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ABSTRACT 

To positively identify marine mammals using passive acoustics, large volumes of data are 

often collected that need to be processed by a trained analyst. To reduce acoustic analyst 

workload, an automatic detector can be implemented that produces many detections, 

which feed into an automatic classifier to significantly reduce the number of false 

detections. This requires the development of a robust classifier capable of performing 

inter-species classification as well as discriminating cetacean vocalizations from 

anthropogenic noise sources.  A prototype aural classifier was developed at Defence 

Research and Development Canada that uses perceptual signal features which model the 

features employed by the human auditory system.  The dataset included anthropogenic 

passive transients and vocalizations from five cetacean species: bowhead, humpback, 

North Atlantic right, minke and sperm whales.  Discriminant analysis was implemented 

to replace principal component analysis; the projection obtained using discriminant 

analysis improved between-species discrimination during multiclass cetacean 

classification, compared to principal component analysis.  The aural classifier was able to 

successfully identify the vocalizing cetacean species.  The area under the receiver 

operating characteristic curve (AUC) is used to quantify the two-class classifier 

performance and the M-measure is used when there are three or more classes; the 

maximum possible value of both AUC and M is 1.00 – which is indicative of an ideal 

classifier model.  Accurate classification results were obtained for multiclass 

classification of all species in the dataset (M = 0.99), and the challenging bowhead/ 

humpback (AUC = 0.97) and sperm whale click/anthropogenic transient (AUC = 1.00) 

two-class classifications.   
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CHAPTER 1 INTRODUCTION 

There has been increasing concern about the impact of anthropogenic effects on marine 

mammals.  Much of this concern is related to the use of active sonar [1], [2], [3], marine 

oil and gas exploration [2], [4], [5], and high volumes of shipping traffic [6], [7].  

Reliable knowledge of marine mammal presence may help avoid the negative impacts 

due to the aforementioned activities.  For example, the Cornell Bioacoustics Research 

Program [6] has implemented a network of hydrophones (i.e. underwater microphones) to 

monitor for the presence of critically endangered North Atlantic right whales in the 

heavily used shipping lanes leading to Boston Harbour.  If a whale is detected, an alert 

informs ship captains in the region about the location of the whale and to reduce ship 

speed to minimize the risk of striking the whale.  This type of warning system requires 

accurate identification of a specific marine mammal species and a reliable system capable 

of ignoring false detections.      

 

Automatic detection of the presence of marine mammals has become increasingly 

important to the Royal Canadian Navy as it strives to maintain its responsibility to 

environmental stewardship.  A science and technology (S&T) challenge identified in the 

Defence S&T Strategy [8] is the need to minimize military impact on the environment 

both in operational and training contexts.  The goal is to “identify technologies that can 

help to protect the environment while minimizing detrimental effects on operational 

effectiveness.”  If marine mammals are known to be in the area of a Navy exercise, the 

Navy may take mitigating actions to avoid any potential harm to the animals.  The 

presence of marine mammals also may cause a negative impact on military exercises by 
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imposing limitations on active sonar use due to environmental laws and regulations.  

Additionally, marine mammal vocalizations may generate false alarms on the passive 

sonar systems used by the military to monitor the operational environment.  A robust 

system capable of reliably detecting the presence of marine mammals automatically, as 

well as identifying a large number of species, is required to limit the negative effects to 

and by marine mammals, without producing further demands on sonar operators. 

 

A computer-based aural classifier was developed at Defence Research and Development 

Canada (DRDC) to classify active sonar echoes from target and clutter objects.  Young 

and Hines [9] employed timbre-defining perceptual features to take advantage of 

anecdotal and experimental evidence that sonar operators can hear the difference between 

these two types of sonar returns.  The automatic aural classifier was able to successfully 

distinguish between impulsive source returns from man-made metallic objects (targets) 

and naturally occurring clutter objects with an 82.3% probability of detecting the targets 

and only a 1.9% probability of false alarm.  The features used by the classifier were based 

on a model for human auditory perception.  By its nature, the human auditory system is a 

passive system; thus, it seems a logical step to apply the aural classifier to a passive sonar 

case.  Marine mammal vocalizations provide a readily available source of passive sonar 

sounds with which to test the aural classifier. 

 

The marine mammal dataset used for this research is composed of cetacean vocalizations.  

Cetaceans are the group of marine mammals belonging to the order Cetacea, which 

includes the sub-orders Mysticete (baleen whales) and Odontocete (toothed whales, 

dolphins and porpoises).  Generally, baleen whales are physically large and produce 

relatively low frequency sounds, whereas odontocetes tend to be smaller than baleen 

whales and produce sounds of a higher frequency [10]. 

 

Traditionally, cetacean presence was detected by visual surveys; however, the ability to 

visually detect cetaceans is limited because visual observers can only see them when the 

animals are at the surface, during daylight hours and when weather does not greatly 

reduce visibility.  Visual surveys are also limited in both spatial and temporal scales [11] 
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because they require a dedicated and time-consuming effort, typically requiring the use of 

a ship.  The use of passive acoustics (i.e. recording of sounds from the environment) has 

many advantages over visual survey methods – an acoustic recorder may be left in place 

for extended periods of time and continue recording regardless of time of day or weather 

conditions. 

 

Passive acoustic monitoring (PAM) is now widely used for long-term survey efforts that 

investigate seasonal movements and identify critical habitat areas, or onboard ships as 

part of avoidance and sound mitigation systems [12].  Although PAM has the potential to 

allow for 24-hour, real-time, automated monitoring in all types of conditions, it does 

possess its own set of limitations.  Marine mammals must vocalize to be detected 

(typically not a problem because most cetaceans are highly vocal) and those vocalizations 

must be distinguishable from the background noise and other sources, [13], [14].  Passive 

acoustic surveys also generate large volumes of data; for example a five-year survey for 

Shell Offshore Incorporated in Alaska’s Beaufort and Chukchi Seas generated 

approximately 5 TB of acoustic data – to review such a large amount of data would 

require an expert acoustic analyst an estimated five “person years” of effort [4].  This 

example further highlights the need for automatic detection and classification systems to 

reduce the human analyst workload involved in analyzing acoustic data from PAM 

efforts.  

 

Successful PAM depends on several factors including: sufficiently high vocalization rates 

by the species of interest; appropriate detection ranges – which in turn depend on source 

levels of vocalizations and environment dependant propagation characteristics; automatic 

detection/classification algorithms that are robust to noise and are able to identify 

variable signals; and a good understanding of the limitations of a particular 

detection/classification algorithm in terms of error rates [15].  The goal of PAM is to 

maximize the number of true whale detections and at the same time to minimize the 

number of missed detections and false positives [16]. 
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Accurate classification of species at risk is required to determine population size and 

identify critical habitats to aid in developing mitigation strategies.  As Arctic ice melts 

new shipping lanes may be developed through the Arctic Ocean.  Knowledge of critical 

habitats as well as real-time detection of species may help to protect Arctic marine 

mammal populations that are identified as being sensitive due to warming trends and 

habitat loss [17].  Endangered marine mammal species are not exclusive to the Arctic, but 

also exist in other ocean basins including the high-use shipping lanes off the Eastern 

coast of North America. 

 

In this thesis, aural classification is employed to address the issue of reliable automatic 

classification of marine mammals.  Vocalizations from five cetacean species and a 

selection of anthropogenic transients were used to quantify the aural classifier’s 

performance.  Following the introduction, CHAPTER 2 reviews the theory associated 

with detection, aural classification and the metrics used to assess performance.  

CHAPTER 3 discusses the cetacean dataset in detail.  Pre-processing of the data and 

detection of vocalizations is discussed in CHAPTER 4.  In CHAPTER 5 results of inter-

species aural classification of cetacean vocalizations are presented.  CHAPTER 6 

examines the classification of sperm whale clicks and anthropogenic transients.  

Implementation of discriminant analysis and comparison with principal component 

analysis results are discussed in CHAPTER 7.  Some final conclusions are drawn in 

CHAPTER 8 in addition to suggestions for future research.  
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CHAPTER 2 THEORY 

2.1 AURAL CLASSIFICATION 

The aural classifier developed by Young and Hines [9] was motivated by anecdotal 

evidence that experienced sonar operators could hear differences in active sonar returns 

from man-made metallic objects (targets) and naturally-occurring geologic objects 

(clutter).  The novel aspect of the aural classifier is the type of signal features employed – 

features intended to provide cues for aural discrimination.  The classifier architecture that 

is employed takes advantage of Gaussian-based statistics.  This type of architecture is 

simple and is widely used in the pattern classification community because Gaussian 

statistics are easy to define and understand conceptually.  The simplicity of the classifier 

architecture allows analysis to focus on the effectiveness of the aural features.   

 

The perceptual signal features used by the aural classifier are derived from musical 

acoustics research – where much effort has been applied to identify signal characteristics 

that define timbre.  “Timbre is that attribute of auditory sensation in terms of which a 

subject can judge that sounds similarly presented and having the same loudness and pitch 

are dissimilar [18].”  For example, the perceived difference in sound between the musical 

note middle C being played on a violin and cello, with the same loudness and duration, is 

said to result from a difference in timbre. 

 

Allen et al. [19] compared performance results of the aural classifier with results from 

human listening tests.  This experiment also provided the opportunity to experimentally 

validate humans’ ability to aurally discriminate active sonar returns.  Human listeners 
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were presented with active sonar returns from target and clutter objects and were asked to 

identify each return based on how it sounded.  Listeners were also asked to rank the 

certainty of each classification decision.  The accuracy of the human listeners and the 

degree of certainty in making a classification decision were compared to the accuracy of 

the aural classifier and the likelihood probabilities associated with the classifier’s 

decision.  The comparison of human listening results to automatic classifier results was 

performed using only individual perceptual features.  Some of the features ranked the 

returns in a similar way as the human listeners, which provided preliminary evidence that 

the perceptual features employed by the aural classifier correlate with features used by 

the human auditory system. 

 

As outlined in the flow diagram in Figure 2.1, aural classification consists of several 

steps: the start and end of each vocalization is identified, a relatively simple audio model 

is applied and perceptual features are extracted from each vocalization, then the data is 

split into training and testing subsets; from the training set the most important aural 

features are identified and then used to perform classification using a Gaussian classifier.  

The classifier model determined from the training set is then applied to the testing set.  

Further details about each of these steps are provided in Sections 2.1.1 - 2.1.5.  Young  

 

 

Figure 2.1 Diagram showing the steps of the classification process.  Steps that are in 

dashed blocks are computed from the training subset – the results of these 

steps are then applied to the testing subset.  The text in parentheses refers to 

the section in which each step will be further discussed.  
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and Hines [9], and Young [20] outlined the aural classification process for the two-class 

(binary) classification problem.  The aural classifier has been generalized to perform 

classification of two or more classes in the current research.  In the following sections, 

where there are differences in implementation between the binary and multiclass (i.e. 

three or more classes) aural classifiers, the binary case will be presented first.  This is 

because, in general, the binary classification case is simpler both mathematically and 

conceptually. 

 

2.1.1 Vocalization Isolation 

The first step of aural classification is to isolate each vocalization from the ambient noise.  

Vocalizations are first detected in their original recordings that range from a couple of 

minutes to approximately 30 minutes, as described in Section 4.1.  After this preliminary 

detection step, each vocalization is placed in the centre of a WAV file with noise context 

before and after the vocalization.  A single WAV file exists for each detected 

vocalization.   

 

The start and end of each vocalization, relative to the beginning of its WAV file, was 

identified using the Kliewer-Mertins [21] (KM) technique.  The KM technique was 

originally developed for use in audio sub-band coding schemes to extract a transient 

signal using energy estimation.  The KM technique is based on the idea that the transition 

from noise to signal is defined by a rapid change in energy level.  To quantify this change 

in signal level, two rectangular sliding windows of length L are used to estimate the 

signal level to the left (EL) and right (ER) of each sample, n, in a WAV file as follows, 

E
L
n( ) =

1

L
x
2
k( )

k= n L

n 1

 
 

, and 

 

Eqn. 2.1 
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Eqn. 2.2 
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where x(k) is the WAV file amplitude
1
 at sample k.  It was found that L = 1024 worked 

well for isolating the transients used in this research.  The criterion functions used to 

define the start, Cstart(n), and end, Cend(n), of a vocalization are computed as, 

C
start

n( ) = log
E
R
n( )

E
L
n( )

 

 
 

 

 
 ER

n( )  
 

, and 

 

Eqn. 2.3 

 

 
 

. 

 

Eqn. 2.4 

The samples at which the maximum of these criterion functions occur are defined as the 

start and end of the signal, respectively [9]. 

 

The KM technique works well for short impulsive transients, for which this technique 

was designed; however, it does not work as well for longer amplitude modulated baleen 

whale vocalizations, since the transition from noise to signal does not result in as marked 

a change in energy as is characteristic of impulsive sounds like sperm whale clicks.    

Thus, the original KM technique was used for isolation of sperm whale clicks and 

anthropogenic transients; a modified version of the technique was developed for the 

baleen whale vocalizations.  Due to large variations in energy during a baleen whale 

vocalization, the maximum values for Cstart and Cend do not necessarily correspond to the 

start and end of the call.  Instead, the original KM technique may erroneously select some 

small portion of the call as shown in Figure 2.2.  To overcome this, a modified version of 

the KM technique was implemented for all baleen whale vocalizations.  

 

The modified KM technique computes the values of Cstart and Cend as given by Eqn. 2.3 

and Eqn. 2.4, but instead of selecting the maximum value, these values were compared to 

a pre-defined threshold value (through experimentation, the unitless value 0.02, was 

found to work well for baleen vocalizations).  The search for the endpoints of the 

                                                 

 
1
 Note that EL(n) and ER(n) are not true energy values (i.e. measured in Joules), but are a measure 

of the variance of the signal, and thus are proportional to energy.  Since the purpose of the 

Kliewer-Mertins technique is to quantify the relative change in signal level, an exact energy value 

is not required.  Additionally, the link between physical pressures and amplitude values of the 

WAV file timeseries is somewhat arbitrary due to the nature of the scaling implemented by the 

auditory model in succeeding steps.  Therefore, no physical units for EL(n), ER(n), Cstart(n), and 

Cend(n) are reported in this thesis. 
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Figure 2.2 Timeseries and spectrogram of a bowhead vocalization with start and end 

points selected by the original Kliewer-Mertins technique (solid lines) and 

the modified version (dashed lines).  The modified version selected the 

entire vocalization, whereas the original version selected approximately 

20% of the vocalization. 

 

vocalization begins in the centre of the WAV file, since it is known that the vocalization 

was placed approximately in the centre of the file.  The search then moves outwards, 

away from the centre, until the criterion values are less than the threshold value.  The 

samples at which Cstart and Cend become less than the threshold value are defined as the 

beginning and ending of the vocalization.  When results of the modified and original 

version of the KM technique are compared, as in Figure 2.2, it is clear that the modified 

version does a significantly better job of finding the true start and end samples of baleen 

whale vocalizations – the modified version captured the whole duration, whereas the 

original implementation captured only 20% of the vocalization.  An accurate selection of 

the start and end of each vocalization is required because the time difference between 

these points (i.e. duration of vocalization) is used as a feature for classification.  

 

2.1.2 Auditory Model and Feature Extraction 

An auditory model that provides a perceptual representation of each vocalization is 

required to obtain the perceptual features used for classification.  The auditory model 

employed by the aural classifier is relatively simple and is intended to produce a 
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perceptual model of each vocalization without being too computationally complex.  The 

auditory model consists of three steps: apply the auditory filter bank, obtain the basilar 

membrane excitation pattern, and compute the perceptual loudness spectrum. 

 

Since the auditory model provides a perceptual representation of each vocalization, many 

of the calculations are performed using perceptual units that do not necessarily directly 

correspond to standard physical units.  For example, the sone unit is used to measure 

loudness; 1 sone has the same perceived loudness as a 1 kHz tone presented at 40 dB 

SPL, and as such, the definition of a sone is frequency dependent.  A sound of n sones is 

perceived to be n times louder than a one sone sound.  Due to the conversion to a 

perceptual representation of sound, some unitless scaling factors are required in Eqn. 2.5 

and Eqn. 2.6.  

 

Psychophysical models of human hearing assume the inner ear can be modelled as a bank 

of bandpass filters that are used to process sound [18].  The auditory filter bank employed 

is based on Slaney’s [22] implementation of the Patterson-Holdsworth auditory filter 

bank.  The filter bank is composed of 100 parallel bandpass filters (or channels) with 

centre frequencies between 20 and 4000 Hz, equally spaced on the equivalent rectangular 

bandwidth (ERB) scale.  The ERB value defines the width of a filter channel (dependent 

on the centre frequency); in terms of linear frequency, the filter channels centred at lower 

frequencies will be narrower than filters centred at higher frequencies [23].  The ERB 

scale is representative of the manner in which humans perceive frequency and is defined 

in terms of, f, the conventional linear frequency expressed in units of Hz, as 

ERBS = 21.4 log 0.00437 f +1( ). Eqn. 2.5 

The value of ERBS indicates the number of ERBs (i.e. channels of the filter bank) below 

a particular frequency [23], f, required to provide appropriate spacing between adjacent 

channels of the auditory filter bank. The gain of each filter bank channel is scaled to 

represent propagation of sound through the outer and middle ear, and for complete 

audibility.  Scaling for complete audibility ensures the perceptual signal spectrum of the 

signal exceeds the human hearing threshold throughout the frequency band of interest.  

For this research, the frequency band of interest ranges from the 20 Hz [18] low-
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frequency limit of human hearing to the 4000 Hz Nyquist rate.  Scaling each vocalization 

for complete audibility ensures that the extracted perceptual features will be based only 

on features audible to a human listener [9].  Time-frequency perceptual signal features – 

sub-band attack, sub-band decay, and sub-band synchronicity (see Appendix A for a 

definition of these features) – are obtained from the temporal envelopes of each scaled 

filter bank channel. 

 

The basilar membrane converts the mechanical vibrations due to sound pressure into 

neural responses, which can be processed by the brain.  The width and stiffness of the 

basilar membrane vary along its length, so the point of maximum vibration due to a 

sound stimulus varies depending on the frequency of the sound [18].  Thus, the basilar 

membrane performs as a frequency selector.  In the auditory model employed by the 

aural classifier, the basilar membrane is modelled as 100 discrete points that correspond 

to the output of the auditory filter bank.  A steady-state (i.e. time-invariant) model of the 

basilar membrane pattern is obtained by integrating the energy in each sub-band of the 

auditory filter bank.  Since time dependence has been removed during this step, a purely 

spectral representation of the signal is obtained. 

 

The final step of the auditory model is to apply a non-linear compression to the basilar 

membrane excitation pattern to obtain the perceptual loudness spectrum.  The conversion 

to a perceptual loudness spectrum was proposed by Moore and Glasberg and can be 

expressed as 

N ' ERB( ) = C E
vocal

ERB( ) E
thresh

ERB( )[ ]  

, 

Eqn. 2.6 

where N '  is the perceptual loudness in sones/ERB, Evocal represents the basilar membrane 

excitation due to the vocalization, Ethresh is the basilar membrane excitation caused by 

background noise in the head (e.g. blood flow),  defines the non-linear compression 

(based on empirical results  = 0.2159), and C is a scaling factor with a value of 0.0702 

(obtained using trial-and-error by Young [20]) to ensure consistency with the definition 

of the sones scale.  Since each vocalization was scaled for complete audibility,             

Evocal > Ethresh for all vocalizations and all ERB values.  It is from the resulting perceptual 

loudness spectrum that purely spectral signal features – peak loudness, loudness centroid, 
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and loudness roughness – are extracted (see Appendix A for description of how features 

are extracted). 

 

Each time-frequency feature calculated from the auditory filter bank can be thought of as 

a 100-dimensional feature, with the high dimensionality resulting from the 100 channels 

of the filter bank.  Further treatment of these features for classification requires each 

feature to be one-dimensional; thus each time-frequency feature needs to be converted 

into representative one-dimensional features.  This is accomplished through use of 

summary statistics.  For each time-frequency feature the minimum, maximum and mean 

values are computed across all filter sub-bands.  Additionally, the centre frequency of the 

filter bank channel corresponding to the minimum and maximum values are also treated 

as one-dimensional features.  In this way, each 100-dimensional time-frequency feature is 

converted into five one-dimensional features.  This treatment is unnecessary for the 

purely spectral features because they are already one-dimensional.  

 

In summary, there are 46 time-frequency signal features that are extracted from the 

output of the auditory filter bank and 12 purely spectral signal features are derived from 

the perceptual loudness spectrum, giving a total of 58 one-dimensional perceptual signal 

features. See Appendix A for a full list of the perceptual signal features as well as a 

description of how each feature is computed. 

 

2.1.3 Training and Testing Split 

At this point in the process the dataset is split into two subsets – one is used to train and 

the other to test the classifier.  The accepted method to determine a classifier model, 

based on the accumulated experience of many classifier developers and many different 

classification tasks, is to learn from example patterns.  The aural classifier makes use of 

supervised learning [24] by providing a class label for each vocalization in the training 

set.  By generalizing the underlying patterns in the training set, predictions can be made 

about data that do not have a known class label.  Thus, the classifier model (discussed 

further in the following sections) is trained with vocalizations for which the classifier is 



 13 

provided a class label.  The effectiveness of the classifier is then tested by imposing the 

assumptions of the classifier on a dataset for which the classifier has no direct knowledge 

of the class label.  To evaluate the performance of the classifier, the class label assigned 

by the classifier to each vocalization in the testing set can be compared to the known true 

label.  

 

There is no duplication of vocalizations between the training and testing subsets, that is, 

any vocalization assigned to the training subset will not exist in the testing subset and 

vice versa.  The training and testing split is accomplished by randomly selecting 50% of 

the vocalizations for each species to belong to the training subset and the remaining 

vocalizations for that species are placed in the testing subset.  In this way, the 

training/testing split is performed species-by-species. 

 

2.1.4 Feature Selection 

Each feature is treated as an axis of the feature space.  To ensure equal weighting of 

features and that final results are independent of feature value units, each feature is 

normalized to have a mean value of zero and variance of one.  After normalization, each 

feature is unitless.  Each vocalization can be treated as a point that is located within the 

feature space based on its feature values.  The 58-element vector x describes the location 

of a sample vocalization in the feature space.  

 

Some of the perceptual signal features may be equivalent to each other.  There is a 

possibility that pairs of features provide the same information about the patterns that 

characterize each class of vocalization.  These pairs of features are considered redundant 

– including only one of these redundant features is sufficient for quantifying the pattern.  

Removing the redundant features reduces computational complexity.   

