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ABSTRACT

Regional landslide risk, as it is most commonly defined, is a product of the following: hazard,

vulnerability and exposed population. The first objective of this research project is to estimate the

regional landslide hazard level by calculating its probability of slope failure based on maximum

slope angles, as estimated using data provided by digital elevation models (DEM). Furthermore, it

addresses the impact of DEM resolution on perceived slope angles, using local averaging theory,

by comparing the results predicted from DEM datasets of differing resolutions. Although the

likelihood that a landslide will occur can be predicted with a hazard assessment model, the extent

of the damage inflicted upon a region is a function of vulnerability. This introduces the second

objective of this research project: vulnerability assessment. The third and final objective concerns

the impact of urbanization and population growth on landslide risk levels.
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CHAPTER 1

Introduction

1.1 Landslide Risk

Landslide events can be devastating, causing irreparable damage and loss of life. Given the

unstable nature of the current environment, these natural disasters are increasing in frequency in

many regions around the globe (Nadim et al., 2006). Thus, there is a pressing need to improve

techniques for landslide risk management. Landslide risk refers to the probability that a region will

undergo significant levels of damage from a landslide. More specifically, this risk, R, is a function

of both hazard and vulnerability (UNDRO, 1979; Nadim et al., 2006), and can be calculated as:

R = pf � v � np (1.1)

where pf represents the regional probability of a slope failure (i.e. hazard), ranked from 0 (not

possible) to 1 (certain); the vulnerability, v, represents the physical and socioeconomic fragilities

of the affected communities in terms of degree of loss, ranked from 0 (no loss) to 1 (complete loss);

and np represents the number of people exposed to potential landslides.

The hazard level measures a region’s physical susceptibility to landsliding. Some common

indicators used to measure landslide susceptibility include maximum slope angles, lithology, soil

moisture levels, precipitation patterns and seismic activity (Nadim et al., 2006). Maximum slope

angles are one of the most important of these indicators because the potential for instability,

resulting from the downward gravitational pull on an inclined soil mass, increases significantly

with steepening slope. Maximum slope angles can be derived from digital elevation models

(DEMs) which use remote sensing techniques to measure surface elevations. Consider a remote
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sensing device which records average surface elevation over some areal domain of size D � D,

broken up into nc cells. As the size of each individual cell decreases, the number of cells required

to cover the domain increases. A maximum slope angle can be computed for each cell using the

average surface elevations provided for that cell together with its neighbouring cells. Smaller cells

require less local averaging and, as such, a reduction in the DEM’s cell size corresponds to an

increase in the amount of data available to describe the topography of the terrain. Thus, small cells

provide more accurate slope estimates than large cells. For example, if the averaging dimension is

100 m, then variations within this domain having scale less than 100 m will be largely unnoticeable.

In other words, small slopes (say, of extent 10 m) will not be resolved by this sensing device even

if they are extremely steep – the small slopes are ‘smoothed out’. Therefore, the perceived slope

angle (i.e. the angle identified at a specific resolution) is very sensitive to the cell size.

The vulnerability level, v, measures a region’s ability to cope with, and recover from, the reper-

cussions of a landslide. More specifically, vulnerability can be broken down into two components:

physical vulnerability and societal societal vulnerability. Physical vulnerability measures the rel-

ative resistance of buildings, the community’s level of dependence upon the land for sustenance

and the population density. Societal vulnerability assesses the socioeconomic milieu of a region

in order to understand how much impact a landslide is expected to have on a given population.

Demographic (e.g., age, urban population), social (e.g., education level, level of integration), eco-

nomic (e.g., dependence on land for primary source of income, GDP per capita, building type),

preparedness (e.g., quality of medical services, insurance and disaster funds) and administrative

(e.g., regulation control, hazard evaluation, early warning systems, emergency response) types of

indicators (Stinführer et al., 2009; Roberts et al., 2009; Lahidji, 2008; Tapsell et al., 2005; Cutter

et al., 2003) all play important roles in determining a region’s vulnerability to the impacts of

landslides.

Once the hazard and vulnerability levels of a region have been successfully measured, and the

population of the region exposed to landslide hazard has been estimated, a complete risk assessment

framework can be formulated. A region deemed to have a high level of landslide risk will likely

2



contain a considerable number of people exposed to potential landslides, have high levels of slope

instability and be highly vulnerable to loss in the event of a landslide. Any one of these factors

alone does not imply a high probability of landslide-induced damage, i.e. risk. For example, a

highly populated, indigent region is very vulnerable to harm in the event of a landslide, but if

they are located in lowlands where there is essentially no landslide hazard, their landslide risk

level is extremely low. Similarly, it is possible for region located nearby several unstable slopes

to also have an extremely low landslide risk level. This would be the case if, for example, the

infrastructure in the region was well-built and of high quality, the population density was low and

consisted of primarily wealthy, physically fit individuals, and the community had extensive disaster

funds, effective warning systems and emergency response procedures in place.

The current risk level of a region is the key (and often only) component in most analyses.

However, it is important to also consider how the risk level is expected to change in the foreseeable

future. Population growth and urbanization are important factors that should be considered.

For example, as regions urbanize, more land is modified to meet the additional needs of the

new population. Land use changes such as deforestation and expansion of developments and

transportation routes become more common (Nadim et al.,2006). In addition, increased populations

require more natural resources, such as water, for industrial and agricultural purposes, and often

meet these needs in an unsustainable manner which permanently depletes the resources. These

activities put significant levels of stress on the environment and, in many situations, decrease the

stability of surrounding slopes.

1.2 Research Objectives

The objectives of this research project are threefold: (1) to perform a landslide hazard assess-

ment using digital elevation models, (2) to perform a landslide vulnerability assessment, and (3)

analyze the effects of population increase on landslide risk levels. The outcomes of all three ob-

jectives are interrelated and, when combined, produce a complete landslide risk assessment model

applicable for existing and future populations.

