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ABSTRACT 

 

Current developments of hardware devices have allowed the computer vision 

technologies to analyze complex human activities in real time. High quality computer 

algorithms for human activity interpretation are required by many emerging applications, 

such as patient behavior analysis, surveillance, gesture control video games, and other 

human computer interface systems. Despite great efforts that have been made in the past 

decades, it is still a challenging task to provide a generic gesture recognition solution that 

can facilitate the developments of different gesture-based applications. 

 

Human vision is able to perceive scenes continuously, recognize objects and grasp 

motion semantics effortlessly. Neuroscientists and psychologists have tried to understand 

and explain how exactly the visual system works. Some theories/hypotheses on visual 

perception such as the visual attention and the Gestalt Laws of perceptual organization 

(PO) have been established and shed some light on understanding fundamental 

mechanisms of human visual perception. In this dissertation, inspired by those visual 

attention models, we attempt to model and integrate important visual perception 

discoveries into a generic gesture recognition framework, which is the fundamental 

component of full-tier human activity understanding tasks.  

 

Our approach handles challenging tasks by: (1) organizing the complex visual 

information into a hierarchical structure including low-level feature, object (human 

body), and 4D spatiotemporal layers; 2) extracting bottom-up shape-based visual salience 

entities at each layer according to PO grouping laws; 3) building shape-based hierarchical 

salience maps in favor of high-level tasks for visual feature selection by manipulating 

attention conditions of the top-down knowledge about gestures and body structures; and 

4) modeling gesture representations by a set of perceptual gesture salience entities 

(PGSEs) that provide qualitative gesture descriptions in 4D space for recognition tasks. 

Unlike other existing approaches, our gesture representation method encodes both 

extrinsic and intrinsic properties and reflects the way humans perceive the visual world 

so as to reduce the semantic gaps. Experimental results show our approach outperforms 

the others and has great potential in real-time applications.  
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CHAPTER 1 INTRODUCTION 

 

Research about human gesture and action recognition has been attracting increasing 

attention recently due to high demands from emerging applications. Despite the efforts 

that have been made in the past decades, it is still a very challenging task to build a 

generic gesture recognition solution that can support the developments of various 

gesture-based applications with robust performance. In this chapter, we briefly introduce 

the background of this research domain, several challenges, our approaches and broad 

application usages. 

 

1.1 DOMAIN BACKGROUND  

 

Visual content analysis involves large size datasets and high computational costs. Current 

developments of video capture technology, 3D imaging, computing power, storage 

capacity, and broadband networking have matured, and allowed the computer vision 

technologies to analyze complex human activities from image data in real time. 

Meanwhile the demands for human activity recognition technologies are increasing from 

many domains, such as surveillance systems, healthcare, sports training, video search and 

other systems that involve interactions between persons and electronic devices such as 

human-computer interfaces (HCI) and gesture-based video games. Therefore, both 

advanced hardware and high demanding applications are driving forces for the 

development of efficient computer vision algorithms for event and human activity 

recognition tasks.  

Gesture/Action Recognition 

Human Interaction 

Recognition 

Group Activity 

Recognition 

Figure 1     Hierarchy of Human Activity recognition. 
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Full-tier human activity interpretation is the ultimate goal, which cannot be fulfilled 

without conquering several underlying obstacles. Human activities are diverse, i.e. could 

be simple or very sophisticated depending on the motion intentions and environmental 

conditions and can be categorized into several levels: gestures, actions, human-human or 

human-object interactions, and group activities (see Figure 1). Gestures are basic 

movements of a person's body parts and are the atomic components of meaningful human 

activities. “Stretching an arm” and “raising a hand” are the typical examples. Actions are 

single person activities that may be composed of multiple gestures, such as “throwing”, 

“waving”, and “punching”. Interactions are human activities that involve two or more 

persons or other objects, such as two people “shaking hands with each other”. Group 

activities are performed by multiple persons, such as a marathon match. Among these 

categories, gestures and actions are at the basic layer of the human activity hierarchy. 

While the goal of understanding all types of human activities is ambitious and beyond the 

scope of this dissertation, we focus on the fundamental part and propose approaches to 

the gesture and action recognition tasks that are instrumental towards the ultimate goal. 

Without solid components for basic human gesture/action recognition, understanding 

sophisticated real-time human activities and events from visual data is impossible.  

 

Machine-based human gesture/action understanding is a challenging task. In the past 

decades, there have been many approaches dealing with gesture/action recognition in 

many ways. However, most systems are too domain-specific and their performances still 

cannot compete with human vision; the semantic gaps between low-level visual features 

and human perception are not well bridged. For instance, some technologies are able to 

detect the object movements occurring in the recorded video or real-time image frames 

but fail to provide more intelligent interpretation. Figure 2 lists several human motion 

representation methods. Figure 2(a3) is the result of the frame difference between 2 

consecutive frames Figure 2(a1) and (a2).  Figure 2(b3) is a static image that records the 

history of several previous inter-frame differences. Many small yellow arrows in Figure 

2(c2) indicate the optical flow vectors that occur during the motion (Figure 2(c1)).  

Figure 2(d6) is the 3D pattern of Space-Time Interest Points (STIP) on the legs detected 
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in 3D (XYT) space (Figure 2(d1)-(d6)). We can see that the human movements can be 

recognized in those representation methods, but they cannot directly provide qualitative 

descriptions about the movements and create barriers for deep understanding. Without 

specific domain knowledge, computer vision algorithms can only perceive that something 

is moving, but not its perceptual details with more semantics. As a consequence, 

robots/applications have difficulties answering some “simple” questions, such as “Is there 

a human in the scene?” or “What are the exact movements of the human in the scene?” or 

even “How do I (a robot or avatar) mimic and learn the human gesture/action?”, or 

“Could you describe the motion qualitatively and quantitatively?” 

In contrast, humans can interpret body movements and actions and are nearly able to 

answer those "simple questions" subconsciously and effortlessly. Psychologists have 

revealed that human communications largely rely on body languages and other non-

verbal cues [1]. In order to make machines gain the comparable performance of human 

visual perception, understanding the mechanisms of the human visual perception system 

Figure 2     Without high-level semantic interpretation, low-level motion detection 

methods cannot answer even simple questions. 

(b1)            (b2)              (b3) 

Motion history image 
 

(a1)         (a2)            (a3) 

Frame difference 

(c1)                            (c2) 

Optical flow 

(d1)               (d2)              (d3)               (d4)             (d5)                 (d6) 

Space-time interest points 
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is essential. With countless efforts made by generations of researchers, several studies 

have shown that perception of human motion, under some circumstances, requires 

focused visual attention [2][3][4]; meanwhile, Perceptual Organization (PO) laws also 

play roles in the attention process [5]. These research findings shed light on 

understanding the mysteries of sophisticated biological neural systems. Several 

computational models of vision systems [6]-[11] based on the theories/hypotheses of both 

visual attention and perceptual organization laws have demonstrated the effectiveness in 

object recognition tasks. We believe that by applying computer vision algorithms based 

on those visual mechanisms, the semantic gaps between visual features and high-level 

perceptions can be reduced, and the performance of human action/gesture recognition 

systems can be improved.  

 

The goal in this dissertation is to develop a generic framework that can answer those 

“simple” questions mentioned earlier, ultimately leading to machines understanding all 

kinds of human activities. The following section addresses the challenges we faced in 

achieving this goal. 

 

1.2 CHALLENGES  

 

We encountered several challenges when dealing with the computer vision-based human 

gesture/action recognition. One major challenge is perceptual feature extraction from 

visual data. Human visual pre-attention can be drawn to visual salience entities 

automatically. It is essential for a visual analysis system to detect and select relevant 

visual salience entities among numerous low-level features and build a semantic feature 

representation. According to the visual attention theories [12][13], features are 

components of target objects, and act as the visual saliency in visual attention. In the 

computer vision community, existing algorithms are able to accomplish some early-stage 

vision tasks with the same or even better performance than human vision. Those tasks 

include searching targets pre-defined by specific features within a cluttered image, 

counting colored elements, etc. However, in terms of high-level understanding, human 
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vision performs much better than any current computer algorithm does. One of many 

reasons is that the low-level features do not contain high-level semantics. Many vision 

cues have been explored as vision features, such as color, texture, shape and edge 

features. Obviously, color will play no role under some conditions, and texture patterns 

are not generic for different applications. Human vision largely relies on shapes, but 

many filtering-based shape features provide global measures without local details. What 

we need are the 3D perceptual shape features that are able to reflect the visual saliency 

and lead to target objects.  

 

A second major challenge is the object recognition from the bottom-up pixel-level 

features. The target object in our case is the human body with the articulated structure 

(including head, torso and limbs) that has high degrees of freedom. To achieve the goal 

of human gesture/action recognition with robust performance, body parts segmentation, 

classification and pose estimation are required, i.e. a divide-and-conquer method is often 

applied to recognize individual body parts accurately first; and then, a robust pose 

estimation solution is used to provide seamless grouping for motion analysis. Previously, 

researchers have made efforts to develop approaches in this domain, and some of them 

have achieved encouraging performance for specific applications. However, there is no 

generic solution that satisfies all expectations, i.e. easily to be applied to different real-

time applications under all circumstances. Since the configuration space of body poses is 

huge (i.e. exponential of the multiple body parts with various parameters), selective 

computing on most characteristic body features would not only reduce the ambiguities, 

but also improve the efficiency to make real-time gesture/action analysis possible.  

Therefore we need to capture the visual salient entities at the object level from the scene 

to facilitate the pose estimation. 

 

A third major challenge is forming gesture/action representations in the 4D 

spatiotemporal space. Human gestures/actions are the patterns of body poses along the 

temporal dimension. How can we represent these patterns in the 4D spatiotemporal space 

in a way that can perceptually deliver the semantics? A wide variety of human 

action/gesture representations have been proposed, including Motion Energy Image 
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(MEI), Motion History Image (MHI), optical flow, Space-time Interest Points (STIP)-

based descriptor etc. But they only work well in specific domains, and are unlikely to be 

able to act as the generic solutions. To reflect the visual attention conditions and deliver 

more semantics, we need a generic approach to provide qualitative descriptors for 

gestures/actions, which should be similar to how humans interpret the visual 

observations. Both external visual stimuli and internal correlation should be encoded 

within this generic representation, and then any human gesture/action can be described 

qualitatively and quantitatively.   

 

A fourth challenge is dealing with the ambiguity in the recognition tasks. In real 

situations, even a simple human gesture/action with straightforward semantics contains 

many variations coming from different view-points, various environmental conditions 

(illumination, distance, clutter background etc.), and diverse human body shapes, 

behaviors and even cultural backgrounds. To handle the ambiguities, we must mimic the 

abilities of human vision and perception to take a statistical approach, learning the 

regularities of the human action properties and finding the most likely interpretation of a 

motion. We need to have a statistical approach to classify and recognize gestures.  

 

1.3 OUR APPROACH 

 

Great oaks from little acorns grow. It is ambitious that we provide solutions that attempt 

to make machines/robots understand all kinds of human activities semantically in real 

time. Therefore, we tackle the problems from the very fundamental stage (i.e. gesture and 

action recognition) in a generic way towards the ultimate goal. The proposed system is a 

3D gesture recognition framework using hierarchical shape-based salience maps. Inspired 

by the biological mechanisms of human visual attention and perceptual organization, the 

models based on bottom-up and top-down visual salience map principles are employed 

within this hierarchical framework. Using our approach, we can go as far as to recognize 

complex human activities from the visual world. 
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As we mentioned earlier, research studies have shown that the visual perception of the 

human motion requires focused visual attention [2]-[4]. It has been largely agreed that 

perceptual organization (PO), the visual processes structuring pieces of visual 

information into coherent objects, exists in human visual systems. Both perceptual 

organization and visual attention are crucial for human visual perception [5]. These 

findings shed light on the fundamental mechanisms of human visual perception. Our 

approach will involve several terms related to human visual perception from the 

neuroscience and psychology areas, such as perceptual organization (PO), visual attention, 

visual salience, and salience maps. These definitions can be found in Chapter 2. 

 

Visual attention and perceptual organization are indispensable perceptual processes for 

high-level visual perception tasks. According to most influential computational models of 

visual attention [12][13], both bottom-up and top-down information are responsible for 

the deployment of vision attention. The bottom-up stimuli-driven visual salient entities 

are weighted by the top-down task-specific knowledge and grouped into salience maps 

with selected visual information. The PO grouping laws [2] play vital roles during the 

salience map integration. Mechanisms from visual attention and perceptual organization 

work together for selecting and filtering visual information so as to make the human 

visual perception efficient and effective. These visual mechanism theories/hypotheses 

stem from plausible biological evidence. Studies on the neural systems of primates and 

humans suggest that the posterior parietal cortex may encode a visual salience map, while 

the pre-frontal cortex may encode a top-down prior knowledge. By integrating both, a 

formed attention guidance map, so-called salience map, is possibly stored in the superior 

colliculus [19]-[22]. Several computational models of vision systems [14]-[18] based on 

these visual attention theories have demonstrated the advances in object recognition and 

action interpretation tasks. Among them, hierarchical attention models provide a 

framework to formulate the salience maps at the low-level visual feature and the object 

level respectively. Figure 3 shows a simplified hierarchical structure of visual attention 

and perceptual organization models, summarized from existing research that encodes 

both attention and organization mechanisms at multi-levels.   
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Our approach is inspired by these research findings to handle the challenging 

gesture/action interpretation tasks in a systematic, coherent and biologically plausible 

manner. There are 3 levels of visual attention and perceptual organization processes 

jointed to select and organize the visual information for recognition tasks, feature level, 

object level and 4D spatiotemporal level. Shape feature is one of the most effective visual 

stimuli that human visual perception heavily relies on. At the feature level, perceptual 

shape features are extracted as visual stimuli for vision analysis. According to the 
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Figure 3     A hierarchical visual attention model incorporating perceptual organization.  
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discoveries about generic criteria employed in human vision, a Perceptual Organization 

(PO)-based method is used to extract visual salient entities from edge pixels for object 

coding. A well-studied PO-based Perceptual Curve Partition and Grouping (PCPG) 

model is implemented and enhanced in this work. Based on the classical Gestalt Laws, 

image contents are perceived as a set of salience entities, generic shape tokens and 

critical structure points, which are grouped into a 2D feature-level salience map for each 

image. By taking advantage of 3D data, a 3D shape-based salience map is able to reflect 

the bottom-up attentional information, describe the properties or semantics of any visual 

object perceptually, and provide the selected features for further top-down processing. 

This 3D feature level shape-based salience map can also be extended to build a 

comprehensive visual descriptive language for shape-based content coding, pattern 

recognition and indexing for images.  

 

The target object in a gesture/action recognition system is the human body, whose 

articulated structure has high degrees of freedom. Understanding gestures/actions of such 

a complicated object structure from a real-time visual stream is a challenging task. To 

achieve the goals of gesture/action recognition, a divide-and-conquer method is often 

applied to recognize individual body parts accurately first, and then estimate their spatial 

layouts to derive the pose status from every frame for motion analysis. By utilizing the 

prior kinematic knowledge about the body structure, the bottom-up 3D shape-based 

salience map is enriched in a top-down process by selecting, weighting and grouping 3D 

shape salience entities for individual body part recognition. Several grouping laws of 

Perceptual Organization are performed during the salience map generation.  

 

Based on the classification results, a limb tree is built as an index for building the bottom-

up salience map at the body object level. Meanwhile, prior knowledge about the body 

poses is encoded into the tree traversal criteria in a top-down process to weight the 

classified object salience entities. The updated body part results are the elements of the 

salience map at the object level, which contains selective salient visual information that 

provides a reduced search space to speed up the complex pose estimation process and 

benefit the gesture feature extraction/selection in 4D spatiotemporal space. 
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Finally, based on the results of body part classification and pose estimation processes, 

several dynamic properties of individual body parts are tracked in 4D spatiotemporal 

space. A set of Perceptual Gesture Salience Entities (PGSEs) are defined as the 

descriptors for the spatiotemporal patterns according to the law of continuity of 

perceptual organization. The combination of these gesture/action descriptors is the 

salience map at the 4D spatiotemporal level in which the bottom-up visual information 

for supporting high-level recognition tasks is selected under the influences of prior 

knowledge and target gesture definitions. The ultimate high-level interpretation tasks will 

be benefited by this novel PGSE-based gesture salience map. Figure 4 shows the overall 

structure of our proposed gesture/action recognition framework. A 3D camera is adopted 

to capture real-time depth image sequences that contain human gestures/actions. Feature, 

object and spatiotemporal level salience maps are the 3D Generic Edge Token 

(GET)/Curve Partition Point (CPP) maps, weighted limb regions and PGSE block 

patterns respectively. The bottom-up salience entities and the task-specific top-down 

knowledge are fused together by certain PO laws to provide selected attention-based 

gesture representation, which can reduce the search space and retain the discriminative 

power needed in the high-level recognition tasks.  

 

Another important idea in our method is utilizing both internal and external properties of 

gesture/action patterns in the recognition process. We argue that any gesture contains 

both extrinsic and intrinsic patterns in 4D space. Extrinsic properties mainly describe the 

spatial temporal components during the dynamic, e.g. motion direction, velocity, shape 

changes, etc. Intrinsic patterns are not visually apparent, such as temporal and spatial 

ordering, and cannot be easily modeled; however, they play vital roles in classification 

tasks. Rather than spending time figuring out the temporal or spatial ordering among 

multiple body parts and dynamic components, several PGSE-based representations are 

able to encode both internal and external properties to provide a coherent interpretation 

about sophisticated human activities by employing a certain statistical method. This 

approach helps to provide robust recognition performance, as demonstrated in our 

experiments. 
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1.4 APPLICATIONS 

 

Human action/gesture recognition is a fundamental component of human activity 

analysis, and is useful in a wide range of applications. If we can recognize all of the 

human body parts and understand their dynamic extrinsic and intrinsic properties of the 

movements, any high-level complex activity can be interpreted semantically.  

 

In the health care sector, it would be useful to understand the gesture languages of elderly 

or disability people who have difficulties expressing themselves normally. The life for 

deaf people would be a lot easier if there is a system that can automatically translate 

his/her sign language into scripts that other people can understand without hiring a 

special interpreter.  

 

Gesture recognition can also be used for home entertainment. Users use their gestures to 

change TV channels or play video games. Gesture-based video game is currently a key 

area in the game industry. Three major companies have been making significant efforts to 

make the next-generation video games more attractive. Neither Nintendo’s gesture game 

platform Wii [26] nor Sony PlayStation Move [27] fully relies on vision data to form 

gesture features and corresponding representations. Microsoft Kinect game platform uses 

a 3D camera to capture target gestures, and its recognition method is mainly built on 

model-based computer vision technology. According to a recent survey, Microsoft's 

Xbox 360 has gained great success in the video game market, and a majority of the 

increasing sales are from Kinect sensor-based gesture games [28].   

 

Most current video surveillance systems need a human operator to constantly monitor 

them. Their effectiveness and response is largely determined by the due diligence of the 

person monitoring the camera system, instead of the technological capabilities. Some 

automated systems only detect general motions and location patterns without telling what 

the causes are. To overcome these limitations of traditional surveillance methods, 
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computer vision and artificial intelligence-based automated systems are required for the 

real-time monitoring of people, vehicles, and other objects. Automated surveillance 

systems in public places detect abnormal and suspicious activities as opposed to normal 

activities. For instance, an airport surveillance system must be able to automatically 

recognize suspicious activities like “a person leaving a bag”, “a person placing his/her 

bag in a trash bin” or “baggage theft”. The real-world scenarios are more complicated 

than the game environment, and involve not only multiple human activities, but also the a 

variety of object categories, and diverse backgrounds in indoor and outdoor environments 

etc. Gesture and action recognition is a significant step in the development of intelligent 

surveillance systems.  
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CHAPTER 2 RELATED WORK 

 

3D Gesture modeling and recognition involve several research domains including image 

processing, 3D data estimation, pattern recognition and machine learning. There have 

been plenty of approaches for dealing with these challenging tasks in the past decades. 

Here we briefly discuss some related topics, including advanced 3D optical devices, low-

level salient features, gesture representation, and gesture recognition methods. 

 

2.1 3D CAMERAS 

 

When humans perceive the world, they see not just a pattern of 2D color and texture, but 

the 3D visual objects. In the same way, computer vision algorithms must go beyond the 

pixels and reason about the 3D world. There are several ways of obtaining 3D data from 

images. Some techniques are capable of directly deriving 3D data from 2D single view 

images under certain constraints and assumptions. Since a single conventional 2D camera 

cannot directly provide 3D measurement for objects in the scene, 3D spatial data are 

estimated by a mapping method (map the 2D image into 3D space). It needs the support 

from the following processes: 1) domain knowledge collection, 2) 3D world coordinates 

setting and calibration, and 3) indexing generation and matching for 3D data estimation. 

Despite the availability of various feasible algorithms, the issues of reliability and 

efficiency of these methods still remain unsolved. Therefore deriving 3D data from 2D 

single view images is seldom used in real applications. 