 

To identify redundant features, the sample correlation coefficient is computed between all 

feature pairs.  The absolute values of the sample correlation coefficients are then 

compared to an established redundancy threshold (for this research a threshold of 0.9 is 



 14 

used).  All pairs of features whose correlation coefficients exceed the redundancy 

threshold contain at least one redundant feature.  Features that occur most often in 

redundant pairs are removed from further consideration.  

 

It is inevitable that some of the non-redundant features will be more useful for 

distinguishing between classes than others; for example, bowhead and humpback calls 

may have similar durations but very different peak loudness values.  The training dataset 

can be used to form a subset of features that are the most useful for discriminating 

between classes.   

 

There are many accepted methods for selecting the best features for classification – the 

method that is employed by the aural classifier is based on the Fisher Linear Discriminant 

method.  The Fisher Linear Discriminant [24] is designed to select the features that best 

discriminate between classes.  Suppose that the feature space is d-dimensional and        

y1, …, yd are the d n-dimensional sample vectors where n is the number of samples in the 

training set.  Each vector y contains the normalized feature values for each vocalization 

in the training set.  The Fisher discriminant score, sD, is calculated for each feature as 

follows, 

s
D
=
m
1

m
2( )
2

1

2 +
2

2
 

 

, 

 

Eqn. 2.7 

where m1 and m2 are the sample means of the given feature separated by class (the 

subscript indicates to which class the mean value belongs) and  and  are the sample 

variances.  For the multiclass case (c > 2 where c is the number of classes), the Fisher 

score can be generalized to consider the separation between all class means relative to the 

dataset variance as follows, 
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i
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, 

 

 

Eqn. 2.8 

where m is the sample mean of the whole dataset, and mi and 
i

2 are respectively the 

sample mean and sample variance of the i
th

 class.  
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Features that do a good job of distinguishing between the classes will have sample class 

means that are well separated relative to the overall variance of the data and, therefore, 

will produce large sD values.  Features with the largest values of sD are selected for 

inclusion in the feature subset used by the classifier.  The number of features used for 

classification is determined on a case-by-case basis.  

 

2.1.5 Classifier Architecture 

A high-dimensional feature space requires many training samples to accurately estimate 

the underlying patterns in the data.  Since the marine mammal dataset is limited, principal 

component analysis (PCA) is used to linearly combine the selected features to reduce the 

dimensionality.  PCA is used on the training data to obtain a linear transformation that 

projects the feature space (d-dimensional) onto a new k-dimensional space, where k  d.  

x1, …, xn are the n d-dimensional sample vectors with elements containing the 

normalized feature values [24].  The d x d sample covariance matrix, , is computed as 

=
1

n
XX

T  
 

, 

 

Eqn. 2.9 

where the matrix X is formed by placing each of the n vectors x into the rows of X.  Note 

that the bold notation represents variables that are vectors or matrices – this is standard 

throughout the thesis.  The eigenvalues and eigenvectors of the sample covariance matrix 

are computed and sorted according to decreasing eigenvalue.  The eigenvalue represents 

the relative amount of variance in the dataset captured by a particular eigenvector – 

eigenvectors corresponding to large eigenvalues lie in a direction, that when the data is 

projected onto the vector, maintain a large percentage of the dataset’s variance.  The 

relative amount of variance corresponding to k of the d total eigenvectors, or principal 

components, can be determined using the following relation,    

 

 

 

, 

 

 

Eqn. 2.10 

where i corresponds to the i
th

 eigenvalue [20]. 
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The transformation matrix, A, is formed from the k eigenvectors corresponding to the k 

largest eigenvalues, where k is the desired number of PCA dimensions (typically k = 2).  

Thus, A will be a d x k matrix.  To represent the data by the principal components, the 

data is projected onto the k-dimensional subspace according to the transformation, 

x'=A
T
x  . Eqn. 2.11 

Using Eqn. 2.11, principal component analysis restricts attention to the k directions along 

which the scatter of the data points is greatest [24].  The axes of the resulting k-

dimensional space are a linear combination of the selected features. 

 

Unless otherwise noted, two principal components are used in this research.  The 

selection of two principal components is somewhat arbitrary since it is possible to include 

any number of principal components up to and including the number of selected features.  

Two principal components are chosen primarily because two-dimensional spaces are 

easily represented graphically. 

 

Within the PCA space, a Gaussian-based classifier is used.  A Gaussian probability 

density function (PDF) is fit to each of the classes.  For example, when classifying 

bowhead and humpback vocalizations, a Gaussian PDF is calculated for each whale 

species.  A Gaussian classifier is used because it is recognized as the most common type 

of classifier and is the simplest to implement [24].  The Gaussian PDFs are represented as 

likelihood probabilities for a point  in the PCA space, where  is a two-element 

column vector.  The likelihood that a bowhead vocalization would be located at position 

 is given by, 

P x' B( ) =
1

2
B

1
2

exp 1
2
x' m

B( )
T

B

1
x' m

B( )[ ]  

, 

 

Eqn. 2.12  

and the likelihood that a humpback vocalization would be located at position x' is 

expressed as,  

P x' H( ) =
1

2
H

1
2

exp 1
2
x' m

H( )
T

H

1
x' m

H( )[ ]  

. 

 

Eqn. 2.13 

The variables B and H represent the 2 x 2 element sample covariance matrices for 

bowhead and humpback vocalizations in the training set.  The sample mean vectors, mB 
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and mH are the estimated mean values of the bowhead and humpback distributions, 

respectively.   

 

Bayesian decision theory is used to combine the likelihood probabilities with prior 

probabilities, (B) and (H).  These prior probabilities are calculated directly from the 

training set and represent the relative number of vocalizations produced by each species.  

Using Bayes’ theorem, the posterior probability for bowheads is found as, 

P B x'( ) =
B( )P x' B( )

B( )P x' B( ) + H( )P x' H( )
 

 

, 

 

Eqn. 2.14  

and the humpback posterior probability is calculated using, 

P H x'( ) =
H( )P x' H( )

B( )P x' B( ) + H( )P x' H( )
 

 

. 

 

Eqn. 2.15  

 

These posterior probabilities are used to classify data in the testing set by substituting the 

location of each vocalization in the subset into Eqn. 2.14 and Eqn. 2.15.  The ratio of the 

posterior probabilities is used to inform the classification decision.  The decision rule 

dictates what decision to make for any given observation – for every value of , the 

decision rule is able to assign either the bowhead or humpback class label [24].  The 

decision rule is based on the conditional risk, that is, the risk associated with 

misclassifying the whale species.  If the risk associated with misclassifying a bowhead 

were much higher than for misclassifying a humpback then – in an effort to correctly 

identify the largest number of bowhead whales – the decision rule would require that   

P(H| ) be much greater than P(B| ) in order for a vocalization in the testing set to be 

classified as a humpback.  Throughout this thesis, it has been assumed that there are 

equal risks associated with misclassifying any of the species of interest.  Because of the 

assumption of equal risk, the specific decision rule used is to decide a vocalization to be 

from a bowhead if P(B| ) > P(H| ), otherwise it is decided to be from a humpback.  

Figure 2.3 graphically illustrates how the Gaussian posterior probability distributions are 

used to form a 2D decision region; the decision boundary (i.e. the line between the red 

and blue regions) depicts the points of equal likelihood probability, P B x'( ) = P H x'( ). 
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(a) 

 
(b) 

 
Figure 2.3 Illustration of how a decision region is generated using a Gaussian-based 

classifier.  Bivariate Gaussian likelihood probability distributions, as in (a), 

are used to form the decision region shown in (b).  The boundary between 

the red and blue areas of the decision region is defined by equal likelihood 

probabilities. 

 

The multiclass case is simply a generalization of the binary case.  For class C the 

posterior probability is calculated as,  

P C x'( ) =
C( )P x'C( )
C( )P x'C( )

C

 
 

. 

 

Eqn. 2.16  

The parallel with Eqn. 2.14 and Eqn. 2.15 is clear – there were only two possible classes 

in the bowhead and humpback binary example, so the denominator consisted of only two 

terms.  In general, there will be as many terms in the denominator as number of classes.  

Since there are equal risks associated with each class, the decision rule is determined by 

the largest posterior probability. 
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2.1.6 Discriminant Analysis Theory 

An alternative method to PCA, for projecting data onto a new k-dimensional space, is 

discriminant analysis (DA).  DA seeks the combination of features that allows the best 

separation of class means while maintaining relatively little within-class variance.  PCA 

is the dimensionality reduction method employed by the aural classifier throughout most 

of this thesis; however, CHAPTER 7 will examine the effects on classifier performance 

that result from implementation of DA.  This section outlines the theory of DA and how 

it is implemented. 

 

As was the case for PCA, the feature space is d-dimensional, and x1, …, xn are the n d-

dimensional sample vectors with elements containing the normalized feature values 

determined from data in the training subset.  The vector m is the d-dimensional mean 

vector, corresponding to the mean of all the data points.  As discussed in Section 2.1.4, 

features are normalized, based on the training subset, so that each feature has zero mean 

and variance of one.  In the case of c classes (where c  2) it is possible to compute c - 1 

discriminant functions.  The projection resulting from DA reduces the d-dimensional 

space to at most a c - 1 dimensional space, where it is assumed that d  c.   

 

To obtain good separation of the projected data, the separation of the class means should 

be large relative to some measurement of the variance of each class.  The between-class 

scatter matrix, 

S
B
= n

i
m

i
m( ) mi

m( )
T

i=1

c

 
 

, 

 

Eqn. 2.17  

is a measure of the separation between each class mean, mi, where ni is the number of 

samples in the i
th

 class.  Similarly, the within-class scatter matrix, 

S
W
= x m

i( )
x D

i
i=1

c

x m
i( )
T

 
 

, 

Eqn. 2.18  

 

provides a measure of the distance between each sample and its class mean.  The optimal 

projection will result from a trade-off between minimizing within-class scatter and 

maximizing the separation of class means, which can be found by solving the following 

eigenequation,  



 20 

S
B
w =

i
S
W
w

i
 . Eqn. 2.19  

For this eigenequation to have a solution, Sw must be non-singular (i.e. the matrix must 

have an inverse).  Because SB is the sum of c matrices of at most rank one, where only     

c - 1 of these matrices are independent, then SB will be at most of rank c - 1.  Thus, there 

will be no more than c - 1 non-zero eigenvalues. The resulting set of eigenvectors, wi, 

corresponding to the non-zero eigenvalues, are the discriminant functions [24]. 

 

The discriminant functions form the columns of the transformation matrix, H, used to 

project the data onto a c - 1 dimensional subspace as follows,  

x'=H
T
x  . Eqn. 2.20  

Similar to PCA, it is possible to select a subset of the k best discriminant functions (i.e. 

the discriminant functions corresponding to the k largest eigenvalues), for example, to 

facilitate graphically representing data in a two-dimensional subspace.  The following 

ratio can be used to measure the degree of separation maintained after reducing the 

number of discriminant functions, 

pk =

i

i=1

k

i

i=1

c 1
 

 

 

. 

 

 

Eqn. 2.21  

 

 

 

Figure 2.4 Steps of the classification process; steps that are in dashed blocks are 

computed from the training subset – the results of these steps are then 

applied to the testing subset.  The bold dashed block, representing DA, 

replaces the Feature Selection and PCA blocks in Figure 2.1.  The text in 

parentheses refers to the section in which each step is discussed. 
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Implementation of DA replaces the feature selection and PCA steps in the automatic 

classifier.  Refer to the flow diagrams in Figure 2.1 and Figure 2.4 to see the differences 

in the classification process when DA replaces PCA. 

 

2.2 PERFORMANCE METRICS 

To evaluate classification effectiveness, appropriate performance metrics must be 

utilized.  The simplest method for judging classifier performance is to qualitatively 

analyze the scatter and overlap of data points in the two-dimensional PCA space and 

determine how many misclassifications have been made versus how many correct 

classifications have been made.  To visually verify that a correct classification has been 

made, one needs only to determine if a given sample has been plotted within the 

associated decision region.  Figure 2.5 displays an example decision region for the 

simplest case – binary classification.  Correct classification occurs when the crosses fall 

on the grey area and the circles fall within the white region.  There are four incorrect 

classifications in this example, which are represented by the four circles that have been 

plotted on the grey decision region.  Note that although it may seem that simply moving  

 

Figure 2.5 Example decision region displaying results from the test subset.  Correct 

classification occurs when crosses are on the grey region and circles on the 

white region.  Note that all samples have been correctly classified except for 

the four samples shown as circles that have been plotted on the grey region. 
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the decision boundary to the left would result in additional correctly classified points, it 

should be remembered that the decision boundary is determined from the training subset 

(refer to Figure 2.3 to view how the decision region is generated using Gaussian PDFs fit 

to data in the training subset).  In this case, all data points in the training set were 

correctly classified.  From this example plot it can be seen that plotting 2D decision 

regions provides a simple qualitative method to visually assess classifier performance; 

nonetheless, more sophisticated metrics are also required to provide a quantitative 

representation of classifier performance. 

 

The simplest classification problem has only two true classes (a positive class, p, and a 

negative class, n) and two options for the classifier decision (assigned to the positive 

class, Y, or assigned to the negative class, N).  There are four possible outcomes of a 

classification decision (summarized in, what is commonly referred to as, the “confusion 

matrix” shown in Figure 2.6): if the instance is positive and is classified as positive it is 

considered a “true positive”; if instead the positive instance is classified as negative it is 

counted as a “false negative”.  Alternatively, if a negative instance is classified as 

negative it is considered a “true negative”, whereas if it is classified as a positive it is 

counted as a “false positive” (sometimes referred to as a “false alarm”).  Figure 2.6 shows 

the confusion matrix of the possible outcomes for a particular instance and classification 

decision, as well as the common performance metrics that can be calculated [25].  

 

  True Class   

  p n   

 

Y 

 

True 

Positives 

 

False 

Positives 

fp rate  tp rate  
 

 

 

Hypothesized 

Class 
 

N 

 

False 

Negatives 

 

True 

Negatives 

 

accuracy=
TP + TN

P + N
 

 

 

Figure 2.6 Confusion matrix for the two-class classification problem and the 

performance metrics that can be calculated.  The symbols p and n represent 

the truth-value (positive or negative) of an instance, whereas Y and N 

represent the decision assigned by the classifier (after Ref. [25]).  
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Perhaps the most intuitive measures of classifier performance are the classifier accuracy 

and misclassification rate, where accuracy and misclassification rate (MR) are related by 

MR =1 accuracy ; however, both these values are sensitive to class skew (i.e. different 

number of instances in the positive class and the negative class) and assume that the 

misclassification risks are equal [26], thus when either is used as a performance metric, 

classification should be restricted to the case of equal samples and risk associated with 

each class.  Alternatively, the true positive and false positive rates can be combined at 

various levels of risk to generate a receiver operating characteristic (ROC) curve – this 

will be discussed in the next section. 

 

2.2.1 ROC Curves 

ROC curves illustrate the relative tradeoffs between the benefits (true positives) and costs 

(false positives) of a classifier model [25], by generating plots with false positive rate 

(FP) on the horizontal axis and true positive rate (TP) on the vertical axis (see Figure 

2.7).  The classifier computes the probability that an instance is a class member, which 

can be used to form the following decision rule, as discussed in Section 2.1.5,  

P n x'( )
P p x'( )

> R  
 

, 

 

Eqn. 2.22 

where the numerator is the probability the instance belongs to the negative class, the 

denominator is the probability the instance belongs to the positive class, and R is referred 

to as the threshold value.  The value R is used to quantify the risks associated with 

misclassification. 

 

For R = 0 all instances will be classified as negatives such that P p( ) = P n( ) = 0 , 

producing the point on the ROC graph in the lower left corner.  The point at the top right 

corner of the ROC curve is produced when R =max P n x'( ) P p x'( )[ ] , so that all 

instances will be classified as positives and P p( ) = P n( ) =1. By varying the threshold 

value between these two extremes and keeping track of the number of true positives and 

false positives at each R, a ROC curve is traced out [9].  
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Figure 2.7  Examples of the ideal, chance, and what might be considered a typical ROC 

curve.  Note that the area under the ideal curve is 1.0, and the area under the 

chance curve is 0.5. 

 

 

Figure 2.8 Example ROC curve generation from normal distributions – this example 

corresponds to a one-dimensional decision region.  The solid, vertical line at 

x = 2 depicts the threshold value.  In this case, Class1 represents the positive 

class and Class2 the negative class.  The area under the Class1 curve, to the 

right of the threshold (all shaded areas), represents the true positive rate; the 

area under the Class2 curve, to the right of the threshold (dark shaded area), 

represents the false positive rate.  

 

False Positive Rate
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Continuing with the assumption of Gaussianity discussed in Section 2.1.5, a Gaussian 

PDF is fit to each of the vocalization classes.  Figure 2.8 shows a snapshot of the ROC 

curve generation by depicting a single threshold value.  This snapshot produces a single 

point on the ROC curve corresponding to the shaded areas under the PDFs to the  

right of the threshold.  In the case shown, a single point would be plotted at           

(0.0725, 0.759).  The complete ROC curve is obtained by smoothly varying the position 

of the threshold across the width of the Gaussians to encompass the points (0,0) and (1,1) 

on the ROC curve.  A single value of R is selected for a given classifier model – for 

example, if the risk associated with missing a true positive is large, then the threshold can 

be set with a relatively low threshold to flag any vocalization of interest [19] – this would 

correspond to a single point on the ROC curve. 

 

Examples of ideal, chance and a typical ROC curve are shown in Figure 2.7.  The straight 

line of the chance ROC curve is obtained by using a classifier that randomly guesses 

class membership.  To move away from this line toward the ideal curve, a classifier must 

exploit information in the dataset.  ROC curves provide the benefits of insensitivity to 

changes in class distribution, and visualization of classifier performance at various risk 

values [25], that are not possible by examining a simple decision surface.      

 

The equal error rate is a relatively simple measure of classifier performance that can be 

estimated from the ROC curve and indicates when the risks associated with false 

positives and false negatives are equal.  The equal error rate is defined as the point on the 

ROC curve at which FP =1 TP  (note that FN =1 TP , where FN is the false negative 

rate); this is the point at which the ROC curve intersects with a diagonal line connecting 

the points (0, 1) and (1, 0).  Smaller values for the equal error rate indicate better 

performance: an ideal classifier will have an equal error rate of 0%, whereas a classifier 

that randomly assigns class labels will have an equal error rate of 50%.  In practice, the 

ROC curve is not continuous so the equal error rate is determined by finding the FP that 

minimizes the value of 1 TP FP .  
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2.2.2 Area Under ROC Curve 

For quantitative comparison of classifiers, the information present in the ROC curve can 

be reduced to a single value – the area under the curve – AUC [25].  The AUC also 

provides a measure of how much the class distributions differ; large values indicate that 

the class distributions are substantially different [26].  The area under the ideal ROC 

curve is AUC = 1 and the chance ROC curve has AUC = 0.5.  Typical ROC curves have 

AUCs ranging from the chance value to the ideal; no realistic classifier has AUC < 0.5, 

since the ROC curve can simply be inverted by reversing the positive and negative 

classification decisions.  An important statistical property of the AUC is that it is 

equivalent to the probability that the classifier will rank a randomly selected positive 

instance higher than a randomly selected negative instance.  In general, a larger AUC 

value implies better average classifier performance, although it is possible that a ROC 

curve with smaller AUC will perform better at some threshold values [25]. 

 

It is difficult to determine all possible sources of error in calculating the AUC; however, 

the error is likely dominated by the size of the dataset and the selection of the training 

subset.  The AUC can be interpreted as the percentage correct in a forced-choice test [27], 

i.e. the probability of correctly classifying a randomly drawn sample from the dataset.  

Based on this interpretation of the AUC a limit on the number of significant figures can 

be placed according to the size of the test dataset.  Table 3.3 contains the total number of 

vocalizations in the entire dataset.  Due to the number of vocalizations per species (in the 

100 – 500 range), no more than two significant figures should be used when presenting 

AUC results. 

 

To quantify the error associated with choice of the training subset, a simple experiment 

was designed to estimate the variance in AUC results.  Bowhead and humpback 

vocalizations were randomly selected and placed in the training subset and the remaining 

vocalizations placed in the testing set.  This resulted in an approximately equal number of 

vocalizations per species in the training and testing subsets.  Classification was 

performed as usual and the AUC value was noted.  This process was repeated 100 times, 

each time randomly selecting vocalizations for the training and testing subsets.  The 
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standard deviation of AUC values was 0.01.  Since these two species have the largest 

variation in vocalization type, an upper-bound estimate on the standard deviation of AUC 

due to choice of training subset was set at 0.01.  Therefore, all AUC values in this thesis 

will be presented with two significant figures to reflect the two largest sources of error in 

estimating the AUC. 

 

2.2.3 Multiclass AUC 

When more than two classes are considered a single ROC curve cannot be used to 

evaluate classifier performance.  With more than two classes the resulting space is more 

complex to manage; for c classes the confusion matrix analogous to that shown in Figure 

2.6 becomes a c x c matrix with a total of c correct classifications on the main diagonal 

and c
2
 – c possible errors (off-diagonal entries of the confusion matrix) [25].  The 

confusion matrix of AUC values for the c class case is shown in Table 2.1, with classes 

labelled 1, 2, 3, …, c, (c > 2).  There are a total of c
2 
– c entries in the confusion matrix 

corresponding to the number of possible errors.  This is a symmetric matrix with    

AUC(i, j) = AUC(j, i).  Because AUC(i, j) = AUC(j, i), there are a total of c 2 c( ) 2  

unique errors.  The entry AUC(i, j) in the confusion matrix is the probability that a 

randomly selected instance belonging to class j will have a lower estimated probability of 

belonging to class i than a randomly selected member of class i [26] – note that this is 

analogous to the definition of the binary AUC that was defined in section 2.2.2.  Although 

the total proportion of correct classifications may be small, the decision rule employed  

 

Table 2.1 Confusion matrix of areas under pairwise ROC curves for classification of c 

classes, when c > 2.  There are no entries on the main diagonal because it is 

not possible to classify a class against itself. 

  

 Class 1 Class 2 Class 3 … Class c 

Class 1  AUC(1,2) AUC(1,3) AUC(1,j) AUC(1,c) 

Class 2 AUC(2,1)  AUC(2,3) AUC(2,j) AUC(2,c) 

Class 3 AUC(3,1) AUC(3,2)  AUC(3,j) AUC(3,c) 

… AUC(i,1) AUC(i,2) AUC(i,3) AUC(i,j) AUC(i,c) 

Class c AUC(c,1) AUC(c,2) AUC(c,3) AUC(c,j)  
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may be very accurate for certain classes or groups of classes [26], which can be seen by 

examining the entries in the confusion matrix. 

 

The performance of the classifier in separating all c classes – termed the M-measure – is 

given by, 

M =
2

c c 1( )
AUC i, j( )

i< j

 
 

. 