3



Objective 1: Landslide hazard assessment using DEMs

The first issue addressed in this landslide hazard analysis is the effect of digital elevation model

resolution on perceived slope angles. A relationship is derived between resolution and perceived

slope angles using local averaging theory. Once the effects of local averaging are understood, they

can be used to back-figure the distribution of slope angles, as perceived at any resolution. This

thesis is concerned with landslide hazard analysis at the critical scale. The critical scale refers

to the minimum scale at which we are concerned with slope failure, i.e. the minimum size that

a landslide would have to be to result in noticeable damage to the surroundings. For example, if

slope failure occurs in one cell of size 1 m � 1 m but not in the surrounding cells, it is unlikely that

the amount of displaced soil would be hazardous, however, if a slope failure occurred in a 1000 m

� 1000 m cell, it could be very hazardous. Thus, we know the critical scale must lie somewhere

between 1 m� 1 m and 1000 m� 1000 m. The critical scale will vary from region to region as the

amount of damage inflicted by a landslide depends upon the type of surroundings, e.g. the amount

of material required to damage a wooden house or a farm is significantly lower than the amount

required to damage a steel building.

Next, the conditional probability of local slope failure is evaluated. The total probability

theorem, which is a function of the distribution of maximum slope angles and the conditional

probability of local slope failure, is then used to determine the regional probability of slope failure,

i.e. the probability that at least one slope in the region fails, which is used to define the regional

hazard level. This methodology is described in detail in Chapter 3 and applied to two different test

sites in Chapter 4.

Hypothesis: As the resolution of a DEM increases, the mean and standard deviation of the

perceived maximum slope angles also increase. This hypothesis is based on the fact that DEM

resolution is inversely proportional to the degree of local averaging. Therefore, high resolution

DEMs are expected to smooth out fewer slopes and observe greater variability between the highest

and lowest elevation points than low resolution models.
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Objective 2: Landslide vulnerability assessment

The ability of a region to effectively cope with, and recover from, a landslide event is best

estimated by addressing the physical and socioeconomic fragilities within that region. This research

measures landslide vulnerability levels with an indicator-based vulnerability model. This model is

composed of thirteen indicators, each weighted according to their degree of relevance to the model,

and ranked from 1 (lowest degree of vulnerability) to 5 (highest degree of vulnerability), based on

the conditions of the region.

The physical indicators, which include building type, urban population and rural population,

provide direct measures of damage levels, whereas the socioeconomic indicators measure the

coping capacity of a region. The socioeconomic indicators considered in this research include

age, education level, level of integration, GDP per capita, quality of medical services, insurance

and disaster funds, regulation control, hazard evaluation, early warning systems and emergency

response procedures.

Although the long term impacts on a society due to injuries, lost lives and a weakened economy

are hard to predict, the indicators presented in this model, when combined, provide a reasonable

means of assessment. This model is described in detail in Chapter 5.

Objective 3: The effect of population increase on landslide risk levels

The third objective of this thesis is to evaluate the effects of an increasing population on

landslide risk levels. The frequency of human-induced landslides is dependent upon a number

of factors, including slope lithology, human interference with the natural landscape, population

density and community resources. Typically, an increase in population leads to an increase in the

frequency of human-induced landslides in a region. As a population grows and urbanizes, more

resources, such as water, food and infrastructure, are required to fulfill all of their needs. Therefore,

land use change becomes more and more common, natural resources are often over-exploited and

as a result slope stability levels frequently suffer and more landslides ensue.
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An empirical model describing the effect of an increasing population on the frequency of

human-induced landslides, and the impact of this change on landslide risk, is developed in Chapter

5 and tested in Chapter 7.
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CHAPTER 2

Literature Review

2.1 Landslide Hazard Assessment using DEMs

While maximum slope angles, as estimated using digital elevation models (DEMs), are one of

the most important indicators used in landslide hazard analyses, the accuracy of the perceived slope

angles is highly dependent upon the resolution of the model. This scale issue, associated with low

resolution models, arises due to local averaging over the DEM cells. Although many papers allude

to the impact of resolution on perceived slope angles, they rarely present a way of quantifying this

effect. In other words, little progress has been made towards a model that overcomes these scaling

issues, particularly one that does so using a relationship between the perceived slope angle and

degree of local averaging.

In order to overcome the issues associated with resolution and successfully use digital elevation

models for landslide hazard analyses, several issues must be considered: 1) the best method for

computation of maximum slope angles from elevation data, and 2) the effect of DEM resolution

on perceived slope angles.

1) Computation of maximum slope angles

Jones (1998) identified eight frequently used slope calculation algorithms and evaluated them

individually on the basis of their root-mean square (RMS) errors. Under the assumption that

the terrain surface has high spatial correlation, the second-order finite-difference algorithm, also

referred to as Fleming and Hoffer’s Method (Fleming and Hoffer, 1979), was found to perform the

best, with the minimum RMS error between the predicted and actual slopes. Fleming and Hoffer’s
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Method, which uses four grid points, calculates a gradient in the x direction between cells (i�1, j)

and (i + 1, j) and another in the y direction between cells (i, j � 1) and (i, j + 1) (see Figure [2.1]).

The remaining algorithms were ranked from best to worst as follows: one over distance squared,

one over distance, third-order finite-difference, constrained quadratic surface, diagonal Ritter’s

(a modified version of second-order finite-difference), three-point simple, and finally, maximum

downward gradient.

� x

�

y

Figure 2.1 Elevation grid from a digital elevation model.

Zhang et al. (1999) also identified and compared common slope calculation algorithms, all

of which utilize some form of numerical differentiation, i.e. the difference in elevation between

two points divided by their separation distance, based on a 3 � 3 grid of cells. The first method

considered, 1) maximum drop (also known as Jones’ maximum downward gradient), calculates

eight slope values, from (i, j) to each of its neighbouring cells (see Figure [2.1]), and defines

Sm as the maximum of the eight slope estimates. The remaining methods considered were: 2)

linear regression, 3) full quadratic equation, 4) partial quadratic equation, and 5) third-order finite

difference. Methods 2 through 5 each calculate the slopes in the x and y directions (Sx and Sy) and

define the maximum slope angle as Sm =
�

S2
x + S2

y .