 

With the development of the optical device technologies, 3D cameras can efficiently 

provide accurate and reliable 3D images. On the current market, there are three types of 

3D cameras: stereo camera, Time-of-Flight (TOF) camera, and speckle pattern camera 

that provide both reliable 3D spatial data and color/grayscale images simultaneously.   
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2.1.1 Stereo Camera 

 

Humans understand depth based on the differences in appearance between the left and 

right eyes; so does the stereo camera. As we know, under some simple imaging 

configurations (both eyes looking straight ahead), the amount of horizontal disparity is 

inversely proportional to the distance from the observer. This basic physics and geometry 

relating visual disparity to scene structures are well understood and applied to the stereo 

cameras for estimating depth data. A stereo camera has two or more lenses with an image 

sensor for each. This configuration allows the camera to simulate human binocular vision, 

as can be seen by the differences between Figure 5(a) and (b), where the foreground 

objects shift left and right relative to the background. By using the stereo matching 

method [23] that finds matching pixels in two or more images captured from the left and 

right sensors in the same scene, the stereo camera is able to convert their 2D positions 

into 3D depths, and obtain the 3D model of the scene. Figure 5(c) is the estimated depth 

image derived from Figure 5(a) and (b). Stereo matching is one of the most widely 

studied and fundamental problems in the computer vision area [24]. Essentially the 3D 

data estimation methodology used by a stereo camera relies on well-defined image 

features or detailed textures and appropriate matching techniques. Such constraints often 

lead to large distance uncertainties if image pairs have the presence of non-textured areas 

or unmatched features. 

 

Figure 5     Depth image derived from two images from a stereo camera.  

The differences in the red circles in (a) and (b) show the horizontal disparity. 

(a) Image from the left sensor  (b) Image from the right sensor (c) Derived depth image 
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2.1.2 TOF Camera 

 

A Time-Of-Flight camera (TOF camera) is a range imaging camera system that measures 

the depth based on the known speed of light. The entire scene is captured by a TOF 

camera using a set of laser or light pulses individually without scanning operations. TOF 

camera measures the round trip time of light from the light source to the objects in the 

field of view (FOV) and back to the sensor for calculating the depth data. The 

CCD/CMOS imaging sensor captures the returned signal from each light pulse for each 

pixel. The distance range is from a few meters up to about 60m, and the distance 

resolution is around 1 cm. The lateral resolution of time-of-flight cameras is currently 

low (320 × 240 pixels or less) compared to standard cameras. Although a TOF camera is 

sensitive to background light noise and multiple reflections, which may be controllable 

by some filtering methods, it provides a robust solution for obtaining 3D image data. 

Compared with stereo cameras, a TOF camera has the advantages of being simple, fast 

and with an efficient distance algorithm. 

 

SR4000 (see Figure 6(a)), a primary TOF camera product from MESA Inc., was used for 

TOF performance evaluation. The depth data from SR4000 is measured by the round trip 

time of the infrared light (870nm wavelength), and the 2D grayscale image (176x144 

pixels) is provided simultaneously. Within an evaluation system, every image captured 

by the SR4000 produces four types of outputs: distance image, grayscale image, 

segmented grayscale image and edge map of the segmented image, which allow us to 

examine the image qualities for gesture tracking and recognition. Figure 6(b) is the 

distance image. Every pixel of the distance image is a distance value from a surface point 

of an object within the FOV to the front face of the camera. The intensity of each pixel in 

the distance image is the value of Z coordinate in the Cartesian coordinate system where 

the origin is the center of the camera. A grayscale image is the result of the light 

saturation, which takes both background light and excessive reflected infrared light into 

consideration. Figure 6(c) shows a grayscale image which provides texture information of 

objects in the scene. Its quality is relatively poor compared with the images from 

conventional cameras. A background filtered grayscale image is shown in Figure 6(d). 

Rather than the entire scene, this image only presents the objects closer to the camera as 
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the original image (Figure 6(c)) has been filtered by a user-specified depth threshold. The 

shape salience features extracted from the filtered image are shown in Figure 6(e), and 

well reflect the object contour shapes. The efficiency of this TOF camera (SR4000) is 

high, 30+ fps is achieved for image edge extraction, background filtering, and depth data 

integration.  

 

The accuracy of the distance data from SR4000 is affected by several factors, including 

lighting condition, speed of moving objects and the materials of nearby objects. The 

distance measurement will be distorted if there is other light with a similar wavelength in 

the scene. Some background objects with glass or mirror materials that produce 

reflections would also distort the distance measurement. Motion speed also affects the 

quality of the distance data. For a static or a slow moving object, the distance accuracy is 

high: its resolution is about one cm. If an object is moving fast, less accuracy is expected. 

The drawbacks of TOF camera (SR4000) are: 1) the image resolution is too low 

(176×144 pixels) to capture the necessary object details; 2) its angle of view is narrow for 

covering complete actions; 3) there is no color data that can be processed. Color 

information may be crucial for some cases; 4) TOF camera is expensive.  

 

 

 

Figure 6     Images and perceptual features from a TOF camera. 

(a) SR4000 TOF Camera  (b) Depth image (c) Grayscale Image 

(d) Filtered image (e) Salience features  



18 

 

2.1.3 Kinect Camera 

 

Another alternative solution for obtaining 3D data is the speckle pattern related method 

introduced in [25], where the camera system emits the infrared ray filtered by a diffuse 

object, ground glass, to generate random speckle patterns striking on the objects in FOV. 

The reflected speckle pattern contains inherent changes that uniquely characterize each 

location in 3D space. 3D spatial data are derived by analyzing the differences of the 

sensed speckle patterns. Microsoft Kinect’s depth sensor (see Figure 7(a)) falls in this 

category. Besides the speckle pattern depth sensor, Kinect also uses another conversional 

2D sensor to provide 2D color images with VGA (640×480) resolution. Both depth and 

color data are aligned accordingly. Currently Kinect is available on the market at low 

costs. We examined its performance by using the same evaluation system for the TOF 

camera. Figure 7(b) and (c) show the color image and its corresponding gray scaled depth 

image respectively. The depth image is derived by scaling each pixel’s depth data into the 

intensity range [0-255], and is able to describe the object silhouette for gesture analysis. 

The accuracy of the depth data is affected by the lighting condition, speed of moving 

objects and the materials of nearby objects. However, the impact of the distorted data 

accuracy can be controlled by taking more local data into consideration, e.g. the depth 

value of a pixel is averaged from its neighbors. Thus the data uncertainty can be 

suppressed. Overall, the Kinect camera provides reasonable data quality with low 

economic cost for motion and gesture analysis, and is used in our research work. 

 

 

(a) Kinect sensor               (b) color image       (c) depth image       (d) edge map  

Figure 7     Images from a Kinect camera. 
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2.2 SALIENCE-BASED LOW-LEVEL FEATURES  

 

A human gesture is a spatial-temporal object pattern in 4D (XYZT) space. Low-level 

salient features from a single image reflect the gesture snapshot at a certain moment. The 

final gesture features are collectively parameterized by pixel-level salience from all 

images. Overall there are two types of image salient features, global and local. Global 

contrast-based image saliency is detected by evaluating the contrast against the entire 

image. By checking the pixel luminance contrast against others, Zhai and Shah [29] 

extracted the saliency efficiently. Achanta et al. [30] proposed a frequency-tuned method 

that calculates the pixel contrast against the average color and intensity of an entire image. 

Global contrast-based methods are simple and efficient, but fail to analyze complex 

variations due to the missing local details. Hou and Zhang’s Spectral Residual (SR) 

approach [31] is based on the Fourier Transform. The SR difference between the original 

signal and a smoothed one in the log amplitude spectrum is calculated and transformed 

into the spatial domain, which acts as the salience map for visual analysis. Similarly a 

saliency map can also be calculated by the image’s phase spectrum of the Fourier 

Transform [31]. Guo et al. [32] used a Phase Quaternion Fourier Transform (PQFT) 

method to calculate spatiotemporal saliency maps for both natural images and videos, 

considering color, orientation and motion. 

 

Majority salience features are obtained by local-based methods, which use local contrast 

to find locations with higher saliency values near the boundaries of salient objects. Itti 

and Koch [33] proposed a biologically-plausible visual saliency model based on the 

center-surround contrast mechanism. Harel et al. [34] normalized the feature maps based 

on the Itti and Koch’s approach [12] to highlight conspicuous parts and combine with 

other importance maps. Since Itti and Koch’s linear model of the similarity measure on 

several cues is inconsistent with the properties of higher level human judgment, Gao et al. 

[35] proposed a decision-theoretic approach based on mutual information to measure the 

visual salience. Ma and Zhang [36] proposed a local contrast-based method using fuzzy 

growing to extract salient regions from images. More recently, Goferman et al. [37] 

simultaneously modeled local low-level clues, global considerations, visual organization 
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rules, and high-level features to highlight salient objects along with their contexts. 

Furthermore, some approaches compute saliency by applying machine learning 

techniques to fuse different visual feature channels. Alexe et al. combined multi-scale 

saliency, color contrast, edge density, and superpixels in a Bayesian framework [38]. In 

[39], the salient features are obtained by using conditional random fields to linearly 

combine multi-scale contrast in a Gaussian image pyramid, center-surround histograms 

and color spatial-distributions. However, the high computational cost is the weakness of 

these local-based models.  

 

In the computer vision area, corner and point-based salient features from images have 

been widely studied and used in many image/video analysis applications. It is commonly 

agreed that an image’s prominent points are salient to human vision, and can reveal more 

semantics of the image contents. Therefore, discovering salient points, extracting the 

properties of/around them, is a good strategy to bridge the semantic gaps between human 

perception and the image lower level features. The classical Harris detector [40] 

calculates the local auto-correlation function by measuring the local changes of the pixel 

values within a Gaussian window. The salient Harris corner points are invariant to 

rotation, scale, illumination variation and image noise. The Harris affine detector [41]  is 

the extension of [40]. Having had initial Harris points detected, Gaussian-based multi-

scale analysis is iteratively performed to obtain affine-invariant salient regions robust to 

shape deformation. The detected salience entities are invariant to scale, rotation and 

shearing. The Maximally Stable Extremal Region (MSER) detector [42] extracts sets of 

image elements invariant to affine transformation. The locations of MSERs are the salient 

regions where the transformations of coordinates and pixel intensity are continuous and 

monotonic respectively. David Lowe’s approach [43] is another most influential solution 

using scale-invariant salient keypoints to extract visual features. By his method, 

keypoints are obtained from the pixel differences of image gradients, and then the 

gradient orientation histogram of the local area around each keypoint is built and 

normalized into a local descriptor - scale-invariant feature transform (SIFT), which 

outperforms other image descriptors reportedly in most cases.  However, keypoints of 

SIFT are sensitive to noise, and its high dimension histogram representation is inefficient 
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when doing matching against large image data collection [44]. Since 2D features cannot 

be linked to the 3D object perceptually, several approaches extract 3D salient points for 

image analysis. Steder et al. [45], applied interest point detectors on depth images. 

Ruhnke et al. [46] applied the Harris detector [40] to the depth image in order to 

construct 3D object models in an unsupervised fashion from partial views. Plagemann et 

al. [47] built a 3D mesh to extract geodesic extrema interest points which are classified 

into 3 groups: head, hand and foot, with location and orientation estimation. But their 

approach cannot determine the left or right limbs. 

 

We argue that human vision largely relies on the shape features and shape salience 

entities that attract visual attention. We will introduce an approach that extracts a local 

shape-based salience efficiently. The image is scanned by a pre-defined interval gird 

without heavy computational costs, and the extracted salient edges are described by a set 

of genetic shape tokens and structure critical points which are in the same spirit of point-

based salient features, but with more semantics.   

 

2.3 HUMAN GESTURE/ACTION REPRESENTATIONS 

 

Various representation methodologies have been developed to enable computer vision 

systems to recognize human gestures/actions accurately from image sequences. They can 

be mainly categorized into four groups: sequence-based, trajectory-based, volume-based 

and local feature-based representations. 

2.3.1 Sequence-based Representations  

 

A video is a sequence of images. A sequence of feature vectors is a natural way to 

describe a human action video. Each vector contains location, color, orientation, size and 

shape features of one or more images. In [48], each image frame is divided into meshes, 

and each vector is simply an array of pixel numbers of the foreground objects within 

corresponding meshes. Some applications are more interested in specific body parts. In 

[49] and [50], the feature vector describes the shapes and locations of the tracked hand. 

The approach from [51]  tracks the full body using a 3D skeleton model with 17 degrees-
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of-freedom. The characterized joint angles of the skeleton model are the features. Thus, 

human movements are the sequences of angle values from all frames. Rather than using 

joint angles, in Park and Aggarwal’s method [52], vector features from multiple body 

parts are object region-related. An action is expressed by a sequence of vectors including 

locations of skin regions, maximum curvature points, and the ratio and orientation of 

each body-part. In [54], optical flow-based features are wrapped into the sequential 

representations. It computes the space-time volume of each person being tracked, and 

then calculates 2D optical flows of the tracked humans at each frame. A video of a 

human action is interpreted as a sequence of motion descriptors which are a set of 

blurring motion channels converted from the optical flows. 

 

Instead of using conventional features, Yacoob and Black [53] used singular value 

decompositions (SVD) to decompose the image data into eigen vectors. An activity is 

represented as a linear combination of eigen vectors from an image sequence. 

Furthermore, the motion scale and speed variations can be obtained by calculating the 

coefficients of the eigen vectors. Lublinerman et al. [55] presented a methodology that 

models human activities as the linear time invariant (LTI) systems. Two types of 

silhouette features are extracted from images: silhouette width and Fourier descriptors. 

An activity is represented as a LTI system capturing the dynamics of changes in 

silhouette features. Visual saliency is the visual stimuli which are different with their 

surroundings, sequential feature representations without further refinement only reflect 

the saliency at frame basis, but do not provide the spatiotemporal salience directly.    

 

2.3.2 Volume-based Representation 

 

For 2D images, a video can be represented as a 3D XYT Space-Time (ST) volume 

constructed by concatenating XY images along the time T. 3D ST volumes can be 

viewed as rigid objects, and the volume-based representations are constructed based on 

the salience features of the rigid objects. Bobick and Davis [56] proposed two 2D images: 

a binary motion energy image (MEI) and a scalar-valued motion history image (MHI) 

which are constructed from a sequence of foreground images. MEI and MHI essentially 
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are weighted XY projections of the original 3D ST volume. Shechtman and Irani [57] 

estimated motion flows from a 3D rigid object (ST volume). They extracted a small ST 

patch around every location of the volume, where the motion flow vectors of a particular 

local motion are calculated. A human action is represented as a set of flow vectors for all 

patches. Ke et al. [58] proposed a method that applies a hierarchical mean-shift algorithm 

to cluster similar colored voxels to obtain segmented sub-volumes. Each sub-volume 

contains the information about both flows and shapes. Rodriguez et al. [59] used the 

maximum average correlation height (MACH) filters to analyze 3D ST volumes. A 

synthesized MACH filter generated from example ST volumes is used to represent a 

human action.  Later on, they extended the MACH filters to analyze vector data using the 

Clifford Fourier transform. The major issue of the volume-based representation is that 

they cannot describe the human motion details in terms of body parts correlation. The 

volume can be formed by shape contour along temporal order. A view-invariant 

representation, action sketches, was proposed in [69], where sparse features are extracted 

from a 3D contour concatenation. 

 

2.3.3 Trajectory-based Representation 

 

In the trajectory-based representation approaches, a person is usually represented as a set 

of 2D or 3D points corresponding to his/her joints. Human body part estimation is 

necessary for obtaining the joint positions. The action representation is a set of 4D or 3D 

ST trajectories that are the recorded joint position changes. Authors of [60] represented a 

human action as 2D curves in phase spaces. Based on the 3D body part models estimated 

from each frame, they converted the high-dimensional body systems into several low-

dimensional phase spaces. The state of a person at each frame is a point and his/her 

action is a high-dimensional curve (a set of points). They projected this HD curve into 

multiple 2D subspaces, modeled into a cubic polynomial form, and maintained it as the 

action representation. Rao and Shah’s method [61] tracks the positions of a hand in 2D 

images using the skin pixel detection, obtaining a 3D XYT space-time curve. Their 

system extracts the peaks of the trajectory curves. An action is represented as a set of 

peaks and intervals in-between which are view-invariant curvature-based patterns. In [62], 
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an action was represented by 13 joint trajectories in a 4D space (XYZT). An affine 

projection method was used to obtain the normalized XYT trajectories, where the view-

invariant similarity measurement can be achieved. Sun et al.’s method [63] uses the 

trajectory-based hierarchical spatiotemporal features to model human actions. The 

trajectories are extracted by matching keypoints between two consecutive frames. The 

human action is modeled by the intra-trajectory transition and inter-trajectory 

neighborhood information. Recently Wang et al. [64] used dense trajectories to describe 

videos. Dense trajectories are constructed by matching dense points in the optical flow 

field between frames. After removing noise trajectories, the motion patterns are encoded 

by the trajectory shapes. The human motion is represented by a set of Histogram-based 

descriptors that describe the local and global properties of the dense trajectories. 

 

2.3.4 Local Feature-based Representation  

 

If a system is able to extract appropriate salient points or regions reflecting characteristics 

of action's 3D ST volume, the action can be described by the local feature-based 

representations around those salience entities within the ST volume. Some approaches 

extract local salience features at every frame and concatenate them temporally to describe 

the human movements. In [65], Motion energy receptive fields and Gabor filters were 

used to capture motion information from a sequence of images. Local spatial-temporal 

appearance features about motion orientations are detected per frame. An action is 

characterized by multidimensional histograms that are constructed based on the detected 

local features. The approach from [66]  utilizes local spatial-temporal features at multiple 

temporal scales which are able to handle speed variations of an action. A normalized 

local intensity gradient is estimated for each point in a 3D ST volume. A histogram of 

these space-time gradient features is the action representation. Instead of utilizing optical 

flows for local feature calculation, Blank et al. [67] calculated appearance-based local 

features at each pixel in the ST volume.  A wide variety of useful local shape properties 

including space-time saliency and space-time orientation are extracted from the ST 

volume by solving the Poisson equation. Meanwhile, the weighted moments of the local 

features are a set of global features of an action.  
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Rather than extract local features per frame in ST volume, Laptev and Lindeberg [68] 

extracted sparse salience entities, Spatial-Temporal Interest Points (STIP), from videos. 

They used the scale-invariant Harris3D detector to find salient points, spatial-temporal 

corners, in a 3D ST space. This detector is able to capture various types of non-constant 

motion patterns such as a direction change of an object, splitting and merging of an image 

structure, and/or collision and bouncing of objects. Dollar et al. [70] proposed a spatial-

temporal feature detector which is to extract space-time salient points with local periodic 

motions, so as to obtain a sparse distribution of interest points from a video. Once 

detected, each salient point is associated with a so-called cuboid which captures the 

neighborhood appearance features of this point. The local descriptors can be a vector of 

brightness gradients of a cuboid. Similar to the features in [69], a 3D SIFT descriptor was 

proposed in [71]. In contrast to previous features only using intensities, Rapantzikos et al. 

[72] proposed a dense sampling method that divides a video into sub-volumes with 

multiple spatial and temporal scales. 5 parameters are used for dense sampling: (X,Y,T) 

location, spatial and temporal scales. Sampling is done with certain degree of overlap. 

Each sub-volume is the local feature data.  

 

Klaser et al. proposed a HOG3D representation method that is based on the histograms of 

3D gradient orientations [121]. It can be seen as an extension of the popular SIFT 

descriptor to video sequences, where gradients are computed using an integral video 

representation which is a set of regular polyhedrons, and the orientations of 

spatiotemporal gradients are uniformly quantized for histogram construction. The 

HOG3D descriptor combines shape and motion information at the same time. Savarese et 

al. [76] proposed a method to capture spatial-temporal proximity information among 

features. It measures feature co-occurrence patterns in a local 3D region, constructs 

histograms so-called ST-correlograms as the action representation. [77]’s approach 

provides spatial-temporal histograms, histograms of gradient orientations (HOG) and 

histograms of optic flow (HOF), by dividing an entire ST volume into several grids. 

According to the STIP distribution in the grid, this method provides coarse measurements 

about the distribution of local descriptors in the 3D ST space. Normalized HOG/HOF 

descriptor vectors are similar in spirit to the well known SIFT descriptor. 
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Since local descriptors lack the ability to convey motion/gesture semantics, bag-of-word 

(BoW) methods are used to cluster the local descriptors into groups, so-called visual 

words or codebooks, according to their spatial or temporal similarity. These intermediate 

level feature descriptors contain more semantics and have more discriminative powers in 

the recognition and classification tasks. Each gesture/action is modeled as a histogram of 

the visual words. Among many extracted BoW features, Liu et al. [73] presented a 

methodology to prune local features to find more important and meaningful features. 

Similarly, other methods from [64], [74], [75] also fall into this BoW category. BoW 

methods gain good performance on some human gesture/action datasets. However, they 

have the limitation of ignoring the temporal and spatial structural properties so as to 

cause failures for handling complex gestures/actions.  