 

Eqn. 2.23 

Thus, the M-measure is the average over all the pairwise AUC values listed in the 

confusion matrix.  The multiclass generalization of the AUC, as implemented by Hand 

and Till [26], has the same properties as the binary case – no information about class 

priors is required, classification is not limited to the case of equal costs associated with 

misclassification, and it yields a measure of how well each class is separated from all 

other classes.  Like the AUC, the possible values for the M-measure range between 0.5 

and 1.0, with larger values indicating superior classifier performance than lower values of 

M.  
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CHAPTER 3 CETACEAN DATASET 

Vocalizations from five cetacean species form the dataset used for aural classification.  

The frequency range of the vocalizations of each species significantly overlaps the human 

auditory range (20 Hz – 20 kHz for undamaged hearing [28]) so a clear parallel can be 

drawn between human expert listeners aurally classifying whale vocalizations and the 

results of the aural classifier.  For comparison, the vocalization frequency ranges for the 

selected species are shown in Figure 3.1.  In most cases, the frequency bandwidths of 

each species’ vocalizations overlaps with the bandwidths of the other species, so 

frequency alone will not function well as a discrimination cue.   

 

Figure 3.1 Known frequency ranges (plotted on a logarithmic scale) of cetacean 

vocalizations of the selected species.  The thick bar shows the frequencies 

of the most common types of vocalizations and the thin line shows recorded 

frequency extremes [11], [29].  
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Five different species were selected for this research: bowhead, humpback, North 

Atlantic right, minke and sperm whales.  An important factor in selecting these species 

was the availability of audio data containing many vocalizations.  As discussed in the 

following sections, other factors in species selection included the endangered or 

threatened status of these species in the Canadian Species At Risk Act (SARA; see Table 

3.1 for definition of these listings), particularly for the critically endangered North 

Atlantic right whales.  The sperm whale was selected because automatic detectors often 

confuse its clicks with impulsive anthropogenic transients.  Bowhead and humpback 

vocalizations are so similar in their frequency bandwidth and duration that many 

automatic classification algorithms have difficulty distinguishing between these sounds, 

and so were selected to provide a challenging case for the aural classifier. 

 

Table 3.1 Definitions of the Canadian Species at Risk Act (SARA) categories used to 

describe the status of species in the Canadian wild [30].  The SARA 

categories are organized from highest risk to lowest risk to a wildlife 

species’ survival.  

SARA Category Definition 

Extinct A wildlife species that no longer exists. 

Extirpated A wildlife species that no longer exists in the Canadian wild but 

exists elsewhere in the wild. 

Endangered A wildlife species that is facing imminent extirpation or extinction. 

Threatened A wildlife species that is likely to become endangered if nothing is 

done to reverse the factors leading to declining population size. 

Special Concern A wildlife species that is likely to become threatened or endangered 

due to a combination of biological characteristics and identified 

threats. 

 

The dataset for this research was compiled using vocalizations that originated from 

various sources.  Although there is no single accepted comprehensive catalogue of typical 

marine mammal vocalizations [31], some researchers have attempted to generate 

databases of vocalizations for use in automatic classification research – one such website 

is MobySound [32].  MobySound is a freely available reference archive that was 

constructed to facilitate research on automatic recognition of marine mammal sounds by 

providing a set of common vocalizations that researchers can use to test the effectiveness 

of various classifier implementations and compare results to those of other classification 

methods [33].  MobySound relies on researchers providing relatively good quality data 
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with accurate metadata associated with the recordings and vocalizations contained.  

MobySound is somewhat limited because it may not contain vocalizations from a 

particular species or a specific population of interest.  For example, MobySound contains 

sounds from the North Pacific but not North Atlantic right whale; because cetacean 

vocalizations often differ between geographically separate populations of a species, it 

cannot be assumed that classification results from the North Pacific right whale can be 

directly applied to North Atlantic right whales.  When possible, vocalizations from 

MobySound were used; otherwise vocalizations were obtained from other sources.  The 

source of each species dataset is discussed in Sections 3.2 - 3.6.   

 

Some of the species in the dataset produce a wide variety of sounds (e.g. humpbacks); in 

these cases a subset of vocalizations were selected.  Aurally distinct vocalizations were 

included in the subset of a species’ vocal repertoire only if a relatively large number of 

the sounds were available.  Julie Oswald and Christine Erbe (both employed by JASCO 

Research [34]) were consulted to provide their expertise during selection of 

representative sounds. 

 

When generating a dataset for automatic classification research, it is important to 

establish reliable ground truth information for the data to ensure that the classifier is 

trained with the correct data.  At present, human experts remain the best classifiers, so 

experts in marine mammal vocalizations provided ground truth classifications using aural 

and visual (i.e. spectrogram-based) methods in addition to prior contextual information to 

confirm the species producing each vocalization used in this research [31]. 

 

3.1 WHALE SONG STRUCTURE AND TERMINOLOGY 

The hierarchical organization of vocalizations used by some baleen whale species is 

referred to as whale song.  Payne and McVay [35] wrote a defining paper describing the 

songs of humpback whales – this definition and terminology has been extended to the 

three other baleen whale species that have been reported to produce song.  Of the singing 

baleen whales, humpbacks have been the most studied in large part due to the ease with 
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which researchers can do research in areas where humpback whales sing (e.g. near 

Hawaii and Puerto Rico) [10], so they are often used as examples when discussing the 

nature of whale song.  This section will provide a brief overview of whale song intended 

to introduce the terminology that will be used in this thesis. 

 

Whale song follows a hierarchical model.  A “unit” is the shortest continuous sound 

perceived by human hearing that is preceded and succeeded by brief moments of silence.  

In some cases when a unit is played back at slower speed, or the fine-scale structure of 

the spectrogram is analyzed, it can be noted that the unit is actually made up of shorter 

segments of discrete pulses or tones, which can be referred to as “subunits.”  A series of 

units is called a “phrase”, groups of similar phrases form a “theme,” and a “song” is made 

up of several distinct themes.  The term for a series of songs sung in succession, with less 

than one second between songs, is “song session.”  Song sessions can last for hours and a 

single song may last between 5 minutes and more than 30 minutes [35].   Figure 3.2 

 

 

Figure 3.2 Diagram containing example spectrograms of humpback whale song and the 

associated terminology used to describe song.  Frequency is on the vertical 

axis and time on the horizontal axis (after Ref. [35]). 
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shows a graphical representation of whale song organization with humpback whale 

spectrogram examples. 

 

There is a high degree of repetition in a whale song.  Only a few units are repeated in a 

certain order to form a phrase, and the phrase is repeated several times within a theme, 

and so on.  Thus, an automatic classifier likely only needs to be trained on a select few 

units because they will be repeated often enough for the classifier to inform a decision of 

what cetacean species is present.    

 

3.2 BOWHEAD WHALE 

The bowhead whale (Balaena mysticetus) is a baleen whale with a nearly circumpolar 

distribution in Arctic and sub-Arctic waters.  The Eastern Arctic population of this large 

whale is listed on the Canadian SARA list as “Endangered,” although other Arctic 

populations have either no status or are listed as “Special Concern;” populations of these 

whales were severely depleted due to excessive whaling.  Since bowheads spend 

significant amounts of time close to the edge of the pack ice, climatic conditions that 

influence ice conditions may significantly affect the survival and distribution of the 

species.  Additionally, elevated levels of ship traffic in the Arctic lead to increased 

chance of mortality due to ship strike [30]. 

 

The bowhead vocalizations used for this research came from the MobySound website 

[32]. A significant advantage of using the bowhead MobySound dataset is that experts 

have previously classified the data with text annotations indicating detections.  The data 

containing bowhead vocalizations was recorded off of Point Barrow, Alaska using 

homemade hydrophones with Sippican transducer elements – sampling was performed at 

a rate of 4.0 kHz.  The MobySound archive contained only the endnotes of the bowhead 

song and none of the other parts of the species’ complex song – bowhead songs change 

from year to year, although the endnotes remain relatively constant and tend to exhibit 

higher source levels than other parts of the song [31], [33] and are thus the most accepted 

song component for classification purposes. 
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Classification was performed on the bowhead whales’ song endnote (Figure 3.3).  The 

spectrogram of these sounds forms a distinctive undulating shape, with frequencies 

ranging between about 50 – 800 Hz.  The duration of these sounds is approximately 2.5 – 

3.0 s [31].  There were 259 bowhead vocalizations used for classification. 

 
Figure 3.3 Time series and spectrogram of a bowhead song endnote.  The spectrogram 

was generated using a Hamming window length of 256 samples and 60% 

overlap. 

 

Bowhead and humpback vocalizations have very similar frequency bandwidth and 

duration, so that many automatic detection/classification schemes have difficulty 

distinguishing between these two species.  A primary reason for selecting bowhead and 

humpback whales for this classification work was to provide a case that has challenged 

many automatic classification algorithms in the past. 

 

3.3 HUMPBACK WHALE 

Depending on the time of year, humpback whales (Megaptera novaeangliae) can be 

found worldwide in tropical, temperate, and sub-polar waters.  These baleen whales 

migrate seasonally between high-latitude summer feeding grounds, and low-latitude 

breeding and calving areas in the winter.  The Atlantic humpback population is listed as 

“Special concern” and the Pacific population is listed as “Threatened” on the Canadian 

SARA list [30].  Humpbacks are the second-most commonly reported marine animals to 

be the subject of ship strikes (following fin whales) [36]; since they are such a vocal 
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species, passive acoustic detection and classification may be used to reduce the number 

of ship strikes involving humpback whales. 

 

Male humpback whales sing primarily in the winter while on the breeding grounds, 

although some singing whales have been noted during migration and while on summer 

feeding grounds.  Humpback song changes significantly from year to year with complete 

change noted within two to five years [31].  Humpbacks in different ocean basins (e.g. 

Atlantic and Pacific populations) have different song dialects; that is, distinct populations 

sing different songs that do not appear to have any commonalities other than their 

hierarchical structure, whereas all whales within the same population sing the current 

version of that population’s song [37].  Because the unit is the basic song component, it is 

believed that there will be less variation in units from year to year within a population 

and that there may be some common units between populations.  Therefore, only distinct 

song units were selected for classification and no attempt was made to include longer 

components like phrases.  Due to the broad vocal repertoire of humpback whales, there is 

overlap in frequency range and duration with many other marine mammals including 

North Atlantic right whales and bowhead whales.  Because of this overlap with 

vocalizations from other species, humpback whale sounds may be a confounding factor 

when monitoring other species [38].  

 

The humpback vocalizations were obtained from the MobySound website.  Recordings of 

humpback song were made off the north coast of the island of Kauai, Hawaii using 

custom-built hydrophones with a Sippican transducer element [32].  Data was provided 

with a sampling frequency of 4.0 kHz.     

 

Of the many different sounds produced during humpback whale song, four song units 

(Figure 3.4) were selected for the purposes of this project.  These particular units were 

selected to provide overlap in frequency content and duration with both bowhead and 

North Atlantic right whale vocalizations to provide a challenging case to test the 

robustness of the aural classifier.  These units occurred relatively frequently throughout 

the recordings, so in a realistic setting the classifier would not need to classify every 
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sound that a humpback made but instead it would be sufficient to recognize one of these 

units as belonging to a humpback whale. 

 

(a) (b) 

  
(c) (d) 

  
Figure 3.4 Time series and spectrograms of the four humpback units selected for 

classification.  Spectrograms were generated using a Hamming window 

length of 256 samples with 60% overlap.  These units will be referred to as 

(a) humpback1, (b) humpback2, (c) humpback3, and (d) humpback4.  In (c) 

two humpback3 units are shown – during classification only a single unit of 

this type would be used (i.e. unit is less than one second in length).  

 

The overtone structure of each of these units is very apparent.  Table 3.2 lists the 

frequency bandwidth and duration of the fundamental frequencies for each of the selected 

units.  Each instance of the humpback1 and humpback4 units exhibited enough aural 

similarity to be recognized as belonging to the respective subclass although the frequency 

extent and spectrogram contour showed substantial variation between instances – 

spectrogram correlation techniques used by many researchers would not work well with 

these units although because of the aural similarities of these units it is expected that 

aural classifier results will not be significantly affected.  There were a total of 456 
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humpback units available for classification; of these there were 206 humpback1 units, 

122 humpback2 units, 83 humpback3 units, and 45 humpback4 units. 

 

Table 3.2 Approximate frequency bandwidth of the fundamental frequency and 

duration of the four types of humpback units shown in Figure 3.4. 

 Frequency 

Bandwidth (Hz) 

Duration (s) 

Humpback1 200 – 600 2.5 – 3.0 

Humpback2 150 – 700  1.0 – 1.5  

Humpback3 100 – 2000  ~ 1.0 

Humpback4 500 – 1300  1.5 – 2.0 

 

 

3.4 NORTH ATLANTIC RIGHT WHALE 

North Atlantic right whales (Eubalaena glacialis), a baleen whale species, are currently 

listed as “Endangered” on the Canadian SARA list with estimates of 300 – 400 

individuals remaining and are generally considered to be among the most endangered 

whales in the world.  The right whales are particularly at risk of ship strikes or becoming 

entangled in fishing gear, in part because they spend large amounts of time close to the 

surface and because they migrate close to shore in areas of high ship traffic.  The eastern 

stock of North Atlantic right whales have been sighted in coastal waters between the 

Canary Islands and Norway, whereas the western North Atlantic stock spends winters off 

the coasts of Florida and Georgia and summers off the north-eastern United States and 

Canada (see figure Figure 3.5) [30].  Anthropogenic mortalities are currently responsible 

for about 40% of known right whale mortalities.  Population projections performed in 

2001 suggest that, given current mortality rates, the North Atlantic right whale population 

will be extinct within 100 – 400 years [15].  The future of the right whale depends on a 

significant reduction in deaths caused by human activities [39].    

 

North Atlantic right whale vocalizations were recorded in the Bay of Fundy by previous 

effort of DRDC scientists.  Data was collected using a variety of sonobuoy types and a 

CP140 Maritime Patrol Aircraft.  Data was stored with a sampling frequency of 6.554 

kHz. 
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Figure 3.5 Known distribution of North Atlantic right whales in Canadian waters, 

shown in dark grey [30]. 

 

Two general types of sounds are considered for right whale classification – frequency 

modulated sounds that are at least one second in length, referred to here as cries and 

moans, and the distinctive “gunshot” sound that is a short broadband transient with 

duration less than 0.5 s.  Examples of the North Atlantic right whale sounds used for 

classification are shown in Figure 3.6.  There is significant variability in how the moan-

like calls’ frequency contour changes with time, as well as differences in durations 

(ranging from 1.0 – 2.5 s); however, these calls have a common range of fundamental 

frequencies (70 – 190 Hz).  The cries are 1.0 – 1.5 s in duration and occur in the 400 – 

500 Hz frequency band.  Some overtones are evident in the right whale moan and cry 

sounds.  The example gunshot sound has at least three noticeable pulses – the initial 

impulse is the original right whale gunshot sound and the following impulses are likely 

due to multipath reflections. 

 

In total there were 142 North Atlantic right whale vocalizations used for this research; 

these can be further divided into the subclasses shown in Figure 3.6.  There were 26 

moan-like sounds, 30 cry sounds, and 86 gunshot sounds.  
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(a) (b) 

  

(c) 

 
Figure 3.6 Time series and spectrograms for (a) right whale moan, (b) cry, and (c) 

gunshot sounds.  Spectrograms were generated using a Hamming window 

length of 256 samples and overlap of 70% for the moan and cry sounds.  

The right whale gunshot spectrogram was generated using a Hamming 

window size of 64 samples and 70% overlap.  The arrows on (c) indicate the 

locations of the three impulses associated with the gunshot sound. 

 

3.5 SPERM WHALE 

Sperm whales (Physeter macrocephalus) are one of the most difficult large whale species 

to detect using traditional visual observation techniques because they live off of 

continental shelves worldwide, perform deep dives and spend approximately only ten 

minutes at the surface [40] between dives, which can last up to 90 minutes [10].  Sperm 

whales are the only odontocete species included in the dataset.  This whale species 

generates powerful, distinct sounding clicks that can be detected at ranges of several 

kilometres, which can be used to acoustically detect this species [40].  The primary 

reason for including sperm whale clicks in this dataset was because of the similarity of 
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the click structure with a wide variety of anthropogenic noise sources (i.e. false alarms) 

that could confuse many different types of automatic classifiers.  

 

Data collected during a Canadian Forces Auxiliary Vessel (CFAV) QUEST– DRDC’s 

research ship – research cruise contained recordings of many sperm whale clicks.  These 

clicks were collected by a SSQ57B broadband sonobouy with sampling frequency of 80 

kHz.  Recordings were collected at the Atlantic Undersea Test and Evaluation Center 

Range which is a location that sperm whales are common – thus, contextual information 

helped confirm the initial classification of acoustic data [31].  

 

Sperm whale clicks are very short in duration (as can be seen in Figure 3.7), about 2 – 3 

ms in length and often contain multiple arrivals spaced several hundredths of seconds 

apart.  It was determined that the double click phenomenon shown is likely due to 

multipath effects rather than a multi-pulse structure caused at the source, since the 

spacing between the two clicks is consistent with that attributed by Thode et al. to result 

from a direct path and bottom reflection [41].  Sperm whale clicks cover a frequency 

range of about 500 Hz – 17 kHz [31], but in this case detection and classification is 

limited to 0 – 4 kHz because of data re-sampling.  There were 178 sperm whale clicks 

detected and used for classification. 

 

 
Figure 3.7 Time series and spectrogram of a sperm whale click.  The spectrogram was 

generated using a Hamming window length of 64 samples and an overlap of 

70%. 
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3.6 MINKE WHALE 

Minke whales (Balenoptera acutorostrata) are very difficult to detect visually, especially 

in rough sea conditions.  Minke whales are relatively common and have a worldwide 

distribution, but sightings of this species are rare because they are the smallest of the 

baleen whales, are encountered individually or in small groups of two or three, have 

relatively inconspicuous blows and only spend small amounts of time at the surface [42].   

Because of the low probability of visual sightings, minke whales are ideal candidates for 

studying using passive acoustic methods.    

 

North Pacific minke whales seasonally (November – March) generate a unique sound 

known as the “boing”.  This sound has recently been attributed to the minke whale using 

visual and passive acoustic methods [42] and has since become an accepted cue for 

detection and classification purposes.  Boings produced by the Hawaiian minke whale 

population have a mean duration of 2.6 s [29].  The duration and frequency content of 

boings are relatively constant from year to year, although there are some variations based 

on population (i.e. spatial variation) [42].  False alarms caused by humpback song have 

occurred during automatic detection of minke boings because of some overlap in the 

frequency content and duration of some humpback units and the minke whale boing [29].   

 

Figure 3.8 shows an example of a minke whale boing; note the initial brief pulse and 

subsequent frequency- and amplitude-modulated long call.  Boings usually have several 

overtones apparent in their spectrograms.  This project made use of a dataset containing 

minke boing recordings that was released for testing various automatic algorithms as part 

of the 5
th

 International Workshop on the Detection, Classification and Localization Using 

Passive Acoustics [32], [43].   

 

The boings were recorded at a US Navy test range off the coast of Kauai, Hawaii using 

seven bottom-mounted hydrophones.  The data-sampling rate was 96 kHz with 16-bit 

resolution.  From this dataset, a total of 127 minke boings were extracted for 

classification.  
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Figure 3.8 Time series and spectrogram of the minke “boing” sound.  The spectrogram 

was generated using a Hamming window length of 2048 samples with an 

overlap of 75%.  The arrow indicates the location of the initial brief 

impulse. 

 

3.7 DATASET SUMMARY    

The following table summarizes the total number of vocalizations, per species, contained 

in the cetacean dataset.  The “Species Total” column represents the sum of the separate 

vocalization units for a species, e.g. there are a total of 142 North Atlantic right whale 

vocalizations when all types of sounds are considered. 

 

Table 3.3 Number of vocalizations, by species, in the cetacean dataset.  The number 

of vocalizations is broken down by units where applicable. 

Species Number of 

Vocalizations 

Species Total 

Bowhead 259  

Humpback1 206 

Humpback2 122 

Humpback3 83 

Humpback4 45 

 

456 

North Atlantic right moans and cries 56 

North Atlantic right gunshots 86 

142 

Minke 127  

Sperm 178  

Total Number of Vocalizations 1162  
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CHAPTER 4 DATA PREPARATION AND 

DETECTION PROCESS 

4.1 DATA PREPARATION 

Acoustic data pre-processing and automatic detection of vocalizations were performed by 

Akoostix Inc. of Dartmouth, NS as outlined in Ref. [31].  Various sampling strategies 

were used during initial recordings – to ensure consistent detection processing and 

classification, all data were re-sampled to 8.0 kHz, using the open source Linux sound 

exchange (SoX) application [44], with quadratic interpolation. 

 

This required a severe down-sampling of the sperm whale data – it was aurally confirmed 

that enough information was left available after down-sampling for automatic aural 

classification purposes.  The reduced sampling rate is also consistent with using reduced 

bandwidth on the original recording system, and is a realistic scenario in that context. 

 

4.2 DETECTION PROCESS 

The acoustic recordings obtained from the various sources contained many individual 

vocalizations in data files ranging from a couple of minutes to approximately half an hour 

long.  Aural classification is performed on a single vocalization – so individual 

vocalizations must first be located within the recordings.  Using a process called band-

limited energy detection, Akoostix Inc. provided vocalizations to be used for this 

research.  A variety of vocalizations were desired – including potentially challenging 

vocalizations (i.e. relatively low SNR) – to evaluate the robustness of the aural classifier. 
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Band-limited energy detection is a common technique for detection of marine mammal 

vocalizations, because many of the signals have a characteristic bandwidth and duration, 

but too much variability for correlation-based techniques [45].  For example, the 

humpback whale is known to change its song from year to year so correlation methods 

will not work over a longer time period, but there may be sufficient similarities in the 

duration and frequency content of the units that a band-limited energy detector will still 

function well.  In performing energy detection, a detection function is calculated by 

estimating the short-term average energy in the signal band and dividing it by a longer 

average of the background noise energy; this forms the basis for a likelihood ratio test.  

The value of the computed ratio is then compared to a pre-defined acceptable threshold 

value [45]. 

 

The automatic detector used for this research offers two different methods to estimate 

energy content in the signal band.  The first method, typically used for impulsive sounds 

(like sperm whale clicks), uses an exponential average of the form, 

y n[ ] = y n 1[ ] + 1( )x n[ ] , Eqn. 4.1  

where x[n] is the energy of the n
th

 sample, and y[n] is the energy estimate for sample n.  