Zhang et al. (1999) found that methods 2 through 5 all had very similar RMS errors, and were

significantly more accurate than method 1. Thus, in an effort to obtain the most accurate results

possible, it would be inadvisable to choose method 1 (i.e. maximum drop).
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Similarly, Raaflaub and Collins (2006) compared eight slope calculation algorithms: three-

point plane (also known as three-point simple), four-point closest neighbour (also known as

second-order finite-difference), four diagonal neighbours (also known as diagonal Ritter’s), eight

neighbours unweighted (also known as third-order finite-difference), one over distance squared,

maximum downhill gradient,multiple downhill neighbours, andmaximum adjacent gradient. Each

of these algorithms employs between one and eight of the neighbouring cells in its slope estimate.

Raaflaub and Collins (2006) concluded that the algorithms which use four of the neighbouring

cells provide the most accurate results, in agreement with Jones’ preference for the second-order

finite-difference method (referred to as four-point closest neighbour by Raaflaub et al.), followed

by the algorithms utilizing eight of the neighbouring cells. The remaining methods, i.e. two and

three point algorithms, produced significantly more error in their slope estimates, and Raaflab

and Collins felt that they should not be used in applications whereby accurate slope estimates are

required.

2) Effect of DEM Resolution on Perceived Slope Angles

It was hypothesized in Chapter 1 that low resolution DEMs often overlook sudden changes

in elevation and as a result, smooth out small, steep slopes. This smoothing effect leads to an

underestimation of the maximum slope angles.

As part of a study on landslides and avalanches, Nadim et al. (2006) created a landslide hazard

map which used a ‘slope factor’ based on slope angles derived from DEM datasets. Since the

regions under analysis encompassed a significant portion of the globe, they were forced to use two

different DEMs. The higher resolution dataset, applied to regions between 60 ◦ North and 60 ◦

South, had a 3 arc-second resolution with 90 m � 90 m cells. Only lower resolution models were

available outside of these boundaries, thus the second dataset, used above 60 ◦ North, had a 30

arc-second resolution with 1000 m � 1000 m cells (Jaedicke, 2010; NGI, 2010). Nadim et al.

(2006) recognized that the slope angles computed with the low resolution data were underestimated

and tried to develop a relationship between the angles perceived by the DEMs at these two scales.

9



They did so by comparing the slopes computed by the lower resolution data against the higher

resolutions data in two test regions; 1) Norway and 2) the Alps in the Balkan region of southern

Europe. The resulting slope histograms derived at the two DEM resolutions were used to define a

relationship between the slopes perceived by the 30 arc-second and 3 arc-second resolution DEMs.

For instance, 8�10 ◦ slope angles computed with the 30 arc-second data were assigned to the same

hazard class as were 12� 18 ◦ slopes computed with the 3 arc-second data. Although this work by

Nadim et al. (2006) addresses the issues associated with low resolution data, it does so using a very

rough approximation. If a more accurate calibration technique existed, it would greatly improve

the overall reliability of their model.

Zhang et al. (1999) also addressed the effect of resolution on maximum perceived slope angles.

Firstly, they analyzed several DEMs (30, 10, and 5 arc-second resolutions) in eastern Asia as well

as finer resolution datasets with 200 m, 30 m, and 20 m cell sizes in southeastern Spain and found

that, as expected, high resolution DEMs produce steeper maximum slopes than low resolution

DEMs.

Secondly, under the assumption that topography is, in general, fractal in nature (Peitgen and

Saupe, 1988), Zhang et al. (1999) developed a relationship between the slope angle, S, and the

corresponding scale (i.e. cell size), dc, using the variogram technique,

S = αd
(1−Df )
c (2.1)

where α is a constant and Df is the fractal dimension. The variogram technique states that the

statistical variation of the elevation between data points varies with the distance between them.

However, as it stands, this method is not capable of estimating the spatial pattern of slopes as

the values of α and Df are assumed constant throughout the entire DEM. Zhang et al. (1999)

addressed this problem using data from two of their test regions. First, they grouped the cells into

a series of subareas. Next, they used high resolution DEMs to calculate α and Df for each subarea

in order to determine how significantly the values varied throughout the domain. They found that

α varied the most, from 0.59 to 2023.1, while the value of Df still varied considerably, from 1.03
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to 1.96. In an attempt to overcome this issue, and use eq. [2.1] to estimate high resolution slopes

from low resolution DEMs, Zhang et al. (1999) developed a method to calculate local fractal

parameters from low resolution data. This methodology revolved around the assumption that while

α and Df vary in different subareas, they are highly dependent upon the standard deviation of

the elevations. Zhang et al. (1999) concluded that the standard deviation of the elevations also

varies significantly between subareas but decreases only slightly from high to low resolutions. By

developing regression equations for the derivation of slope angles from the elevation data, they

identified a relationship between the standard deviation of the elevation and α, as well as another

relationship between the standard deviation and Df . Thus, these two relationships, together with

eq. [2.1], established a means of estimating the constant, α, the fractal dimension, Df , and the

scaled slope, S, at any resolution, i.e. any grid size, dc. While the resulting scaled slope values

were found, by Zhang et al. (1999), to be relatively good approximations of the true slopes in most

areas, the fractal theory methodology tended to break down in regions where the elevation changed

rapidly. Zhang et al. (1999) concluded that, in low resolution DEMs, the scaling properties of the

slope were affected if the relative elevation changed considerably within a DEM cell. The fractal

scaling properties of the slope angles are unable to account for this type of situation. While this

only accounted for a small percentage of slopes within Zhang et al.’s (1999) test regions (e.g., 6% in

eastern Asia and 4.3% in Guadalentin Basin, Spain), it could seriously underestimate the regional

probability of slope failure in an area prone to landsliding. Therefore, it is important to consider

the effects of local averaging within DEM cells for landslide hazard analyses.