 

In sum, extracting local feature descriptors from ST volumes has several advantages. By 

its nature, background subtraction or other low-level components are generally not 

required, and the local features are invariant to scale, rotation, and translation in most 

cases. They are particularly suitable for recognizing simple periodic actions and big 

movements. The ST local feature-based BoW representation contains more semantics but 

it is weak in terms of describing complex motions in which the internal temporal and 

spatial relations matter. Instead, our approach will exploit both extrinsic and intrinsic 

properties of human gestures/actions and provide qualitative descriptions with more 

semantics. 

 

2.4 GESTURE RECOGNITION  

 

Recognizing complex human activities requires understanding both extrinsic and intrinsic 

dynamic properties. Several different approaches have been studied for gesture modeling 

tasks. In [78], a gesture model can be represented by a Finite State Machine (FSM) where 

the locations of the target object are the points spread in a Gaussian distribution. A K-

means-based training process produces a state sequence on the Gaussian distributed 

sample data. A gesture is recognized if the input feature vectors match all the states along 

a sequence. Two hidden layers of Time-Delay Neural Network (TDNN) are employed to 
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classify the image sequence containing a motion into a particular gesture of the American 

Sign Language [79].  

 

Some other gesture/action recognition approaches use visual word histogram [77], graph 

[80] [81], attribute list [73], or probabilistic models. Among them, graphical models have 

been used with great success to capture the structure of an activity in terms of the 

hierarchy and spatiotemporal arrangement of its components. Hidden Markov Model 

(HMM)-based models are capable of modeling spatial-temporal series of gestures 

effectively. Given the training data of a gesture, HMMs output the probability of the 

observation sequence. The maximum probability is compared with a threshold to 

determine if a gesture is recognized. Several HMM-based sentence-level American Sign 

Language recognition systems were presented in [82], [83] and [84]. More HMM-based 

recognition systems can be found in [85]. The gesture recognition task is tightly bundled 

with the gesture segmentation. Elmezain et al. [86] proposed a HMM system performing 

hand gesture segmentation and recognition tasks simultaneously.  

 

Unlike the HMM, the Conditional Random Fields (CRF) method models the entire 

sequence, avoids the independence assumption between observations, and allows non-

local dependencies between state and observations. Sminchisescu et al. [87] first applied 

the CRF to classify human walking and jumping actions. Yang et al. [88] introduced a 

method for designing threshold models in a CRF model, which performs an adaptive 

threshold for distinguishing signs and non-sign patterns. Since human actions are 

complex, some internal structure cannot be explicitly observed even by human vision. 

Wang et al. [89] introduced a hidden state conditional random field (HCRF) model as a 

gesture class detector, or as a multi-way gesture classifier, where discriminative models 

for multiple gestures are simultaneously trained. HCRF is a variant of CRF, where an 

additional state layer is put into the state graphical model to provide the context relations. 

From their results, HCRFs outperform both CRFs and HMMs for certain gesture 

recognition tasks. Morency et al. [90] provided Latent-Dynamic Conditional Random 

Field (LDCRF) model which is a discriminative approach for gesture recognition. 

LDCRF model combines the strengths of CRFs and HCRFs by capturing both extrinsic 
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dynamics and intrinsic sub-structures. But their HCRF/LDCRF models either just use the 

spatial feature ignoring temporal structures, or just use an oversimplified chain structure 

to model the complex dynamic properties. Recently context information has been 

explored for human action recognition. The recognition method not only focuses on the 

particular objects, but also the behaviors of other nearby objects which provide useful 

cues for recognition. Marszalek et al. [91] exploited scene-action context and 

demonstrated that recognizing the scene type of a video helps the recognition of human 

actions. Han et al. [92] used object-action context, where the context of an action is 

implicitly defined by the objects detected in the scene. Lan et al. [93] used the contextual 

feature representations to encode information about the action of an individual person in 

a video, as well as the behaviors of other people nearby, thus the human actions can be 

classified and recognized accordingly.  

 

Support Vector Machines (SVMs) [142] are a useful technique for data classification, and 

have gained popularity for visual pattern recognition. The Bag-of-Word SVM framework 

has been adopted by many action recognition systems, and outperforms other methods on 

human activity, facial expression, and hand gesture datasets [143]. Wang et al. use this 

SVM framework to evaluate various local spatiotemporal features for action recognition 

[141]. 

 

2.5 GESTURE-BASED VIDEO GAMES  

 

Gesture-based video games are now prevalent in the entertainment industry. Three major 

companies have been making great efforts to make the next-generation video games more 

attractive. Nintendo’s system is a pioneer of gesture based video games. Its gesture game 

platform Wii [26] has been on the market since 2006. The players of Wii games are 

required to hold remote controllers, which have built-in accelerometers and infrared 

detectors, the hand gestures are captured by the non-vision sensor. Thus Wii’s approach 

is different from that of the vision systems. Sony launched its gesture game platform, 

PlayStation Move [27], in September 2010. It is also based on a handheld controller, so-
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called wand, which is equipped with more sensors, such as inertial sensor, linear 

accelerometer, angular rate sensor and a magnetometer.  In addition, it uses a camera to 

track the colored light on the wand which is a strong tracking cue, so that the hand 

position can be tracked precisely. This system does not fully rely on the computer vision 

technologies; other sensors within the controller play roles in the detection of motions.  

 

Microsoft released the Kinect gesture game platform in the November, 2010, which is 

fully controller-free. A Kinect camera is the only sensor capturing the full body 

movements, including jump, run, kick, waving hands, driving, boxing etc. The 

recognition method is purely based on the computer vision technology. There are two 

steps in the Microsoft Kinect system. First, with a 3D camera, a bottom-up human body 

detection approach [94][95] is used to match up the person in an image by recognizing 

3D body skeleton joints based on the models trained from large datasets. The posture of a 

human body is represented by several metrics and parameters; its variant movements of a 

particular gesture are expressed by the distribution in a metric space. Secondly, the 

tracking process is either searching in the metric space by estimating the most likelihood 

[96], or finding a regression function from large training data by estimating the 

relationships among multiple variables [97][98]. Based on these advanced approaches, 

Kinect doesn’t lose track of the human body easily, and is able to track multiple persons, 

making two-player games possible. 

 

The main limitation of the Microsoft Kinect system is that it only captures significant 

motions containing large spatial changes in 3D space, and neglects local gesture details 

(e.g. finger movements, palm orientation etc.). This is because gentle and local motion 

gestures may not be easily modeled in their current systems due to the self-occlusion, 

interference, camera resolution, and other local uncertainties. Our approach attempts to 

overcome such limitations in a systematic, coherent and biologically plausible manner.  

 

 

 

2.6 VISUAL ATTENTION MODELS 
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Visual attention refers to the processes by which some visual information in a scene is 

selected according to the high-level tasks. Two different attentions, bottom-up and top-

down are responsible for performing perception tasks [12]. Bottom-up attention is driven 

by the low level image visual stimuli, and is automatic and task-independent. Top-down 

attention is guided by the tasks and human intention and requires more biological 

computation. The deployment of top-down attention is relatively slow and volition-

controlled. Perceptual Organization (PO) laws play vital roles in the attention process. 

 

2.6.1 Related Terminologies 

 

Here we first briefly introduce several related terms about visual attention and perceptual 

organization. 

 Perceptual organization  

Perceptual organization refers to the visual processes structuring the pieces of visual 

information into coherent units that we eventually experience as environmental 

objects. The Gestalt psychologists suggested that organization is composed of 

grouping and segmentation processes [99], and several stimulus factors determine 

organization. These include grouping factors such as proximity, similarity, good 

continuation, common fate, and closure [100], and factors that govern figure-ground 

organization, such as size, contrast, convexity, and symmetry [101]. Recently, 

researchers have identified additional factors that support grouping: common region 

and element connectedness [102], figure-ground assignment familiarity [103], lower 

region [104], spatial frequency [105], base width [106], and extremal edges [107]. 

 Visual stimuli  

Visual stimuli include basic low-level features, such as color, orientation, motion, 

depth, conjunctions of features. In computational models, visual stimuli can be 

specified with values, variables, or mathematical expressions according to their 

spatial, temporal, and chromatic properties. 

 

 Visual salience  
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Visual salience [108] is related to the biological signals in the human neuro-system 

responding to various visual stimuli, whose local visual attributes significantly differ 

from the surrounding attributes. Visual salience associates the underlying neural 

mechanisms and the internal states of organisms. Rather than quantitative 

measurements, visual salience is the distinct subjective perceptual quality which 

makes some items stand out from their neighbors. 

 Salience map 

The Saliency map is a topographically arranged map that represents visual saliency of 

a corresponding visual scene. A saliency map is formed up by integrating low-level 

visual salience to provide a visual overview for the visual process [33]. The salience 

map is a symbolic representation of integrated visual and spatial information of visual 

salience, and acts as the visual evidence for the selective visual attention deployment.  

 Visual attention 

Visual attention refers to the processes of visual information selection, in particular, 

information that is most relevant to ongoing behavior. Two different attentions are 

responsible for performing perception tasks, bottom-up and top-down. Bottom-up 

attention is stimulus-driven in that the attention is drawn involuntarily by the bottom-

up visual salience. Top-down attention is goal-directed, based on the human 

behavioral goals. If we know, for example, where is the most probable target location, 

we can direct our attention to this location voluntarily.  

 

2.6.2 Computational Models  

 

Several levels of computational models, including low-level feature and object-based 

models, of visual attention deployment have been proposed and implemented in the past 

decades. The object-based attention model is on the top of the hierarchy while low-level 

feature-based visual salient entities provide it with bottom-up visual foundations.   

 

The attention process based on particular features is biased in a way that is optimal for 

detecting a known target. Attention is deployed either directly to the spatial locations, or 

object units by biasing the computation on a saliency map. Some models provide selected 
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attentional “spotlights” at some particular locations in the visual field [109][110]. 

Occasionally, attention is compared to a zoom lens [111], adapting the size of the 

spotlight to the attended area. Deco and Schurmann [9] modulate the spatial resolution of 

the image based on a top-down attentional control signal. The “Selective Tuning” model 

[8] deploys the visual attention for object recognition hierarchically [112]. In the first 

feed-forward pass through this hierarchical system, bottom-up visual stimuli are chosen 

in the Winner-Take-All networks. After forming up top-down selection criteria according 

to the particular tasks, visual stimuli satisfying the selection conditions are enhanced and 

processed in another feed-forward pass hierarchically for ultimate detection. The 

Selective Tuning model has been demonstrated successfully for motion-defined shapes 

[113]. Visual features are biased in the recognition hierarchy by using the mechanism of 

the feature modulation functions. 

 

The attention is deployed on the saliency maps first ever proposed by [33]. The feature-

based attention approach biases the particular features on the bottom-up saliency map. 

Most models of attention and object recognition follow this salience map-based approach. 

In the visual attention model given by Itti et al. [7], the salience map is first implemented 

in the attention process. Several low-level salience features are extracted from the input 

image at multiple scales in feature pyramids, including color channels, luminance, and 

orientations. Center-surround contrasts in these features are computed as differences 

between scales in the respective feature pyramids and, after normalization, stored in 

“feature maps”. A Winner-take-all mechanism is deployed to generate the final salience 

map. As an extended version of [7], Navalpakkam and Itti proposed a computational 

model [6] for the top-down task-specific guidance of visual attention in real-world scenes. 

They model the task influences on visual attention by adjusting the weights of salience 

entities on the salience map. The weights for particular targets are learned from training 

images. Its hierarchical matching recognition method is performed on the salience map 

(selective visual saliency information). Wolfe’s Guided Search model [114] provides 

more theories supporting the salience map concept to explain human behavior in visual 

search for targets, where visual salient features are computed at multiple scales in feature 

pyramids, and a final salience map is generated by a Winner-Take-All method too.  
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Experimental evidence suggests that attention can be also tied to objects, object parts, or 

groups of objects [115]. Object-based attention captures a variety of effects ranging from 

spatial limiting attention to the optimal feature biases for a particular search target. By 

treating attention as a by-product of a recognition model based on Kalman filtering, 

Rao’s system [116] can attend to spatially overlapping (occluded) objects on a pixel basis. 

[117] modeled the object-based attention when objects are even not clearly separated. 

Their system can segment superimposed handwritten digits on the pixel level. Rolls and 

Deco [118] modeled object-based attention by shrinking the size of the receptive field of 

neurons to match the size of the attended object. Object-based attention is at the top of 

the attention hierarchy. By spreading of feature-level attention over a contiguous region 

of high activity in the salience map, a model from [12] thus obtains an estimate for the 

size and shape of the attended objects. Closely following and extending Duncan’s 

Integrated Competition Hypothesis [10], Sun and Fisher [11] developed a framework for 

object-based and location-based visual attention using “groupings”. Presented with a 

manually preprocessed input image, their model replicates human viewing behavior for 

artificial and natural scenes. Obviously grouping laws of perceptual organization play 

roles in object-level attention, such as the continuity connectedness, closure and so on. 

 

2.6.3 Salience in Spatiotemporal Space 

 

Recently attention model-related approaches have been applied to emerging applications 

such as video classification, event detection and activity recognition. The concept of 

saliency detection in spatiotemporal neighborhoods has been used for spatiotemporal 

analysis. Examples are the STIPs by Laptev [68], Cuboids [70], efficient space-time 

detector based on the determinant of the 3D Hessian matrix [121], dense spatiotemporal 

saliency [72], extended spatiotemporal salient point detector by Oikonomopoulos et al. 

[18], etc. Itti and Baldi [120] proposed a model of salient event detection on videos. They 

formulate the saliency as the KL divergence between the posterior and prior beliefs of an 

observer about the scene. In fact, this model extends the spatial center-surround contrast 

to the spatiotemporal domain. A saliency map of visual attention for hand spatiotemporal 

patterns was proposed in [16] for hand gestures recognition, where selective visual 
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features make the recognition efficient. A top-down visual attention model in an 

interactive gaming environment was recently presented to evaluate various task-relevant 

factors for attention deployment [17].  

 

Inspired by models related to visual attention, salience map and perceptual organization, 

we study the hierarchical models of salience maps incorporating perceptual organization 

laws, and propose a 3D gesture/action recognition framework based on hierarchical 

visual attention and perceptual organization models.  

 

2.7 SUMMARY  

 

It is essential for a visual analysis system to detect and select effective low-level visual 

salience features for building semantic representations. Among a variety of approaches, 

global-based salience features can be obtained efficiently, but they are unable to describe 

complex details. Local salient features provide effective visual description but usually 

involve high computational costs for extraction. Based on the extracted local salience 

features, local spatiotemporal descriptors contain more semantics about gestures; and 

BoW-based representations reportedly outperform others in the recognition and 

classification tasks. But the local descriptor + BoW representation is still weak for 

describing human activities with complex internal temporal and spatial relations. Instead, 

our approach exploits both shape-based extrinsic and intrinsic properties of human 

gestures/actions. The local shape-based salience is extracted by scanning an image using 

a pre-defined interval grid without involving heavy computation. The extracted shape 

salient entities, i.e. a set of genetic shape tokens and structure critical points are in the 

same spirit of salient point-based features, with more semantics. Theories and hypotheses 

of visual attention, salience map and perceptual organization shed light on the 

mechanisms of human vision perception. Inspired by the existing visual attention models, 

our 3D gesture/action recognition framework provides a complete gesture recognition 

solution in a systematic, coherent and biologically plausible manner.   
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CHAPTER 3 3D SHAPE-BASED FEATURE SALIENCE 

3.1 INTRODUCTION 

 

A fundamental problem of image and video understanding is how to efficiently select 

effective visual salience among numerous low-level features and build an appropriate 

representation for semantic computing. Not every visual stimulus links to visual saliency 

attracting human visual attention, only the one whose local visual attributes significantly 

differ from the surrounding attributes will trigger the biological neuron signals in the 

brain system. To mimic the human visual mechanism, we need to extract perceptual 

salient features from images, which can effectively capture the visual attention to the 

target objects. Color information is relatively easy to obtain, and therefore, is popularly 

used in many vision systems. Obviously, the color-based methods will fail for the images 

whose colors are not available. Texture features provide more spatial or relational 

information than colors. Tamura et al. [122] proposed a set of texture patterns that 

contain six features selected by psychological experiments: coarseness, contrast, 

directionality, line-likeness, regularity and roughness. The limitations of texture features 

are that they are not generic for different applications and some methods involve high 

computation costs and implementation complexity [123].  

 

Human visual perception largely relies on shapes, i.e. it can perceive a scene based on 

object contours alone without using color and texture information. Many shape-based 

image analysis techniques use Fourier description and moment invariant-based 

representations which contain a less semantic interpretation of human perception [124].  

Most edge-based methods emphasize the global shape properties which often result in an 

inability to provide local details. Contour shape is one of the basic object features which 

can be discriminated effortlessly by human vision. Efficient shape feature extraction is 

crucial for visual semantic computing. The research discoveries from neuroscience 

provide us with useful insights on the generic human vision criteria. Perceptual 

Organization (PO)-based Perceptual Curve Partition and Grouping (PCPG) [125][126] is 

a shape perception model in which each contour is made up of Generic Edge Tokens 
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(GET) connected at Curve Partitioning Points (CPP). These perceptual features (GETs 

and CPPs) directly link to the visual salience entities, and their corresponding 

representation provides the bottom-up salience maps for high-level visual understanding. 

Zheng, et al. [127] presented a method that converts an image into an edge saliency map 

made up by Generic Edge Tokens (GET). In that approach, GET features encode both 

contour and texture content of an image according to the distribution of different GET 

types. Even with this oversimplified schema, GET salience-based representation is able 

to handle challenging image analysis tasks such as CBIR [127], visualization tool [128], 

and image segmentation [129]. Despite the proven power of the perceptual shape-based 

salience entities, issues of implementing the PCPG model remain unsolved, i.e., that 

conventional gradient-based measures often miss some CPPs if their gradient evidence is 

weak, therefore it will eventually affect the performance of classification [130] and 

recognition tasks.  

 

To provide better feature level salience maps for high-level interpretation tasks, in this 

chapter, one of our goals is to improve the accuracy of CPP detection and GET 

classification by using a non-parametric statistical method. The approach includes: 1) 

Instead of using gradients, introduce an arctangent space to make the CPP evidence more 

measurable. 2) Utilize the pixel sequential order along a curve as the heuristic to improve 

the CPP detection accuracy. 3) Design a new CPP evaluation method including a Zero-

Crossing scheme for locating strong CPPs, and an Order Preserving Arctangent Bin 

Sequence (OPABS) scheme for detecting weak CPPs. Since 2D data alone has less ability 

to describe human activities in 3D world, the second goal in this chapter is to provide the 

3D perceptual shape-based salience entities by integrating both 2D CPPs/GETs and 

spatial data from a 3D camera.   

 

The proposed OPABS scheme is a non-parametric statistical method [131] utilizing both 

local and global measures from the curve sequential data. Visual saliency based image 

representations, such as SIFT [132][133], have been widely recognized in the computer 

vision community. The extracted 3D shape salient points (CPPs) and generic shape 

segments (GETs) by our method are in the same spirit of the keypoints in SIFT, and 
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easily link to the 3D objects supporting top-down object level operations. GET/CPP 

based bottom-up image descriptors (salience maps) are able to bridge the semantic gap.  

 

3.2 2D PERCEPTUAL SHAPE SALIENCE  

 

The human vision system is able to partition a perceived scene into perceptual elements 

then group them into meaningful clusters related to the known objects [134]. A 

Perceptual Curve Partitioning and Grouping (PCPG) model [125] was proposed to mimic 

the function of human perception in partitioning and grouping object contours from 

images. In this PCPG model, 2D curves are partitioned into a minimum set of Generic 

Edge Tokens (GET) types (Figure 8(a)) which are connected at Curve Partitioning Points 

(CPP) (Figure 8(b)). Each GET type satisfies a unique combination of monotone 

increasing or decreasing in x-y geometry [126].  

 

CPPs are the salient points on edge curves. Some of them can be found where the 

monotone properties along an edge are broken. They are the so-called Strong CPPs, and 

their properties of x-y geometry and tangent values stand out from their neighbors 

(Figure 8(b)-(1~3)).  In other cases, some shape critical points cannot be detected by only 

checking the monotone conditions. For instance, in Figure 8(b)-(4~6), the marked points 

are visually special to human vision perception, but the changes along these traces do not 

violate the monotonic properties. To distinguish the differences, we call the partitioning 

points in Figure 8(b)-(4-6) weak CPPs, which are still perceptually critical points, but 

without breaking the continuities of the monotonic properties. 

 

In the previous CPP detection module [130], strong CPPs are detected by checking the 

gradient data, and weak CPPs are verified by a gradient-based curvature method. The 

challenge is that the gradients of the pixel intensity are unstable, and the local curvature 

method is sensitive to the edge noise and lack of global views for making right decisions. 

Inevitably, the local curvature-based detector often misses weak CPPs and brings some 
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false positives due to the impacts of the local maximum and noise data, therefore causes 

misclassification on GET types. 

 

 

3.3 CPP DETECTION METHOD 

 

In this section, we present a non-parametric statistical method for CPP detection and GET 

classification. Figure 9 illustrates the system workflow. The approach takes advantage of 

edge trace geometric properties to extract dx and dy values of each edge pixel. By using a 

local method to check the zero-crossings of dx and dy, strong CPPs are identified, and 

Figure 8     An illustration of GET and CPP types 

(a) 8 type GETS; (b) Different types of CPPs, most CPPs are view and 

rotation invariant except type (3) floating if the curve is rotated. 