The averaging coefficient, , is defined by,  

 
 

, 

 

Eqn. 4.2  

where Tc is a time constant and T is the time resolution.  The value of  ranges between 

zero and one [31], [45].  The second method, more efficient for detection of narrower 

band signals (like baleen whale vocalizations) employs a split window to estimate the 

energy average.  The split window method uses two rectangular windows to provide 

estimates for the signal and noise levels.  Windows are defined such that the noise 

window (WN) is longer than the signal window (WS) and each window has an odd number 

of samples so that there is no ambiguity about the location of the window centre.  The 

estimate for the signal level at sample n is given by,  

yS n[ ] =
1

WS

x n + i[ ]
i= 1

2
WS 1( )

1

2
WS 1( )

 
 

. 

 

Eqn. 4.3  

 

The noise estimate is found in a similar way using, 
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Eqn. 4.4  

 

The level estimate provided by the split window method is non-causal, so that in practice 

the output of the detector will lag behind the signal input by approximately half the noise 

window length.  The estimates of signal and noise energy are used to perform the 

likelihood ratio test – if the likelihood ratio exceeds the pre-defined threshold value, a 

detection is generated.  For this research, the threshold value was set relatively low to 

include vocalizations with a range of SNR values. 

 

Parameters used for the automatic detection process are listed in Table 4.1.  Frequency 

bands were selected to include most of the energy from the first harmonic of the 

vocalization.  The split window estimation method was used for all types of whale 

vocalizations, except for the sperm whale clicks.  Sperm whale clicks were detected using 

the exponential average method.  Humpback3 units were not specifically configured as 

detection targets, but instead resulted from detection parameters for the other humpback 

units; it was decided to include the humpback3 units because of the large number of 

detections and similarity in frequency bandwidth and duration to vocalizations of 

bowhead and right whales.  Detection parameters were selected to allow as many 

detections as possible, while also generating relatively large numbers of false alarms.  

The philosophy is that the classification process will significantly reduce the false alarm 

rate and correctly identify many of the detections; if more stringent detection parameters 

were used, any missed detections would remain unclassified [31].   

 

Table 4.1 Detection parameters used for each type of cetacean vocalization.  The 

listed parameters define the signal band. 

 

Whale 

Vocalization 

Type 

Frequency 

Resolution 

(Hz) 

Time 

Resolution 

(s) 

Low 

Frequency 

(Hz) 

High 

Frequency 

(Hz) 

Signal 

Window 

Size (s) 

Bowhead 5 0.1 50 700 1.0 

Humpback1&2 5 0.1 200 500 2.0 

Humpback4 5 0.1 625 1550 2.0 

Right Moan 5 0.1 120 220 1.5 

Right Cry 5 0.1 415 515 1.5 

Right Shot 5 0.1 1325 1425 1.5 
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Whale 

Vocalization 

Type 

Frequency 

Resolution 

(Hz) 

Time 

Resolution 

(s) 

Low 

Frequency 

(Hz) 

High 

Frequency 

(Hz) 

Signal 

Window 

Size (s) 

Minke 0.73 0.505 1100 1600 1.0 

Sperm 100 0.005 1000 3900 Time 

Constant 

= 0.005 
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CHAPTER 5 CETACEAN CLASSIFICATION 

This chapter presents aural classification results using the cetacean dataset described in 

CHAPTER 3.  Aural classification is accomplished using the process outlined in Sections 

2.1.1 to 2.1.5 – principal component analysis is used to project the data onto the two-

dimensional space.  The same training and testing subsets were used for all results 

presented in this chapter. 

5.1 MULTICLASS CLASSIFICATION 

5.1.1 All Cetacean Species (c = 5) 

The first analysis examines a multiclass classification that includes all five species in the 

dataset.  Fourteen features were removed during redundancy reduction, which left 44 

features for consideration.  As discussed in Section 2.1.4, it is unlikely that all the 

perceptual features will be useful in discriminating between the cetacean species’ 

vocalizations; thus, a subset of features is selected prior to performing PCA.  To 

determine the number of features to be used in PCA, a plot of the cumulative Fisher score 

with respect to number of features (Figure 5.1) is used.   The cumulative Fisher score is 

determined by summing the Fisher scores (sD) of the first k features, , where the 

features have been sorted in order of decreasing Fisher score.  This type of plot represents 

the relationship between number of selected features and discriminability.  A bend in the 

plot, where the curvature of the plot begins to noticeably decrease, indicates the point at 

which including additional features will not significantly increase classifier performance.  

The features corresponding to the flat portion of the curve have low Fisher scores because 
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they do not do as well at discriminating between classes – including these features will 

not significantly add to classifier performance and may, in fact, decrease classifier 

performance by introducing noisy features. 

 

 

Figure 5.1 Cumulative Fisher score with respect to number of features for all cetacean 

species.  Note that the features have been sorted so that the first feature has 

the largest Fisher score.  Points are connected for visualization purposes and 

not intended to imply the data are continuous. 

 

Figure 5.1 represents the cumulative Fisher score for the perceptual features calculated 

when all five cetacean species are considered.  The Fisher score curve is smoothly 

varying with no obvious bend; there is a relatively constant increase in the cumulative 

Fisher score between 1 and 30 features.  At 30 features the cumulative Fisher score curve 

is relatively flat.  Closely inspecting the curve reveals a slight decrease in the slope of the 

curve at 20 features that becomes more noticeable at larger number of features.  Based on 

these results, classification will be performed using 30 and 20 features.  

 

Classification of all five cetacean species was first performed using 30 features, with the 

particular classifier model derived from the training subset.  The decision region obtained 

from the training subset is shown in Figure 5.2a with classification accuracy of 90%.  

The confusion matrix of pairwise AUC values is shown in Table 5.1; the average of these 

pairwise AUC values gives an M-measure of 0.99, which is indicative of a successful 

classification over all classes.  The decision region with the data from the testing subset is 

shown in Figure 5.2b.  Observe how the decision boundaries are the same for both  
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(a) 

 
(b) 

 
Figure 5.2 Decision regions for multiclass classification of all cetacean vocalizations.  

(a) Results from the training subset and (b) results from the testing subset.  

Classification was performed with 30 selected features. Class means are 

represented as white crosses on their respective decision regions with bars 

one standard deviation in length. 
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decision regions – this is because only the data from the training subset are used to 

calculate the decision boundaries, the results of which are then applied to the testing 

subset.  Remember that the decision regions are obtained by fitting Gaussian PDFs to 

each class (using data in the training subset) and the boundaries between regions are 

defined by points of equal likelihood probability.  Results from the training subset are 

shown here to provide an example of how the decision region relates to the data in the 

training subset. For all other circumstances, only the results from the testing subset will 

be presented because they convey information about how successfully the classifier 

model can be applied to a different dataset. 

 

Table 5.1 Confusion matrix of AUC values corresponding to the decision region 

shown in Figure 5.2a.  The value M = 0.99.  The asterisk indicates AUC 

values that appear to result from an ideal classifier, but in fact resulted from 

rounding to two decimal places. 

 Humpback Right Minke Sperm 

Bowhead 1.00
*
 0.94 1.00

*
 1.00 

Humpback  1.00
*
 1.00

 
1.00 

Right   0.95 1.00 

Minke    1.00 

 

 

The decision region for classification of all five cetacean species in the testing subset, 

using 30 selected features, is shown in Figure 5.2b with a corresponding M value of 0.97 

– indicative of a successful classification over all classes.  The confusion matrix of 

pairwise AUC values is shown in Table 5.2.  The vocalizations in the test set were 

classified with 75% accuracy.  All sperm whale clicks were correctly classified as can be 

seen both by examining the decision region and from the fact that the column 

representing the pairwise classifications with sperm whales contains AUC values of 1.00 

for all cases.  The most overlap occurred between the humpback/bowhead and 

minke/right whale pairs of classes.  When the first two principal components were used a 

value of p2 = 0.59 was obtained, indicating that more than half of the variance contained 

in the 30-dimensional feature space is represented in this reduced 2D space.  The sperm 

whale class contains the largest amount of within-class variance, while the within-class 

variances of the other four classes are similar to one another, as can be noted by the size  
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Table 5.2 Confusion matrix of AUC values corresponding to the decision region 

shown in Figure 5.2b.  The value M = 0.97.  The asterisk indicates AUC 

values that appear to result from an ideal classifier, but in fact resulted from 

rounding to two decimal places. 

 Humpback Right Minke Sperm 

Bowhead 0.83 0.99 1.00 1.00 

Humpback  0.98 1.00
* 

1.00 

Right   0.86 1.00 

Minke    1.00 

 

of the white crosses in Figure 5.2b.  An interesting feature of this plot is the linear spread 

of sperm whale points, especially compared with the more random spread of data points 

in the other classes – this trend will be discussed in Section 5.3.2. 

 

The multiclass classification was repeated with only 20 features selected.  The 

corresponding decision region is depicted in Figure 5.3 and the matrix of pairwise AUC 

values is represented in Table 5.3.  The results of the classifier were good with    

 

Figure 5.3 Decision region for multiclass classification of all cetacean vocalizations.  

Classification was performed with 20 selected features. Class means are 

represented as white crosses on their respective decision regions with bars 

one standard deviation in length. 
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M = 0.97 and 78% accuracy.  These classification results are similar to classification 

humpback/bowhead and minke/right whale classes as indicated by the larger AUC values 

for these pairs of classes.  The minke whale class has a large amount of within-class 

variance, as represented by the size of the white cross in Figure 5.3; based on ad hoc 

listening tests performed by the author, this was not expected because there seems to be 

little variation in how the minke whale vocalizations sound.  Once again, the sperm whale 

data points were distributed linearly.  More of the variance in the selected features is 

maintained in this case where p2 = 0.67.  The fact that there were ten fewer features to 

contribute to the variance of the higher dimensional feature space likely contributed to 

being able to maintain more variance in the principal components when only 20 features 

were selected. 

 

Table 5.3 Confusion matrix of AUC values corresponding to the decision region 

shown in Figure 5.3.  The value M = 0.97.  The asterisk indicates AUC 

values that appear to result from an ideal classifier, but in fact resulted from 

rounding to two decimal places. 

 Humpback Right Minke Sperm 

Bowhead 0.89 0.99 1.00 1.00 

Humpback  0.98 1.00
* 

1.00 

Right   0.87 1.00 

Minke    1.00 

 

A prominent feature in both decision regions (Figure 5.2b and Figure 5.3) is the apparent 

linear trend of the sperm whale click data points.  When Gaussian PDFs are fit to each 

class, it is assumed that the within-class covariance is negligible (i.e. approximately 

zero).  In the case of the sperm whale clicks this is not true – the covariance and 

correlation, in the case of thirty selected features are -3.02 and -0.95, respectively.  When 

twenty features were selected the covariance was -1.75 with a corresponding correlation 

of -0.95.  This would indicate that the two principal components are highly correlated for 

sperm whale clicks and the assumption that the off-diagonal components of the 

covariance matrix are zero is not valid.  A possible cause for the non-zero within-class 

covariance is presented in Section 5.3.2.    
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The three most important features in the PCA space are listed in Table 5.4.  Examining 

the eigenvectors that define the PCA transformation (as in Figure 5.4) exposes the 

relative weighting of each feature used during projection onto the reduced feature space.  

The absolute value of the eigenvectors are summed and normalized by the maximum 

feature weight and plotted to provide a simple method for identifying the relative 

importance of each feature.  For example, the normalized sum of eigenvector components 

corresponding to the peak loudness frequency feature (feature number 21 on the plot) for 

the principal components composed of 30 features is 0.62 compared to 0.58 for the 20-

feature principal components; thus, it can be concluded that peak loudness frequency is 

slightly more important when 30 features are selected for the PCA method.   

 

Table 5.4 Three highest weighted features using 30 and 20 selected features for 

classification of the five cetacean species. 

30 Selected Features 20 Selected Features 

Integrated loudness Integrated loudness 

Psychoacoustic bin-to-bin difference Psychoacoustic bin-to-bin difference 

Pre-attack psychoacoustic maxima-

to-spectral-bins ratio 

Pre-attack peak loudness value 

 

 

Figure 5.4  Normalized weighting of features in the first two principal components.  

Features are sorted from largest PCA feature weighting to smallest based on 

PCA with 30 selected features.  These eigenvectors correspond to the 

decision regions shown in Figure 5.2b and Figure 5.3.  Peaks are connected 

merely for visualization purposes and are not intended to imply that the data 

are continuous. 
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Relative feature weightings within the first two principal components for multiclass 

classification of all five cetacean species are presented in Figure 5.4.  Two of the top 

three features are the same when either 20 or 30 features were selected.  The same 

general trend in feature weighting is observed for both 20 and 30 selected features.  The 

features that received zero weighting correspond to features that were not included in 

PCA when only 20 features were selected.  The Fisher Linear Discriminant score is used 

to select features that will best separate classes from each other, whereas PCA best 

maintains the variance in the entire dataset.  Because the method for selecting features 

has a different goal than PCA, the features with zero weighting do not necessarily 

correspond to the features with the lowest weighting when PCA is performed with 30 

features.  

 

5.1.2 Baleen Species (c = 4) 

When classification was performed with all species, the sperm whale clicks separated out 

very well with no misclassifications; however, there was overlap between the baleen 

whale classes.  The sperm whale clicks separated out so well because they sound so 

distinct, whereas the baleen whale vocalizations share similar aural characteristics.  This 

section examines classification of only the baleen whale species – bowhead, humpback, 

right and minke whales – to determine which aural features best discriminate between 

these four species. 

 

The plot of cumulative Fisher score, shown in Figure 5.5, exhibits a bend at 8 features 

and the slope of the curve becomes small around 25 features.  Based on these trends in 

the cumulative Fisher score, classification was performed with both 8 and 25 features to 

determine if classification results improve by including more features. 

 

The decision region whose axes are combinations of 25 selected features is shown in 

Figure 5.6.  This classification resulted in a total accuracy of 69%.  The pairwise AUC 

values corresponding to this decision region are listed in Table 5.5 and average together 

to give M = 0.94.  The aural classifier did a good job of discriminating minke whale 
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Figure 5.5 Cumulative Fisher score with respect to number of features for baleen whale 

species.  Note that the features have been sorted so that the first feature has 

the largest Fisher score.  Points are connected for visualization purposes and 

not intended to imply the data are continuous. 

 

 

Figure 5.6 Decision region for multiclass classification of baleen whale vocalizations.  

Classification was performed with 25 selected features. Class means are 

represented as white crosses on their respective decision regions with bars 

one standard deviation in length. 
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Table 5.5 Confusion matrix of AUC values corresponding the to decision region 

shown in Figure 5.6.  The value M = 0.94.   

 Humpback Right Minke 

Bowhead 0.80 0.88 1.00 

Humpback  0.95 1.00 

Right   0.99 

 

vocalizations – no humpback/minke or bowhead/minke misclassifications were made.  

There was a small amount of overlap between the minke and right whale classes.  The 

most overlap occurred between the humpback/bowhead and bowhead/right whale classes.  

The bowhead class had the least amount of within-class variance.  Less than half the total 

variance in the 25 selected features was captured in the first two principal components  

(p2 = 0.49). 

 

Classification of the four baleen whale species was also performed with only eight 

selected features. The decision region (Figure 5.7) and confusion matrix of pairwise AUC 

values (Table 5.6) present the classification results.  The multiclass performance measure,        

M = 0.96, and accuracy of 79% were indicative of successful classification over all 

classes.  Both the decision region and pairwise AUC values present results consistent with 

high variance in the minke whale class, as indicated by the white cross on the decision 

region – the length of the arms of the white cross representing the standard deviation of 

the minke whale dataset are longer than for any of the other classes – this resulted in 

relatively large overlap with the other three classes.  When eight features were selected  

p2 = 0.71, indicating that a large amount of the variance present in the selected features is 

maintained in the first two principal components.  

 

Table 5.6 Confusion matrix of AUC values corresponding to the decision region 

shown in Figure 5.7.  The value M = 0.96.  The asterisk indicates AUC 

values that appear to result from an ideal classifier, but in fact resulted from 

rounding to two decimal places. 

 Humpback Right Minke 

Bowhead 0.94 1.00
*
 0.92 

Humpback  1.00 0.96 

Right   0.96 
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Figure 5.7 Decision region for multiclass classification of baleen whale vocalizations.  

Classification was performed with eight selected features. Class means are 

represented as white crosses on their respective decision regions with bars 

one standard deviation in length. 

 

Classification over all classes improved slightly ( M = 0.02) when 8 features were 

selected compared to 25 selected features.  There was a measurable increase in the 

separation of the bowhead/humpback classes ( AUC = 0.14) and bowhead/right whale 

classes ( AUC = 0.12); however discrimination of the minke whale vocalizations 

deteriorated.  With 25 features selected the minke whale class had little overlap with any 

other class; however, with 8 features selected there was overlap with all the other classes. 

 

Table 5.7 lists the top three features with the highest weighting for classification with 

each of 25 and 8 selected features and Figure 5.8 plots the feature weighting in the first 

two principal components.  None of the same features were ranked in the top three 

highest weighted features for either number of selected features.  As was the case when 

all whale species were classified (Section 5.1.1), the zero feature weightings 

corresponding to features that were not one of the 8 selected features, do not necessarily 
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coincide with features with the lowest weighting in the principal components containing 

25 features.  The relative weighting of features in each case are significantly different, 

reflecting the differences in the methods for selecting and weighting features. 

 

Table 5.7 Three highest weighted features using 25 and 8 selected features for baleen 

whale classification. 

25 Selected Features 8 Selected Features 

Loudness centroid Global maximum sub-band attack time 

Psychoacoustic bin-to-bin difference Psychoacoustic maxima-to-spectral-bins ratio 

Integrated loudness Pre-attack psychoacoustic maxima-to-spectral-

bins ratio 

 

 

Figure 5.8 Normalized weighting of features in the first two principal components.  

Features are sorted from largest PCA feature weighting to smallest based on 

PCA with 25 selected features.  These eigenvectors correspond to the 

decision regions shown in Figure 5.6 and Figure 5.7.  Peaks are connected 

merely for visualization purposes and are not intended to imply that the data 

are continuous. 

 

5.2 BINARY CLASSIFICATION 

Binary classification provides insight into the aural features that are most important for 

distinguishing between two different baleen whale species.  An improvement in 

classification results can be expected when performing binary classification because 

features are chosen and weighted based on how well they distinguish between the two 

classes considered.  In multiclass classification there may be patterns within the dataset 

other than species-specific patterns; for example, features may be selected to capture the 
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significant differences between the clicks in the sperm whale class and moan-like sounds 

produced by each of the four baleen whale species, rather than the more subtle 

differences between each of the five classes. 

 

5.2.1  Bowhead and Humpback 

Bowhead and humpback whales provide an interesting case for binary classification.  

These two species were included in the dataset primarily because of the similar 

characteristics of their vocalizations – the frequency content and duration of the 

vocalizations are similar enough that many types of automatic detection/classification 

algorithms produce inaccurate results.  Similarities between these vocalizations were also 

noted during the multiclass classification results presented previously (Sections 5.1.1 and 

5.1.2) – there was a significant amount of overlap between these classes in the decision 

regions and the corresponding pairwise AUC values were found to be the lowest pairwise 

AUC values (except for the right/minke pair when c = 5 and 20 features were selected). 

 

The plot of cumulative Fisher score (Figure 5.9) was examined to determine the number 

of features to include in the principal components.  There is a bend in the plot at 5 

features and the curve begins to flatten out at 20 features.  Thus, classification was 

performed with both 20 and 5 features selected.   

 

Figure 5.9 Cumulative Fisher score with respect to number of features for bowhead 

and humpback whales.  Note that the features have been sorted so that the 

first feature has the largest Fisher score.  Points are connected for 

visualization purposes and not intended to imply the data are continuous. 
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The decision region corresponding to classification with 20 selected features is shown in 

Figure 5.10 and the ROC curve is plotted in Figure 5.11.  The classification accuracy was 

88%.  There is more variation in the humpback class than the bowhead class, 

 

Figure 5.10 Decision region for binary classification of bowhead and humpback 

vocalizations.  Classification was performed with 20 selected features. Class 

means are represented as white crosses on their respective decision regions 

with bars one standard deviation in length. 

 

 

Figure 5.11 Bowhead and humpback ROC curves for classification with 5 and 20 

selected features, corresponding to decision regions in Figure 5.10 and 

Figure 5.12. 
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corresponding to the larger variation in the sound of humpback whale vocalizations and 

types of units included in the dataset. There is a relatively small amount of overlap 

between the two classes – the AUC was 0.95 and the equal error rate was 12%.  Almost 

60% of the variance in the 20 selected features was maintained in the first two principal 

components (p2 = 0.58). 

 

Classification was also performed with only five features selected.  The corresponding 

ROC curve and decision region are shown in Figure 5.11 and Figure 5.12, respectively.  

Once again there is more variance evident in the humpback class than in the bowhead 

class.  The value p2 = 0.87 indicates that most of the variance contained in the five 

selected features was represented by the first two principal components.  The 

classification accuracy was 89%, the AUC was 0.97 and the equal error rate was 6%.  

These values all represent improved classification performance when 5 features are 

selected instead of 20. 

 

Figure 5.12 Decision region for binary classification of bowhead and humpback 

vocalizations.  Classification was performed with five selected features. 

Class means are represented as white crosses on their respective decision 

regions with bars one standard deviation in length. 
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The three features with the largest weightings in the principal components, for the cases 

of each of 20 and 5 selected features, are listed in Table 5.8.  No features appear in both 

sets; in fact, the features with large weightings are remarkably different between the two 

cases.  When 20 features were selected time-frequency features were highly ranked, 

whereas when 5 features were selected purely spectral features had more importance.  

The highest weighted features when 20 features were selected did not necessarily 

correspond to the 5 selected features.  The 5 features had little similarity in weightings 

within the principal components compared to the 20 selected features.  

 

Table 5.8 Three highest weighted features using 20 and five selected features for 

bowhead and humpback classification. 

20 Selected Features 5 Selected Features 

Local mean sub-band decay slope Integrated loudness 

Global mean sub-band attack slope Peak loudness value  

Global mean sub-band decay slope Local maximum sub-band attack time 

 

 

Figure 5.13 Normalized weighting of features in the first two principal components.  