Another consequence of using slope angles computed from low resolution DEMs is the effect

that they have on the standard deviation of the resulting slope angles (i.e. one of the parameters

required to evaluate the regional probability of slope failure). It was hypothesized in Chapter 1 that

the standard deviation of slopes angles perceived by a DEM increases with increasing resolution.

Smaller cells, associated with high resolution DEMs, are capable of resolving more detail and thus

are more likely to observe a larger variance between the highest and lowest elevation points, thus

predicting a larger range of slope angles. Underestimation of the standard deviation of the slopes, by
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low resolution DEMs, presents a serious issue as this value is required to determine the distribution

of maximum slope angles throughout a region, a necessary parameter for regional landslide hazard

analysis. For instance, slope angles, as perceived by multiple DEMs, were examined by Chang and

Tsai (1991) with cells ranging from 8m to 80 m in size, by Claessens et al. () with cell variations

of 10 to 100 m, by Deng et al. () with cells from 5 m to 480 m, and by Chow and Hodgson (), on

micro-scale terrain, with 2 m to 10 m cell dimensions. The results of each of these experiments

indicated that higher resolution models map more terrain variance and steeper mean maximum

slope angles than low resolution models.

As evidenced above, the correlation between DEM resolution and perceived maximum slope

angles has been identified by a vast number of researchers. However, these papers do not consider

local averaging theory as a means for quantifying the impacts of DEM resolution on slope angles.

In fact, most of them only provide qualitative analyses of this resolution issue. Furthermore, most

of the papers described above focus on small scale regions, usually with respect to hydrological

modeling, which is unsuitable for large scale landslide hazard assessment problems, such as the

one addressed by this thesis.

2.2 Landslide Vulnerability Assessment

While a significant number of papers discuss the subject of landslide vulnerability, the majority

of these papers: 1) group landslides together with all other natural disasters, and/or 2) present

only a rough outline for analysis, lacking any specific guidelines. For instance, most vulnerability

models are composed of a set of vulnerability indicators, which must be individually evaluated and

often weighted, yet most offer no explicit guidelines for evaluation or weighting (Roberts et al.,

2009; Tapsell et al., 2005; Cutter et al., 2003). Thus, there is a pressing need for an unambiguous

landslide-specific vulnerability model.

Roberts et al. (2009) attempt to combine the strengths typically associated with natural and

social science vulnerability analyses into their vulnerability assessment framework for natural haz-

ards. Natural sciences generally focus on the assessing vulnerability quantitatively, by considering
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measurable factors such as structural damage to the built environment and loss of life. On the

other hand, social sciences tend to analyze societies at large, and as such, present more qualitative

analyses. The model presented by Roberts et al. (2009) consists of five vulnerability components

(physical, health, economic, administrative and environmental), each broken down into three or

four subcomponents (see Figure [2.2]).

Figure 2.2 Components of the conceptual model for quantification of vulnerability

(Roberts et al., 2009).

These subcomponents are considered in local context and designed to be individually weighted

between 0 and 1. The goal of this weighting technique is to allow for various subcomponents to

be combined and/or left out of the analysis all together. Roberts et al. (2009) do not actually

weight the subcomponents themselves, however, they suggest that it should initially be done using

expert judgment and later updated using back analysis with past disaster case studies. Roberts et

al. (2009) also differentiated between coping capacity and vulnerability types of subcomponents,

which they found to improve conceptual understanding. However, they acknowledged that this

differentiation was often a hindrance during analysis.
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Tapsell et al. (2005) developed an indicator-based methodology to evaluate vulnerability and

resiliency levels to floods within Europe. While this models addresses floods, rather than landslides,

there is a lot of overlap between the two, as they often occur together. Thus, many of the indicators

described by Tapsell et al. (2005) are directly relevant to the landslide vulnerability assessment

model presented in this thesis. The following indicators, assigned a (+) to denote an increase in

vulnerability levels or a (-) sign to denote a decrease in vulnerability levels, were considered:

� Age – children and very elderly (+)

� Gender – women (+)

� Employment (-)

� Unemployment (+)

� Occupation (� depending upon whether skilled or unskilled, also linked to income and financial

status)

� Education level (higher education level -, lower education level +)

� Family/household composition (large families +, single parents +, single person households +,

home owner -, renter +, etc.)

� Nationality/ethnicity (non-white +, new migrants +)

� Type of housing (single storey accommodation +, mobile housing +)

� Number of rooms (low number indicates overcrowding +)

� Rural/urban (low income rural +, high density urban +)

� Levels of risk awareness and preparedness (high awareness -, low +)

� Previous flood experience (no experience +)

� Access to decision-making (increased access -)

� Trust in authorities (no +, yes -)

� Long-term-illness or disability (+)
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� Length of residence (linked to prior experience, short residence +)

� Serviced by flood warning system (yes -, no +)

� Type of flood (indicates potential damage levels)

� Flood return period (indicates potential damage levels)

However, Tapsell et al. (2005) did not address issues such as combining and weighting

indicators. Therefore, they did not present a conclusive model capable of assigning a final regional

vulnerability score.

Cutter et al. (2003) developed a county-level social vulnerability index (SoVI) for natural

disasters in the United States based on 11 independent indicator variables, reduced from 42 using

a factor analysis approach. They performed a statistical analysis on the final 11 indicators to

determine the amount of variance explained by each and the inter-variable correlations which

resulted in the following ranking (see Figure [2.3]), from most-to-least important.

Cutter et al. (2003) assigned each of the indicators a ‘factor score’ (i.e. similar to weight)

indicative of its level of importance to the model and calculated the total SoVI score for each county

as the sum of the factors influencing the region. The SoVI levels were categorized relative to the

mean US value (see Figure [2.4]), counties with a SoVI score greater than +1 standard deviation

were considered the most vulnerable and those with greater than -1 standard deviation the least

vulnerable; the SoVI ranged from -9.6 to 49.51 throughout the US with mean vulnerability score

of 1.54 and a standard deviation of 3.38. The counties with the highest levels of vulnerability (i.e.

standard deviations greater than +1) were found to contain a geographic mix of highly urbanized

counties, large Hispanic and/or Native American populations, and socially dependent populations

(e.g., those lacking education).
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Figure 2.3 Dimensions of social vulnerability (Cutter et al., 2003).

