interest, recast as double

% Outputs: same region, with average row difference removed,

% rescaled to 1->max

crop_pic=knee_roi-min(min(knee_roi));

[decompVect,matS]=wavedec2(crop_pic,3,’coif1’);

%decompVect = [A(3) coeffs, H(3) coeffs, V(3) coeffs, D(3) coeffs,

% H(2)...]

%size of the coeff matrices saved in matS

A=matS(1,1)*matS(1,2)+1; %skip the A coefficient values

B=(A-1)+matS(2,1)*matS(2,2); %find end of H(3) coeff list

C=(A-1)+3*matS(2,1)*matS(2,2)+1; % find beginning of H(2) coeff list

D=(C-1)+matS(3,1)*matS(3,2);

E=(C-1)+3*matS(3,1)*matS(3,2)+1;

F=(E-1)+matS(4,1)*matS(4,2);

lowHoriz=decompVect;
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lowHoriz(A:B)=decompVect(A:B)*0.1;

lowHoriz(C:D)=decompVect(C:D)*0.1;

lowHoriz(E:F)=decompVect(E:F)*0.1;

subtImg=waverec2(lowHoriz,matS,’coif1’);

%the original ROI reconstructed for verification:

%reconImg=waverec2(decompVect,matS,’coif1’);

%set min to 1 to prevent confusion with marker masks in next subroutine

cleanROI=subtImg-min(min(subtImg))+1;



Appendix C

Figure Copyright Permissions

For Figure 3.20, from the American Psychological Association website accessed 3

July 2012, www.apa.org/about/contact/copyright/index.aspx:

APA Copyright and Permissions Information

APA Permissions Policy

1. Permission Is Required for

2. Permissions Not Granted

3. Permission is Not Required for

4. Requirement for Attribution and Credit

5. Permission From Authors

6. Permissions for Electronic Reproductions of APA Content

7. How to Seek Permission

8. Original Material

9. STM Permission Guidelines

APA supports the dissemination of information to aid in the

development of science and scholarly research. APA also

values and respects its own intellectual property as well as

the intellectual property of others. As a result, APA believes

it is essential for publishers of scholarly and other

proprietary material to develop an efficient and consistent

system, based on mutual trust, for granting permissions
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for both electronic and print publication of proprietary works.

Therefore, APA adopts the following guidelines for the use

of APA copyrighted content.

(...)

3. Permission is Not Required for the Following:

A maximum of three figures or tables from a journal article

or book chapter

Single text extracts of less than 400 words

Series of text extracts that total less than 800 words

No formal requests to APA or the author are required for the

items in this clause.

For Figure 1.2:

From: "Baron, Roland" <Roland_Baron@hsdm.harvard.edu>

Date: July 4, 2012 12:08:15 PM ADT

To: Jen Hurry <jhurry@Dal.Ca>

Subject: RE: BONE Enquiry: copyright request (thesis)

No problem

Roland Baron

Editor in Chief

Bone

________________________________________

From: Elsevier [stjournalsjhtp@elsevier.com] On Behalf Of

Jen Hurry [jhurry@dal.ca]

Sent: Tuesday, July 03, 2012 6:46 PM
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To: Baron, Roland

Subject: BONE Enquiry: copyright request (thesis)

The following enquiry was sent via the Elsevier website:

-- Sender --

First Name: Jen

Last Name: Hurry

Email: jhurry@dal.ca

-- Message --

Dear Dr. Baron,

I am a master’s student at Dalhousie University in Halifax,

Nova Scotia. I’m writing to request permission to use part

of figure 1 in Barth et al.’s 2010 paper (vol. 46, issue 6,

pg 1478) in my thesis, which will be published next month.

Full attribution will be given, of course.

Thank you,

Jen Hurry

School of Biomedical Engineering

Dalhousie University

For Figure 1.1

From: Nicole De Guia <NDeGuia@cihi.ca>

Date: July 5, 2012 3:35:55 PM ADT

To: "’jhurry@dal.ca’" <jhurry@dal.ca>

Cc: CJRR <CJRR@cihi.ca>

Subject: RE: copyright request

Hello Jen,
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Thank you for your interest in CJRR data. Yes, feel free to

use that graph or any other graph/table in our Annual Report

for your thesis. Please ensure appropriate CIHI citation.

Of note, updated data will be published later this Fall,

likely by October so that graph will have more up-to-date

numbers.

Cheers

Nicole

Nicole de Guia, MHSc

Sr. Consultant,

Primary Health Care information and Clinical Registries

CIHI | 4110 Yonge St., Suite 300| Toronto, ON M2P 2B7

Tel. (416) 549-5545| Email ndeguia@cihi.ca

For Figure 2.2:

From: GeorgeVosselman<vosselman@itc.nl>

Subject: RE:copyrightpermission(thesis)

Date: July 4, 2012 3:21:33 AM ADT

To: JHurry<JHurry@Dal.Ca>

Dear Jen Hurry,

On behalf of the ISPRS I grant you permission to include the

mentioned drawing in your thesis provided that you include

a reference to the article and a "Courtesy ISPRS" statement.

Regards,
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George Vosselman

Editor-in-Chief

ISPRS Journal of Photogrammetry and Remote Sensing

________________________________________

From: J Hurry [JHurry@Dal.Ca]

Sent: 04 July 2012 01:09

To: George Vosselman

Subject: copyright permission (thesis)

Dear Dr. Vosselman,

I am a master’s student at Dalhousie University, and I would

like to use the drawing in Figure 3(a) of Edward Valstar’s

2002 (Vol. 56, Issue 5-6, pages 376-389, ISPRS Journal of

Photogrammetry and Remote Sensing) paper in my thesis,

which is to be published next month. Could you direct me as

to the proper procedure for gaining copyright permission

to reproduce this figure?

Thank you,

Jen Hurry

Faculty of Geo-Information Science and Earth Observation (ITC)

University of Twente

Chamber of Commerce: 501305360000

For Figures 1.3 and 3.14:
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