Features are sorted from largest PCA feature weighting to smallest based on 

PCA with 20 selected features.  These eigenvectors correspond to the 

decision regions shown in Figure 5.10 and Figure 5.12.  Peaks are 

connected merely for visualization purposes and are not intended to imply 

that the data are continuous. 
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5.2.2 Summary of Baleen Whale Binary Classification Results 

Binary classification of baleen whale vocalizations was performed with all six possible 

pair combinations.  Classification was performed with five selected features, since it has 

been found in previous sections that a smaller number of selected features consistently 

produced better classification results.  Decision regions for each classification are 

depicted in Figure 5.14.  The greatest overlap of classes occurred for the bowhead/ 

humpback classification.  All other classifications resulted in only a small amount of 

overlap between classes – there were few misclassifications among the binary decision 

regions (excluding bowhead/humpback) so that classification results are near-ideal.  The 

humpback and minke classes displayed the most within-class variance in all 

classifications in which they were included.  It is not surprising that the humpback class 

displayed relatively large within-class variance since four distinct units were included – 

each of which had complex aural characteristics.  The large within-class variance for 

minke whales may result from sound propagation effects; some of the minke 

vocalizations in the dataset exhibited high frequency overtones with energy similar to the 

fundamental frequency, whereas other minke vocalizations either had weak high 

frequency overtones or no high frequency overtones at all.  The energy in the high 

frequency overtones may have been reduced due to propagation through the water. 

 

The ROC curves (Figure 5.15) corresponding to the decision regions shown in Figure 

5.14 confirm that classification was near ideal in all six baleen whale binary classification 

cases.  The lowest AUC value (see Table 5.9) was 0.97 for the bowhead/humpback 

classification; the majority of AUC values were 1.00.  The largest equal error rate was 7% 

corresponding to the minke/right whale classification.  These binary classification cases 

provide a real example for the importance of reporting both the AUC value and equal 

error rate for binary classifications; the smallest AUC value does not have to correspond  

to the largest equal error rate.  When the smallest AUC value and largest equal error rate 

do not belong to the same ROC curve, it indicates that the corresponding ROC curves 

cross each other at least once.  ROC curves that cross indicate that one classifier does not 

perform the best for all threshold values.  There are only a few threshold values for which 

the bowhead/humpback classification performs better than the right/minke classification 
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(a) (b) 

  
(c) (d) 

  

(e) (f) 

  
Figure 5.14 Binary decision regions for baleen whale classifications involving (a) 

bowhead and humpback, (b) bowhead and right whale, (c) bowhead and 

minke, (d) humpback and right whale, (e) humpback and minke, and (f) 

minke and right whale.  Five features were selected to include in the 

principal components – note that a different classifier model (i.e. different 

features were selected and combined in the principal components) was used 

to generate each of the decision regions. 
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Figure 5.15 Binary ROCs using five selected features and two principal components 

corresponding to the decision regions in Figure 5.14.  The inset shows a 

zoomed in view of the ROC curves. 

 

Table 5.9 The accuracies, AUC values, and equal error rates for binary classification 

of baleen whales using five selected features.  These values correspond to 

the ROC curves in Figure 5.15.  The asterisk indicates AUC values that 

appear to result from an ideal classifier, but in fact resulted from rounding to 

two decimal places. 

Whales Accuracy AUC Equal 

error 

Bowhead vs. humpback 89% 0.97 6% 

Bowhead vs. right 97% 1.00
* 

3% 

Bowhead vs. minke 98% 1.00
*
 2% 

Humpback vs. right 97% 1.00
*
 1% 

Humpback vs. minke 98% 1.00 0% 

Right vs. minke 93% 0.99 7% 

 

as can be seen in Figure 5.15.  Classification of bowhead and humpback vocalizations 

was the least accurate (89%) and classifications of bowhead/minke and humpback/minke 

(both 98%) were the most accurate.  Performance results reflect the aural similarities of 

the vocalizations – bowhead and humpback vocalizations sound more similar to each 

other than bowhead and minke or humpback and minke vocalizations. 
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The features with the three largest weight values in the principal components for each of 

the baleen whale binary classification pairs are listed in Table 5.10.  Some of the same 

features are chosen multiple times, e.g. local maximum sub-band attack time, peak 

loudness value, and mean sub-band correlation each received high weighting in two of 

the six baleen whale binary classifications.  Features that were chosen multiple times can 

be recognized as important for between-class discrimination of baleen whale 

vocalizations. 

 

Table 5.10 Three highest weighted features using five selected features for each pair of 

baleen whales, shown in descending importance from left to right.  Features 

represented in italics were important for at least two of the binary 

classification pairs.  

Bowhead/ 

Humpback 

Integrated loudness Peak loudness value Local maximum sub-

band attack time 

Bowhead/ 

Right 

Pre-attack 

psychoacoustic 

maxima-to-spectral-

bins ratio 

Local maximum sub-

band attack time 

Psychoacoustic 

maxima-to-spectral-

bins ratio 

Bowhead/ 

Minke 

Frequency of 

maximum sub-band 

correlation 

Frequency of local 

minimum sub-band 

attack slope 

Frequency of global 

minimum sub-band 

attack slope 

Humpback/ 

Right 

Mean sub-band 

correlation 

Pre-attack integrated 

loudness 

Peak loudness value 

Humpback/ 

Minke 

Mean sub-band 

correlation 

Frequency of local 

maximum sub-band 

attack slope 

Frequency of local 

minimum sub-band 

decay slope 

Right/ 

Minke 

Pre-attack loudness 

centroid 

Global maximum 

sub-band decay time 

Local mean sub-

band attack time 

 

5.2.3 Sperm Whale Clicks and Baleen Whale Vocalizations 

Sperm whale clicks separate out with 100% accuracy in the multiclass plots shown in 

Figure 5.2b and Figure 5.3, but significant overlap of the baleen whale classes remained.  

The selection and relative weighting of features in the multiclass case when all five 

species are included seems to be driven by the significant aural differences between 

sperm whale clicks and baleen whale vocalizations.  This is in evidence partly by 

comparing the features selected for multiclass classification of all species with 20 

features (Section 5.1.1) and baleen whale species with 8 features (Section 5.1.2) – 
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relative feature weightings are noticeably different for both classification cases.  To 

confirm that the selection of features in the multiclass case is dominated by the difference 

between sperm whale clicks and baleen whale vocalizations, binary classification was 

performed where one class was composed of sperm whale clicks and the second class 

comprised vocalizations from all four baleen whale species.  The features used for this 

binary classification were the top five ranked features (i.e. highest weighted features in 

the principal components) for classification of all five cetacean species.  Five features 

were used for classification so as to produce a relatively simple transformation between 

the feature space and PCA space.   

 

Results of aural classification of baleen whale vocalizations and sperm whale clicks are 

presented as the decision region in Figure 5.16.  The decision region reveals a clear 

separation of sperm whale clicks and baleen whale vocalizations.  Even though there are 

vocalizations from four species of baleen whale – representing a large variety of call 

types – data points belonging to the baleen whale class are clustered together.  

 

Figure 5.16 Decision region for binary classification of sperm whale clicks and baleen 

vocalizations.  Classification was performed with the five most important 

features for multiclass classification of all cetacean species. Class means are 

represented as white crosses on their respective decision regions with bars 

one standard deviation in length. 
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Classification accuracy was 98% – only a few baleen whale vocalizations were 

misclassified and all sperm whale clicks were correctly classified.  The AUC was 1.00 

(rounded up) and equal error rate was between 0% and 1%.  The aural classifier had no 

difficulty distinguishing between these aurally distinct sounds using the five most 

important features for multiclass classification of all cetacean species.  This supports the 

hypothesis that the selection and weighting of features in the multiclass case is likely 

dominated by the obvious aural difference between sperm whale clicks and baleen whale 

vocalizations. 

5.3 DISCUSSION 

5.3.1 Number of Features to Select 

One might assume that including more features for classification would enhance 

performance results by providing more information about the patterns between classes; 

however, this was not the case in the preceding sections.  For multiclass classification 

(Section 5.1) the M-measure remained the same for classification of all species with 

either 30 or 20 features selected.  Perhaps more surprising, the M value was larger when 

baleen whales were classified using 8 selected features compared to 25 selected features; 

and the AUC was larger and equal error rate smaller when 5 features were used for 

classification of bowhead and humpback vocalizations instead of 20 features.  In all 

cases, the amount of relative variance contained in the first two principal components, as 

measured by p2, increased when fewer features were used for PCA.   

 

Since no theoretical model or solution is available, it is difficult to determine the optimal 

number of features to select for best classifier performance without performing 

classification with all possible numbers of selected features.  This presents a paradox – to 

select the optimal number of features for classification, the classifier performance with 

respect to number of selected features must first be known.  The M value was plotted 

(Figure 5.17) with respect to number of selected features (starting with two features and 

ending with all 44 non-redundant features for multiclass classification of bowhead, 

humpback, right, minke and sperm whales.  The maximum value of M (0.99) was 

obtained when only 5 features were selected.  This plot reveals that increasing the 
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Figure 5.17 Performance results for classification of all cetacean species with respect to 

number of features included in the principal components.  The grey region 

represents the estimated error resulting from calculation of the M-measure.  

Points are connected merely for visualization purposes and are not intended 

to imply that the data are continuous. 

 

number of selected features does not necessarily correspond to increased performance.  

With the exception of the large peak at five selected features, there appears to be a 

general increasing trend in M that begins to level off around 31 selected features. 

 

For completeness, the multiclass all-species decision region generated using five selected 

features is shown in Figure 5.18.  The M value was 0.99 indicating near-ideal 

performance.  The classification accuracy was increased significantly to 89%.  There was 

little overlap between any of the classes as confirmed by the large pairwise AUC values 

in Table 5.11 – in fact even the bowhead/humpback pair, which showed a lot of overlap 

in all previous multiclass classification results, separated out well.  The bowhead/ 

humpback pairwise AUC value was as high as for binary classification of bowhead and 

humpbacks with five selected features.  This was the first multiclass classification result 

that had misclassifications including sperm whales – there was one sperm whale click 

misclassified as a right whale vocalization and two right whale vocalizations 

misclassified as sperm whale clicks.  Both misclassified right whale vocalizations were 

gunshot sounds (see Figure 3.5c), which have short duration and energy spread equally 
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Figure 5.18 Decision region for multiclass classification of all cetacean vocalizations.  

Classification was performed with five selected features. Class means are 

represented as white crosses on their respective decision regions with bars 

one standard deviation in length. 

 

Table 5.11 Confusion matrix of AUC values corresponding to the decision region 

shown in Figure 5.18.  The value M = 0.99.  The asterisk indicates AUC 

values that appear to result from an ideal classifier, but in fact resulted from 

rounding to two decimal places. 

 Humpback Right Minke Sperm 

Bowhead 0.97 1.00
*
 1.00

*
 1.00 

Humpback  1.00
*
 1.00

* 
1.00 

Right   0.94 1.00
* 

Minke    1.00 

 

across the frequency band of the vocalization, similar to sperm whale clicks.  Also of 

note is the spread of sperm whale data points; the within-class covariance and correlation 

are -0.02 and -0.47 respectively.  In this case, the assumption is valid that the off-

diagonal components of the covariance matrix are zero, unlike for the previous 

classification results. 
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Table 5.12 Five highest weighted features for multiclass decision region with 20 

selected features shown in Figure 5.3, and multiclass decision region with 5 

selected features shown in Figure 5.18 

Multiclass, 20 Features Multiclass, 5 Features 

Integrated loudness Duration 

Psychoacoustic bin-to-bin difference Mean sub-band correlation 

Pre-attack peak loudness value Pre-attack psychoacoustic maxima-to-

spectral-bins ratio 

Pre-attack psychoacoustic maxima-to-

spectral-bins ratio  

Psychoacoustic maxima-to-spectral-

bins ratio 

Mean sub-band correlation Loudness centroid 

 

Table 5.12 contains the five highest weighted features for classification of the five 

cetacean species for the multiclass classification, with 20 and 5 features selected.  The  

only feature in common between the multiclass 5-feature and 20-feature classification 

cases was pre-attack psychoacoustic maxima-to-spectral bins ratio; otherwise, different 

features were selected and highly ranked.  It is clear that in the five-feature case the 

features were selected and weighted to discriminate between all five classes rather than 

just to discriminate between baleen and sperm whales. 

 

The AUC results with respect to number of selected features for the binary classification 

of bowhead and humpback vocalizations is shown in Figure 5.19.  The maximum AUC 

value of 0.97 occurred when three features were selected.  The AUC result for three 

selected features is not significantly different than for five selected features.  The equal 

error rate when three features are selected is slightly lower (5% for three features and 6% 

for five features).  With the exception of a few local minima, there appears to be a 

general decreasing linear trend in the AUC values with respect to number of selected 

features – this is the opposite of the trend that was noted in the plot of M versus number 

of features selected (Figure 5.17). 

 

The decision region for classification of bowhead and humpback vocalizations with three 

selected features is shown in Figure 5.20.  The decision region shows that classification 

with three selected features minimally improved results – a few more humpback 

vocalizations (10 more out of 228 humpback vocalizations in the test set) were correctly 

classified and all 129 bowhead vocalizations were correctly classified, whereas two 
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Figure 5.19 Performance results for classification of bowhead and humpback 

vocalizations with respect to number of features included in the principal 

components.  The grey region represents the estimated error resulting from 

calculation of the AUC.  Connected points are merely for visualization 

purposes and are not intended to imply that the data are continuous. 

 

 

Figure 5.20 Decision region for binary classification of bowhead and humpback 

vocalizations.  Classification was performed with three selected features. 

Class means are represented as white crosses on their respective decision 

regions with bars one standard deviation in length. 
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Table 5.13 Features selected for binary classification of bowhead and humpback 

whales using either three or five selected features.  Features are listed in 

order of highest weighting in principal components to lowest 

3 Features  5 Features 

Peak loudness value Integrated loudness 

Mean sub-band correlation Peak loudness value 

Global maximum sub-band decay time Local maximum sub-band attack time 

 Global maximum sub-band decay time 

 Mean sub-band correlation 

 

bowhead vocalizations had been misclassified when five features were selected.  The 

classification accuracy increased slightly to 92% and the equal error rate also improved 

slightly to 5%.  The selected features are listed in Table 5.13 by order of PCA feature 

weighting.  All three of the features selected for three-feature classification were included 

in five-feature classification; however, the three features did not correspond to the three 

highest ranked features in the five-selected feature model. 

 

The plots of M and AUC with respect to number of selected features confirm that 

including more features does not necessarily increase classification performance.  Thus, a 

subset of the non-redundant features should be selected prior to performing PCA.  Since 

the Fisher Linear Discriminant score was used to rank features that best separated the 

classes, it seemed logical to use the cumulative Fisher score to select the number of 

features to be projected onto the 2D PCA space; however, this method did not produce 

the best performance results.  The discrepancy is likely due to the different goals of the 

Fisher score and PCA.  The Fisher score ranked features according to their 

discriminability, whereas PCA placed more weight on features that maintain the variance 

over the whole dataset.  This difference in emphasis was noted because features with zero 

weighting did not necessarily coincide with the lowest weighted features in the principal 

components when different numbers of features were selected (see Figure 5.4, Figure 5.8 

and Figure 5.13).  Therefore, it is difficult to predict the optimal number of features to 

select.  

 

It seems intuitive to assume that including all features that provide information useful in 

separating the class means (i.e. relatively large values of the Fisher score) should enhance 
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classifier performance; however, the results presented here do not support this.  Duda et 

al. [24] suggest that this may be because of an incorrect model (e.g. the assumption that 

each class is Gaussian distributed in the PCA space) or that there is an insufficient 

number of training samples to accurately estimate the class distributions.  In this case, it 

is assumed that a limited number of features should be used for classification because the 

dataset is too small to provide sufficient information to accurately estimate the presumed 

Gaussian likelihood distributions for each class. 

 

5.3.2 Linear Trend within Sperm Whale Class in Multiclass Decision Regions 

The multiclass decision regions that included all five species of cetaceans in the dataset 

had a notable feature – the arrangement of sperm whale clicks.  When either 30 or 20 

features were selected the sperm whale clicks were arranged in an oblong pattern that was 

characterized by non-zero covariance of the principal components.  However, when only 

five features were selected for multiclass classification the placement of sperm whale 

data points in the PCA space was as expected – a tight cluster of points that had near-zero 

covariance of the principal components.  This trend in the sperm whale click data points 

did not occur within any of the other whale classes. 

 

Including too many features in the principal components probably over-described the 

contrasts between sperm whale clicks and baleen whale vocalizations.  The binary 

classification results of sperm whale clicks and baleen whale vocalizations presented in 

section 5.2.3 indicated that the choice and relative importance of the 20 and 30 selected 

features in the multiclass decision regions was likely dominated by the aural distinctness 

of the sperm whale clicks and baleen whale vocalizations; however, most of the five 

features selected for the decision region shown in Figure 5.18 were different than the 

highly ranked features in the principal components for 20-feature and 30-feature 

classification.  These five features described the relationship between all species’ 

vocalizations rather than just the obvious differences between sperm whale and baleen 

whale vocalizations.  Another linear arrangement of sperm whale click data points in the 

PCA space will be observed and discussed in Sections 6.2.1 and 6.2.2. 
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The linear trend in the sperm whale class is further investigated in Section 6.2.2 when an 

example will be presented that allows a relatively simple analysis of the linear trend 

observed in the PCA space; the conclusions from that analysis will be tested here.  

Histograms of the integrated loudness (Figure 5.21) and psychoacoustic bin-to-bin 

difference (Figure 5.22) values, which were the two highest weighted features in the 

multiclass classification scenario, were generated to determine the amount of within-class 

variance for each feature.  All baleen whales are treated as a single class and sperm 

whales as another class (as with binary classification).  It should be noted that each 

feature is unitless due to the method in which features were normalized (as described in 

Section 2.1.4).  The histograms exhibit overlap of the classes for each feature; however 

when the two features are considered together (as in Figure 5.23) without performing 

PCA, the relationship between the two features becomes clear.  There is an emerging 

within-class linear arrangement of the data points evident when the top two features are 

plotted.  The classes both form an oblong shape with large variance along the semi-major 

axis of the scatter and relatively little variance along the semi-minor scatter axis.  It is 

likely this relationship between features that is the cause of the linear arrangement of 

sperm whale data points in the multiclass decision region.  The other features included in 

 

 

Figure 5.21 Histogram of integrated loudness values, the highest ranked feature in 

multiclass classification of all five cetacean species. 
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Figure 5.22 Histogram of psychoacoustic bin-to-bin difference values, the second 

highest ranked feature in multiclass classification of all five cetacean 

species. 

 

 

Figure 5.23 Two highest ranked features in the principal components for the multiclass 

decision regions shown in Figure 5.2b and Figure 5.3.  These results were 

plotted without performing PCA on the displayed features. 
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the principal components for multiclass classification maintain (or possibly add to) this 

relationship within the sperm whale class, but allow for additional between-class 

discrimination of the baleen whales by increasing the scatter in all directions. 

 

5.3.3 Important Aural Classification Features 

An important goal of this research was to identify the aural features most useful for 

classification of cetacean vocalizations.  The six features that were most often selected 

and received large weight values in the first two principal components were mean sub-

band correlation, pre-attack psychoacoustic maxima-to-spectral-bins ratio, integrated 

loudness, psychoacoustic maxima-to-spectral-bins ratio, peak loudness value, and 

psychoacoustic bin-to-bin difference.  Table 5.14 lists all the features that were selected 

and the number of times they were included in the previous tables (Table 5.4, Table 5.7, 

Table 5.8, Table 5.10, Table 5.12, and Table 5.13) of features that were highly ranked in 

the principal components.  In general, purely spectral features were selected more often 

than time-frequency features, possibly indicating that the vocalizations of each whale 

species have distinct spectral characteristics. 

 

Table 5.14 Number of times each feature was included in features with highest weight 

value in the principal components in the 13 different classification cases 

discussed.  The tally included features in Table 5.4, Table 5.7, Table 5.8, 

Table 5.10, Table 5.12, and Table 5.13.    

 

Feature 

Number of 

Occurrences 

(of a possible 

13) 

Mean sub-band correlation 5 

Pre-attack psychoacoustic maxima-to-spectral-bins ratio 5 

Integrated loudness 4 

Psychoacoustic maxima-to-spectral-bins ratio 3 

Peak loudness value 3 

Psychoacoustic bin-to-bin difference 3 

Loudness centroid 2 

Global maximum sub-band decay time 2 

Local maximum sub-band attack time 2 

Duration 1 

Frequency of global minimum sub-band attack slope 1 
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Feature 

Number of 

Occurrences 

(of a possible 

13) 

Frequency of local maximum sub-band attack slope 1 

Frequency of local minimum sub-band attack slope 1 

Frequency of local minimum sub-band decay slope 1 

Frequency of maximum sub-band correlation 1 

Global mean sub-band attack slope 1 

Global mean sub-band decay slope 1 

Global maximum sub-band attack time 1 

Local mean sub-band decay slope 1 

Local mean sub-band attack time 1 

Pre-attack integrated loudness 1 

Pre-attack loudness centroid 1 

Pre-attack peak loudness value 1 

 

Young [20] discusses the origin of all the perceptual features and how they relate to the 

aural characteristics of a particular sound – his work was referenced to describe the six 

important perceptual features.  The mean sub-band correlation is the only time-frequency 

feature that was frequently identified as an important feature for inter-species cetacean 

classification.  This feature describes the synchronicity of the signal across all harmonics, 

i.e. it determines if harmonics rise and fall at the same rate and time or if harmonics are 

independent of each other.  This feature is quantitatively determined by correlating the 

filter bank channels – large correlation indicates that the harmonics are synchronous.  

Humpback vocalizations are highly correlated as is evident from the spectrograms of 

humpback units presented in Figure 3.4; the humpback units tend to have several obvious 

overtones that appear identical to each other except for a frequency shift. 

 

Both the peak loudness value and integrated loudness features are easily determined from 

the perceptual loudness spectrum; the peak loudness value is the maximum value of the 

perceptual loudness spectrum and the integrated loudness is simply defined as the area 

under the perceptual loudness spectrum.  Since the perceptual loudness spectrum is 

basically a psychoacoustic power spectrum, the peak loudness value and the integrated 

loudness are analogous to the maximum power and the total power present in the signal, 

respectively.  Generally, humpback vocalizations had the highest peak loudness values 
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and right whales the lowest; sperm whale clicks had the largest integrated loudness 

values and minke whales the lowest.  Large peak loudness values do not necessarily 

correspond to the largest integrated loudness values because integrated loudness is 

determined across all frequencies, but peak loudness value corresponds to a specific 

frequency.  For example, humpback whales have the highest peak loudness values; 

however, sperm whales have larger values of integrated loudness because the energy of 

sperm whale clicks is spread evenly across the frequency range, whereas the energy in 

humpback units is condensed into a relatively narrow frequency band. 

 

The psychoacoustic maxima-to-spectral-bins ratio (PMSBR) is used to describe the 

roughness of the loudness spectrum.  The presence/absence of spectral peaks has been 

identified as an important property for aural discrimination.  This is represented as an 

aural feature as the ratio of the number of local maxima to the total number of spectral 

bins in the perceived loudness spectrum (number of channels in the filter bank).  