Figure 2.4 Comparative vulnerability of U.S. counties based on the social vulnerability

index (SoVI) (Cutter et al., 2003).

In contrast to the models described above, some papers do provide guidelines for evaluating

vulnerability indicators. However, most of these papers focus on a specific aspect of vulnerability,
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rather than addressing the issue as a whole. For example, Lahidji (2008) focuses on the develop-

ment of a model to measure the coping capacity of a region in the event of a natural disaster. While

most of his criteria are widely applicable for any type of event, he has also included several hazard-

specific indicators that focus on one or more of the following types of natural disasters: wildfires,

avalanches, tsunamis, volcanoes, droughts, typhoons, landslides, floods and earthquakes. In order

to assess the coping capacity, Lahidji (2008) used existing data (governance and development indi-

cators) to quantify the legal and regulatory framework, environmental sustainability, infrastructure

equipment, macroeconomic activity and social safety net, then developed questionnaires to address

the remaining indicators:

� Hazard evaluation

� Consequences and vulnerability assessment

� Awareness-raising activities

� Sectoral regulations

� Structural defenses

� Continuity planning

� Early warning

� Emergency response

� Insurance and disaster funds

� Reconstruction and rehabilitation planning

The purpose of these questionnaires is to provide a means of ranking each of the indicators,

from 1 to 5, based on their relationship to coping capacity. Rank 1 indicates that the indicator

has not been considered in the region and thus, denotes a low coping capacity (e.g. for hazard

evaluation: there has been no monitoring or forecasting of past events), while level 5 indicates a

high level of consideration and thus, a high capacity to cope with a natural disaster should one

occur (e.g. detailed hazard mapping and analysis has been completed). In addition to ranking,
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each indicator is supposed to be weighted based on its degree of relevance to the model. However,

Lahidji (2008) did not discuss how to select appropriate weights. Finally, Lahidji (2008) developed

an equation to evaluate the overall coping capacity as a normalized value, I ,

I =
�

i

�
αi � Iall

i

�
+
�

i

�
j

�
βi � γj � Ihazard,j

i

�
(2.2)

where αi represents the weights of all non-specififc hazard indicators Iall
i , βi represents the weights

of hazard-specific indicators Ihazard,j
i , γj represents the weight (i.e. relevance of hazard j (e.g.

landslides, floods, or wildfires) for the country), calculated in terms of exposure, and
�

αi =
�

βi =
�

γi = 1.

2.3 The Effect of Population Increase on Landslide Risk Levels

In many regions around the globe, the frequency of landslides is noticeably increasing (Nadim

et al., 2006). One of the main factors attributing to this increased occurrence of landslides is

growing levels of urbanization and, as a result, increased amounts of land-use change. As Nadim

et al.’s (2006) study on landslides and avalanches noted, when the population of a region increases,

land that was once left in its natural state is often developed. These land-use changes typically

include deforestation, expansion of developments and transportation routes and/or over-exploitation

of natural resources (e.g., water supplies), which often leads to greater levels of instability in

soil surfaces. As a result, existing slopes become increasingly unstable and more likely to fail.

Furthermore, due to the large amount of urbanization occurring, especially in developing regions,

borders to land that was once considered uninhabitable (e.g., in the mountains) is constantly being

extended.

The SafeLand project (Nadim et al., 2010), which analyzes landslide risk throughout Europe,

focused on many factors associated with landslide risk, including the effects of population increase.

One of the case studies examined involved a series of more than 400 superficial landslides in the

Alpes-Maritimes, in France, induced by heavy rainfall. Although, naturally induced, in the sense
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that the landslides were initiated by rainfall, the extent of the disaster was largely attributed to land-

use changes (i.e. anthropogenic activity). This region, which was once sparsely populated with

an expanse reserve of water resources, has been urbanized and its water resources have since been

over-exploited. Due to the nature of these land-use changes, slope stability levels have significantly

decreased and, as a result, the region has become much more susceptible to sliding.

Work project 1.4 of the SafeLand project (Nadim et al., 2010) identified various other landslides

induced, partly or fully, by human activity (see Figure [2.5]).

Figure 2.5 Case studies of human-induced landslides in Europe (Nadim et al., 2010).

These examples illustrate the negative effects that a population can have on slope stability,

thereby indicating the potential of increased populations to instigate a higher frequency of human-

induced landslides.
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CHAPTER 3

Landslide Hazard Assessment using DEMs

The assessment of regional landslide hazard is critically dependent upon the distribution of

slope angles throughout the region. The equilibrium state of any terrain is a flat plane. The farther

a terrain is away from a flat plane, i.e. the steeper the slope, the more likely the terrain is to fail

in order to achieve this equilibrium state. Thus, maximum slope angles are an important indicator

for slope stability. Other intrinsic factors such as soil composition and moisture level, as well

as extrinsic factors such as precipitation and seismic activity, also highly influence slope stability

levels (Nadim et al., 2006). The landslide model presented in this thesis estimates maximum

slope angles from digital elevation models and uses these results together with the regional ground

strength parameters to predict the probability of regional slope failure. Moreover, with a few minor

adjustments, the landslide model presented here can be easily adapted to estimate snow avalanche

hazard levels. However, this thesis will only consider landslides.

3.1 Probability of Slope Failure

Let F1 be the event that a single randomly selected slope, having random slope angle S, fails.