(a):   (1)    (2)    (3)      (4)      (5)      (6)      (7)      (8) 

(b):    (1)            (2)            (3)  (4) (5) (6) 

 

Figure 9     Workflow of the feature detection approach. 
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then an edge trace is partitioned into raw segments. According to the application demands, 

raw segments can be further partitioned into finer segments by applying a weak CPP 

detection method. A proposed global approach, Order Preserving Arctangent Bin 

Sequence (OPABS) scheme, is used for the weak CPP detection. OPABS scheme is a 

distribution-free method which does not rely on assumptions that the data are drawn from 

a given probability distribution. It is a non-parametric statistics based method. 

 

3.3.1 Geometric Properties of Edge Shapes: dx, dy  

 

Instead of using unreliable pixel intensity-based gradients, geometric properties, dx and 

dy of each edge pixel are derived for CPP detection and GET classification. A Tangent 

Sliding Window (TSW) is used to determine each pixel’s dx and dy. The TSW is a 

minimal rectangle box to enclose several edge pixels that are the neighbors of the pixel 

(in the middle) which dx and dy are calculated for. The window size of the TSW is the 

number of the pixels within the TSW, and must be an odd value. The TSW size is a 

granularity and scale related parameter, which can be set accordingly. The minimal size 

is 3. Here we use 5 as the size since it empirically gives better performance. Once a TSW 

is set, dx and dy of a pixel can be obtained as the differences along x and y within the 

TSW. Specifically, take two end pixels from the TSW, dx is the difference between both 

endpoints in X, and dy is the difference between both in Y. In Figure 10, the TSW size is 

5, two endpoints of the small segment within the TSW are N1 and N2, dx and dy of P are,  

P’s dx = N2.x – N1.x,     (3.1)  

P’s dy = N2.y – N1.y.     (3.2) 

Since dx dy values indicate the pixel’s slope along the trace, the changes of dx and dy 

along the curve reflect the curve’s shape property. 

Figure 10    dx dy calculation for each edge pixel.  

N1 and N2 are 2 endpoints of the segment enclosed in the TSW whose 

size is 5.  P’s dx=4, P’s dy=3. 
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3.3.2 Strong CPP Detection  

 

A strong CPP always corresponds to a GET junction along the curve where a generic 

criterion of a GET type is terminated, and its dx or dy value must cross a zero point. In 

Figure 11, the edge trace has two straight lines jointed at a strong CPP which is marked 

by a red circle. The grid shows pixels within the red circle in an enlarged view. Each cell 

of the grid is a pixel. The right side table in Figure 11 shows the dx and dy values of 

corresponding edge pixels in the grid. P1 locates at the starting end, while P13 is at the 

end. As we can see in the table, from the P1 to P13, the sign changing of the dx values 

occurs between P5 and P6. Consistently, P5 are P6 are visually the monotonic changing 

points of the original edge trace. Thus, a strong CPP can be detected by observing the dx-

dy sign changing (zero-crossing) scheme. 

 

A weak CPP is also a shape salient point of an edge trace. Even though the differences 

from both sides of the weak CPP are not big enough to be treated as monotone changing, 

the saliency is visible and the continuity along the trace is broken. However, changes of 

weak CPPs cannot be detected by a Zero-Crossing scheme. In Figure 12, we see that P7 

or P8 is a salience point perceptually, but the signs of their dx and dy values along the 

edge trace are unchanged. The detection method used for strong CPPs does not work for 

weak CPPs. 

 

Figure 11    Sign change (zero-crossing) of dx dy scheme for strong CPP detection. 
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3.3.3 Order Preserving Arctangent Bin Sequence 

 

To detect weak CPPs, we introduce a new histogram representation which uses 

arctangents derived from dx and dy, and preserves the order of pixels on the curve. This 

representation can rearrange the data to signify the evidence of weak CPPs. The formula 

converting dx and dy into an arctangent value is:  

 

 

(3.3) 

 

 

 

By applying this formula (Eq. 3.3), edge pixels along a curve are converted into an 

arctangent degree sequence. For example, Figure 13(a) and (b) show a polygon and its 

corresponding arctangent degree sequence respectively. The Y axis in Figure 13(b) 

represents the value of a pixel’s arctangent degree, and the X axis is the sequence order 

of edge pixels. The numbers labeled on the edge trace are the salient points that human 

vision can perceive, and their corresponding positions on the right side arctangent 

sequence are marked accordingly. As we can see, the arctangent degree values between 

every 2 marked salient points along the sequence fall into a limited range around a 

particular degree value because their corresponding edge pixels have similar slopes. For 

the circle edge in Figure 13(c), the majority of arctangent degree values in Figure 13(d) 

between 2 salient points are presented as a tilted line since the slopes of their 

corresponding edge pixels are gradually changing in a certain trend (decreasing). It is 
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Figure 12    Weak CPP cannot be detected by zero-crossing schema. 
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worth noting that, on the polygon edge trace (Figure 13(a)), point 2, 3, 4, and 6 are the 

weak CPPs which have evidence as obvious as the strong CPPs do in the arctangent 

space. The arctangent degree sequence well reflects the shape properties and provides a 

different view with less ambiguity for CPP detection. 

 

Based on the properties of the arctangent degree sequence, we propose an Order 

Preserving Arctangent Bin Sequence (OPABS) histogram as the representation for better 

CPP detection. Arctangent degree values are evenly classified into eight discrete 

categories each of which covers a range of slopes (Table 1). 

 

Table 1      Categories of Arctangent degree values.  

 

Category Cat-0 Cat-1 Cat-2 Cat-3 Cat-4 Cat-5 Cat-6 Cat-7 

Degree 

Range 
-90, -67.5 -67.5, -45 -45, -22.5 -22.5, 0 0 , 22.5 22.5, 45 45 , 67.5 67.5, 90 

Figure 13    Edge traces and their corresponding arctangent sequences. 

(a) polygon edge trace          (b) arctangent sequence of the polygon edge trace 

(c) Circle edge trace        (d) arctangent sequence of the circle edge trace 



43 

 

 

For any edge trace, arctangent degrees are calculated for all pixels, and then are mapped 

to corresponding bin categories according to Table 1; finally the OPABS histogram is 

aggregated accordingly. For example, the edge trace in Figure 12 contains one weak CPP. 

The mapping and aggregating results are illustrated in Table 2 and Table 3. There are 

three types of information in Table 3: bin order, arctangent category and bin size.  

 

 

Table 2      Arctangent degrees and their categories of the example trace in Figure 12. 

 

Pixel dx dy Arctangent degree Arctangent Category 

P1 1 4 75.96389 Cat-7 

P2 1 4 75.96389 Cat-7 

P3 1 4 75.96389 Cat-7 

P4 1 4 75.96389 Cat-7 

P5 1 4 75.96389 Cat-7 

P6 1 4 75.96389 Cat-7 

P7 2 3 56.30995 Cat-6 

P8 3 2 33.69009 Cat-5 

P9 4 1 14.03626 Cat-4 

P10 4 1 14.03626 Cat-4 

P11 4 1 14.03626 Cat-4 

P12 4 1 14.03626 Cat-4 

P13 4 1 14.03626 Cat-4 
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Table 3      A bin sequence after aggregating based on Table 2. 

 

Order Category Pixels Size 

1 Cat-7 P1-P6 6 

2 Cat-6 P7 1 

3 Cat-5 P8 1 

4 Cat-4 P9-P13 5 

 

 

There are 4 bins in Table 3, and their arctangent categories are Cat-7, Cat-6, Cat-5, and 

Cat-4 respectively. The first and the last bins contain more pixels, while the second and 

the third bins only have 1 pixel for each. In Figure 14(a), it is the 3D bin sequence 

derived from Table 3. The X axis is the bin order and the Y axis represents the arctangent 

categories from cat-0 to cat-7. The Z axis is the bin size. The shape along the bin 

sequence is like a valley, with 2 peaks on the both ends. If we project this 3D bar chart 

into the 2D order-size (x-z) view, we would have a clearer picture of this valley shape of 

the bin sequence with respect to the bin size (Figure 14(b)).  During the OPABS 

construction, no pre-specified assumptions are required, the distribution of the pixel 

density is only determined by the arctangent data. 

 

(a) 3D bin sequence          (b) Size-bin view         (c) Category-bin view 

 

Figure 14    3D column bar sequence of the bins sequence and its projected 2D 

views for the edge in Figure 12. 
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In Figure 14(b), the 2nd and 3rd bins with smaller sizes in fact are the transition area of 

the edge trace. Project this 3D chart (Figure 14(a)) into a 2D order-category (x-y) view, 

the arctangent changing trend is clearly presented in Figure 14(c), the arctangent values 

are decreased from Cat-7 to Cat-4 along the bin order. This OPABS histogram 

representation has the following properties: 

 data points within a bin share the same slope category. 

 only the consecutive pixels sharing the same slope category will be grouped into a bin, 

and the pixel sequence order is still preserved within a bin.  

 the size and the arctangent category along the bin sequence reflect the edge shape 

properties. 

 

3.3.4 Weak CPP Detection 

 

Our goal is to detect weak CPPs effectively, which are the breakpoints of the continuity 

of the shape property. From the previous bin sequence examples, we know that each bin 

is a segment of a trace that contains data sharing a same property, i.e. arctangent degree 

category. So each location between 2 neighbor bins is the transitioning spot between 2 

sets of edge pixels with different properties, and is the possible CPP position. It is worth 

noting that not every bin is a valid segment according to our GET definition because the 

differences between neighboring bins do not mean the discontinuity happens. There are 2 

types of continuity on the bin sequence. One is the bin sizes along a bin sequence. If 

some bin sizes are relatively similar, or, keep increasing or decreasing gradually, it means 

no changes, or, no sudden changes in terms of the sizes. The other type of continuity is 

regarding the arctangent categories. As the arctangent categories represent the slopes of 

the edge curve, the changing trend of the arctangent categories reflects the slope changes 

of an edge shape. If the changing trend of categories keeps consistent, either decreasing 

or increasing, or unchanged, the continuity is preserved. Otherwise, the edge should be 

partitioned because of the discontinuity. 

 

Having had a bin sequence of an edge trace extracted, we detect the weak CPPs 

according to the properties of a bin sequence. There are two criteria to locate the CPPs.  
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Peak-Valley-Peak 

The Peak and Valley are the terms to describe the relative sizes of neighboring bins. If 

there is a peak-valley-peak shape formed on the bin sequence, the CPP might locate 

within the valley bin, and the middle pixel of the valley bin is the CPP. Peak-valley-peak 

shape means that, at the beginning, many edge pixels’ arctangent degree values belong to 

one category, thus the one side of the peak is formed. Later, the properties (slopes) of the 

following fewer pixels’ have changed into other categories (bins). Since the number of 

pixels in this category(s) is much smaller, a cliff is formed. Then the slopes of following 

pixels are changed again, and all fall into another bin with large pixel population. Thus, 

along the bin sequence, another peak shows up to form a complete Peak-Valley-Peak 

shape. The pixels in valley bin(s) are leading the change. A metric Peak_valley_ratio is 

used for detection 

sizebinValley

sizebinPeak
ratiovallyPeak

__

__
__  ,     (3.4) 

where peak_bin_size and valley_bin_size are the bin pixel numbers. A trained threshold 

is used to determine the segmentation decision. Peak_valley_ratio should be used to 

check both sides of a valley. Once the peak-valley-peak shape has been confirmed, the 

CPP must be somewhere within the valley bin(s). Since in most cases, valley area has 

few pixels, whichever pixel within the valley bin is picked as the CPP will not affect the 

overall segmentation performance. For the sake of simplicity, we take the middle pixel of 

the valley bins as the CPP. Figure 15(a-d) show an example. 

 

Changing Trend of Arctangent Categories  

Besides the bin size changing, the arctangent category changing trend is used for CPP 

detection for the other scenario. If the arctangent category changing trend keeps 

unchanged, the continuity is preserved. Otherwise, the continuity is interrupted. More 

specifically, if the arctangent category changing trend is either increasing (Cat-1 to Cat-7), 

or decreasing (from Cat-7 to Cat-1), the continuity is preserved; otherwise, the continuity 

is broken and a CPP can be detected within the critical bin or its neighbor bins depending 

on the local extreme. See the example in Figure 15(e-h), a 3D size-order view of the bin 

sequence, from the left to the right, overall the size keeps decreasing until reaching the 7
th
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bin. Then the bin size has a big high jump on the 7
th

 bin place. But the bin shape is not a 

peak-valley-peak since the size changing on the left side of the 6
th

 bin is gradually 

decreasing and the size ratio (Eq. 3.4) probably less than a defined threshold. Thus, it 

does not meet the condition of the peak-valley-peak scheme. However the discontinuity 

can be found on the other 2D arctangent category view. The arctangent categories along 

the bin sequence are Cat-3, Cat-2, Cat-1, Cat-0, Cat-1, Cat-2, Cat-3, Cat-4 from the 2D 

category-bin view in Figure 15(h). The changing trend is broken at the 4
th

 and 5
th

 bin 

places. The arctangent bin categories are decreasing from Cat-3 to Cat-0, and starting to 

increase from Cat-0 to Cat-4, and then majority pixels fall into 7
th

 bin with Cat-3. The 

continuity of the arctangent degree values’ changing trend is broken at 4
th

 and 5
th

 bins. So 

the CPP should be located between 4
th

 and 5
th

 bins. Since the original pixel order is 

persevered within each bin, either the last pixel of the 4
th

 bin, or the first pixel of the 5
th

 

bin, would be the exact CPP in this case. 

 

From this OPABS scheme, the location of weak CPPs can be determined based on the 

global statistics along the curve by analyzing its projected 2D views. The detection 

method takes advantage of pixel sequential order information, uses the trends of both bin 

sizes and arctangent categories, and utilizes both global and local views. Thus, they are 

Figure 15    Two criteria for bin segmentation. 

 

(e)        (f)   (g)   (h) 

(a)              (b)   (c)               (d)  
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more generic for different types of images and robust to noise. Here is the algorithm of 

this detection method: 

 

Algorithm 1. CPP detection and curve partitioning 

1 
Scan the image with interval and put all edge pixel candidates in a 

candidate_array  

2 For Each candidate Edge pixel in the candidate_array  do 

3 Find an edge trace, and store edge pixels in a trace_pixel_array 

4 For all P(i) in trace_pixel_array do  

5 Set up the initial signs of dx dy 

6 check the signs of dx and dy for each P(i) 

7 If sign changed then  

8 Take this point as a strong CPP, put into a CPP_array 

9 Construct OPABS for pixels btw 2 Strong CPPs 

10 Check size-order space of the OPABS 

11 If there is a size valley along the bin order, then  

12 partition the bin sequence, store  into a Bin_segment_array 

13 End if  

14 For each Bin_seg[j] in Bin_segment_array do 

15 Check the category-order of the (segmented) bin sequence  

16 If the category trend is changed then  

17 Bin_seg[i] is further partitioned 

18 End If  

19 Classification for each partitioned sub bin sequence 

20 End For 

21  End If 

22 End For 

23 End For 

Figure 16    Algorithm of the CPP detection. 
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3.4 GET CLASSIFICATION 

 

Generic Edge Token (GET) classification is another goal of the OPABS approach. After 

an edge trace has been partitioned into generic segments, we need to identify their types. 

According to the PCPG model, there are eight GET types which can be further 

generalized into 2 perceptual classes: curve and straight line GETs. So we can have a 

hierarchal classification structure of GETs (Figure 17). We focus on the first level 

classification, i.e. to identify curve and straight line GETs. Once the straight line and 

curve GET types have been classified, the further GET classification could be easily done 

by checking the topologic properties of a small number of pixels. 

 

Figure 17    Hierarchal classification structure of Generic Edge Tokens (GET). 

 

Straight Line 

For a straight line GET, its pixels have the similar slope, and belong to a same arctangent 

category. So for its bin sequence, one bin must have a large size, and the rest of them are 

with much less pixel population, which are treated as noise data (Figure 19).  

 

Curve 

For a curve GET, the slopes of pixels are either increasing or decreasing monotonically, 

and the size changes of its arctangent degree bins are smoothly. For example, in Figure 

20, the major bins’ category changing trend is Cat-7, Cat-6, Cat-5, and Cat-4, in a 

decreasing trend (first 2 bins are ignored as their sizes are relatively small). There is no 

peak-valley-peak bins on the sequence. So it is a curve. 

 

After segmentation, there are only 2 types of bin sequence segments, one is with a size 

Straight Line Curve 

GET 
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peak on its bin sequence, the other is without a peak bin but has the bins with same 

changing trend of arctangent categories along the bin sequence. Thus, decision making 

for the straight line/curve classification is in fact simply based on the peak’s validation 

within a segmented bin sequence. If there is a peak within a bin sequence, it is a straight 

line; otherwise, it is a curve.  

Classification Algorithm: 

Algorithm 2. Segment_Classification 

1 Find a bin with maximum size within the bin sequence 

2 Calculate the average bin size of the rest bins 

3 Calculate the bin size’s derivates   

4 If derivate<Threshold  then  

5     It is a curve 

6 Else if the max_size >threshold_1 then 

7 If (Max_size / average_size) >  threshold_2 then 

8                     It is a straight line 

9               End if 

10 End if 

11 End if       

Figure 18    Algorithm of GET classification. 
 

Time complexity is O(B), here B is the number of the bins.  

For further classification of curve and straight line types, it could be done by simply 

analyzing the geometric property, i.e. spatial data of both endpoints of a segment.  
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3.5 EXPERIMENTAL RESULTS 

 

Figure 21 provides brief comparison results. The top one is the original image, Figure 

21(a1) shows the CPP detection results from the local gradient curvature-based method 

[130] which brings some noise (circled). Figure 21(a2) is from the new method which is 

not only able to detect both strong and weak CPPs, but also suppress the noise CPPs. 

Figure 21(a3) and (a4) demonstrate the classification of GETs into straight line and curve 

categories. Figure 22 and Figure 23 show two types of images (i.e. indoor and outdoor), 

their extracted edges, and detected CPPs. The proposed CPP detection method provides 

promising results.  

Figure 19    Straight line classification.  

(a) a straight line. (b) 3D view of the bin sequence. (c) 2D view of the bin. 

sequence. 

(a) (b) (c) 

Figure 20    Curve Classification. 
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Figure 21    Comparison results with the previous method. 

(a1)      (a2) 

(a3)      (a4) 
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Figure 22    Example results from an indoor scene image. 
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Figure 23    Example results from an outdoor scene image. 
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3.6 3D PERCEPTUAL SALIENCE 

 

The shape-based salient features, CPPs and GETs, extracted from 2D images only 

contain 2D X-Y pixel values without 3D spatial information. To allow computers to truly 

understand the visual world, one key is to formulate the vision problem in terms of the 

underlying 3D scene, applying real-world knowledge to gain a 3D spatial understanding 

of the objects and the scene contents. As we stated earlier in Chapter 1.4, there are mainly 

2 ways to obtain 3D data: estimate the depth data directly from 2D images according to 

some prior knowledge, and retrieve the depth data from advanced 3D cameras. Here we 

use a low-cost Kinect camera to get the 3D spatial data, and provide 3D GETs and CPPs.  

 

A Kinect camera provides 2D color VGA (640×480) images with an aligned depth data 

array for each. Each pixel of a VGA image has a depth value from 0.10m up to 2m. A 

depth image can be derived by scaling each pixel’s depth data into the intensity range [0-

255]. Figure 7(b-c) show the color image and its corresponding gray scaled depth image, 

where the brighter intensity means closer distance to the camera, vice versa. Figure 7(d) 

shows the extracted GETs/CPPs. Besides the depth data (Z), each pixel of a depth image 

also contains horizontal (X) and vertical (Y) spatial values, which are obtained according 

to the basic geometry principle (see Figure 24) and camera parameters: 

    
         

            
 

    
         

            
 

where X_Image and Y_Image are the object size in an image, and are calculated by 

multiplying the pixel number by the pixel pitch size.  

X_Image = X_pixel × pitch_size 

Y_Image = Y_pixel × pitch_size 

Both focal_length and pitch_size are the camera intrinsic parameters. From the 

specification of the Kinect camera, the focal_length is 120 mm and the pitch_size is 0.2 

mm. 
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3D CPPs and GETs can be obtained by mapping the spatial data (XYZ) to the extracted 

2D GETs/CPPs. An example illustrating the 3D features is given in Figure 25, in which 

the 2D edge pixels (Figure 25(b)) are extracted from a grayscale image. Having had the 

aligned depth image (Figure 25(a)), each edge pixel is mapped into a pixel in the depth 

image on a one-on-one basis. 3D data of each edge pixel needs to be denoised by using 

an n×n local window which covers all neighbors and itself (3×3 filter in Figure 25(c)). 

Depth value of each edge pixel is smoothed by a median filter [137], 

                          
  

,    (3.5) 

where Ni is a pixel within the filter window, Depth(Ni) is Ni’s original depth value, n is 

the filter window size which can be specified by users. The 3D Xs and Ys for the edge 

pixels are obtained in a similar way, 

                        
  

,    (3.6) 

                        
  

,    (3.7) 

We are living in 3D world; 2D visual data inevitably creates barriers for vision perception. 