Generally, it was found that the perceptual loudness spectrum of sperm whale clicks was 

rougher than that of baleen whale vocalizations.  The pre-attack PMSBR is also an 

important feature.  The difference between these two features is that the pre-attack 

PMSBR is determined from the pre-attack component of the signal rather than from the 

whole signal as for PMSBR.  The musical acoustics literature identified the segment of 

the signal prior to the most significant attack as an important discrimination cue that can 

be qualitatively described as the presence or absence of high frequency inharmonic noise.  

Thus, features extracted from the pre-attack signal component are intended to identify the 

presence/absence of inharmonic noise.  Identification of the pre-attack component of the 

signal is discussed in Appendix A. 

 

The psychoacoustic bin-to-bin difference (BBD) is also a measure of the roughness of the 

perceptual loudness spectrum.  This aural feature describes the BBD across the loudness 

function for each vocalization.  The differences in the specific loudness function between 

pairs of adjacent frequency bins are calculated and the results are averaged for all pairs to 

determine the psychoacoustic BBD.  Generally, it was found that bowhead and right 
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whale vocalizations had small psychoacoustic BBD values, whereas humpback and 

sperm whales had larger values.  

5.3.4 Comparison of Aural Classification Results with Literature Results 

Much of the research on marine mammal detection and classification presented in the 

literature has a different goal than the aural classification task presented in this thesis.  

Detection/classification is often used to perform population surveys or behavioural 

studies that focus on a single species, so most often detection and classification are 

inseparable.  In other words, the methods used to detect a vocalization are specifically 

tuned to a certain species so that upon detection there is little doubt as to the species that 

produced the vocalization.  For example, Mellinger and Clark [46] used spectrogram-

correlation and a simple matched filter to compare results of detection/classification of 

bowhead sounds from MobySound (i.e. using the same bowhead dataset as employed by 

this thesis).  Both the spectrogram-correlation and matched filter methods require a 

template of a typical bowhead sound with which to correlate the input signal.  By 

detecting bowhead sounds in the dataset, Mellinger and Clark were, in essence, 

classifying the bowhead sounds against all other sounds in the dataset – primarily   

vocalizations of bearded seals.  They were able to detect bowhead vocalizations with 

accuracies of 84.2% using a matched filter and 99.1% using spectrogram correlation.  

Their results are highly accurate; however they do not present results for the more 

challenging case of bowhead and humpback classification.  Their method is specifically 

tuned to recognize a single species, whereas the aural classifier is capable of 

simultaneously classifying several different species. 

   

North Atlantic right whales have been the focus of many automatic detection studies 

using passive acoustics, including population estimates and ship avoidance studies.  

Reports indicate that right whale vocalizations can be confused with the highly vocal 

humpback whale’s vocalizations, many of which are similar in frequency content and 

duration to right whale sounds [15].  The risk associated with humpback whale presence 

is usually lower than that of right whale presence because of the relatively large number 

of humpback whales (population is not under stress) compared to the endangered status 
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of North Atlantic right whales.  Gillespie developed a right whale detector that was able 

to detect right whale sounds with ~60% efficiency and a false alarm rate of 1 – 2 calls per 

detector per day, even though tens of thousands of humpback sounds were also present 

[47].  In another study, Mellinger compared two different right whale up-call detectors, 

one based on spectrogram correlation and another on neural networks; he found that at a 

10% false negative rate (i.e. 10% right whale up-calls are likely to be missed), the neural 

network method had a false positive rate of 6% and the spectrogram correlation method 

had a false positive rate of 26% [12].  Baumgartner and Mussoline [48] performed 

detection and classification on recordings collected in the northwestern Atlantic Ocean 

that contained sei (a baleen whale), right, and humpback whale vocalizations.  Employing 

features extracted from the spectrogram-track of each detected vocalization, Baumgartner 

and Mussoline’s classifier accurately classified only 52% of the right whale calls. 

 

Compared to the available results of other detection/classification methodologies, the 

aural classifier performed very well.  A significant advantage of the aural classification 

method is the ability to easily include additional species for classification because it is not 

specifically tuned for detection/classification of a single species.  Given a large enough 

training set, it is reasonable to assume that the aural classifier would deal with variation 

in cetacean vocalizations better than correlation techniques. 

 

5.4 CONCLUSIONS 

The aural classifier was shown to be very effective at discriminating between the 

cetacean vocalizations in the dataset.  Although the dataset was relatively limited, it 

provided an opportunity to validate the theory that the aural classifier can successfully 

classify marine mammal vocalizations.  Classification performance reflected both the 

aural similarities and distinctness of the cetacean vocalizations.  The classifier was able to 

classify sperm whale clicks from baleen whale vocalizations with 100% accuracy 

because these two classes of sounds have distinct aural characteristics, whereas the 

lowest classifier performance corresponded to the aurally similar bowhead and humpback 

vocalizations.   
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The six features found to be the most powerful for discriminating between the cetacean 

vocalizations in the dataset were mean sub-band correlation, pre-attack PMSBR, 

integrated loudness, PMSBR, peak loudness value, and psychoacoustic BBD.  Since most 

of these features were obtained from the perceptual loudness spectrum, it was concluded 

that there are significant differences in the perceived spectral characteristics of these 

vocalizations.  

 

With the current dataset, it was found that selecting more features did not necessarily 

result in increased performance – in fact classifier performance deteriorated when large 

numbers of features were selected.  It was suggested that the observed decrease in 

classifier performance with a larger number of selected features resulted from an 

insufficient number of samples in the training dataset to accurately describe the class 

distributions.  

 

High classifier performance was obtained for both the simple binary case and the more 

complex multiclass case.  Including more species for classification in the multiclass case 

did not result in a significant decrease in performance.  The successful multiclass 

classification results presented in this chapter support the hypothesis that the aural 

classifier can be trained to simultaneously classify several different marine mammal 

species. 
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CHAPTER 6 SPERM WHALE AND 

ANTHROPOGENIC TRANSIENT CLASSIFICATION 

It was shown in CHAPTER 5 that the aural classifier was able to easily distinguish 

between sperm whale clicks and baleen whale vocalizations due to obvious differences in 

aural characteristics; however, many other types of detector/classifier algorithms would 

be able to recognize the differences in sperm whale clicks and baleen whale vocalizations 

because of clear differences in their signal characteristics – sperm whale clicks are 

shorter in duration than any of the baleen whale vocalizations considered and sperm 

whale clicks are broadband, whereas baleen whale vocalizations are relatively 

narrowband (i.e. their frequency band is more limited). 

 

A more realistic test case for classification of sperm whale clicks is to compare them to 

anthropogenic passive transients.  Many of the signal properties of sperm whale clicks are 

similar to a variety of anthropogenic transients.  When detecting sperm whale clicks in a 

signal, both correlation-based (e.g. matched filtering) and energy-based (e.g. band-limited 

energy detection) methods produce many false detections due to anthropogenic 

transients.  For example, the automatic detector used by Akoostix Inc. to identify sperm 

whale clicks generated a total of 1495 detections, of which only 178 could be positively 

identified as sperm whale clicks.  Detection of sperm whale clicks is a difficult case and 

often produces many false alarms because the exponentially averaged detector employed 

by Akoostix Inc. is triggered by most broadband sounds that have an abrupt start [31].  

Sperm whale clicks are more similar in frequency content and duration to anthropogenic 

transients than to baleen whale vocalizations; therefore, anthropogenic transients may 
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prove more challenging to classify against sperm whale clicks.  Nonetheless, the aural 

classifier may be used to discriminate between sperm whale clicks and anthropogenic 

transients because these two classes are aurally dissimilar. 

 

6.1 ANTHROPOGENIC TRANSIENT DATASET 

Akoostix Inc. compiled a dataset of anthropogenic passive transients for research and 

development related to the aural classifier [49].  Transients were obtained from the 

Passive Aural Listening Database (PAL) at the Atlantic Acoustic Data Analysis Centre 

(ADAC).  Transients in this database were previously detected and then aurally classified 

by expert listeners. 

 

Anthropogenic passive transients were selected from the PAL database based on the 

following characteristics: 

• Sounds could be related to a vessel (e.g. ship, submarine) or other man-made 

platform (e.g. mooring). 

• Events with an abrupt start or stop (e.g. motor start), though only the region in the 

vicinity of the start or stop is considered  

• Duration of transient must be in the range 1 ms – 5 s 

• Signal’s bandwidth should be greater than the inverse of the duration 

 

Sounds generated by active transducers (e.g. echo sounder), or transients that could be 

modelled in simple closed-form (e.g. narrow-band pulsed continuous wave), were not 

considered to be anthropogenic transients for the purposes of this study.  Based on these 

characteristics, six subsets of anthropogenic transients were identified:  ballast, baffle, 

cavitation, chain rattle, trawl chain rattle, and seismic profile.  Each anthropogenic 

transient subclass will be described below. 

6.1.1 Ballast  

Ballast sounds are associated with surface vessels – they are produced by wave motion 

pitching and rocking the ship.  The water motion in the ballast tank produces ballast-
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related transients.  The example ballast sound shown in Figure 6.1 begins approximately 

at the two second point.  There were a total of 24 ballast transients included in the dataset 

with a mean duration of 0.33 s and 0.05 s variance in duration (
2
).   

 

 

Figure 6.1 Time series and spectrogram of a ballast sound.  The spectrogram was 

generated using a Hamming window length of 512 samples with an overlap 

of 80%. 

 

6.1.2 Baffle 

Like ballast sounds, baffle sounds are produced by wave motion pitching and rocking the 

ship.  Baffle and ballast sounds are often found together.  The baffle transients are 

generated when the water sloshes off the ballast tank baffles. There were 30 baffle sounds 

included in the dataset that have a mean duration of 0.14 s (
2
 = 0.01 s).  Multiple baffle 

sounds are shown in Figure 6.2.   

 

 
Figure 6.2 Time series and spectrogram of a baffle sound.  The spectrogram was 

generated using a Hamming window length of 512 samples with an overlap 

of 80%. 
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6.1.3 Cavitation  

Cavitation transients are associated with the movement of vessels and are generated by 

the collapse of bubbles produced by a vessel’s propeller.  An example of a cavitation 

event is shown in Figure 6.3.  There were nine cavitation transients included in the 

dataset with mean duration 2.82 s (
2
 = 0.49 s).   

 

 

Figure 6.3 Time series and spectrogram of a sound generated by cavitation.  The 

spectrogram was generated using a Hamming window length of 512 

samples with an overlap of 70%. 

 

6.1.4 Chain rattle  

The chain rattle class was further subdivided into two groups – chain rattle and trawl 

chain rattle.  Trawl chain rattles (Figure 6.4) result from fishing trawler activity and are  

 

Figure 6.4 Time series and spectrogram of a sound generated by a trawl chain rattle.  

The spectrogram was generated using a Hamming window length of 1024 

samples with an overlap of 50%. 
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Figure 6.5 Time series and spectrogram of a sound generated by a chain rattle.  The 

spectrogram was generated using a Hamming window length of 1024 

samples with an overlap of 50%. 

 

often used as an alert to submarine crews of a potential safety hazard.  Any chain rattle 

sounds that could not be positively identified as resulting from a trawl chain were placed 

in the more general chain rattle category (Figure 6.5).  Trawl chain rattle sounds had a 

mean duration of 0.36 s (
2
 = 0.13) and chain rattle sounds had a mean duration of 0.52 s 

(
2
 = 0.28).  There were a total of 53 trawl chain rattle sounds and 52 general chain rattle 

sounds. 

6.1.5 Seismic profile 

Airguns used for subsurface analysis of the seabed produce seismic profile transients by 

 

 

Figure 6.6 Time series and spectrogram of a seismic profile sound.  The spectrogram 

was generated using a Hamming window length of 512 samples with an 

overlap of 80%. 
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releasing highly compressed air to produce sound energy; important geologic information 

can be obtained from the sound waves reflected from the seabed and strata layers [50].  

There were a total of four seismic profile sounds included in the dataset.  The mean 

duration of seismic profile sounds was 1.71 s (
2
 = 0.09 s).  An example seismic profile is 

shown in Figure 6.6. 

 

6.1.6 Dataset Summary 

A summary of the anthropogenic passive transient sounds (by sub-class) and sperm whale 

clicks, including number of each type of transient, is listed in Table 6.1.  The sample rates 

of each class of transient varied based on the original recording source; to ensure 

consistent treatment of the sounds by the aural classifier each sound was resampled to 8 

kHz using SoX [44].  All six types of anthropogenic transients were treated as a single 

class of sound to be classified against sperm whale clicks. 

 

Table 6.1 Number of sounds by sub-class in the anthropogenic transient and sperm 

whale click dataset. 

Sound Type Number in Dataset 

Ballast 24 

Baffle 30 

Cavitation 9 

Trawl chain rattle 52 

Chain rattle 53 

Seismic profile 4 

Sperm whale clicks 178 

 

6.2 RESULTS AND DISCUSSION 

As discussed in Section 5.3.1, it is difficult to determine the best number of features to 

select to include in the principal components based only on the cumulative Fisher score.  

Thus, for classification of sperm whale clicks and anthropogenic transients, classification 

was performed for all possible number of selected features.  Figure 6.7 shows the AUC 

values for classification with 2 to 39 (all non-redundant) selected features.  All numbers 

of selected features produced large AUC values; however, the maximum AUC value of 
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1.00 (rounding up) resulted from using twelve selected features.  Classification with 

twelve features will be presented first since it is known that this classification model will 

produce excellent results.  Note that all AUC values shown in Figure 6.7 are either 0.99 

or 1.00 when represented with the appropriate number of significant figures; although all 

of the AUC values are not statistically different from each other, the general trend (i.e. the 

local minimum around 29 selected features) is, itself, interesting.  Since differences in 

AUC value are only noticeable to three figures (there are only two significant figures), 

one might expect more random fluctuations in the curve; instead there is a local minimum 

that does not seem to be consistent with fluctuations due only to inaccuracy of 

measurement.  

 

 

Figure 6.7 Performance results for classification of sperm whale clicks and 

anthropogenic transients with respect to number of features included in the 

principal components.  A zoomed in view of the local minimum is displayed 

in the inset figure.  The grey region represents the estimated error resulting 

from calculation of the AUC.  Points are connected merely for visualization 

purposes and are not intended to imply that the data are continuous. 
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6.2.1 Classification with Twelve Selected Features 

The decision region using twelve selected features is depicted in Figure 6.8.  The aural 

classifier was very effective at discriminating between sperm whale clicks and the 

anthropogenic transients – the classification accuracy was 98% with all sperm whale 

clicks correctly classified and only anthropogenic transients misclassified.  The 

corresponding ROC curve (the blue curve) is displayed in Figure 6.9.  The AUC is 

rounded up to 1.00 and the equal error rate is 1%, which taken together all indicate near-

ideal classification performance.  The value p2 = 0.73 demonstrates that a large amount of 

the variance in the twelve selected features is represented in the first two principal 

components.  As was seen in the multiclass decision regions in section 5.1 that included 

sperm whale clicks, the sperm whale clicks are spread along a line in the PCA space.  

The covariance and correlation of the sperm whale click data points are -1.75 and -0.92, 

respectively.  Interestingly, the anthropogenic transients also follow a linear trend with a 

covariance of 2.62 and correlation of 0.97. 

 

 

Figure 6.8 Decision region for binary classification of sperm whale clicks and 

anthropogenic transients.  Classification was performed with twelve 

selected features. Class means are represented as white crosses on their 

respective decision regions with bars one standard deviation in length. 
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Figure 6.9 Sperm whale and anthropogenic transient ROC curves for classification 

with 2,12, and 39 features.  Only the region where the ROC curves do not 

overlap is plotted.  These ROC curves correspond to the decision regions 

shown in Figure 6.8, Figure 6.10, and Figure 6.14. 

 

6.2.2 Classification with Two Selected Features 

The linear arrangement of data points in both classes was investigated further by 

performing classification with only the two features with the largest Fisher scores – 

loudness centroid and global mean sub-band decay slope.  Two features are used because 

it should be relatively simple to establish a relationship between the selected features and 

the principal components.  The resulting decision region is shown in Figure 6.10.  The 

same linear within-class trend observed in Figure 6.8 is also evident in this PCA space. 

The correlation and covariance of the sperm whale click data points are -0.43 and -0.95, 

respectively.  The anthropogenic transient data points have a covariance of 0.89 and 

correlation of 0.99.  With only two features selected the aural classifier still performed 

well, with an accuracy of 98%, AUC = 1.00 (rounded up, see red curve in Figure 6.9), 

and equal error rate of 2%.  All three of the performance measures are indicative of near-

ideal classification results. 

 

The normalized feature values of the same two features that were used in PCA to form 

the decision region in Figure 6.10 are plotted in Figure 6.11.  This plot represents the  
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Figure 6.10 Decision region for binary classification of sperm whale clicks and 

anthropogenic transients.  Classification was performed with two selected 

features. Class means are represented as white crosses on their respective 

decision regions with bars one standard deviation in length. 

 

relationship between feature values prior to performing PCA.  Histograms of the loudness 

centroid and global mean sub-band decay slope are shown in Figure 6.12 and Figure 

6.13.  Together these plots show that all sperm whale clicks have similar loudness 

centroids but a wide range of values for the global mean sub-band decay slope.  

Conversely, anthropogenic transients have a wide range of loudness centroids but 

relatively similar values for global mean sub-band decay slope.  The within-class 

variances of these two feature values are listed in Table 6.2.  For each feature, the within-

class variance for one class is small relative to the other class. 

 

Table 6.2 With-in class variance of the normalized loudness centroid and global mean 

sub-band decay slope features (before PCA). 

 Sperm Whale Anthropogenics 

Loudness Centroid 0.009 0.95 

Global mean sub-band decay 

slope 

0.93 0.19 
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Figure 6.11 The two features ranked highest by the Fisher score.  These results were 

plotted before performing PCA on the selected features.  The two arrows 

represent the principal components and the dotted line is the line through 

which data points are reflected when PCA is performed. 

 

 

Figure 6.12 Histogram of loudness centroid values, the highest ranked feature for 

discriminating between sperm whale clicks and anthropogenic transients. 
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Figure 6.13 Histogram of global mean sub-band decay slope (SBDS) values, the second 

highest ranked feature for discriminating between sperm whale clicks and 

anthropogenic transients. 

 

As a side note, the case where two features are selected is a relatively simple example 

that can be used to demonstrate the results of PCA (refer to Section 2.1.5 for the theory of 

PCA).  The eigenvectors of the covariance matrix, also referred to as the principal 

components, form the transformation matrix.  In this case the transformation matrix is 

composed of the two principal components, a
1

= 1

2

2

2

 

 
 

 

 
  and .  Although the 

eigenvector elements are shown to be , the computer-based aural classification 

program performs computations with only finite precision; however, the estimate that the 

elements of the eigenvectors are  is accurate to at least eight decimal places.  

Therefore, this example will continue to use the compact  notation.  The first principal 

component, a1, lies in the direction of maximum variance and the second principal 

component, a2 is orthogonal to a1.  The transformation matrix A, composed of a1 and a2 

is thus written as, 

A = 1

2

2 2

2 2

 

 
 

 

 
  

 

. 

 

Eqn. 6.1  
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The matrix A has a determinant of -1, indicating that the linear transformation results in a 

reflection through a line [51] – the line of reflection be found by solving the following 

system of equations: 

x = 1

2
2x + 2y( )

y = 1

2
2x + 2y( )

 

 

. 

 

Eqn. 6.2  

The solution to these equations is y = 2 +1( )x , which corresponds to the reflection line 

plotted in Figure 6.11.  This example provides a clue as to how the linear arrangement of 

data points in the PCA space comes about. 

 

6.2.3 Classification with All Non-redundant Features 

The decision region shown in Figure 6.14 was generated using all 39 non-redundant 

features.  Classification was completed with 98% accuracy.  The ROC curve 

corresponding to this classifier model is shown in Figure 6.9 with AUC = 1.00 (rounded 

up) and an equal error rate of 1%.  In this case, classification performance did not  

 

Figure 6.14 Decision region for binary classification of sperm whale clicks and 

anthropogenic transients.  Classification was performed with all 39 non-

redundant features.  Class means are represented as white crosses on their 

respective decision regions with bars one standard deviation in length. 
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noticeably change with number of selected features; however, it is apparent from the 

decision region that when more features were included in the principal components the 

linear trend previously observed in both the anthropogenic transient and sperm whale 

click classes is no longer present.  When all non-redundant features were used the within-

class covariance for the sperm whale clicks was 2.64 and the correlation was 0.58.  The 

covariance and correlations of the anthropogenic transients were -0.98 and -0.73, 

respectively.  Though the covariance and correlation for each class are non-zero, 

incorporating additional features significantly reduced these values, and thus the linear 

within-class trend is no longer as apparent.  The other features that were included 

provided additional information that allowed the principal component analysis 

transformation to distribute the data points more evenly in all directions around the class 

mean. 

 

6.2.4 Comparison of Classification Results 

The three features ranked highest by PCA are listed in Table 6.3 and weighting of all 

features in the principal components using 12 and 39 features is represented in Figure 

6.15.  Most of the 12 selected features received similar weighting to each other, whereas 

some of the 39 non-redundant features received much larger weight values than other 

features in the corresponding principal components.  Many of the features that were 

highly ranked when only 12 features were selected, were ranked low in the principal 

components composed of all non-redundant features.  All but one of the features with 

high weighting in the principal components are time-frequency features.  Most of these 

 

Table 6.3 Three highest weighted features using 2 and 12 selected features, and all 

non-redundant for sperm whale and anthropogenic transient classification. 

2 Selected Features 12 Selected Features All Features 

Loudness centroid Local minimum sub-

band decay slope 

Global maximum sub-

band decay time 

Global mean sub-band 

decay slope 

Local maximum sub-

band attack slope 

Global minimum sub-

band attack time 

 Global mean sub-band 

attack slope 

Frequency of global 

minimum sub-band 

attack slope 
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Figure 6.15 Normalized weighting of features in the first two principal components.  

Features are sorted from largest PCA feature weighting to smallest based on 

PCA with all 39 non-redundant features.  These eigenvectors correspond to 

the decision regions shown in Figure 6.8 and Figure 6.14.  Peaks are 

connected merely for visualization purposes and are not intended to imply 

that the data are continuous. 

 

features describe the rise (i.e. attack) or decay slope of the sounds.  In general, the rise 

times and decay times of the sperm whale clicks are less than for anthropogenic 

transients.  Anthropogenic transients had larger decay time values because there is 

generally more reverberation audible after the anthropogenic transients than for sperm 

whale clicks; additionally, anthropogenic transients typically were of longer duration. 