The total probability theorem allows the probability of F1 to be calculated as

P [F1] =
� smax

smin

P
�
F1 � S = s

�
� fS(s)ds (3.1)

where P
�
F1 � S = s

�
is the conditional probability of slope failure given the slope angle and the

integral is evaluated over all possible slope angles, s. The function fs(s) is the probability density
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function of the slope angles. The integral in eq. [3.1] will be evaluated numerically by discretizing

the possible slope angles into a series of ranges, si, where

si =
�
si �

Δs

2 , si +
Δs

2

�
(3.2)

and the incremental value Δs is

Δs =
�

(smax � smin)
ns

�
(3.3)

where smin and smax are the minimum and maximum slope angles and ns is the total number of

slope angle intervals considered. For example, if smin = 0 ◦ and smax = 90 ◦ , and ns is selected

to be 90, then Δs = 1 ◦ and the set of slope angle ranges becomes [0 ◦ , 0.5 ◦ ), [0.5 ◦ , 1.5 ◦ ), . . .,

[89.5 ◦ , 90 ◦ ). Under this discretization scheme, it is convenient to simply round the continuous

random slope variable, S, to the midpoint of each range, e.g., one of si = 0 ◦ , 1 ◦ , 2 ◦ , . . . , 90 ◦ ,

where the first and last intervals are taken at their endpoints.

This research will deal with the slope angles in units rise/run (i.e. in m/m). Thus, the range

of slope angles would become [tan 0 ◦ , tan 0.5 ◦ ), [tan 0.5 ◦ , tan 1.5 ◦ ), . . ., [tan 89.5 ◦ , tan 90 ◦ ),

which can be simplified by rounding to the midpoint of each range such that, si = tan 0 ◦ , tan 1 ◦ ,

tan 2 ◦ , . . ., tan 90 ◦ .

Under this discretization, eq. [3.1] becomes

P [F1] �
smax�

si=smin

P
�
F1 �S = si

�
� P [S = si] (3.4)

where P [S = si] is the probability that the randomly selected slope angle is si.

3.2 Regional Landslide Hazard Level

Given the probabilities, P
�
F1 �S = si

�
and P [S = si], it is possible to estimate the probability

of failure of a randomly selected slope (having a random slope angle with distribution fS(s)).

However, a region is generally composed of several, perhaps a very large number, of individual

slopes. The question, in this case, is how to define the regional hazard level. In this research,
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landslide failure of a region will be defined as occurring if one or more slopes in the region fail.

The regional hazard level will be defined as the probability of this event, that is, the probability of

one or more slopes in the region failing. Therefore, attention should now be turned to calculating

the probability of at least one slope failure throughout an entire region of some areal extent, At. If

the area is large, then it will consist of possibly very many separate slopes, j = 1, 2, . . . , nt, where

nt is the number of slopes in the region. Each of these slopes will have some random slope angle

Sj .

For simplicity, assume that a typical slope in the region has areal dimensions T � T (T might

be considered to be the minimum dimension below which slope failure is not a threat). If this is

so, then the number of slopes having slope angle si in the region will be

ni = nt � P [S = si] =
At � P [S = si]

T 2 (3.5)

Letting Nni
be the random number of slopes that fail out those slopes having slope angle si, then the

probability that one or more of these slopes fail is P
�
Nni

� 1
�
. As this probability increases, the

general landslide hazard level of the region will also increase. Assuming independence between

the ni slopes, each having slope angle si, and that the probability of slope failure is constant at

P [S = si], then the probability of at least one slope failure from these slopes is given by

P
�
Nni

� 1
�

= 1 � P
�
Nni

= 0
�

= 1 � qni

i (3.6)

where qi is the probability of non-failure of a slope having slope angle si,

qi = 1 � P
�
F1 �S = si

�
(3.7)

Note that the assumption that slopes fail independently with constant failure probability,P
�
F1 �S = si

�
,

means that Nni
follows a binomial distribution.

The assumption that the slopes fail independently is admittedly not very reasonable. For

example, if an earthquake strikes the region, it is more likely that several slopes will fail – the
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common factor being the seismic cause. However, the assumption of independence is conservative,

in the sense that it leads to a higher probability of failure than if the slope failures are positively

correlated (i.e., if one fails, others are more likely to fail). This can be illustrated as follows; consider

two slopes each having failure probability p. Suppose that if one slope fails, the probability of

failure of the other becomes αp, where α > 1 if slope failures are positively correlated. In this

case, the probability of failure of at least one slope is

P [FA � FB] = P [FA] + P [FB]� P
�
FA �FB

�
P [FB]

= 2p� αp2 (3.8)

where Fi is the failure event of the ith slope (i = A,B). If α = 1 (independence), then

P [FA � FB] = 2p� p2 (3.9)

It can be seen that (2p� αp2) < (2p� p2) when α > 1, by virtue of the fact that αp2 > p2, so the

assumption of independently failing slopes gives a higher failure probability. The same principle

extends to multiple slopes. If the landslide hazard is to be investigated under an earthquake, then

all that needs changing in the model presented in this thesis is to find P
�
F1 �S = si

�
under seismic

loading (Section 3.4 introduces an approach for evaluating P
�
F1 �S = si

�
under static loading

conditions, i.e., selfweight only).

Equation [3.6] provides a conservative measure of the landslide susceptibility over a region. It

should be noted that this measure depends on the size of the region, At. As At goes to infinity, the

number of slopes involved also goes to infinity, and the regional probability of slope failure goes to

one, P
�
Nni

� 1
�
� 1. This makes sense in that it is to be expected that at least one slope failure

will occur in very large areas. This issue, however, suggests that another measure of landslide

hazard might involve a unit area slope failure probability. However, such a measure is left for future

work.

As mentioned above, the regional landslide hazard level, pf , is defined as the probability of

failure of at least one slope throughout the region, At, which can be computed using the total
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probability theorem over the range of possible slope angles,

pf =
smax�

si=smin

P
�
Nni

� 1
�
� P [S = si]

=
smax�

si=smin

�
1 � qni

i

�
� P [S = si] (3.10)

3.3 Digital Elevation Models

Geographic information system (GIS) databases are becoming increasingly common and avail-

able at ever higher resolution levels. Of particular value in determining landslide hazard levels are

digital elevation models (DEM), in which the elevation of the land is determined, usually by remote

sensing, at a series of points. Most DEMs involve determining some sort of average elevation over

some spatial dimension, the latter of which defines its resolution.