Thus, we assume that 3D visual data contains more semantics and server better for 

recognition tasks. GETs and CPPs equipped with 3D data gain more ability to describe 

the 3D salience which directly links to the object in 3D space.  

Y in 3D 

Y in image 
Depth 

 Camera focal length 

Figure 24    Object size calculation. 
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3.7 CONCLUSION  

 

Extracting feature level visual saliency is crucial for building a representation attracting 

visual attention. In this chapter, we first introduced a non-parametric statistical-based 

method to implement and improve a PO-based curve partition and grouping model for 2D 

shape-based salience feature extraction. In this PCPG model, the generic perception 

criteria of curve partition and grouping are simulated by utilizing the patterns of 

sequentially ordered curve pixels and the bin statistics of the slope property. The 

partitioned segments are easily classified into straight line or curve tokens by using the 

same generic criteria generated during the curve partition. The experiments demonstrate 

its strength for handling complex images efficiently and effectively. The GET and CPP 

types are useful shape elements for supporting image semantic computing, and can be 

further extended by grouping GETs and CPPs to build a comprehensive image language 

for shape based content coding, pattern recognition and indexing. Secondly, by 

integrating XYZ data from a depth sensor, Kinect camera, 3D shape-based visual salience 

entities (3D GETs/CPPs) are able to describe the objects and the scene context in visual 

world. 3D GETs and CPPs-based image representation is the salience map at the feature 

level; it provides selective information reflecting the visual importance for high-level 

interpretation tasks. 

  

(a) Depth image  (b) 2D Edge  (c) 9-grid neighbors 

Figure 25    3D Edge pixels of an object. 
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CHAPTER 4 3D OBJECT SALIENCE FOR BODY PART 

CLASSIFICATION  

4.1 INTRODUCTION 

 

Human gestures and actions are the spatial-temporal patterns presented in frames from 

visual sensors. Human body poses from individual frames reflect the static status 

(snapshot) of a gesture or action at a certain moment. A set of ordered 3D body poses 

further provide context characteristics for inferring the high-level interpretation of human 

gestures/actions in 4D spatiotemporal space. Therefore, body pose estimation is crucial in 

human gesture/action recognition systems. In the previous chapter, we introduced a 

method extracting bottom-up feature level visual salience entities, 3D GETs/CPPs, from 

each 3D image. Now, we describe how to utilize top-down prior knowledge to enrich the 

feature level salience map for selecting and grouping effective visual salience at the 

object level; and how to build the object level salience map for pose estimation.  

 

The articulated human body structure can be mainly divided into several parts including 

head, torso and four limbs, and has high degrees of freedom. Recognizing the 

complicated body structure from real-time visual stream data is a challenging object level 

operation task due to 1) wide variance range of human body shape; 2) motion variants; 3) 

self-occlusion and 4) impacts of the environmental condition (lighting, noise, view point 

etc.). To achieve reliable performance of body pose estimation, a divide-and-conquer 

method is often applied to accurately segment and label individual body parts first [145]. 

And then, a robust grouping operation is used to derive the body poses. Previously, 

researchers have made efforts to develop effective approaches for body part 

segmentation, classification and pose estimation, such as stick figure modeling, blob 

model [138], and some of them have achieved encouraging performance for specific 

applications. However, it seems that there is no existing generic solution that satisfies all 

expectations, i.e. to be easily applied to real-time applications under all circumstances. 

One of the major issues is that the gap between low-level features and the motion 

perceptual semantics could not be well bridged. We present a visual attention and 



59 

 

perceptual organization model-based approach which selectively extracts, classifies, and 

groups low-level features into object level visual salience for body pose estimation.  

 

Body part classification is required prior to pose estimation. They both are top-down 

tasks that need the supports from the bottom-up information. In this chapter, we first 

introduce an approach that utilizes the top-down body structure prior knowledge to enrich 

the feature level salience map for body part classification. Here we assume that a single 

person’s actions are captured by a 3D camera in a front view, and task-specific prior 

knowledge and definitions, such as human body structure, kinematic constraints are 

known. The Bottom-up salience entities (3D GETs/CPPs) combined with top-down prior 

knowledge provide enhanced visual evidence for information selection. Several laws of 

perceptual organization (PO) play roles during the visual feature grouping. The 

constructed feature-level salience maps provide reduced search space and strong 

heuristics for body part detection and tracking. 

 

Secondly, the outputs of body part classification, classified 3D body CPPs, are the object 

feature data containing rich spatial distribution information and semantics for body pose 

estimation. According to prior knowledge, body poses of most human gestures and 

actions mainly are contributed by the limb states. The areas that limb CPPs spread out are 

salient region where a limb tree is built as the salience index for searching. Tree traversal 

criteria encoding prior pose knowledge are imposed to assign weights on individual 

salience entities (i.e. Limb CPPs). The updated object level salience map contains 

selected regions for pose estimation. Experimental results show the performance of the 

proposed approach. The overall architecture of our solution is illustrated in Figure 26. 
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4.2 BODY REFERENCE ESTIMATION  

 

Before detecting individual body parts, we first estimate the overall location of the human 

body. According to the environmental setting, suppose there is only one person in the 

FOV, all visual salience entities (3D CPPs/GETs) in the scene are related to the human 

body after removing noisy data. The human spatial location could be preliminary 

represented by a centroid of a largest pixel mess illustrated in Figure 27(b). Instead of 

considering all pixels in an image, we use a polygon as the representative of the pixel 

mess, and the center of polygon is taken as the mass centroid. The polygon is a hexagon 

(may not be a regular one) that consists of 2 the highest CPPs (at the top), 2 lowest CPPs 

(at the bottom), the most left and right CPPs. If the most left or right CPP sits on the same 

place of one of 4 top and bottom CPPs, the second left or right one will be chosen (Figure 

27(a)). The centriod (Cx,Cy) is calculated from 6 vertices of the hexagon: 

3D CPP/GETs 

Pose estimation 

Figure 26    Architecture of body parts classification and pose estimation. 
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where xi, yi are the coordinates of hexagon vertices, A is the area of this hexagon.    

 

Based on the body centriod, a vertical line across the centroid is called central line of the 

body in Y direction, ending at the Y positions of both top and bottom boundaries of the 

hexagon. Its length is approximately the height of the human if the full body appears in 

FOV. Similarly, a horizontal line across the centroid, ending at the X positions of the 

most left and right boundaries of the hexagon, is taken as a baseline. The length of the 

baseline approximately equals the width of the human body. Note that depth positions of 

both lines are derived from the 3D pixels of the region they pass through. The 3D 

location of a single human body can be roughly represented by both lines (Figure 27(b)), 

and acts as an important cue for individual part recognition. 

4.3 CPP-BASED HEAD DETECTION 

 

Compared with the other body parts, spatial and appearance properties of the human head 

are relatively unique and have fewer variants and ambiguities. The human head is easier 

to be identified than other parts, and can be used as the strong heuristic for inferring other 

body parts. The head can be found once the face has been detected. There are many 

existing libraries/algorithms for face detection [139]. However, those face detection 

algorithms require more computation costs to process image details. In additional, most 

face detection methods require desirable view angles, i.e. it will fail if a person’s face is 

Figure 27    Body reference position determination. 

(a)  (b)  
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not facing the camera directly, which would often happen during the motion of human 

activities. Therefore face recognition-based head detection is not suitable for real-time 

gesture recognition tasks. In contrast, the size and contour shape properties of human 

head have less variability, and are discriminative to the other body parts. Most 

importantly, they are view and rotation invariant. By utilizing 3D perceptual shape 

features, the head can be detected by our CPP-based method.  

 

According to the prior knowledge, the head is a single object with a convex hull-like 

shape that can be described by a set of stable salience entities (3D GETs/CPPs) 

connecting with the torso via the neck. CPPs are the connecting points of GETs, and the 

distribution of the CPPs and GETs along the edge traces with the convex hull-like shape 

(Figure 29) can be used to detect the human head. Figure 28 shows some hull-like edge 

shapes with CPPs connecting 2 GETs. The shade areas are the foreground object. Figure 

28(a) and (b) show the convex and concave shapes respectively. From feature-level 

salience entities, our head detection method first selects the convex hull shapes which 

have high probability of being the head contour, and then check their shape, spatial and 

size. 

4.3.1 Convex Hull Shape Selection 

 

The convex hull selection algorithm is based on some basic geometry principles. In 

Figure 29, there are 5 CPPs along an edge trace. First, the algorithm takes the first CPP 

Figure 28    Several types of GET combination of edge traces.  

Note the shade areas belong to the foreground object. 

(a) Edge traces with convex hull-like shapes 

(b) Edge traces with concave shapes 
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(CPP1) of the edge trace as a start point to check the next 2 CPPs (CPP2 and CPP3) along 

the edge trace in turn. If the shape is a convex, CPP3 would make a smaller angle than 

CPP2 does if (and only if) CPP3 lies on the right side of the connecting line between CPP1 

and CPP2 (dashed line in Figure 29). The angle a2 is smaller than a1 in Figure 29. Thus 

these three CPPs form a convex hull-like shape.  The convex hull shape continues if the 

next one (CPP4) keeps on the right side of the line between its two previous neighbors 

CPP2, CPP3. Therefore just checking CPP locations relative to the corresponding lines is 

able to detect the convex hull-like shape on an edge trace. This method is accurate and 

efficient in that only 5 additions and 2 multiplications are needed for testing condition of 

each point.  However, satisfying the above conditions only proves that the edge trace has 

a hull shape. We need to check whether the hull-like shape is convex or concave. It can 

be verified by checking the location of their center point. If the center point of CPPs 

forming the hull shape falls into the shade area, it is a convex shape; otherwise, it is a 

concave. Point A in Figure 29 is the center point of CPP1, CPP2 and CPP3 and CPP4, and 

is within the shade area. Point B is the center of CPP3, CPP4 and CPP5, and is outside of 

the object region. CPP1 to CPP4 form a convex hull shape, CPP3 to CPP5 are from a 

concave hull shape.   

 

There could be many hull-like shapes from the outputs of the convex hull selection 

algorithm, which need to be further filtered out since only one would belong to the valid 

head contour for a single person. Some convex hulls like the shapes 1, 3 and 4 in Figure 

30(b) either do not have similar sizes to the human head, or, their relative positions to the 

body reference have less likelihood to be the head according to the prior knowledge. To 

Figure 29    Convex hull shape detection. 
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locate the head in the image accurately, the verification process checks three criteria: 

head shape, location and size.   

4.3.2 Head Shape Verification 

 

A metric, CPP Vertical Distribution (CVD), of a convex hull edge trace, is defined to 

evaluate the head shape likelihood. The CVD value is a ratio of the vertical distribution 

of CPPs along a convex hull edge trace: 

 Set a middle point P0 between the start and end CPPs,  

 Sum up the Y distances between P0 and all CPPs above P0, and assign to S1,  
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 Sum up the absolute Y distances between P0 and all CPPs, and assign to S2,  
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 CVD is a ratio of S1 and S2,  
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The CVD value is in a range from (0, 1). The bigger the CVD value, the more likely the 

shape is the human head. In Figure 31 (c), P1-P5 are 5 CPPs, P0 is in the middle between 

the start and end points (P1 and P5). S1 is the sum of the Y distances between P0 to P1, P2, 

P3 and P4. S2 is the sum of the absolute Y distances between P0 to all (P1-P5). The value 

of CVD (S1/S2) is 1 if all CPPs are above P0. For a shape illustrated in Figure 31(a), its 

CVD is close to 1; for a shape of Figure 31(b), its CVD is close to 0. 

1 

2 
3 

Figure 30    Multiple convex shapes detected from edge shapes. 

4 

(a)     (b) 
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This CPP-based head shape evaluation is valid even when the head is tilted (Figure 31(a)). 

The head shape would not like the one in Figure 31(b) even when he/she is nodding. The 

head will be upside-down only if the human body is so, which is not under our system 

assumption. Therefore, the CVD-based head shape detection is robust.  

 

4.3.3 Head Location Verification 

 

As we introduced earlier, the body reference is represented by both the central line and 

the baseline. Since the intercrossed baseline and central line connect to the boundaries of 

the human body, the 3D spatial information of the human body can be easily derived. 

Meanwhile, the spatial data of the convex hull head contour (determined by its CPPs) is 

known. The depth (Z) positions of the head contour and the human body should be close. 

The farther they are apart on the Z direction, the less likely the hull-like shape contour is 

the head. The X position of the head is roughly close to the body’s central line; otherwise 

the convex hull is less likely the head. The baseline is below the head area. If a convex 

hull is far away above the baseline, it is more likely the head.  

4.3.4 Head Size Verification 

 

From the CPPs of a convex hull shape, the top one (with the smallest Y value, e.g. P3 in 

Figure 31(c)) is taken as the leading point of the head for building a 3D box. This 3D box 

is the shape enclosing the connected pixels below the top CPP within a certain XYZ 

range, and its size is analogous to the head size. Since the average head size is 25cm in 

height, 18cm in width, if the box size is far away from the average size, the 

corresponding convex hull is not on the head contour, vice versa. 

P1 

P2 

P3 

P4 

P5 

P0 

 

(a)   (b)   (c) 

Figure 31    CPP-based head detection method. 

P0 

P0 
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In summary, our method first selects the convex hulls consisting of feature salient entities 

(3D CPPs/GETs), and then builds a 3D box around them as the representatives for each, 

and finally checks 3 criteria to compute the head likelihood confidence value as the 

weight. Figure 32 shows 4 selected areas contain convex-like shapes from the feature-

level salience entities as the candidates, and the brightness of right-side 3D boxes indicate 

the likelihood confidence value. Figure 32(b) is the salience map for the head detection. 

A straightforward method is applied to choose the final head location with the highest 

confidence value passing a pre-defined threshold.  

 

4.4 TORSO DETECTION  

 

The torso occupies the major area of the human body, and its shape has left and right 

symmetric boundaries under the head, which can be grouped by a set of bottom-up 

salience entities (3D GETs/CPPs). Similar to the head detection, we first find out all long 

straight line GETs, and then makes all possible pairs according to their locations, i.e. each 

pair of 2 GETs should be on the both sides of the central line. Each pair is the left-right 

boundaries of a torso candidate. Three criteria are used to determine confidence value of 

the torso boundary: symmetry in length, symmetry in the distance to the central line, and 

the size. The final torso will be the pair with higher symmetric degrees and similarity in 

size (height and width) to the central line, baseline and head size. Once the torso 

boundary has been determined, the width and height of the torso can be derived from its 

boundary. The depth position of the torso can be determined according to the head 

location. Thus, the spatial range of the torso can be efficiently estimated. In sum, the 

(a)                                                              (b) 

Figure 32    Result of head detection. 
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bottom-up salience entities, top-down prior knowledge about the spatial reference, and 

Gestalt Law of Symmetry are working together to provide selective visual information 

for the torso detection. Having had the head and the torso detected, other related body 

parts can be inferred accordingly: 

 Neck: it locates at the middle of the junction area between the head and torso.  

 Shoulders: They are joint parts connecting the torso and upper limbs, and locate 

at the top left and right of the torso.    

 

4.5 LIMB DETECTION 

 

Once we have the head and torso identified, the main structure of the body system is 

established. The limbs are a general term including arms, hands, legs and feet. Feature-

level visual salience entities 3D GETs/CPPs that connect to the torso belong to the limbs. 

Here we introduce a CPP/GET-based method to further classify upper limb CPPs into the 

left and right ones. The Gestalt laws of connectedness and proximity play roles in this 

process, i.e., edge features closer or connected to the left and right shoulders belong to 

the left and right limbs respectively. There are 2 steps within this method. 

 Limb GET Definition  

Each limb CPP has at least one connected GET, so-called a limb GET, which is a 

segment of an edge trace. In the spirit of Gestalt law of connectedness, the spatial 

distributions of limb GETs give us more information about the limb locations. Figure 

33(a) is the front view of a human upper body; In Figure 33(b), the green, red and 

yellow points are the limb, head and torso CPPs respectively, and the white lines are 

the limb GETs connecting to the limb CPPs along the hands and arms. The left and 

right limb GETs are connected or closer to the 2 shoulder where two bigger solid 

yellow circles are. 

 

 Limb GETs Grouping 

Limb GET grouping is to cluster the limb GETs based on the K-Nearest Neighbor 

(KNN) method. For 2 upper limbs, K is 1 for assigning GETs to the closest part, and 
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both shoulders are the seed points for grouping. Each limb GET has a set of edge 

pixels, and the distance between 2 GETs is measured by the Hausdorff distance [140] 

which calculates how far two sets of 3D pixels are from each other. Thereafter, all 

upper limb GETs are clustered into 2 groups (left and right); and left and right limb 

CPPs are then determined accordingly. The spirit of Gestalt law of proximity is 

embedded in the Hausdorff distance measure.  

 

Visual salience entities CPPs reveal shape semantics. Classified CPPs including head, 

torso, and limb CPP clusters reflect the human body part salience at the object level.  

 

Figure 34(a) shows the head and torso boundary boxes. Figure 34(b) shows groups of 

CPPs on XY plate without GETs, the red points are the head CPPs, yellow ones belong to 

the torso, green and blue ones are the left and right limbs respectively. In Figure 34(c) 

and (d) show the same CPP distribution presented in the YZ and XZ plates respectively. 

The spatial distributions of 4 groups of salience entities well reflect the body parts spatial 

status, and provide bottom-up object level visual salient evidence for pose estimation. 

The reduced search space and computational costs facilitate the object level operations.  

 Figure 33    Limb CPPs and GETs of a upper human body.  

The light blue point is the left hand; the pink point is the right hand. 

(a) Front X-Y view (b) Edge features of (a) (c) XZ view (bird’s eye) (d) YZ view 

Figure 34    3D body part CPP classification. 

(a) head & torso                  (b) XY view            (c) XZ view (bird’s eye)  (d) YZ view 
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4.6 BODY POSE ESTIMATION 

 

From observations of the human motion, meaningful gestures and actions, such as, 

driving, throwing, grabbing, even kicking soccer, are mainly parameterized by the details 

of the limb configurations. Especially, the layout of the limb end parts (i.e. hands or feet) 

provides the overall limb structures. The spatial distribution of limb CPPs at the end areas 

are even more effective for delivering the attentional semantics. Meanwhile, the human 

head and torso have less spatial and shape variability while human actions/gestures are 

performed. So limb CPPs of the hands are the salience attracting attention for 

gesture/action interpretation. Based on this prior knowledge and classified body part 

CPPs, we take the head and torso as the main-board, and select and group the regions 

around the limb end CPPs to form the object-level salience map for pose estimation.  

 

When performing gestures or actions, the hand locations are usually farther away from 

the main body than other limb parts. To locate them, for each limb CPP cluster (left or 

right), a minimal spanning tree (MST)-based saliency index is built for searching and 

weighting the limb CPPs according to the 3D body distances. The weighted object-level 

salient map is formed up for pose estimation by apply tree traversal criteria encoding both 

prior knowledge and perceptual organization laws. The process includes following steps: 

 Limb graph construction  

An undirected graph G(V,E) is utilized for each limb CPP group. Each limb CPP is a 

vertex V of the graph G, and each edge E represents the direct 3D distance of the 

neighboring CPPs. Two limb CPPs are considered as neighbors if:  

o the CPPs are on the same edge trace; or  

o the 3D distance in-between does not exceed a threshold (e.g. 8cm).  

The graph G just provides the coarse spatial relations among CPPs.  

 MST 

As we stated earlier, the hands and feet are at the end areas of the corresponding limb 

parts. The body torso acts as the baseboard of body pose, and the articulated body 

structure is mainly characterized by locations of the limb’s end points which usually 

stick out and are apart from the main board. Based on the limb graph, a Minimal 
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Spanning Tree (MST) is built as the spatial index to locate the limb CPPs at the limb 

end area efficiently. We can take the body centroid (introduced early) as the reference 

point, and include it into the graph G. Build edges E from all related limb CPPs to 

this reference point to make the graph connected. Then use this reference point as the 

root in Prim's algorithm to build a MST [135]. Figure 36(b) and (d) show the MST 

index structures. It is worth noting that several other points can be also used as the 

MST root, such as the left or right shoulder, middle point of the image bottom. The 

white circles in Figure 36(e)-(g) are the tree roots (reference points). The spirit of 

Gestalt laws of proximate and continuity is embedded in the limb graph and limb 

MST structures. 

 saliency measure (traversal criteria) 

An evaluation method is to weight every limb CPPs on the corresponding MST index. 

Several tree traversal criteria are employed as the saliency measure for ranking the 

salience entities (limb CPPs):   

o The path distance (PathDis) between a node (limb CPP) and the tree root; 

o The direct distance (DirectDis) between a node (limb CPP) and the tree root; 

o Body distance (BodyDis) of a node (limb CPP) reflects the closeness of a limb 

CPP to the head and torso areas.  

Based on these measurements, the saliency weight of each CPPi  can be evaluated as: 

)()()( iBodyDisiPathDisiDirectDisi CPPPCPPPCPPPw  ,  (4.6) 

The weight value reflects the top-down influences of object-level tasks. A weighted 

limb CPP is an object salience entity of the object level salience map which provides 

selected object information for locating the target object.  