 

The decision regions using 2, 12, and 39 features are depicted in Figure 6.16 with the 

anthropogenic transient subclasses each represented by their own symbol.  Samples from 

the trawl chain rattle and chain rattle classes were the only anthropogenic transients to be 

misclassified as sperm whale clicks.  The chain rattles have similar characteristics to 

sperm whale clicks: they are more broadband and have shorter duration than many of the 

other anthropogenic transients, and at some frequencies have large rise and decay slopes.  

There appears to be a general clustering of trawl chain rattles with chain rattles in the 

decision regions.  Other anthropogenic transient subclasses are more disperse in the 

decision regions, possibly because there are fewer samples in the dataset with which to 

accurately represent the distribution of the subclasses.   
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(a) (b) 

  
(c) 

 
Figure 6.16 Decision regions for binary classification of sperm whale clicks and 

anthropogenic transients.  These decision regions are identical to those 

shown in Figure 6.8, Figure 6.10, and Figure 6.14, except in this figure the 

subclasses of anthropogenic transients are each represented by their own 

symbol: baffle (blue cross), ballast (green circle), cavitation (yellow star), 

chain rattle (white triangle), seismic profile (black diamond), and trawl 

chain rattle (purple square).  Classification was performed with (a) two 

features, (b) twelve features, and (c) all 39 non-redundant features. 

 

6.2.5 Comparison of Sperm Whale Classification with Literature Results 

Kandia and Stylianou [52] used the Teager-Kaiser energy operator to automatically 

detect sperm whale clicks in acoustics recordings.  They compared Teager-Kaiser 

detection results to detection results from the commercially available Rainbow Click 

detection suite.  The true positive detection rate for the Teager-Kaiser energy operator 

method was 94.05% and for the Rainbow Click detector was 71.12%.  When presented 

with previously detected signals, the aural classifier was able to correctly identify 98% of 
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the signals, which is significantly better than the Rainbow Click detector results and 

about four percentage points better than the Teager-Kaiser energy operator method.  

Kandia and Stylianou proposed that an advantage of their method is that their algorithm 

requires few input parameters to perform detection; this is also an advantage of the aural 

classifier because it requires few user-defined inputs.    

 

Huynh et al. [53] compared classification results of four species of cetaceans – sperm 

whales, dolphins, and porpoises – and noise (a total of four classes) using two different 

feature extraction methods.  When features were extracted from the Fourier transform of 

the signals, sperm whale clicks were classified with only 57.5% accuracy.  When the 

wavelet transform was used for feature extraction, classification accuracy of sperm whale 

clicks increased to 98.5%.  Thus, a classifier that used features extracted from the wavelet 

transform produced similar results to classification with aural features although the 

perceptual features performed significantly better than features extracted directly from 

the Fourier transform. 

 

6.3 CONCLUSIONS 

The aural classifier was able to accurately discriminate between sperm whale clicks and a 

variety of anthropogenic transients, even though the subclasses of anthropogenic 

transients had distinct aural characteristics.  The maximum classification performance 

was obtained when twelve features were used for PCA – classification accuracy was 

98%, the AUC was 1.00 and the equal error rate was 1%.  Excellent classification 

performance results were observed for all numbers of selected features, ranging between 

2 and 39 (all non-redundant features) features.  The lowest noted AUC value was 0.99, 

which is still indicative of a successful classification. 

 

Time-frequency features were especially important for classification of sperm whale 

clicks and anthropogenic transients.  In general, the anthropogenic transients produced 

smaller values of the attack and decay slopes than sperm whale clicks.  The notably 

different time-frequency features between classes may be explained by the lack of 
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audible reverberation and the quick energy transition (i.e. rapid rise time), from ambient 

noise to signal, in sperm whale clicks. 

 

A linear pattern of data points within the sperm whale and anthropogenic passive 

transient classes was observed when small numbers of features were selected.  This trend 

was analyzed by performing classification with only two features and examining the 

within-class variances of features that were highly ranked in the principal components.  

The trend was attributed to relatively small within-class variance for highly ranked 

features for one of the classes compared to relatively large within-class variance for the 

other class.  The results of this analysis can be applied to the linear trend within the sperm 

whale class in the multiclass decision regions presented in Section 5.1.1. 
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CHAPTER 7  DISCRIMINANT ANALYSIS 

IMPLEMENTATION 

High dimensionality feature spaces, such as the 58-dimensional space used by the aural 

classifier, may not be adequately represented when using a limited dataset.  Using too 

many dimensions to describe a feature space is analogous to overfitting a polynomial.  

For example, given ten data points generated by adding noise to a quadratic equation, it is 

possible to perfectly fit a 10
th

 degree polynomial to these points; however, it does not 

accurately represent the data because predictions for new data points are not likely to be 

similar to data points originating from the underlying quadratic nature of the dataset [24].  

In the case of the aural classifier, the features were selected because of the belief that 

each one may improve discrimination between (at least) some of the classes.  If it is 

assumed that all of the features improve discrimination, then a method must be used to 

find the best combination of features for discrimination while reducing the 

dimensionality of the feature space. 

 

As discussed in Section 2.1.5, the current implementation of the aural classifier uses 

principal component analysis (PCA) to project the multi-dimensional space defined by 

the selected features (see Section 2.1.4 for description of how features are selected) onto 

a lower dimensional space in which the resulting axes are linear combinations of the 

selected features [9].  Two principal components are typically selected, mainly due to the 

ease with which two-dimensional data can be represented graphically; however, one must 

be aware that for classification to be successful in the lower dimensional space a 

relatively large amount of the variation of the higher-dimensional dataset should be 
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maintained.  The advantage of PCA is that it produces a projection that best represents 

the data in a least-squares sense [24], i.e., PCA does the best job of maintaining the most 

scatter/variation of the dataset. 

 

Although PCA finds the feature combinations that are useful for representing the data, 

there is no reason to assume that these are the best components to discriminate between 

classes.  When attempting to discriminate between classes, it is likely better to seek a 

projection that best separates the classes in a least squares sense.  The method that 

accomplishes this is discriminant analysis (DA).  The aim of DA is to find the 

combination of features that results in a projection containing the most distance between 

class means relative to the standard deviations of the classes [24].  The theory of 

discriminant analysis was presented in Section 2.1.6.  It is hypothesized that 

implementing DA should improve the ability of the classifier to discriminate between 

classes.  The remainder of this chapter investigates if replacing PCA with DA will 

improve classification results. 

 

7.1 COMPARISON AND DISCUSSION OF DA AND PCA RESULTS 

Comparison of classification results using DA versus PCA was accomplished using the 

cetacean dataset.  Possible effects of number of classes (c) on classification were also 

considered by performing classification with two, three, and five cetacean classes.  These 

test cases were selected because there are a total of five classes in the dataset; when using 

DA with three classes, a maximum of two discriminant functions are produced that 

naturally define a 2D decision region without the need to eliminate any computed 

discriminant functions; and two class classification is the simplest case.  The same 

training/testing split was used in all cases.  PCA was performed in each case with the 

twenty best features, as selected by the Fisher Linear Discriminant score.  Classification 

results using PCA and DA for feature space reduction are presented and discussed in the 

following sections.  
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7.1.1 Five classes (c = 5) 

All five cetacean species – bowhead, humpback, North Atlantic right, minke, and sperm 

whales – were included for comparison of automatic classification results when using 

either PCA or DA for feature space reduction.  The results from applying PCA are 

discussed first. 

 

The decision region generated using twenty features and two principal components is 

shown in Figure 7.1.  Classification of vocalizations was 78% accurate.  Table 7.1 

contains the confusion matrix of AUC values corresponding to the decision region below 

– note that M = 0.97 for this case, indicative of a successful classification.  Most of the 

overlap of data points is observed among the baleen whale species, especially the 

bowhead/humpback and right/minke pairs (see corresponding AUC values in Table 7.1).  

No sperm whale clicks were misclassified, although the data points spread out along a  

 

Figure 7.1  Decision region for classification of bowhead, humpback, right, minke, and 

sperm whale vocalizations.  Data points from the testing subset were 

projected onto the 2D space using PCA on twenty selected features.  Class 

means are represented as white crosses on their respective decision regions 

with bars one standard deviation in length. 
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Table 7.1 Confusion matrix of AUC values corresponding to the decision region 

shown in Figure 7.1, where feature space dimensionality reduction is 

performed using PCA.  The value M = 0.97.  The asterisk indicates AUC 

values that appear to result from an ideal classifier, but in fact resulted from 

rounding to two decimal places. 

 Humpback Right Minke Sperm 

Bowhead 0.89 0.98 1.00 1.00 

Humpback  0.98 1.00
* 

1.00 

Right   0.87 1.00 

Minke    1.00 

 

line in the PCA space rather than forming a diffuse cluster of data points like the other 

classes (refer to Section 5.3.2 for a possible explanation of this trend).  The PCA feature 

values for sperm whale clicks are strongly correlated between the two principal 

components, whereas there appears to be negligible correlation of the within-class scatter 

of the other cetacean species.  The relative amount of variability contained in the first two 

principal components was calculated using Eqn. 2.10: p2 = 0.67, that is, 67% of the 

scatter in the dataset is maintained by using two principal components. 

 

Classification using DA for feature space reduction was carried out twice.  The first 

classification was performed so that all four discriminant functions were used; thus, 

classification was done in the resulting four-dimensional space.  Using all four 

discriminant functions is analogous to performing classification using all 20 principal 

components.  The second classification was done using only the first two discriminant 

functions to facilitate visualization of the resulting decision regions – as is often done for 

PCA classification.  Eqn. 2.21 can be used to determine the relative effectiveness of using 

a subset of discriminant functions – in the case shown in Figure 7.2 where the best two 

discriminant functions were used, p2 = 0.77.  Thus, a large percentage of the 

discriminability of the DA method is maintained when employing a subset of two 

discriminant functions. 

 

Results obtained from using four discriminant functions for classification of vocalizations 

belonging to the testing subset are presented as the confusion matrix of pairwise AUC 

values (in Table 7.2).  The accuracy of this classification was 86%.  Classification results 
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are either perfect or near-perfect for all pairs of cetacean species except for bowhead/ 

humpback whales, for which AUC = 0.91.  The pairwise AUC was 1.00 for the 

bowhead/humpback pair in the training subset, which is noticeably greater than for the 

testing subset; since there is significant variability – particularly in the humpback 

vocalizations – a decision boundary may have been selected that was too specific to the 

training dataset to work well with the testing subset.  Although a lower AUC value is 

measured for the testing subset of bowhead/humpback vocalizations, it still represents a 

91% chance of correctly discriminating between bowhead and humpback vocalizations, 

which is considered to be successful for these aurally similar vocalizations.  Applying the 

aural classifier with all four discriminant functions was effective as can be noted by the 

large value of M = 0.99.   

 

Table 7.2 Confusion matrix of AUC values from the testing subset, corresponding to 

using the DA feature space dimensionality reduction method.  Four 

discriminant functions were produced.  The value M = 0.99.  The asterisk 

indicates AUC values that appear to result from an ideal classifier, but in 

fact resulted from rounding to two decimal places. 

 Humpback Right Minke Sperm 

Bowhead 0.91 1.00
* 

1.00 1.00 

Humpback  1.00
* 

1.00 1.00 

Right   1.00
* 

1.00 

Minke    1.00 

 

The decision region, produced by the two discriminant functions corresponding to the 

largest two eigenvalues, is represented in Figure 7.2 and the corresponding confusion 

matrix of AUC values is given in Table 7.3.  In this case M = 0.98 and the total accuracy 

of classification was 83%.  As with the four-dimensional case, the most overlap between 

classes occurred for the bowhead/humpback pair.  All sperm whale clicks were correctly 

classified.  Limiting the number of discriminant functions to two reduced average 

classification results by only 0.005, as measured by the M-value – this is a statistically 

insignificant amount.  Taking into account the ease of visualization in 2D, using only two 

discriminant functions in this case is preferred since a negligible amount of 

discriminability was lost.  The accuracy decreased by only three percentage points when 
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only two discriminant functions were used, but remained more accurate than 

classification using PCA by five percentage points. 

 

Figure 7.2 Decision region for classification of bowhead, humpback, right, minke, and 

sperm whale vocalizations.  Data points from the testing subset were 

projected onto the 2D space using DA.  When three classes are used, DA 

produces four discriminant functions; to allow plotting in 2D, the 

discriminant functions corresponding to the two largest eigenvalues were 

used for classification. Class means are represented as white crosses on their 

respective decision regions with bars one standard deviation in length. 

 

Table 7.3 Confusion matrix of AUC values corresponding to the decision region 

shown in Figure 7.2, where feature space dimensionality reduction is 

performed using DA.  The value M = 0.98. 

 Humpback Right Minke Sperm 

Bowhead 0.90 0.99 1.00 1.00 

Humpback  0.98 1.00 1.00 

Right   0.97 1.00 

Minke    1.00 

 

Classification results in the four-dimensional and two-dimensional DA reduced feature 

spaces are slightly better than in the PCA space ( M = 0.02 and M = 0.01, respectively).  

By visually comparing the two decision regions shown in Figure 7.1 and Figure 7.2 the 
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theoretical differences between PCA and DA methods are evident.  The within-class 

scatter was noticeably reduced when discriminant functions were used; for example, the 

sperm whale data points form a tighter cluster around the class mean in the DA space but 

are more spread out in the PCA space.  Increased distances between class means – when 

using DA rather than PCA – is also another evident difference between dimension 

reduction methods.  Table 7.4 contains summary statistics on the separation between 

class means.  Both of the dimensionality reduction methods caused all sperm whale clicks 

to be correctly classified, although the class mean of sperm clicks was further removed 

from the other class means when using DA. 

 

Table 7.4 Summary statistics describing the distance between class means when 

reduced feature spaces are composed of either principal components or 

discriminant functions.  The five class means correspond to the white 

crosses displayed on Figure 7.1 and Figure 7.2. 

 2 Principal 

Components 

(All Species) 

2 Discriminant 

Functions 

(All Species) 

4 Discriminant 

Functions 

(All Species) 

Minimum distance 0.57 1.03 2.57 

Maximum distance 8.34 10.25 15.01 

Mean distance 3.85 4.56 8.16 

 

Examining the eigenvectors used for PCA and DA (with four discriminant functions) 

exposes the weighting of each feature in the resulting decision space.  For example, the 

normalized sum of eigenvector components corresponding to the integrated loudness 

feature for the principal components is 1.00 compared to 0.70 for the discriminant 

functions; it can thus be concluded that integrated loudness is more important for the 

PCA method than for the DA method.  Comparing eigenvectors allows one to determine 

the most important features for either the PCA or DA methods and which features are 

useful for both methods.  By examining the feature weightings represented in Figure 7.3 

it is evident that the twenty features selected for PCA correspond to features that have 

relatively large weights in the DA method – this is because the Fisher discriminant score 

is used to select the features that will form the principal components.  Therefore, the 

selection of features for use in PCA is done in an analogous way to how features are 

weighted in the discriminant functions; however, the PCA method does weight features 
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differently than the DA method – as can be seen from examining the relative weighting 

values for particular features.  Many of the PCA features have similar weighting to other 

features in the principal components, but different weightings than in the discriminant 

functions.  The three highest weighted features for each of the dimension reduction 

methods is listed in Table 7.5.  It is clear that many of the most important features for 

capturing the variance in the dataset are not the same as the features that best separate the 

classes. 

 

Table 7.5 Three highest weighted features using PCA and DA methods. 

PCA Features DA Features 

Integrated loudness Peak loudness value 

Psychoacoustic bin-to-bin difference Psychoacoustic bin-to-bin difference 

Pre-attack peak loudness value Mean sub-band correlation 

 

 

Figure 7.3 Normalized weighting of features for classification when using either PCA 

or DA for dimensionality reduction during classification of all cetacean 

species.  Features are sorted from largest DA feature weighting to smallest.  

These eigenvectors correspond to the PCA-based decision region shown in 

Figure 7.1 and DA with four discriminant functions (results listed in Table 

7.2).  Peaks are connected merely for visualization purposes and are not 

intended to imply that the data are continuous. 

  

7.1.2 Three classes (c = 3) 

For this analysis the three species selected were bowhead, humpback and right whales.  

Data points for these species exhibited the most overlap during classification of all 
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species (see Section 7.1.1) consistent with the fact that they are the most aurally similar.  

Additionally, in the case of three classes, a maximum of two discriminant functions can 

be calculated, thus removing the need to choose a subset of discriminant functions when 

plotting data in two dimensions.   

 

The decision region formed using twenty selected features and two principal components 

is shown in Figure 7.4 and the corresponding confusion matrix of pairwise AUC values 

appears in Table 7.6.  Average classification performance is good with M = 0.98 and an 

accuracy of 86%.  There was more overlap with the bowhead/humpback pair than with 

other pairs of species and there was no difficulty discriminating between the North 

Atlantic right whale and humpback vocalizations.  Each of the species exhibited 

relatively broad within-class scatter. 

 

 

Figure 7.4 Decision region for classification of bowhead, humpback and right whale 

vocalizations.  Data points from the testing subset were projected onto the 

2D space using PCA on the selected features. Class means are represented 

as white crosses on their respective decision regions with bars one standard 

deviation in length. 
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Table 7.6 Confusion matrix of AUC values corresponding to the decision region 

shown in Figure 7.4, where feature space dimensionality reduction is 

performed using PCA.  M = 0.98. 

 Humpback Right 

Bowhead 0.93 0.99 

Humpback  1.00 

 

The two discriminant functions produced using DA on the three baleen whale species 

were used to project data onto the decision region shown in Figure 7.5.  Table 7.7 

contains the confusion matrix of AUC values.  An M-value of 0.98 was calculated from 

the classification results, indicating successful classification.  Classification was 

completed with an accuracy of 84%.  Again, most of the misclassifications resulted from 

the bowhead/humpback pair, whereas very few right whale vocalizations were 

misclassified. 

 

 

Figure 7.5 Decision region for classification of bowhead, humpback and right whale 

vocalizations.  Data points from the testing subset were projected onto the 

2D space using DA.  When three classes are used, DA produces only the 

two discriminant functions used for plotting. Class means are represented as 

white crosses on their respective decision regions with bars one standard 

deviation in length. 
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Table 7.7 Confusion matrix of AUC values corresponding to the decision region 

shown in Figure 7.5, where feature space dimensionality reduction is 

performed using DA.  The value M = 0.98.  The asterisk indicates AUC 

values that appear to result from an ideal classifier, but in fact resulted from 

rounding to two decimal places. 

 Humpback Right 

Bowhead 0.93 1.00 

Humpback  1.00
* 

 

By visually examining the decision regions in Figure 7.4 and Figure 7.5, it is apparent 

that, in general, the data points are clustered more tightly around their respective class 

means for the DA case compared to the PCA case.  Distance between class means 

increased when DA replaced PCA, as can be noted from the summary statistics 

reproduced in Table 7.8.  There were no statistically significant improvements in results 

( M = 0.0004) gained by implementing DA in the three-class case analyzed here.  The 

decrease in overall classification accuracy occurred because of an increase in the number 

of misclassified humpback vocalizations; however, more right whale vocalizations were 

correctly classified – this is an example of class skew negatively affecting the accuracy 

performance measure.  

 

Table 7.8 Summary statistics describing the distance between class means of baleen 

whale data points when reduced feature spaces are composed of either 

principal components or discriminant functions.  The three class means 

correspond to the white crosses displayed on Figure 7.4 and Figure 7.5. 

 2 Principal 

Components 

2 Discriminant 

Functions 

Minimum distance 2.96 3.61 

Maximum distance 4.93 5.51 

Mean distance 4.13 4.33 

 

Eigenvectors used for projecting data points onto the lower-dimensional feature space 

using either PCA or DA are represented in Figure 7.6.  The three highest weighted 

features generated by PCA and DA are listed in Table 7.9.  Similar relative weightings 

are not applied to the features used in PCA and DA (i.e. when plotted as shown below, 

the sums of the eigenvectors do not exhibit a similar trend).  Only peak loudness value is 
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included in the top three features with the most influence in both the principal 

components and discriminant functions.   

Table 7.9 Three highest weighted features using PCA and DA methods. 

PCA Features DA Features 

Psychoacoustic maxima-to-spectral 

bins ratio 

Peak loudness value 

Global mean sub-band attack time Mean sub-band correlation 

Peak loudness value Integrated loudness 

 

 

Figure 7.6 Normalized weighting of features for classification when using either PCA 

or DA for dimensionality reduction during classification of baleen whales.  

Features are sorted from largest DA feature weighting to smallest.  These 

eigenvectors correspond to the PCA-based decision region shown in Figure 

7.4 and DA-based decision region in Figure 7.5.  Peaks are connected 

merely for visualization purposes and are not intended to imply that the data 

are continuous. 

 

7.1.3 Two classes (c = 2) 

Discriminant analysis with two classes produces a single discriminant function.  Because 

there is only one discriminant function, the 2D decision regions shown in previous 

sections cannot be generated.  Instead, the data is plotted in one-dimension with a single 

(i.e. one-dimensional) threshold value deciding to which class each sample belongs.  As 

stated previously, the only limit on the number of principal components produced by 

PCA is the number of dimensions being considered, i.e. if twenty features are selected for 

classification, PCA can produce up to twenty principal components. 
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The decision region generated using PCA for classification of bowheads and humpbacks 

is shown in Figure 7.7.  The accuracy of classification was 87%.  The corresponding 

ROC curve is shown in Figure 7.9 with AUC = 0.95 and an equal error rate of 12%.  

There is more scatter evident in the humpback class than the bowhead class because of 

the greater variety of calls used.    

 

 

Figure 7.7 Decision region for classification of bowhead and humpback vocalizations.  

Data points from the testing subset were projected onto the 2D space using 

PCA with twenty selected features. Class means are represented as white 

crosses on their respective decision regions with bars one standard deviation 

in length. 

 

Classification results for bowhead and humpback whales, produced using DA for feature 

space reduction, are shown in Figure 7.8.  Results are summarized using histograms for 

each whale class; a total of 45 bins were used to generate the histograms.  As is the case 

for the 2D decision regions used to represent previous results, background colour is used 

to represent correct or incorrect classification decisions; for example, if the light-coloured 

bar representing binned bowhead vocalizations is located on the white background the 

vocalizations contained in that bin were correctly classified, whereas if a light-coloured 

bar is located on the grey background an incorrect classification decision was made.  As 
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can be seen from the decision region, more humpback vocalizations were misclassified as 

bowheads than bowheads misclassified as humpbacks – only three bowhead vocalizations 

were misclassified.  The shape of the humpback distribution is wider, indicating greater 

variance in the humpback class.  This is as expected given the broad range of humpback 

vocalizations.  The accuracy of classification was 88%.  The ROC curve corresponding to 

this classification is represented in Figure 7.9, which has an AUC of 0.96 and an equal 

error rate of 9%. 