Consider a remote sensing device which records average surface elevation over some areal

domain of size T �T . If Z(x, y) is the actual surface elevation at the surface location (x, y), where

x and y are coordinate axes which may be aligned with the edges of the DEM but lie in the plane

of the surface, then the local average elevation, ZT (x, y) over a domain of size T � T is given by

ZT (x, y) =
1
T 2

� y+T/2

y−T/2

� x+T/2

x−T/2
Z(s, r) ds dr (3.11)

Evidently, averaging over a cell may smooth over a lot of variation within the averaging domain

and significantly reduce the range of slope angles identified. This statement is in agreement with

the hypothesis presented in Chapter 1, which stated that as the resolution of a DEM increases (i.e.

cell size decreases), the amount of averaging decreases and the standard deviation of the perceived

slope angles increases.
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3.3.1 Averaging Dimensions

When dealing with DEMs applied at a global scale, the exact cell size is dependent upon its

geographic coordinates (Zhang et al., 1999). Due to the spherical nature of the Earth, the DEM cell

size will change the most near the poles and least near the equator. The precise dimensions can be

computed using the Haversine formula (Smith et al., 2007):

T = 2RE arcsin

�
sin2

�
Δlat

2

�
+ cos (L1) � cos (L2) � sin2

�
Δlong

2

�
(3.12)

where RE is the radius of the Earth, which is approximately 6371 km (NIMA, 2000), L1 and L2 are

the latitudinal coordinates on the Earth’s surface of the cell edges, Δlat is the difference between

the two latitudinal coordinates and Δlong is the difference between two longitudinal coordinates.

3.3.2 Elevation Data

Elevation data provided by digital elevation models can be used to estimate the distribution of

slope angles, P [S = si], throughout a region. However, the accuracy of the resulting slope angles

measured by a DEM is dependent upon its resolution. Since the resolution is inversely related to

the degree of local averaging, low resolution DEMs experience high levels of local averaging and

as such, overlook much of the variation within a domain. As a result, low resolution DEMs often

underestimate regional landslide hazard levels.

The landslide hazard model presented in this thesis requires data from two digital elevation

models of differing resolutions. The slope angles perceived at each resolution will undergo different

degrees of local averaging and therefore differ somewhat from the true slope angle. The amount

of error is related to the DEM resolution. Local averaging theory, when applied to data provided

by two DEMs, can be used to back-figure the distribution of slope angles at any resolution. In

this research, interest is focused on a critical scale, where the critical scale refers to the minimum

dimension at which a single slope failure is deemed to be potentially hazardous. For example, a

failure of a slope of 1 m� 1 m would not likely be hazardous, whereas failure of a 1000 m� 1000

m slope could be very hazardous.

25



Let T1 represent the averaging domain of one of the DEMs, and T2 the averaging domain of

the other. Each of these datasets experiences some degree of local averaging, the extent of which

is dependent upon the cell size T (which will typically be equal to one of T1 or T2). Based on local

averaging theory (Fenton and Griffiths, 2008), a relationship can be derived between the standard

deviation of elevation data averaged over each DEM cell, σZT
, and the standard deviation of the

elevation data at the point scale, σZ .

σ2
ZT

= σ2
Z � γZ(T, T ) (3.13)

where γZ(T, T ) is the 2D variance function, which describes the amount that the variance is reduced

when the elevation is averaged over the cell domain, T � T . The value of γZ(T, T ) decreases from

one to zero as T increases. Since it is a multiplicative factor, a high value of γZ(T, T ) indicates a

low degree of local averaging.

There are a number of commonly used variance functions (see e.g., Fenton and Griffiths,

2008), each derived from a corresponding common correlation function. In this research the

Gaussian correlation function is adopted to govern the correlations between DEM elevations.

One of the advantages of the Gaussian correlation structure, over others such as the Markovian

correlation structure, is that it is mean square differentiable, meaning that its derivates have finite

variance. Mean square differentiability simplifies the model mathematically by ensuring that the

slope variance remains finite (which would generally be true).

If ZT (x, y) has a Gaussian correlation structure, its correlation function, ρZ(τx, τy), and variance

function, γZ(Tx, Ty), are as follows (Fenton and Griffiths, 2008)

ρZ(τx, τy) = exp

�
�π

��
τx

θZx

�2

+
�

τy

θZy

�2
��

= exp

�
�π

�
τx

θZx

�2
�

exp

�
�π

�
τy

θZy

�2
�

= ρZ(τx)ρZ(τy) (3.14)
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and

γZ(Tx, Ty) =
θ2

Zx
θ2

Zy

π2T 2
xT 2

y

�
π�Tx�
θZx

erf
��

π�Tx�
θZx

�
+ exp

��πT 2
x

θ2
Zx

�
� 1

�
�

�
π�Ty�
θZy

erf
��

π�Ty�
θZy

�
+ exp

��πT 2
y

θ2
Zy

�
� 1

�

= γZ(Tx)γZ(Ty) (3.15)

where Tx and Ty are the directional cell dimensions, e.g., typically one of Tx = Ty = T1 or T2.

The point scale correlation length, θZ , is used to describe the degree of linear dependence between

data points. For example, if for any two points separated by distance τ , when the elevation of one

doubles, the elevation of the other does as well, then points separated by distance τ are strongly

correlated. This typically occurs when τ is small, i.e. points are close together. The correlation

length, θZ, may be roughly viewed as the separation distance beyond which the two points will be

largely uncorrelated. Thus, the smaller the correlation length, the more erratic the distribution of

peaks in a mountainous region (due to more independence between elevations).