 End regions of limbs 

The region of the limb end part, e.g. a hand, would be the area surrounding the limb 

CPP with the largest weight value within a limb CPP group: 

i
k
i w1maxarg        (4.7) 

where k is the number of limb CPPs. and the selected limb CPP is the leading point of 

the target region (hand) (Figure 36(e-h)). After all the end regions of the limbs have 

been identified, the pose can be derived accordingly. 
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Figure 35 shows 4 different body pose examples.  The head and torso of each example 

are enclosed in the yellow boxes and the hands are in the green ones. The red, yellow, 

green and light blue points represent head, torso, left arm, right arm CPPs respectively. 

(e) salience in XY       (f) salience in XZ        (g) salience in YZ         (h) Target 

Figure 36    Limb tree structure for pose estimation. 

(a) 2-hand limbs       (b) 2-hand tree        (c) 1-hand     (d) 1-hand tree 

Figure 35    Body parts classification for different poses. 

(a) Forward left hand    (b) Left hand in front of head 

(c) Leftward left hand    (d) Raised left hand 
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4.7 EXPERIMENTS  

 

In this section we describe the experiments conducted to evaluate our body part 

classification and pose estimation methods. The algorithms were evaluated on the real-

time image sequences involving a variety of upper body movements of a single person. 

The goal of this evaluation is two-fold. First, we evaluated the body parts classification 

performance of our system. Then, we examined our pose estimation method. In the 

experiments, the raw depth data was preprocessed by (i) scaling into grayscale depth 

image; (ii) downsizing the VGA image to QVGA resolution (320×240) and (iii) filtering 

out the background by setting a depth threshold. Figure 37(a) gives the precision-recall 

curves for the CPP classification from a real-time depth stream data containing 769 

frames with 10928 human body CPPs.  

 

Each point on the precision-recall curves (Figure 37(a)) corresponds to a specific 

threshold against the head likelihood confidence evaluated by the criteria defined in 

section 4.3. The head, torso and limb CPP classification tightly relies on the head 

detection results. When the head threshold likelihood is set high, the precision is high and 

the recall is low, vice versa. From the CPP classification results, the performance of the 

body parts segmentation and classification are sound. Especially the head CPP detection 

is performed very well from all frames. The error rates of torso CPPs and limb CPPs are 

relatively higher. There are mainly two reasons causing the classification failures: 1) head 

(a) Body parts CPP classification                  (b) Hand tracking 

Figure 37    Precision and recall of experimental results. 
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is not visible (Figure 38(a)); 2) regions of torso and head are defined in a way lack of 

flexibility (Figure 38(b)). A solution to these issues is to train a reference system and a 

backup body model which will be triggered automatically for classification when the 

confidence value is low. 

 

The pose estimation for hand detection test was conducted on a 532-frame image 

sequence. Figure 37(b) shows the precision-recall (PR) curve of single hand tracking 

results. Similar to the classification, each point on the PR curve is a threshold against the 

likelihood value defined in Eq. 4.7. A lower threshold value will cause higher recall and 

lower precision, vice versa. Overall the hand tracking works well.  

 

 

4.8 CONCLUSION 

 

Human body parts classification and pose estimation are two fundamental tasks for 

developing successful human gesture/action recognition applications. This chapter 

presents a 3D perceptual shape feature-based body part classification approach 

facilitating the pose estimation process. By utilizing the prior knowledge of the human 

body structure, the bottom-up feature level salience maps are enhanced for efficient body 

part classification without involving heavy training process. The CPP-based classification 

results and pose prior knowledge speed up the process of body pose estimation, in that 

both the object level salience map, limb tree structure, and top-down search criteria work 

together to facilitate the estimation process. PO-based grouping laws play roles during 

(a) Wrongly detected head   (b) Missed head  

Figure 9. Some failures of classification  
Figure 38    Some failed cases of the body parts classification. 
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the salience map construction. The major advance of the proposed approach is that, 

following the visual attention and perceptual attention mechanisms, shape-based visual 

salience entities 3D CPPs/GETs and limb MST index provide both global and local views 

to facilitate the high-level interpretation tasks, which has good potential for modeling 

more complicated body poses. The object level salience map reduces the search space 

and computational costs for gesture and action interpretation.  
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CHAPTER 5 MODEL OF 4D SPATIOTEMPORAL SALIENCE 

5.1 INTRODUCTION 

 

One of our goals is to provide a type of generic perceptual representation for image 

sequences containing human gestures/actions, and evaluate how well these perceptual 

representations perform in recognition and classification tasks. Human gestures and 

actions are motion spatial-temporal patterns in images captured by a 3D camera, and their 

features are sequentially summarized from static properties of consecutive frames. It is 

challenging to let machines understand the human gestures/actions consisting of multiple 

dynamic structural components of multiple body parts in spatiotemporal space. We argue 

that limitations of the gesture/action representations cause the barriers for high-level 

gesture/action interpretation, and there are mainly two factors: low-level spatiotemporal 

features with less semantics, and holistic gesture representations without considering 

internal structures. Gesture representations directly from low-level features will contain 

more noise data and cause ambiguities for deriving 4D patterns. To deliver more 

semantics in the representation, some state-of-the-art approaches use intermediate gesture 

features to express visual salience, such as codebook, visual words or Bag-of-Words 

(BoW) that are made up by clustering low-level features according to the spatial and 

appearance similarities [64][73][74][75]. However, they are still far from being able to 

express the effective visual information for efficient high-level interpretation.  

 

Besides the local and global appearances of gesture features, there exist internal structural 

properties that are less visually apparent and very difficult to describe. For example, the 

actual temporal relationship among multiple gesture features is not as simple as a 

sequential chain. It could be a very fuzzy structure, i.e. a mixture of chain, overlapped 

and stride modes with uneven steps. Due to its complexity and uncertainty, many 

previous approaches model gestures by either ignoring its intrinsic structures or using a 

simplified assumption so as to limit the performance of corresponding representations. In 

fact the intrinsic structural properties reflect the discriminative features for different 

gestures with different styles, and contribute to the gesture recognition and classification. 
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Some works [89] [136] show that incorporating latent structures into the system can 

improve the performance. 

 

Previously, we have introduced the solutions to human body part classification and pose 

estimation, which focus on extracting the static visual salience from a single frame. In 

this  chapter, we introduce our approach that takes advantage of the bottom-up object 

recognition results to build the gesture representation at the object level, which is not 

only able to reflect perceptual visual attention salience, but also provide high-level 

qualitative reasoning. Based on the prior knowledge of different gesture types, 

corresponding body parts are tracked to generate five perceptual spatiotemporal dynamic 

change sequences including X, Y, Z, Shape and Orientation. According to the perceptual 

organization law of continuity, a set of generic perceptual gesture/action descriptors, 

Perceptual Gesture Salience Entities (PGSEs), are grouped as the gesture descriptor from 

the sequences to represent the extrinsic properties of gestures/actions at the 4D 

spatiotemporal level. In Figure 39, dynamic gesture features are extracted from 4D body 

pose sequences, and grouped into PGSEs (3D blocks). Each PGSE contains rich extrinsic 

Figure 39    Perceptual gesture representation model. 
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properties, such as duration, change type, change value, change rate, temporal moment, 

which are coded into the color and shape of a 3D block for better visualization. Within a 

set of 3D blocks with a certain pattern, the gesture/action intrinsic properties can be 

modeled as the temporal context relations among PGSEs. This novel representation acts 

as a visual salience map at the 4D spatiotemporal level, which encodes both attentional 

semantics and internal structures, and is able to facilitate the challenging human 

action/gesture interpretation tasks.   

 

5.2 PERCEPTUAL GESTURE FEATURES  

 

Instead of from pixel-level visual data directly, gesture features are derived from 

corresponding body parts at the object-level. In the previous chapter, we have introduced 

the approaches for human body parts classification. Among multiple body parts, the limb 

parts often play crucial roles in gestures/actions because of the following reasons: 1) 

limbs are the most active body parts; 2) gestures/actions are often characteristically 

determined by limb movements; 3) well classified limb parts lead to low-dimensional 

feature vectors with less computational cost. For instance, two hands are the most 

important body parts for many gestures/actions, such as driving, throwing, waving etc. 

On the other hand, motions of head, torso and feet/legs contribute less in these 

actions/gestures, and draw less attention with low salience. Each body part contains many 

perceptual shapes salience entities (3D GETs and CPPs). For the sake of simplicity and 

intuition, a 3D box is used as the representative to enclose all feature level salience 

entities of each individual interested body part. In Figure 40, a hand and its salience 

Figure 40    3D Boxes enclosing target objects (hands). 
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entities are enclosed in a 3D box at each moment. As long as the object (hand) is detected 

correctly, all dynamic properties along the time serial can be expressed by the differences 

of the visual salience entities within 3D bounding boxes from neighboring frames. 

Overall there are three types of perceptual gesture features: motion trajectory, shape and 

orientation with five parameters, i.e. X, Y, Z, size, and angle.  

 

1. Motion trajectory: The motion trajectory of a body part is measured by the dense 

trajectories of its salience entities (3D CPPs). Similar to Sun et al.'s method [63], the 

trajectories are obtained by matching the 3D CPPs between two consecutive frames. For 

a video sequence with k frames {f1, … fk}, matches of all CPPs within a classified box 

were established between fi and fi+1for 1 ≤ i ≤ k-1. A constraint is imposed to discard 

matches that are too far apart so as to reduce motion noise. The final displacement of a 

certain body part between consecutive frames is collectively determined by all 3D CPP’s 

matches. A trajectory is formed by extending the matches over several frames. In Figure 

41(a), it shows a frame fi with a solid white boundary 3D box surrounding the person’s 

left hand. In its previous frame  fi-1 (not shown), everything is same except that his left 

hand is farther away from his left side body, and the location of the left hand in fi-1 is 

marked by a dash lined 3D box. According to our method, the motion trajectory of his 

left hand is collectively estimated by the CPP matches between fi and fi-1. Figure 41(b) 

shows a bunch of green lines each of which represents the motion direction of each pair 

of matched CPPs. The overall moving trajectory of the left hand is weighted by all pairs 

of CPPs. The extracted trajectory consists of changes on 3 axes, X, Y and Z, and their 

change values represent motion dynamics of the corresponding body part.  

Figure 41    Collective motion trajectory estimation. 

(a)  depth image at frame fi (b) CPPs in frame fi 



79 

 

 

 Sequence of depth (Z) changes 

The depth changes reveal the motion information regarding the speed and direction 

towards the camera. Each bar of the sequence in Figure 42(a) is the depth change 

value of an object within a short time period (100ms if the rate is 10fps). If the Z 

distances between two neighboring frames are unchanged, the value is ZERO. If the 

object is getting closer to the camera, several consecutive positive values appear on 

the sequence, and vice versa. If the frequency of the system is relatively stable, a 

bigger absolute value on the sequence means a faster speed on the Z axis, vice versa. 

 

 Sequence of horizontal (X) changes 

The horizontal changes show the moving distance and direction along the X axis 

relative to the camera. Each bar of this sequence is the distance change value along the 

X axis of the target object within a short period. If there is no movement on the X axis, 

the value is ZERO. If the object is moving towards right-hand direction of a player, 

several consecutive positive values appear on the sequence (time serial), vice versa. If 

the acquisition frequency of the system is stable, this bar value is equivalent to the 

motion speed on the X axis (Figure 42(b)).  

 

 Sequence of vertical (Y) changes 

Similar to the horizontal change sequence, the vertical changes reveal the moving 

distance and direction along the Y axis. Each bar of the sequence is the object distance 

change along the Y axis within a short period. If there is no movement on the Y axis, 

the value is ZERO. If the object is moving up, several consecutive positive values 

appear on the sequence, vice versa. If the acquisition frequency of the system is stable, 

this value is equivalent to the motion speed on the Y axis (Figure 42(c)). 

 

(a)                (b)       (c)            (d) 

Figure 42    Motion trajectory dynamics. 
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 Path on X-Y coordinates 

The motion path of the object in the X-Y plate shows its motion properties projected 

in 2D space (Figure 42(d)). Motion trajectories projected on other 2D plates (i.e. X-Z 

or Y-Z) or in 3D space can also be obtained by taking different combinations of 2 

dimensions from XYZ.  

 

2. Shape dynamics: To track shape dynamics, we currently use the object size as the 

metric, which is simple but still effective for estimating the shape properties. The object 

size is determined by the 3D box size of the corresponding body part. The box size 

changes reflect the dynamics of the object salience entity layout. Figure 43(c) is the size 

changing sequence. If a value on the size sequence is ZERO, it means no size change 

during a short interval. The positive or negative values indicate the object becomes bigger 

or smaller respectively. The larger the absolute value, the bigger the size change rate is, 

vice versa. Besides the object size, additional shape properties could be available by 

adding other statistical measures, e.g. GET type distribution etc..  

 

3. Orientation dynamics:  

The orientation of the target object is an important gesture feature describing the status of 

the target body part. Orientation changes are discriminative for some gestures/actions, 

such as wave hand and flip over palm. For some gesture-based games and HCI 

applications, such as the dart throw and book page flip actions, the palm orientation can 

be used as a quantitative parameter to determine the release moment of a virtual dart, and 

the turning moment of the book page. To determine the object orientation, we need a 

reference system according to the environment setting, i.e. suppose a user is facing the 

camera while performing gestures/actions, and the target objects (e.g. hands) are in front 

(a) Object position   (b) Edge features      (c) Size changes         (d) Orientation changes 

Figure 43    Object position, edge features, size and orientation. 
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of the camera. Take the hand as an example, the palm can be treated as a plate in 3D 

space and can be determined by at least 3 spatial points. Since CPPs are the critical shape 

points along the object contour, an object plate could be generated by 3 CPPs. Each plate 

is a possible representative of the palm. The orientation of the palm can be measured by 

the angle between the camera and the palm plane, which equals the angle between their 

normal vectors. In Figure 44, 2 planes are in yellow and green colors respectively. m and 

n are their normal vectors, and the angle θ of both planes equals the angle θ’ between 2 

normal vectors. The orientation is measured as: 

mn

mn 
cos .     (5.1) 

 

The palm plane can be determined by any 3 CPPs within a target 3D box, and therefore 

there would be multiple candidate planes. To achieve reliable performance, the palm is 

collectively determined from multiple candidates with different weights that are 

factorized by the triangle size formed by 3 CPPs, i.e. a plane with larger triangle size is 

more likely the palm:  

ii sizew        (5.2) 

where wi is the weight or parameter of a plane i formed by 3 CPPs, and is proportional to 

the triangle size. In practice, if there are many CPPs, too many palm candidates that 

always contain noise and outliers will be generated. We therefore apply RANSAC 

(RANdom SAmple Consensus) in order to get a robust orientation estimate. RANSAC is 

a resampling technique that divides data into inliers and outliers. The orientation angle 

m 

n 

θ 

θ’ 
m 

n 

θ’=θ 

Figure 44    The angle between 2 planes. 
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can be estimated from the minimal set of inliers with greatest support [144]. If the 

orientation angle of plane i is 
i  from Eq. 5.1, the final orientation of the palm is:  





n

i

iiw
1

       (5.3) 

where n is the number of inliers candidate planes selected by the RANSAC method.  

Figure 43(d) shows the orientation dynamics. 

 

5.3 PERCEPTUAL GESTURE SALIENCE ENTITIES (PGSES) 

 

There are a few high-level gesture descriptors in relevant literature, but they are too 

application-specific to provide generalities, and consequently, difficult to extend to other 

domains. Here we introduce a set of generic salience-based gesture descriptors. Those 

five perceptual dynamics are measured as the gesture/action properties for each body part, 

and well presented on the change sequences. These feature values are derived directly 

from local neighboring frames without further summarization. Inter-frame differential 

data contains outliers due to noise/errors from the bottom-up features. Not every value of 

these features reflects the 4D spatiotemporal salience since it lacks global views about the 

overall dynamic properties. Perceptually, there are three dynamic types of qualitative 

values on each sequence: increase, decrease and unchanged. To capture the dominant 

features of overall motion semantics, based on three qualitative values, each sequence can 

be grouped into several segments, so-called Perceptual Gesture Salience Entities (PGSEs), 

according to the perceptual organization law of continuity. PGSEs are the qualitative 

gesture descriptors that reflect the salience in 4D space, and can be applied in various 

human activity analysis applications. 

Length 

Height 

Width 

Figure 45    PGSE block representation. 
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5.3.1 PGSE Grouping 

 

For each gesture or action, the motion of each corresponding body part are represented by 

five parallel dynamic feature sequences,  X, Y, Z, size and orientation respectively. The 

PGSE grouping process is to find the consecutive dynamic changes on each sequence 

with the same or similar types according to the grouping Gestalt law of continuity. It is 

equivalent to finding partition points where changes of bar signs occur along time serials. 

If a discontinuity (change of bar sign) happens at a certain moment, the sequence is 

partitioned into smaller segments, PGSEs, accordingly. In Figure 46, each gray bar is 

derived from two neighboring frames, and represents their dynamic changes on a certain 

motion property. The signs of the first three bars are negatives (-), and it becomes 

positive (+) on the fourth bar. If this sequence is the changes in the Z direction, it means 

that the target object first moves a bit backwards, and then turns to forward towards the 

camera. After the fourth frame, the bar values remain positive (+) until the eighth bar. 

The value becomes negative (-) at the ninth frame. Thus, the discontinuities happened 

after the fourth and eighth bars so that the change sequence is segmented into three PGSE 

groups. For a better presentation, a 3D block list is used to represent segmented PGSEs. 

The width is fixed, and the length and height of each block represent the duration and the 

change volume respectively, and the ratio of the volume to the length is proportional to 

the normalized average speed (Figure 45).  

 

3
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  4
th

  2
nd

  1
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PGSE1 

30% 

PGSE2 

60% 

PGSE3 

10% 

30% 

50% 

20% 
PGSE blocks on Z 

Z sequence 

Segmented time 

period sequence 

Figure 46    Time period of a video sequence containing a gesture/action. 
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5.3.2 Vector Descriptor for PGSE  

 

For each grouped PGSE d, we define a feature vector as its descriptor 

f (d) = {Type, Start time, Duration, Volume, Speed, body part}.  (5.4) 

 

PGSE Type has 15 possible values. Each gesture/action has 5 different parallel PGSE 

dynamic sequences, including X, Y, Z, Size and Orientation, each of which has three 

qualitative change values: increase (+), decrease(-), and unchanged (0). Table 4 lists all 

PGSE types describing 4D gesture salience qualitatively. 

 

 Table 4      Perceptual Gesture Salience Entity type list. 

No Color Property Change Description 

1  X + Towards Right  

2  X - Towards Left  

3  X 0 No movement on X 

4  Y + Towards Up  

5  Y - Towards Down  

6  Y 0 No movement on Y 

7  Z + Forward  

8  Z - Backward  

9  Z 0 No movement on Z 

10  Size + Increase 

11  Size - Decrease 

12  Size 0 Unchanged 

13  Orientation + Front plane turning to the camera 

14  Orientation - Front plane turning to the left or right side 

15  Orientation 0 Unchanged 
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Start time is related to the sequential order of the PGSE in the video sequence. Each 

PGSE is a segment of the time period on a corresponding dynamic sequence. The Start 

time is the beginning position of the segment on the temporal serial. In Figure 46, if the 

time period of a gesture/action is equally divided into 4 zones, PGSE1’s start time falls 

into the 1
st
 zone, PGSE2’s start time is within the 2

nd
 one, and PGSE3 is on the 4

th
 zone. 

Start time can be a normalized value invariant to various gesture/action durations. 

 

Duration is the time period of a PGSE. Either it could be a ratio of the time period of a 

PGSE to the whole time period; or, it is a real time value which would be crucial for 

motion parameter measurement, e.g. speed. In Figure 46, 3 colored PGSE blocks have 

their relative duration values with 30%, 50% and 20% respectively. The length of a 

PGSE block represents this time duration.  

 

Volume represents the dynamic change value with respect to the dynamic property within 

the video sequence. It is always Zero if the PGSE change type is 0; otherwise the volume 

of each PGSE is the sum of its underlying inter-frame changes. Similar to the Duration 

feature, Volume could be either a normalized or real value. The change volume would be 

useful for deriving demanded motion parameters, such as distance, speed, turning angle. 

In Figure 46, the 2D gray bars represent the underlying dynamic changes in inter-frame 

basis. Colored 3D PGSE blocks are the higher-level representatives that cover the 

underlying 2D gray bar sequence. Relative change volumes of 3 PGSE blocks are 30%, 

60% and 10% respectively. The height of a PGSE block is proportional to the change 

volume. 

 

Speed is the volume change rate of certain property for a gesture/action. The speed value 

will be Zero if the change type is Zero (0). For the other positive and negative changes, 

the speed value would be either an average speed or the peak speed within the duration. 

To get normalized average speed value, we can take the ratio of the average speed to the 

peak speed within each sequence (one property type).  