 

 

Figure 7.8 Histogram representing bowhead versus humpback classification results.  

Discriminant analysis was used to perform feature space reduction.  

Background colouring represents the classification decision, for example all 

black bars that fall in the grey region represent correctly classified 

vocalizations and any black bars that fall in the white region correspond to 

incorrectly classified vocalizations.  The two horizontal lines above the 

histograms have length of one standard deviation from their respective 

means (represented by the crosses).  The dashed line corresponds to the 

bowhead data and the solid line to the humpback distribution.   

 

As a side note, visually the histograms shown in the DA-based decision region (Figure 

7.8) may resemble a one-dimensional Gaussian PDF.  The null hypothesis that both the 

bowhead and humpback classes are Gaussian distributed along the discriminant function 

was tested using the 
2
 goodness of fit test to quantify the resemblance.  It was found that 

the null hypothesis could not be rejected for the bowhead class but is rejected for the 

humpback class.  This is because the chances that a random sample from a Gaussian 
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distribution would produce a value equal to or larger than the calculated 
2
 test statistic 

are 37% and less than 1% for the bowhead and humpback classes, respectively.  A 50% 

probability indicates an ideal fit because statistically observed values of 
2
 should only 

exceed the norm half the time [54].  Thus, the results of the 
2
 goodness of fit test provide 

further evidence as to the validity of using a Gaussian-based classifier. 

 

 

Figure 7.9 ROC curves resulting from classification of bowheads and humpbacks using 

either PCA or DA for feature space reduction.  Only the region where the 

ROC curves do not overlap is plotted.  These curves correspond to the 

decision regions shown in Figure 7.7 and Figure 7.8 .  When using PCA, 

AUC = 0.95 and when using DA, AUC  = 0.96.   

 

Small improvements in classification results were obtained by implementing DA for 

classification of bowhead and humpback vocalizations.  PCA produced a transformation 

that caused a similar number of bowhead and humpback vocalizations to be 

misclassified; whereas when the DA method was used the ratio of misclassified 

humpbacks to bowheads was noticeably large.  Implementing DA resulted in only a one 

percentage point increase in accuracy.  The AUC value using DA was also larger than the 

value obtained using PCA ( AUC = 0.01).  The distance between class means are 

summarized in Table 7.11 – as expected the distance between class means is larger when 

the DA method is used.  The feature weighting, as determined by the sum of 

eigenvectors, is represented in Figure 7.10.  The three features with the greatest 
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weighting using PCA and DA are listed in Table 7.10 and relative feature weighting is 

represented in Figure 7.10.  There are no commonalities in features with large weightings 

when using either PCA or DA.  

Table 7.10 Three highest weighted features using PCA and DA methods. 

PCA Features DA Features 

Local mean sub-band decay slope Peak loudness value 

Global mean sub-band attack time Global maximum sub-band decay time 

Global mean sub-band decay slope Mean sub-band correlation 

 

 

Figure 7.10 Normalized weighting of features used for classification when using either 

PCA or DA for dimensionality reduction during classification of bowhead 

and humpback whales.  Features are sorted from largest DA feature 

weighting to smallest.  These eigenvectors correspond to the PCA-based 

decision region shown in Figure 7.7 and DA-based decision region in Figure 

7.8.  Peaks are connected merely for visualization purposes and are not 

intended to imply that the data are continuous. 

 

Classification of bowhead and right whale 1&2 vocalizations was also performed to 

determine differences in classification results between PCA and DA when only two 

classes are considered.  The decision region, whose axes are the first two principal 

components, is shown in Figure 7.11.  PCA performs well with these two classes as can 

be noted by the relatively large separation of class means (white crosses shown in the 

figure) and the relatively small number of misclassifications (accuracy of 97%).  The 

ROC curve corresponding to this classification is represented in Figure 7.13.  The      

AUC = 1.00, or nearly ideal, and a relatively low equal error rate of 4% which is also 

indicative of a classifier that is near ideal. 



 117 

 

Figure 7.11 Decision region for classification of bowhead and right whale1/right whale2 

vocalizations.  Data points from the testing subset were projected onto the 

2D space using PCA with twenty selected features. Class means are 

represented as white crosses on their respective decision regions with bars 

one standard deviation in length. 

 

Classification results for bowhead and right whale 1&2 vocalizations using DA for 

dimensionality reduction are represented by the histogram decision region (Figure 7.12), 

which shows a 98% accurate classification.  The ROC curve in Figure 7.13 has an     

AUC = 1.00 and a low equal error rate of 4%.  Good separation of class means is apparent 

by examining the decision region and observing that there is little overlap between the 

two classes.  Only three right whale vocalizations were misclassified.  Examining the 

shape of the right whale vocalization histogram, there appears to be relatively high scatter 

in this class with an approximately uniform distribution of data points along the 

discriminant function compared to the bowhead class which exhibits a possible Gaussian 

shape (i.e. there are more data points distributed about the class mean and smooth 

tapering off on either side of the mean).  The 
2
 goodness of fit test concludes that the 

null hypothesis, which assumes the data in each class are Gaussian distributed, is rejected 

in the case of the right whales but is not rejected for the bowhead distribution because 

there is an 88% and a 64% chance that a random sample of data from a Gaussian would  
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Figure 7.12 Histogram representing bowhead versus North Atlantic right whale 1&2 

classification results.  Discriminant analysis was used to perform feature 

space reduction.  Background colouring represents the classification 

decision, black bars that fall in the grey region represent correctly classified 

vocalizations and any black bars that fall in the white region correspond to 

incorrectly classified vocalizations.  The two horizontal lines above the 

histograms have length of one standard deviation from their respective 

means (represented by the crosses).  The dashed line corresponds to the 

bowhead data and the solid line to the right whale distribution. 

 

 

Figure 7.13 ROC curves from classification of bowhead and right1&2 using either PCA 

or for feature space reduction.  Only the region where the ROC curves do 

not overlap is plotted.  These curves correspond to decisions regions in 

Figure 7.11 and Figure 7.12.  When using PCA, AUC = 1.00 and when 

using DA, AUC  = 1.00. 
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produce a larger 
2
 value than given for the right whale and bowhead distributions, 

respectively.  This may be due to the small size of the right whale dataset – not enough 

vocalizations were used to adequately represent the distribution of this class with respect 

to the given discriminant function. 

 

Classification results for bowhead and right whale1&2 were similar between the PCA 

and DA methods.  There was no significant difference between the ROC curves and AUC 

values.  The same number of right whale vocalizations was misclassified in each case, 

although one bowhead vocalization was misclassified in the PCA method, whereas no 

bowhead vocalizations were misclassified using the discriminant function.  Comparing 

the distance between the class means computed for each of the feature space reduction 

methods (summarized in Table 7.11) shows that there was greater separation between the 

class means when the PCA method was used.  This is unlike the previously discussed 

examples where the distance between means was greater when DA was implemented.  

The PCA method may produce a greater distance between the means because two 

dimensions were used, compared to the DA case where it was possible to produce only a 

single discriminant function.  This unexpected result may also be due to the small size of 

the right whale dataset causing the distribution to be undersampled. 

 

Table 7.11 Distance between class means for examples of c = 2 when reduced feature 

spaces are composed of either principal components or discriminant 

functions.  For the PCA cases, class means correspond to the white crosses 

displayed on Figure 7.7 and Figure 7.11. 

 PCA DA 

Bowhead/ Humpback 2.08 5.83 

Bowhead/ Right 1&2 7.06 6.81 

 

Feature weightings are represented graphically in Figure 7.14.  The three features with 

the highest weighting as determined by PCA and DA are listed in Table 7.12.  Global 

maximum sub-band decay time was the only feature to receive a large weight value from 

both DA and PCA methods.  However, generally, there does not appear to be much 

similarity in the relative feature weightings between the PCA and DA methods indicating 

that the features that best represent the variation in the dataset do not correspond to the 

features that best separate the bowhead and right whale vocalization classes. 
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Table 7.12 Three highest weighted features using PCA and DA methods. 

PCA Features DA Features 

Local maximum sub-band decay time Global maximum sub-band decay time 

Global maximum sub-band decay time Pre-attack psychoacoustic maxima to 

spectral bins ratio 

Local maximum sub-band attack time Integrated loudness 

 

 

Figure 7.14 Normalized weighting of features for classification when using either PCA 

or DA for dimensionality reduction during classification of bowhead and 

North Atlantic right 1 and 2 vocalizations.  Features are sorted from largest 

DA feature weighting to smallest.  These eigenvectors correspond to the 

PCA-based decision region shown in Figure 7.11 and DA-based decision 

region in Figure 7.12.  Peaks are connected merely for visualization 

purposes and are not intended to imply that the data are continuous. 

 

7.2 CONCLUSIONS 

Implementing discriminant analysis resulted in improvements to aural classification 

results; in fact, all examples showed improvements in results except for the binary 

bowhead and right whale classification example.  The small size of the right whale 

dataset was likely the main factor in decreased performance when DA was used.  

Improvements gained by implementing DA were particularly evident for automatic 

classification using larger numbers of classes.  When more than two discriminant 

functions could be computed it was found that classification results were better when all 

discriminant functions were used, because it allowed for a greater separation of class 

means; however in all of the cases examined, classification performance in the PCA-

based feature space was already very good so that only slight improvements were 
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realistically possible.  Only slight improvements in results when using PCA or DA may 

have resulted because the features combined in the principal components were selected 

based on good between-class discriminability (i.e. using the Fisher Linear Discriminant 

Score). 

 

For c = 2 there were no significant changes in classifier effectiveness noted by 

implementing DA.  The most obvious disadvantage of DA when two classes are 

examined is that only a single discriminant function can be produced – the ability to use 

two or more principal components lends an advantage to the use of PCA because it 

provides the opportunity for greater separation of class means by adding an extra degree 

of freedom.  However, classification results were not diminished by implementing DA, 

thus, this method can be used in place of PCA with the expectation of similar 

classification results.    

 

An indirect advantage of DA is that it provides an upper limit on the number of 

discriminant functions, based on the number of classes under consideration, and thus the 

dimensionality of the transformed feature space.  PCA, on the other hand, provides as 

many eigenvectors as features being considered – it is then up to the researcher to decide 

the number of principal components to use, which may be somewhat arbitrary.  

Additionally, this implementation of DA does not require pre-selecting the best features 

for classification as is done with the PCA method, but instead generates the projection 

onto the lower dimensional space by considering all non-redundant features.  This 

removes a processing step and the (somewhat) arbitrary selection of the number of 

features to include in PCA that was shown to be a non-trivial problem in Section 5.3.1. 

 

Computationally, implementing DA caused no significant changes; no noticeable change 

in run time for the automatic classifier was noted by implementing DA.  The 

implementation of discriminant analysis relies on computing the inverse of the within-

class scatter matrix – if this matrix is not independent, and therefore non-invertible, then 

it will not be possible to compute the discriminant functions.  However, it is unlikely that 
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the within-class scatter will not be independent, so this is only a minor concern when 

using DA for transformation of the feature space.    

 

The features dominating the choice of discriminant functions were typically different 

than those with high weighting in the principal components.  In most of the examples, 

there was more variation in the relative weightings used by the DA eigenvectors, whereas 

there was less variation in the weightings of features used in PCA.  This is likely due to 

the fact that the number of features considered was narrowed down prior to performing 

PCA.  Based on the relative weighting of features in the principal components and 

discriminant functions it is possible to conclude that the features that best separate the 

vocalization classes do not necessarily correspond to the features that best represent the 

variance in the dataset. 

 

Discriminant analysis has been shown to be a useful addition to the automatic aural 

classifier by improving classification results in the four different examples discussed.  

The benefits of using DA are more noticeable when three or more classes are used.  

Replacing PCA with DA and testing results on the cetacean data verified the trends 

predicted by theory – there was a noticeable decline in the within class scatter and a 

greater separation of class means.  It is recommended that DA continue to be employed 

by the automatic aural classifier in the future.   
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CHAPTER 8 SUMMARY AND CONCLUSIONS 

8.1 SUMMARY AND CONCLUSIONS 

The aural classifier has proven to be a useful tool for classifying marine mammal 

vocalizations.  Multiclass classification with the five cetacean species in the dataset 

(bowhead, humpback, North Atlantic right, minke, and sperm whales) produced accurate 

results; the best results were obtained when five features were selected to include in the 

principal components.  The overall accuracy of classification was 89% and the multiclass 

performance measure was near ideal (M = 0.99).  The aural classifier easily distinguished 

between sperm whale clicks and baleen whale vocalizations with high accuracy using 

both multiclass and binary classification methods.  Binary classification of pairs of whale 

species resulted in improved classifier performance on baleen whales because features 

were selected and weighted for discrimination between only two species, rather than for 

recognizing the patterns in all five classes.  The baleen whale binary classification results 

were all near ideal.  The most challenging binary case was for classification of bowhead 

and humpback vocalizations because of both the signal (i.e. before auditory model is 

applied) and aural similarities of these species’ vocalizations, and due to the large variety 

of sounds made by humpbacks; however, the aural classifier was able to successfully 

discriminate between the vocalizations of bowhead and humpback whales with 92% 

accuracy, and achieved an AUC = 0.97 and equal error rate of 5%. 

 

Sperm whale clicks and a variety of anthropogenic passive transients were successfully 

discriminated using the aural classifier.  Classification performance was characterized by 

98% accuracy, an AUC of 1.00 and equal error rate of 1%; each of these three 
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performance metrics are indicative of near-ideal classification.  When classification of 

sperm whale clicks and anthropogenic transients was performed, it was noted that the 

data points were arranged in a strongly correlated linear pattern within their 

corresponding classes.  This linear within-class trend was also observed in the sperm 

whale class during multiclass cetacean classification.  Analysis of the multiclass cetacean 

classification and the binary anthropogenic transients/sperm whale results indicated that 

the linear trend in the PCA space occurred when highly ranked features (or feature 

combinations) had a relatively small amount of variance along the semi-minor axis of the 

within-class scatter and a relatively large amount of variance along the semi-major axis, 

due to a correlation between features. 

 

Classification of cetacean vocalizations primarily relied on purely spectral perceptual 

features.  This indicated there were measurable differences in the perceptual spectra of 

the vocalizations that could be taken advantage of for between-class discrimination.  

Conversely, time-frequency perceptual features were highly ranked for classification of 

sperm whale clicks and anthropogenic passive transients.  Time-frequency features 

successfully described the differences between the implosive non-reverberant 

characteristics of sperm whale clicks and the slower attack and decay times of the 

anthropogenic transients. 

 

This research also provided the opportunity to enhance the aural classifier in two ways.  

First, multiclass performance measures were implemented to provide a method for 

analyzing the effectiveness of the classifier similar to the AUC metric used in the binary 

case.  The M-measure and corresponding confusion matrix of pairwise AUC values were 

shown to be useful metrics for qualitatively evaluating multiclass classification results.  

Second, discriminant analysis was implemented.  Multiclass classification results were 

improved by replacing PCA with DA mainly because distance between class means 

increased.  However, for binary classification no significant performance improvements 

were observed when DA replaced PCA – this was because discriminant analysis was 

used to select features to include in the principal components and DA with two classes 

produces only a single discriminant function.  



 125 

The aural classifier performed well when qualitatively compared to results from other 

automatic detection and/or classification algorithms.  Many of the marine mammal 

detection and classification algorithms presented in the literature are based on correlation 

techniques and so are often specific to a single type of vocalization; the aural classifier 

uses the distinct aural features of species’ vocalizations to inform classification decisions 

and can therefore simultaneously classify vocalizations from multiple species.  This 

showed the aural classifier to be more robust than many of the methods presented in the 

literature.  

8.2 SUGGESTIONS FOR FUTURE WORK 

Aural classification of cetacean vocalizations displayed the effectiveness of the classifier 

for distinguishing between marine mammal species based on their vocalizations.  The 

results were very promising and pave the way for additional future work.  

 

Future work should focus on testing the robustness of the aural classifier to progress 

towards the ambitious goal of automatically performing aural classification in real-time 

or near-real-time scenarios.  The dataset used in this research was relatively limited – in 

order to gain a better understanding of how the aural classifier deals with within-class 

variance the size of the dataset should be increased.  Marine mammal vocalizations often 

vary from individual-to-individual, by geographic region, by season, and by behaviour.  

To gain a better understanding of how the aural classifier would perform in a realistic 

scenario, both the marine mammal and anthropogenic transient datasets should be 

supplemented with data that captures more within-species (or within-class) variation.  

Contextual information may also be included to possibly enhance classifier performance.  

The seasonality of marine mammal sightings may be incorporated in the system since 

many whales are known to migrate according to time of year; this knowledge can be used 

to weight the likelihood probabilities.  For example, humpbacks are not known to stay in 

the Bay of Fundy during the winter months so if the aural classifier detected a possible 

humpback whale vocalization, the likelihood probability, P(H| ), would need to be high 

in order to identify the vocalization as resulting from a humpback. 
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The perceptual features used in this research were originally selected to discriminate 

active sonar echoes.  It may be beneficial to investigate additional perceptual features that 

may better discriminate between marine mammal vocalizations.  Additionally, 

incorporating features that describe spectrogram characteristics may better represent the 

way in which human analysts identify the species vocalizing, since human experts use a 

combination of aural cues and visual inspection of spectrograms to identify species. 
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APPENDIX A PERCEPTUAL FEATURES  

The following table contains a summary of all the perceptual signal features, separated 

into time-frequency and purely spectral perceptual signal features.  Qualitative 

descriptions of how each of the features is calculated are also included (as in [9]). 

 

 Perceptual 

Signal 

Feature 

Quantitative 

Representation 

Description 

Time-

frequency 

Sub-band 

attack 

Time (SBAT) Time delay between the KM-defined 

vocalization start and the peak of the 

temporal envelope 

  Slope (SBAS) Slope of the line joining the start of the 

vocalization and the peak of the 

temporal envelope 

 Sub-band 

decay 

Time (SBDT) Time delay between the peak of the 

temporal envelope and the KM-defined 

vocalization end 

  Slope (SBDS) Slope of the line joining the peak of the 

temporal envelope and the end of the 

vocalization 

 Sub-band 

synchronicity 

Correlation 

(SBCorr) 

Average correlation coefficient between 

the temporal envelope for the i
th

 channel 

and the temporal envelopes for the 

remaining channels:  

Spectral Peak loudness Peak loudness 

frequency 

(PLF) 

Centre frequency (in ERB) of the filter 

bank channel containing the maximum 

value of the perceptual loudness 

function 

  Peak loudness 

value (PLV) 

Value of the perceptual loudness 

function (in sones/ERB) corresponding 

to the PLF 
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 Perceptual 

Signal 

Feature 

Quantitative 

Representation 

Description 

 Loudness 

Roughness 

Maxima to 

spectral bin 

ratio (MSBR) 

The total number of local maxima in the 

perceptual loudness function divided by 

the number of filter bank channels 

  Bin-to-bin 

difference 

(BBD) 

The mean of the magnitude of the 

difference between adjacent bins (i.e. 

filter bank channels) of the perceptual 

loudness spectrum 

 Loudness 

centroid 

Loudness 

centroid (LC) 

The frequency (in ERB) corresponding 

to the centroid of the perceptual 

loudness function 

 

The time-frequency features are referred to as either “global” or “local” features.  The 

global features are computed using the Kliewer-Mertins (KM) defined start and end 

indices for all filter bank channels.  In contrast, the local features define start and end 

indices for each sub-band by applying the KM technique to each sub-band.  The features 

calculated from the pre-attack component are intended to quantify the spectral character 

of the pre-attack noise, which has been identified in the musical acoustics literature as 

being an important timbre-correlate.  The pre-attack segment is defined by identifying the 

most significant attack using the KM algorithm – this is set as the end of the pre-attack 

segment – and then including the previous, pre-defined, number of samples [20] (in this 

case the pre-attack segment includes 128 samples).  Thus, it is possible that the pre-attack 

noise segment overlaps either completely or partially with the vocalization defined by the 

KM technique in Section 2.1.1.  The following table lists the names of all 58 one-

dimensional features used by the aural classifier. 

Feature 

Number 

Feature 

1 Loudness centroid 

2 Local minimum sub-band attack time 

3 Frequency bin containing local minimum sub-band attack time 

4 Local minimum sub-band attack slope 

5 Frequency bin containing local minimum sub-band attack slope 

6 Local mean sub-band attack time 

7 Local mean sub-band attack slope 

8 Local maximum sub-band attack time 

9 Frequency bin containing local maximum sub-band attack time 

10 Local maximum sub-band attack slope 
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Feature 

Number 

Feature 

11 Frequency bin containing local maximum sub-band attack slope 

12 Global minimum sub-band attack time 

13 Frequency bin containing global minimum sub-band attack time 

14 Global minimum sub-band attack slope 

15 Frequency bin containing global minimum sub-band attack slope 

16 Global mean sub-band attack time 

17 Global mean sub-band attack slope 

18 Global maximum sub-band attack time 

19 Frequency bin containing global maximum sub-band attack time 

20 Global maximum sub-band attack slope 

21 Frequency bin containing global maximum sub-band attack slope 

22 Local minimum sub-band decay time 

23 Frequency bin containing local minimum sub-band decay time 

24 Local minimum sub-band decay slope 

25 Frequency bin containing local minimum sub-band decay slope 

26 Local mean sub-band decay time 

27 Local mean sub-band decay slope 

28 Local maximum sub-band decay time 

29 Frequency bin containing local maximum sub-band decay time 

30 Local maximum sub-band decay slope 

31 Frequency bin containing local maximum sub-band decay slope 

32 Global minimum sub-band decay time 

33 Frequency bin containing global minimum sub-band decay time 

34 Global minimum sub-band decay slope 

35 Frequency bin containing global minimum sub-band decay slope 

36 Global mean sub-band decay time 

37 Global mean sub-band decay slope 

38 Global maximum sub-band decay time 

39 Frequency bin containing global maximum sub-band decay time 

40 Global maximum sub-band decay slope 

41 Frequency bin containing global maximum sub-band decay slope 

42 Maximum sub-band correlation 

43 Frequency bin containing maximum sub-band correlation 

44 Mean sub-band correlation 

45 Minimum sub-band correlation 

46 Frequency bin containing minimum sub-band correlation 

47 Psychoacoustic maxima-to-spectral-bins ratio 

48 Psychoacoustic bin-to-bin difference 

49 Duration 

50 Peak loudness value 

51 Peak loudness frequency 

52 Pre-attack integrated loudness 

53 Pre-attack peak loudness value 



 136 

Feature 

Number 

Feature 

54 Pre-attack peak loudness frequency 

55 Pre-attack psychoacoustic maxima to spectral bins ratio 

56 Pre-attack psychoacoustic bin-to-bin difference 

57 Pre-attack loudness centroid 

58 Integrated loudness 