 

Body part could be head, torso, and limbs.  
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The PGSE feature vector contains both qualitative and quantitative descriptions about 

gesture salience. Here we take a real human action for demonstration. A throw action is 

performed in front of a 3D camera with the right hand, and its dynamic features are 

presented in Figure 47(a) showing 5 different parallel feature channels. According to the 

PGSE grouping method, 6 PGSEs are obtained from 5 sequences, and all are marked with 

red boxes and labels with d1 to d6, PGSEs={d1, d2, d3, d4, d5, d6}. 

 d1: It indicates the silence (no movement) on X axis. Since all values are small 

enough, the volume of this PGSE is close to zero. The small height of this PGSE block 

reflects the motion static on the X direction within a time period. This is the only 

segment on the X sequence. Therefore the start time is 1; duration is 100%; volume is 

zero; speed is 0. The vector descriptor of the PGSE is: 

f(d1) = {X0,1,1, 0, 0,Right hand}. 

Its 3D block is a flat plate due to its zero volume. 

 

 d2: it represents positive change property about motion trajectory on Y direction. 

There are 2 PGSEs on this Y change sequence, d2 and d3. d2 with positive changes 

takes 50% of whole time period; it starts at the beginning, 40% of changes with 

respect to the whole sequence. The normalized average speed value is 0.7. The vector 

is: 

 f(d2) = {Y+, 1, 0.5, 0.4, 0.7, Right hand} 

 d3: it is the negative PGSE on the Y direction. Its Start time is at 3
rd

 zone, and the 

duration is up to 50% of the whole period. It contains 60% changes with respect to the 

all Y changes. The change rate is higher than that of d2. Its vector is:  

f(d3) ={Y-, 3, 0.5, 0.6,0.8, Right hand }. 

The blocks of d2 and d3 are shown in Figure 47(b).  

 d4: it is the PGSE block with large positive volume on the Z direction. It is the biggest 

one among 6 blocks occupying the whole sequence. The relative change value is 

100% over the Z changes. The vector is: 

f(d4) = {Z+, 1, 1, 1, 0.8, Right hand }. 

 d5: there is no big change on the hand size. d5 is the only object size related PGSE. 

The volume and speed are zeros. The vector is: 
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f(d5) ={Size0, 1, 1, 0,0, Right hand }. 

Similar to d1, its 3D block is a flat plate due to its zero volume. 

 d6: it reflects the orientation changes. Negative changes mean the object front plane 

tends to be turned away from the camera. d6 is the only orientation PGSE for this 

action. its vector descriptor is:   

f(d6) ={ O-,1, 1, 1, 0.7, Right hand}. 

Figure 47(c) shows the 3D block pattern of the throw action.  

 

A gesture/action can be characterized by a combination of various PGSEs, which are a 

set of perceptual gesture descriptors in 4D spatiotemporal space. We emphasize that 

PGSE is not limited to the five features (X, Y, Z Shape and Orientation) and the upper 

limb parts (hands), and it can be generalized to any other dynamics involving multiple 

body parts with more complex human activities. It is worth noting that even the PGSEs 

group the dynamic properties to provide qualitative description about gesture salience, 

the detailed inter-frame data is still preserved for quantitative computation, e.g. the 

motion parameters for gesture control applications.   

 

 

Figure 47    Five dynamic sequences for a throw action.  

Each red box is a PGSE reflecting one dynamic property. 

(a) Throw 
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5.4 PGSE-BASED GESTURE/ACTION PATTERN  

 

A gesture or action consists of a set of PGSEs, each of which represents one aspect of 

multiple channels of dynamic properties. PGSE’s 3D block representative provides 

semantics for modeling. The combination of blocks with different shape and color 

patterns well reflect the motion visual salience, and acts as the salience map at the 4D 

spatiotemporal space for high-level interpretation. This salience organization encodes 

both visual salience and complex intrinsic relationships to provide selective visual 

evidence for recognition tasks. Meanwhile the underlying inter-frame data is still 

preserved for quantitative computation. We show two additional human actions, wave 

and flip palm, in Figure 48 and Figure 49.  Gestures and actions involve multiple 

channels of dynamic properties, i.e. multiple types of PGSEs (XYZ, size, orientation etc.) 

from multiple body parts. Rather than independent, these multi-channel dynamics are 

tightly coupled. These temporal and spatial relationships of multiple channels are 

discriminative for patterns recognition, however, they may not be visually apparent, and 

are difficult to describe. From the 4D gesture salience map (PGSE blocks), the dynamic 

changes and their coherence of multiple channels (different body parts and properties) are 

well presented in a different view. For example, the Start time and Duration elements of 

Figure 48    Wave action with its 5 dynamic sequences and 3D PGSE block pattern. 

X 

Y 
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(a) Wave (b) Segmented PGSEs (c) 3D block pattern 
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each PGSE clearly state the internal temporal relations, such as overlap, interval, or 

simultaneous. By applying some computational models from other domains, the 

challenging recognition tasks can be accomplished effectively. 

 

 

 

  

Figure 49    Flip palm action with its 5 dynamic sequences and 3D PGSE block pattern. 
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(a) Flip palm (b) Segmented PGSEs (c) 3D block pattern 
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CHAPTER 6 SALIENCE MAP-BASED GESTURE/ACTION 

REPRESENTATION 

 

Based on the PGSE gesture descriptors, several ways, such as histogram, HMM, MRF, 

CRF, HCRF, can be used to describe the complex spatiotemporal patterns of human 

gestures/actions for high-level interpretation tasks. 

6.1 SEVERAL MODELS 

 

Here we conceptually introduce four PGSE-based methods: HMM, MRF, CRF and 

HCRF. More detailed descriptions about these methods are in Appendix A.  

 

 Hidden Markov Model (HMM) 

 

Hidden Markov Model is an effective approach to model spatial-temporal series related 

events. Many gesture recognition and natural language processing applications have 

adopted HMM as the model platform. HMM is based on a strong Markov property 

assumption that the conditional probability distribution of future states of the process 

depends only upon the present state. In our case, we can collapse the parallel multi-

channel PGSE blocks into a sequential state model, each ordered block’s state depends on 

its previous one only. HMM model is suitable for labeling sequential PGSEs, and makes 

sense for some human actions/gestures that only have PGSEs on one channel with a 

simple ordering structure, such as wave action containing several X PGSEs. A limitation 

of HMMs however, is that they cannot naturally handle the cases in which observed data 

elements overlap in arbitrary ways. The imposed Markov chain assumption on PGSEs 

from multiple parallel channels does not reflect the true temporal properties among 

PGSEs from complex gestures/actions. 

 

 Markov random Field (MRF) 

 

The temporal relationships among dynamic motion properties can be viewed as spatial 



91 

 

dependencies among PGSE blocks, which are usually not as simple as the sequential 

pattern. The spatial dependencies among PGSE blocks are the intrinsic properties of a 

human action. Markov Random Field (MRF) describes a set of observed data as random 

variables in an undirected graphic model which is able to incorporate the contextual 

constraints in a principled manner. MRF models have been used extensively for various 

segmentation and labeling applications in computer vision, such as image restoration, 

image segmentation, texture synthesis. Using the MRF model to describe a set of PGSEs 

is a probabilistic way to reveal internal relationships of a gesture or action, which may 

play a role in gesture/action understanding. MRF is a generative model to estimate the 

posterior properties. To give descriptions of the human gestures from a MRF framework, 

two distributions are required: the target label relationships and the target-observation 

likelihood. Unlike the HMM model, MRF tries to model the PGSEs from multiple 

property channels occurring in parallel and overlapping patterns. The local and pair-wise 

Markov properties of the MRF capture the relationship among the target labels of PGSEs 

as the model prior of the human activities, and the compatibility between a target label 

and a PGSE is modeled as the likelihood probability. An energy function needs to be 

defined to characterize the structure and compatibility properties. Since Markov 

properties of a non-regular arbitrary graph model are difficult to establish, usually in a 

MRF model, the graph nodes are factorized by a set of cliques. In our case, we can have 

cliques that only include the PGSEs from a same period (with the same start time zone). 

The intuition of this clique definition is that the motion dynamics within a time period 

occur almost simultaneously, and have a high degree of correlation.  

 

 Conditional Random Filed (CRF) 

 

Both HMM and MRF are the generative model. One limitation of the generative model is 

that to make the model computationally tractable they have to assume the independence 

of the observed data. HMM only takes the previous linked variable and one observation 

into the consideration. Traditional MRF model puts local pair-wise variable dependencies 

into potential functions to enrich the dependency description, but still only considers the 

observation data at one site without others. Therefore, the imposed restrictive observation 
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independence assumptions make these models limited in global feature modeling. In our 

case, the relationships among PGSEs over different time periods are not well modeled if 

using HMM. And the assumed prior distribution (e.g. Gibbs distribution) will be biased 

and cannot reflect the true PGSE distribution if using MRF. However, as a variant of a 

Markov random field, the conditional random field (CRF) models the variables 

conditioned upon a set of global observations, i.e. the label assignment decision depends 

not only on the current observation, but also the surrounding data within a certain size of 

neighborhood. CRF is a discriminative method which deals with the modeling of 

conditional distribution directly from the observation and target gestures/actions without 

providing the prior distribution. Similar to the MRF model, the CRF graph could consist 

of several cliques, each of which contains a set of edges with corresponding potential 

functions and parameters describing the relationship among PGSEs. The collection of the 

potential functions and parameters are formed into the CRF model for a PGSE-based 

human action/gesture pattern. Any human activities can be represented by this statistical 

graph model.  

 

 Hidden Conditional random field (HCRF) 

 

Internal temporal and spatial relationship among multiple dynamic properties is more 

complicated than what some simple models can handle.  Rather than a sequential chain or 

a Markov network, intrinsic structures could be more complicated, i.e. a mixture of chain, 

overlapped and stride modes with uneven steps, and hard to identify. Therefore, many 

approaches model gestures/actions by either ignoring its intrinsic structures or using 

oversimplified assumptions so as to limit the performance of corresponding 

representations. Similarly, the PGSE-based gesture/action representation that is modeled 

by HMM or MRF will suffer the same difficulty.  Even though CRF could model an 

arbitrary structure, it requires the knowledge about the connectivity structures of the 

random variables for a gesture/action class, which may not be feasible for various human 

activities since there exists wide variability of a same human motion and the PGSE 

patterns of one gesture/action class vary.  To have more flexibility for structure modeling, 

we can assume that the internal temporal relationships are modeled by some hidden states 

that govern the pattern discrimination implicitly. Some works [89] [136] showed that 



93 

 

incorporating latent structures into the system can improve the recognition and 

classification performance. Hidden Conditional Random Field as an extended CRF is 

able to associate the hidden state layer to model the unknown internal substructure 

between the label and the observed data. In our case, the labels of HCRF are a fixed set of 

human actions/gestures characterized by the observed PGSE block patterns, and the 

relationship between labels and observations are modeled by a set of hidden states which 

reflect the temporal correlation among PGSEs.  HCRF is able to reveal the sophisticated 

internal relationship among PGSEs.  

 

6.2 PGSE-BASED HISTOGRAM REPRESENTATION  

 

As we can see in Figure 47, Figure 48 and Figure 49, multiple channels of PGSE blocks 

of the single hand gestures are tightly coupled because the gestures and actions we 

currently focus on contain continuous atomic motions with less complexity, and their 

internal temporal ordering relationships among dynamic components are highly coherent, 

i.e. as simple as concurrency. Therefore, using computationally expensive probabilistic 

models like CRF, HCRF and MRF for them is over-kill. Instead, a histogram is a non-

parameter representation of data distribution, and is suitable for these simple gestures and 

actions. In our case, there are total 15 types of PGSEs. Aggregate the volumes and time 

durations according to the PGSE types, a histogram representation for a human 

gesture/action is built. Figure 50 shows 2 histograms for throw and wave actions 

respectively. Each 3D bar represents one of 15 PGSE type, and the height and length of 

Figure 50    Histogram representation of PGSE blocks. 
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the 3D histogram bar represent the overall change volumes and durations of a PGSE 

within the motion period. However, histograms have the limitation of missing temporal 

relation among internal gesture components after aggregation. Temporal relations among 

PGSEs are gesture intrinsic properties which are not visually apparent, but are 

discriminative for classification. Therefore we add a metric, sparseness, as a weak 

temporal parameter for each aggregated PGSE. Each sparseness is proportional to the 

intervals among PGSEs with a same type before aggregation, and its value is normalized 

between [0, 1]. The bigger the value, the sparser it is. For example in Figure 51, 3 PGSE 

blocks with 2 types have the durations 9, 8, 8 respectively. The sparseness for the pink 

PGSE after aggregation will be 8/25 where 8 is the interval between 2 pink blocks, 25 is 

the overall duration; and the sparseness for the green one is 0.  

 

In sum, each aggregated PGSE can have 3 elements: volume, duration and sparseness, 

and the size of the histogram vector for each body part is 45 (3×15). Since 

gestures/actions are mainly conducted by the 2 upper limbs, a gesture can be represented 

by a histogram with 90 elements. This PGSE histogram with temporal element 

representation (PGSE_WT) is in the same spirit of the BoW method, but with smaller 

vocabulary size, qualitative descriptions and intrinsic properties. Without the temporal 

element sparseness, the PGSE histogram (PGSE_NT) with 2 elements (volume and 

duration) would be a 60-element vector for the 2 upper limbs (30 for each). To examine 

the effectiveness of gesture intrinsic properties in recognition tasks, we will compare the 

performance of PGSE_WT and PGSE_NT in experiments.  

 

 

 

Figure 51    Sparseness for the PGSE histogram. 

9       8       8 
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6.3 EXPERIMENTS AND EVALUATION 

 

Since 3D camera-based video analysis is relatively new in the computer vision 

community, currently there is no 3D benchmark gesture dataset available. We instead 

created our own 3D gesture dataset for training and evaluation. We recorded 3D videos 

containing 10 types of human gestures/actions performed several times by 5 subjects 

individually. The environmental settings from video recording are as following: a single 

user in front of a fixed Kinect camera, interacts with a computer by performing 

gestures/actions including: throw, wave, flip palm, knock and pull-down for one hand, 

push, drive, expand, clap, climb rope with 2 hands (see Figure 52). We use depth images 

from a Kinect camera for our tests. Each depth image is a 640×480 array of raw depth 

values. 3D data accuracy is affected by the lighting condition, motion speed and distance. 

To produce a better quality dataset, some constraints and pre-processes were imposed: (i) 

setting the distance between a subject and the camera 1.5-2m in that Kinect can provide 

the most accurate depth data; (ii) scaling into a grayscale depth image; (iii) filtering out 

the background by a depth threshold; (iv) smoothing by a 3×3 median filter and (v) 

downsizing the image to 320×240. Currently the dataset contains 506 sequences with one 

gesture/action for each. Roughly 50 samples per gesture were collected.  

 

There is no existing performance baseline for gesture/action recognition reported on a 

publically available 3D datasets. To comprehensively evaluate the performance of the 

(a) Throw                (b) wave              (c) flip            (d) knock          (e) pull down 

Figure 52    Snapshots for 10 gestures/actions in our 3D video dataset. 

 (f) Drive             (g) push               (h) expend            (i) clap              (j) climb 
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proposed method, we instead compare our approach with state-of-the-art local spatio-

temproal feature descriptor methods by using a standard BoW SVM approach against our 

3D gesture dataset. We take 3 baselines from the combinations of 2 feature detectors 

(Harris3D, Dense) and 2 local feature descriptors (HOG/HOF, HOG3D): 

 

 Harris3D detector +HOG/HOF descriptor: The STIPs from the Harris3D detector 

[68] are the XYT salient locations with local maxima. HOG/HOF descriptor [77] is 

similar in spirit to the SIFT descriptor. For each STIP, a local support region is built 

and further divided into grid cells containing 4-bin HOG and 5-bin HOF for each. It 

gained good performance on the KTH dataset. 

 

 Dense sampling + HOG3D descriptor: Dense sampling [72] divides a video into sub-

volumes (samples) with multiple spatial and temporal scales. HOG3D descriptor 

[121] is the histograms of 3D gradients. A local 3D patch around each sample is 

divided into cells with 10 gradient orientation bins for each. This method gained best 

performance against the UCF sports dataset.   

 

 Harris3D detector + HOG3D descriptor: Overall, STIPs from the Harris3D detector 

outperform the dense sampling results in terms of the feature effectiveness on the 

KTH datasets. HOG3D is ranked in the 2
nd

 place in terms of descriptor performance 

[141]. To see the performance of this combination on our dataset is of interest to us.  

 

For these detectors/descriptors, we used available tools from the authors’ websites
1, 2

 and 

applied the recommended parameters which are reportedly optimal for gesture videos. 

The outputs of 3 above methods are the list of long feature vectors. The BoW method 

quantizes features into visual words which were trained by the k-means clustering. Each 

descriptor has its own vocabulary with the size V=200 which empirically gives good 

results on our dataset. For each gesture video, its feature vectors are assigned to the 

closest visual words. The resulting histogram of visual word occurrences is the gesture 

representation. 

                                                           
1 http://www.irisa.fr/vista/Equipe/People/Laptev/download.html#stip 
2 http://lear.inrialpes.fr/people/klaeser/software_3d_video_descriptor 
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Support Vector Machines (SVMs) [142] are the large margin classifiers which have 

gained popularity for visual pattern recognition. Individual SVM classifiers were trained 

for 5 representations: i) 60-bin PGSE histogram without the temporal relation parameter 

(PGSE_NT), ii) 90-bin PGSE histogram with the temporal relation parameter 

(PGSE_WT), iii) Harris3D+HOG/HOF BoW histogram, iv) Dense sampling+ HOG3D 

BoW histogram and v) Harris3D+HOG3D BoW histogram. Each classifier was trained 

with a χ
2
-RBF-kernel using Leave-One-Out (LOO) cross validation. Since it is the multi-

class classification case, one-against-rest approach is applied to select the gesture class 

with the highest score as the recognized one. The performances of individual SVM 

classifier models were evaluated by measuring the average accuracy over all classes. 

Figure 53(a) shows the average classification rates for 5 representation methods. Each 

average rate value has its range covering 10 different gesture classes in the dataset. The 

PGSE_WT gives the best performance on our dataset. Dense+HOG3D outperforms 

PGSE_NT due to its ability to capture useful context information e.g. head, torso etc. 

Context may be helpful for human gesture/action recognition. Figure 53(b) shows the 

confusion matrix for the PGSE_WT representation. As we can see, there is a clear 

separation between single hand and 2-hand gestures/actions. The most confusion occurs 

between the wave and flip gestures because both of them have similar motions and the 

palm orientation was not able to reflect their differences. 

(a) Recognition rates for 5 representations   (b) Confusion matrix for PGSE_WT  

Figure 53    Comparison results on our 3D gesture/action dataset. 
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6.4 CONCLUSION 

 

In this chapter, we presented a novel generic gesture representation method. The complex 

spatiotemporal extrinsic gesture properties can be expressed by a set of qualitative 

descriptors Perceptual Gesture Salience Entities (PGSEs). A histogram of PGSEs 

provides the statistics about gesture’s spatial and appearance properties in the same spirit 

of the Bag-of-Word-based representation. Meanwhile the intrinsic context relations 

among PGSEs are modeled as the correlation parameters. Both extrinsic and intrinsic 

properties encoded within the PGSE-based gesture representation contribute to 

qualitative reasoning for gesture recognition and classification tasks with robustness and 

efficiencies. Our approach has been tested on a 3D gesture dataset; the experimental 

results show it outperforms other state-of-the-art methods. Even though current model is 

only tested on atomic gestures and actions, the method is valid for generic action 

modeling, and should perform well for complex human activities in general. 
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CHAPTER 7 PROOF-OF-CONCEPT APPLICATION  

  

Using the PGSE-based gesture representation method, a Dart game has been developed 

as a proof-of-concept application for system demonstration. The throw gesture is 

recognized qualitatively; its dynamic properties are measured quantitatively and 

converted into game control parameters. The gesture game environment is set up as 

following. A player sits/stands in front of the screen and the camera. The imaginary target 

board is behind the screen. The camera is either at a high or a low position, and is 

centered at the horizontal direction of the imaginary target board (see Figure 54). 

 

7.1 CAMERA CALIBRATION 

 

The camera position is crucial in this gesture control game. According to the game 

environmental setting, a player faces the screen of the game terminal, and interacts with 

the game content on the screen. The possible camera position is usually above or under 

the screen so that performed motions are not directly towards the camera. However, all 

the spatial coordinate data (X, Y, Z) of the target objects from the 3D camera is derived 

from radial distances with the origin at the camera center, and they are biased and cannot 

reflect players’ real motion parameters accurately. Therefore, the calculation relying on 

the (X,Y,Z) from the camera need to be adjusted according to the camera position and 

angle. In order to accommodate possible camera positions, a calibration function is 

needed for coordinate transformation. Figure 55 shows 2 possible camera positions, 

under the screen and above the screen. 

Camera 

Floor 

)Ө 

)α 

Screen 

Figure 54    Dart game settings. 

Imaginary 

Target Board 
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If the desired camera position is under the screen, the camera lens needs to be pointed up 

with a certain angle β (0<=β<=90) to capture the player’s motion, and centered at the 

horizontal direction of the screen. For the dart game, the appropriate origin of the 3D 

coordinate system is the imaginary target board center, rather than the camera center. The 

imaginary distance between the virtual target board and the camera in the depth direction 

is Tz. The imaginary distance from the camera to the center of the virtual target board in 

Y direction is Ty. The camera is centered at the target board in X direction, so Tx=0.  

Since the origin of the coordinate system is at the center of the imaginary dart board, the 

camera position is at (0,-Ty, Tz).  The coordinate data of any object from the camera is 

(Xm, Ym, Zm) whose origin is the camera center. The new coordinate (X, Y, Z) with its 

origin at the center of the target board can be calculated by using a transformation matrix 

Eq.7.1. 
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Once Tx, Ty, Tz and β are known, the (Xm, Ym, Zm) measured by camera can be transformed into 

the true game coordinate data (X, Y, Z).  

 

Similarly, if the camera is above the screen, and points down to the floor with an angle β 

(0<=β<=90), the (X,Y,Z) can be obtained by the transformation matrix Eq. 7.2:  
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Based on the transformation formulas summarized above, the camera calibration function 

takes the following parameters to produce accurate gesture measurements: 

 Position of the camera (top, bottom); 

 Distance from the floor to the imaginary target board center; 

 Perpendicular distance between the camera and the imaginary target board; 
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 Angle of the camera pointing up or down. 

After calibration, the origin of the output spatial coordinate data is at the target board 

center, which assures the accuracy for the parameter estimation. 

 

7.2 CONTROL PARAMETER ESTIMATION 

 

Having had a throw gesture recognized, we need to estimate parameters quantitatively for 

game controlling. The ultimate parameter of the Dart game is the final position of a 

thrown virtual dart. To get its accurate final destination, the imaginary trajectory of a 

flying dart needs to be estimated. The trajectory is calculated based on the physical law of 

gravity with the following parameters: 

 Ө: the upward angle of the thrown dart; 

 α: the forward angle of the thrown dart; 

 V0: the initial velocity of the thrown dart. 

Eq. 7.3 and Eq. 7.4 are the formulas for the trajectory calculation: 

cos0tvx         (7.3) 

2

0
2

1
sin gttvh        (7.4) 
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 Figure 55    Camera at the high or low position. 
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Here g is the acceleration of gravity, 9.8m/s
2
; t is the time of flight; v0 is the initial 

velocity; Ө is the launch angle. When a dart is flying in air, its motion under the influence 

of gravity is determined completely by the acceleration of gravity, its initial speed, and 

the launch angle. The air friction is directly proportional to the initial velocity. For a 

regular dart throw, the average speed of the dart is 60km/h, which is low, and the size of 

the dart is small, so the air friction is negligible and not considered into the trajectory 

calculation. Figure 56 shows trajectories with the same initial speed but different 

launching angles.  

 

Those parameters are the instant measures derived at the moment when a virtual dart is 

thrown out, and can only be estimated accurately at the frame level when the dart release 

moment is identified. PGSE-based histogram is aggregated from the underlying frames 

which are still preserved for detailed parameter calculation. The assumption for the Dart 

game is that at the dart releasing moment, the hand speed on Z direction reaches the 

highest, the palm faces down, and the hand becomes open. We combine the three factors 

to determine the dart release moment: 

)]()()([maxarg 1 iii
k
i SizeNormnOrientatioNormSpeedNorm   , (7.5) 

where k is the total number of frames; the approaching speed, palm orientation and size 

changes are normalized into a range of (0,1). α, β and γ are the weights of three factors. 

The release moment is at the frame while the value of Eq. 7.5 reaches the maximum. 

 

The game system captures the motion, calculates the trajectory and the destination of the 

virtual dart, and presents the result on the screen. Figure 57a shows a side view of the 

trajectory of a virtual dart for one throw. The red point is the dart position when released 

from the hand, the short yellow vertical line represents the camera position, and the red 

Figure 56    Flight trajectory of a dart without considering the air resistance. 
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thick bar on the right side represents the target board. The white curve is the virtual dart 

trajectory. Figure 57b shows a bird’s-eye view (from ceiling to floor) of the same dart 

trajectory shown in Figure 57a where the red point is the initial dart position and the 

target board (red thick bar) is on the top. In Figure 57c, the red square is the boundary of 

the target board. The yellow point is the bullseye. If the dart hits the board, a red dot is 

shown within the red square.  

 

7.3 USER VALIDATION  

 

To evaluate this proof-of-concept application, we conducted three-round tests for the dart 

game. There were 10 participants in the first round who were required to make throw 

gestures without using real darts. The system captured motions, calculated the trajectories 

and the destinations of the virtual darts, and showed results on the screen. According to 

the test plan, after each valid throw was performed, and had been recognized by the 

system, the participant was asked for the satisfaction rate from 1-10 on the result. This 

rate is subjective, but reflects the player’s feeling about the system accuracy. Within the 

671 recorded gestures, there were 334 throws and 337 others. Among the throws, the 

system correctly captured 287, and missed 47. The average satisfaction value of the 

captured valid throws is 6.57. Among the other gestures, the system mistakenly captured 

92 as throws and ignored 245. The 75.7% precision, 85.9% recall and 79.3% accuracy are 

the fair results (Table 5). The major reason for failures is the insufficient training dataset 

does not cover all the gesture styles. 

 

(a) side view    (b) bird’s-eye view  (c) front view 

Figure 57    The side, bird’s-eye and front views of a trajectory of the dart and the 

target board. 
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The objective of the second round is to further test the throw gesture recognition rate 

after the throw gesture model has been refined. 20 people participated in this round. They 

are a group of diverse people in terms of gender, age, body size, and 90% of them were 

new to this system. The average recognition rate is 90.1%. During the tests, they were not 

given any instruction when got failed. The players just kept throwing until they found 

right adjustment, which decreases the overall recognition rate. The majority of the 

failures were due to slow speed. In order to hit the board centre, people played cautiously, 

and used less force than usual to make throws. Look at the results of three sets, the 

recognition rates are increasing from 87% to 93% (Table 6). It follows the natural 

learning curve for people doing things that they have never experienced before. 

 

Table 5      Throw gesture accuracy for the real-time application. 

Gesture type Total Captured Missed Precision Recall Accuracy 

Throw 334 287 47 
75.7% 85.9% 79.3% 

Others 337 92 245 

 

 Table 6      The 2nd round tests on a real-time gesture application. 

Set 1 Set 2 Set 3 Overall 

Captured 318 Captured 332 Captured 341 Captured 991 

Missed 48 Missed 34 Missed 27 Missed 109 

Recall 87% Recall 91% Recall 93% Recall 90% 

 

The original raw Dart Game has been integrated into a platform with a complete game 

theme. The goal of the third round test mainly examines the satisfaction of the user 

experience about whole system in terms of the accuracy of the motion intention. The 

overall recognition rate has reached over 96%, and the satisfaction rate is over 8.  
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CHAPTER 8 CONCLUSION AND FUTURE DIRECTIONS 

 

In this dissertation, we proposed a novel 3D gesture/action recognition framework based 

on the hierarchical visual attention and perceptual organization models. This is one step 

closer toward a high-level human activity understanding solution. Much remains to be 

done, both in improving and extending our current framework and in developing a 

broader understanding that involves human interactions, group activities, and semantic 

knowledge from the scene context.  In this chapter, we discuss the achievements that 

have been made, and future directions for performance improvement and further efforts 

for full tier human activity understanding. 

8.1 CONCLUSION 

 

The contributions of this dissertation are three-fold. First, visual attention and perceptual 

organization theories and hypotheses are modeled into the 3D human gesture/action 

recognition framework by applying the salience map principle. Within this framework, 

visual features are selectively processed, grouped and integrated into hierarchical salience 

maps at the feature, object and 4D spatiotemporal levels step-by-step.  

 

Secondly, a set of gesture/action salient feature descriptors, Perceptual Gesture Salience 

Entities (PGSEs), are defined from the extrinsic motion properties, describing the human 

gesture/action qualitatively. By using a cuboid representative for each PGSE, any human 

gesture or action can be coded as a set of colorful cuboids with various shapes in a certain 

pattern. Thus the challenging gesture/action understanding task is converted into a much 

simpler cuboid pattern search/matching problem.  

 

Thirdly, besides the extrinsic gesture properties, the intrinsic properties that are not 

visually apparent and hard to be modeled, characterize the complexity of human 

gestures/actions. The contextual relations among PGSEs naturally encode the intrinsic 

gesture properties, and can be easily exploited by various probabilistic methods for 

modeling sophisticated human activities.  
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This framework significantly differs from others since the visual features and perception 

knowledge is modeled in a systematic, coherent and biologically plausible manner. The 

PGSE-based gesture/action representation is able to support qualitative reasoning for 

gesture recognition with robustness and efficiencies, in that it reduces the search space 

and retains the needed discriminative power. Meanwhile, low-level information is still 

preserved in the PGSE descriptors, and thus, gesture controlling parameters can be 

derived quantitatively. Our approach has been tested on 3D gesture datasets and a real-

time gesture application, Dart game. The promising experimental results show our 

approach outperforms others and has great potential for different applications.  

 

8.2 FUTURE DIRECTIONS 

 

We have shown the potential of our framework for human gesture/action recognition. 

However, it is only the entry point of solving full tier human activity interpretation under 

arbitrary conditions. Here, we give several ideas for future work that extend our current 

framework to provide complete interpretations of human activities. 

 

 Human interaction recognition  

 

Human interactions are human activities that involve two or more persons, for example, 

two persons fighting, shaking hands etc. To do so, the human segmentation is required 

first, and thus body part segmentation and classification are applied on individual humans. 

A straightforward way to build human interaction representation is to make use of an 

existing PGSE-based method, i.e. by simply concatenating each person’s PGSEs together.  

However, it will suffer the difficulties in the recognition stage because of the high 

dimensional feature space. Providing a more efficient and effective human interaction 

representation method is worthy of a closer look in future work.  More generically, 

human interaction also includes human-object interactions, for example, a person picks 

up a phone and talks, or, a person hands over a ball to another. In order to model and 

recognize these type of activities, besides the human-human activity recognition, we need 
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to incorporate the object recognition model into the framework. Ideally, a generic human 

interaction representation template is able to model any object with its arbitrary motion 

patterns and human-human interactions.  

 

 Group activity recognition 

 

Group activities are the activities that involve one or more conceptual human groups. In 

order to recognize group activities, the analysis of both individual activities and overall 

structures are necessary. Some applications require more on overall motion of entire 

group members, such as moving direction of parading or marching, which are 

characterized by individual activities. Others focus more on individuals, e.g. finding 

uncommon behaviors in a crowed scene where the overall patterns act as the benchmarks 

that need to be identified first. The current framework can be extended by adding an 

additional group level salience map, which models both overall structures and individual 

abnormality of group activities as the salience entities.  By taking the entire scene as one 

object, the group representation can be established by using the PGSE descriptors.  

 

 Scene context  

 

Scene contexts provide semantics for human activity interpretation. Humans cannot 

correctly perceive the world without context information, such as background, 

environment and relevant prior knowledge. Some works have proven that recognition 

algorithms equipped with context information are more robust.  In the current framework, 

the background is filtered, and no other un-related objects are in the scene. In the future 

work, this constraint needs to be relaxed, and the scene context will be modeled to enrich 

the representations.  
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APPENDIX A   Several Possible PGSE-based Probabilistic Models 

 

 

Hidden Markov Model (HMM) 

 

Hidden Markov Model is an effective approach to model spatial-temporal series related 

events. Many gesture recognition and natural language processing applications have 

adopted HMM as the model platform. HMM is based on a strong Markov property 

assumption that the conditional probability distribution of future states of the process 

depends only upon the present state only. In our case, we can collapse the parallel multi-

channel PGSE blocks into a sequential state model, each ordered block’s state depends on 

its previous one only. The model is formed as: 





T

t

tttt yxpyypxyp
1

1 )|()|(),( ,    (A.1) 

where yt and xt are the state and observed PGSE features at t position of the sequence 

respectively. Given the training PGSEs of a gesture/action, a gesture/action is represented 

by two sets of learned parameters λ and μ that are for the transition distribution p(yt-1, yt) 

and state-observation distribution p(xt, yt) respectively. A throw action is shown in 

Figure 58. Essentially, HMM model is suitable for labeling sequential PGSEs. It makes 

sense for some human actions/gestures that have PGSEs from one property, such as wave 

action containing only X PGSEs. A limitation of HMMs however, is that they cannot 

naturally handle the cases in which pattern instances overlap in arbitrary ways. The 

imposed Markov chain assumption on PGSEs from multiple parallel channels does not 

reflect the true temporal properties among PGSEs from complex gestures/actions. 

Figure 58    HMM representation for a throw action. 
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Markov random Field (MRF) 

 

The temporal relationships among dynamic motion properties are converted into the 

spatial dependencies among PGSE blocks, which are usually not as simple as the 

sequential pattern. The spatial dependencies among PGSE blocks reflect the intrinsic 

properties of a human action. Unlike the HMM representation, Markov Random Field 

(MRF) describes a set of observed data as random variables in an undirected graphic 

model which is able to incorporate the contextual constraints in a principled manner. 

MRF models have been used extensively for various segmentation and labeling 

applications in computer vision, such as image restoration, image segmentation, texture 

synthesis. Since PGSEs are perceptual salient entities for different dynamic features, and 

the relationship among PGSEs may play a role in gesture/action understanding, using the 

MRF model to describe a set of PGSEs is a probabilistic way to reveal intrinsic properties 

of human activities. MRF is a generative model to estimate the posterior properties. To 

give descriptions of the human gestures from a MRF framework, two distributions are 

required: the target label relationships and the target-observation likelihood. Unlike the 

sequential pattern, MRF tries to model the PGSEs from different property channels 

occurring in parallel and overlapping patterns. The local and pair-wise Markov properties 

of the MRF capture the relationship among the target labels of PGSEs as the model prior 

of the human activities, and the compatibility between a target label and a PGSE is 

modeled as the likelihood probability. An energy function needs to be defined to 

characterize the structure and the compatibility properties. The PGSE gesture/action 

representation has rather than a rectangular lattice structure, non-regular planar structure 

instead. Since Markov properties of a non-regular arbitrary graph model are difficult to 

establish, usually in a MRF model, the graph nodes (Y) are factorized by a set of cliques. 

In our case, we can have cliques that only include the PGSEs from a same time period (in 

the same start time zone). The intuition of this clique definition is that the motion 

dynamics within a time period occur almost simultaneously, and have a high degree of 

correlation. According to the Hammersley-Cliord Theorem, the prior P(Y) follows the 

Gibbs distribution: 
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where Z is the partition function as a normalizing constant, U(Y) is called an energy 

function which consists of a set of potential functions of all cliques, yc is a set of nodes 

within a clique c, and φc(yc) is a potential function of a clique, wc
T
 is  a set of weight 

parameters of φc(yc) . The value of the energy function U(Y) is determined by the sum of 

similarity degrees of pair-wise neighboring nodes associated with PGSEs. 

 

Take an example in Figure 48, the PGSEs are from a wave action, and the whole time 

duration of the action is divided into 4 zones (yellow lines in Figure 59). The MRF graph 

has four cliques circled in the red dash lines. Each node is a variable corresponding to a 

PGSE block. The variables within each clique are from the same start time zone. The 

prior distribution of the MRF is written as the sum of potential functions φc(xc)  of a log-

linear function over the graph cliques. The likelihood between PGSEs and a random 

variable could be assumed in a Gaussian distribution with corresponding means μ and 

covariance matrices ∑. The MRF parameters θ={wc
T
, ∑, μ} are learned from training data. 

The human gesture/action can be represented as a PGSE-based MRF model P(Y, PGSE) 

factorized by the prior distribution P(Y) and the likelihood P(PGSE|Y) with parameters θ. 

 

Conditional Random Filed (CRF) 

 

Both HMM and MRF are the generative model. One limitation of the generative model is 

that to make the model computationally tractable they have to assume the independence 

of the observed data. HMM only takes the previous linked variable and one observation 

into the consideration. Traditional MRF model puts local pair-wise variable dependencies 

into potential functions to enrich the dependency description, but still only considers the 

observation data at one site without others. Therefore, the imposed restrictive observation 

independence assumptions make these models limited in global feature modeling. In our 

case, the relationships among PGSEs over different time periods are not well modeled if 

using HMM. And the assumed prior distribution (e.g. Gibbs distribution) will be biased 

and cannot well reflect true PGSE distribution if using MRF. However, the conditional 
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random field (CRF) models the variables conditioned upon a set of global observations, 

i.e. the label assignment decision depends not only on the current observation, but also 

the surrounding data within a certain size of neighborhood.  

 

CRF is a discriminative method which deals with the modeling of conditional distribution 

directly from the observation and target gestures/actions without providing the prior 

distribution. An exponential distribution (e.g. Gibbs distribution) is used to model the 

statistically correlated features of all variables given the observation data to obtain 

globally optimal results. It relaxes the independence assumption between variables and 

observations, and allows non-local dependencies among labels and observations. 

Furthermore, CRFs can model arbitrary features of observed data and can therefore 

accommodate complex feature structures. 

 

Let G be a graph over the labels Y, X be the observed PGSE blocks. Similar to the MRF 

model, the graph could consist of several cliques C={Cp}. Each clique Cp contains a set 

 Figure 59    Markov random filed representation for PGSE blocks of a wave action. 
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of edges E with corresponding potential functions φ={φc} and parameters θ={θp}.  Each 

potential function φc(xc, yc; θp) describes the relationship among a variable (label) yc and 

an observation data xc, and weighted by θp. Since the distribution is assumed in a Gibbs 

distribution, the CRF can be written as, 

 
 


CC C

pccc

P Pc

yx
Z

xyp ));,(exp(
1

)|(


 .   (A.3)  

The collection of the potential functions and weight parameters, φc (xc, yc; θp), are formed 

up the CRF model for a PGSE block-based human action/gesture pattern. Here, the graph 

nodes (variables) Y and their connectivity structure is pre-defined, X are the observed 

PGSEs. θ are the trained weights of potential functions. Any human activities can be 

represented by this statistical graph model.  

 

Figure 60 (a) shows a CRF undirected graph for a human throw action. The graph nodes 

are from a set of pre-defined finite label variables (Y) describing human action/gesture 

properties. The CRF model assigns a label yj to each observed PGSE block (xi). A human 

action/gesture is represented by a set of variables labels tagged on the PGSE blocks. The 

dashed lines between graph nodes represent the structures of the internal of variables. 

Each solid line indicate the relation between a pair of PGSE and a variable <xj,yi>. Each 

of these edges is described by a corresponding potential function and its weights.  In this 

example, there is only one clique; each variable considers all observations (PGSEs) 

within a clique. 
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Hidden Conditional random field (HCRF) 

 

Internal temporal and spatial relationship among multiple dynamic properties is more 

complicated than what some simple models assume.  Rather than a sequential chain or a 

Markov network, intrinsic structures could be very fuzzy, i.e. a mixture of chain, 

overlapped and stride modes with uneven steps, and hard to identify. Therefore, many 

approaches model gestures/actions by either ignoring their intrinsic structures or using 

oversimplified assumptions so as to limit the performance of corresponding 

representations. Similarly, the PGSE-based gesture/action representation that is modeled 

by HMM or MRF will suffer the same difficulty.  The fuzzy intrinsic structures of multi-

channels are ambiguous and hard to model. Even though CRF could model an arbitrary 

structure, it requires the knowledge about the connectivity structures of the random 

variables for a gesture/action class, which may not be feasible for various human 

activities. In the CRF model example, the neighborhood structures (cliques) are simply 

constructed by using the start time information which is only one element of PGSEs and 

may not be enough for building the true structures. Consequently, the oversimplified 

 Figure 60    CRF and HCRF representations for PGSE blocks of a throw action. 
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graph structures would have less discriminative power. To have more flexibility for 

structure modeling, we assume that the internal temporal relationships are modeled by 

some hidden states that govern the pattern discrimination implicitly. Some works [89] 

[136] showed that incorporating latent structures into the system can improve the 

recognition and classification performance. In the models we mentioned before, HMM is 

only suitable for sequential order dataset, and an imposed strong independent assumption 

make it hard to represent complex and correlate relationships. MRF puts more emphasis 

on pair-wise relations, and its generative method cannot directly provide a way to 

estimate the conditional probability of a gesture/action for entire PGSE features. CRF is 

not able to capture hidden states which are more suitable to represent the latent 

relationships among multiple channel PGSEs. 

 

Hidden Conditional Random Field as an extended CRF is able to associate the hidden 

state layer to model the unknown internal substructure between the label and the 

observed data. In our case, the labels of HCRF are a fixed set of human actions/gestures 

characterized by observed PGSE block patterns, and the relationship between labels and 

observed PGSE blocks are modeled by a set of hidden states which reflect the temporal 

correlation among PGSEs.  HCRF is able to reveal the sophisticated internal relationship 

among PGSEs. Figure 60(b) shows the HCRF graphic model for a throw gesture. PGSEs 

are extracted as the observation data from the extrinsic properties of a human 

gesture/action. The gray circles are the hidden states which model the internal 

relationships between PGSEs. The upper level white circle is the gesture/action class.  

 

HCRF model can be used either as a gesture/action class detector, where a single class is 

discriminatively trained against all other gestures/actions, or as a multi-way 

gesture/action classifier, where discriminative models for multiple gestures are 

simultaneously trained.  