Note that the correlation function given by eq. [3.14] is separable, which means that the variance

function is also separable. Furthermore, if θZx
= θZy

= θZ , then the correlation function is also

isotropic. Assuming isotropy, the correlation function simplifies as follows:

ρZ(τx, τy) = exp
�
� π

θZ

2

�
τ 2
x + τ 2

y

��
(3.16)

Letting τ =
�

τ 2
x + τ 2

y be the absolute distance between any two points, the correlation function can

be expressed as

ρZ(τ ) = exp

�
�π

�
τ

θZ

�2
	

(3.17)

The corresponding variance function can now be expressed as

γZ(T, T ) = γ2
Z(T ) (3.18)

where

γZ(T ) =
θ2

Z

πT 2

�
πT

θZ

erf
��

πT

θZ

�
+ exp

��πT 2

θ2
Z

�
� 1

�
(3.19)
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Given two DEM datasets, the following relationships emerge from equations [3.13], [3.18] and

[3.19]

σZT 1
= σZ � γZ(T1) (3.20a)

σZT 2
= σZ � γZ(T2) (3.20b)

The ratio of these two standard deviations is

σZT 1

σZT 2

=
γZ(T1)
γZ(T2)

=

�
�

θ2
Z

πT 2
1

�
πT1
θZ

erf
�√

πT1
θZ

�
+ exp

�
−πT 2

1
θ2
Z

�
� 1

�

θ2
Z

πT 2
2

�
πT2
θZ

erf
�√

πT2
θZ

�
+ exp

�
−πT 2

2
θ2
Z

�
� 1

�
�
� (3.21)

which is a function of the correlation length, θZ , and T1, T2, σZT 1
and σZT 2

. The last four are

either known or can be estimated from the DEM dataset. Thus, eq. [3.21] has only one unknown,

the correlation length θZ. Therefore, the point scale correlation length, θZ , can be determined by

solving eq. [3.21] for θZ . This value of θZ can then be plugged back into eq. [3.19], separately

for each DEM (i.e. T1 and T2), in order to calculate the values of γZ(T1) and γZ(T2). Finally, the

following equation, which is simply a rearrangement of eq. [3.13], can be used to calculate the

point scale standard deviation of the elevation data, σZ ,

σZ =
σZT

γZ(T ) (3.22)

using the values of σZT
and γZ(T ) at either resolution. This value of σZ is important for determining

the distribution of maximum slope angles throughout the region D �D, as illustrated in the next

section.

3.3.3 Distribution of Slope Angles

Assuming that the average elevation over each cell, T �T , is taken at the center of the cell (see

eq. [3.11]) and that average elevations are recorded at regular intervals separated by distance T ,

the DEM produces a regular grid of adjacent average elevations. The slopes through a particular
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cell in the two coordinate directions, x and y, can be estimated using second-order finite-difference

approximations (the approach favored by Raaflaub and Collins (2006) and Jones (1998))

STx(x, y) =
ZT (x + T, y)� ZT (x� T, y)

2T
(3.23a)

STy(x, y) =
ZT (x, y + T )� ZT (x, y � T )

2T
(3.23b)

where the equations are modified for the cells along the edge of the DEM. For example, STx(x, y)

is evaluated as ZT (x,y)−ZT (x−T,y)
T along the right edge.

These slopes angles, STx(x, y) and STy(x, y), represent the values of the slopes as perceived at

a given DEM resolution, and are expressed in terms of rise over run.

3.3.4 Effects of Resolution on Perceived Slope Angles

1) Standard deviation of locally averaged slope angles

According to theory for the derivative process of threshold excursions in one dimension, given

stationary ZT (x, y), both STx(x, y) and STy(x, y) have zero mean (i.e. the underlying ground surface

is approximately flat) and the following variances (Fenton and Griffiths, 2008)

Var
�
ST x

�
=

1
(2T )2 Var [ZT (x + T, y)� ZT (x� T, y)]

=
1

4T 2

�
2E

�
Z2

T

�
� 2E [ZT (x + T, y) � ZT (x � T, y)]

�
(3.24)

Given the following relationships

σ2
Z = E

�
Z2

T

�
� E2[ZT ] (3.25)

σ2
ZρZT

(2T ) = E [ZT (x + T, y) � ZT (x � T, y)] � E2[ZT ] (3.26)

where E [ZT ] represents the expected value of ZT (and so on), equation [3.24] can be simplified to

Var
�
ST x

�
=

1
4T 2

�
2σ2

Z + 2E2[ZT ] � 2σ2
Zρ(2T ) � 2E2[ZT ]

�

=
1

4T 2

�
2σ2

Z � 2σ2
Zρ(2T )

�
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=
σ2

Z

2T 2 [1� ρZT (2T )] (3.27)

where ρZT
(2T ) is the Gaussian 2D correlation function (see eq. [3.17]) of the locally averaged data

ρZT
(2T ) = exp

�
�π

�
2T

θZT

�2
�

(3.28)

and θZT
is the locally averaged correlation length, which needs to be determined.

Furthermore, the variance in each of the x and y directions are assumed to be approximately

equal, i.e. Var
�
STx

�
= Var

�
ST y

�
= Var [ST ] = σ2

ST
, and the standard deviation of the locally

averaged slope angles can be evaluated as

σST
=

σZ

T
�

2

�����1� exp

�
�π

�
2T

θZT

	2
��

(3.29)

Stationarity, or statistical homogeneity, of ZT (x, y) implies that its mean, variance and correla-

tion structure are independent of position. In other words, the mean and variance are constant over

space and the correlation structure depends on relative positions. In this research, stationarity has

been assumed.

a) Standard deviation of slope angles at the critical scale

As previously mentioned in Section 3.3.2, the critical scale refers to the minimum size at which

a single slope failure is considered hazardous. Also, as previously mentioned, the slope variance

increases as the cell size decreases. Thus, interest is really in these small cell sizes. However, there

is no point in considering cell sizes below the critical scale since slope failures at those scales are

not hazardous. The critical scale then is the scale which this research will concentrate on as the

best indicator of landslide hazard. As will be shown, the correlation length between elevations is

very much greater than the critical resolution for the two test regions considered. Therefore, the

correlation length and standard deviation of the elevation data at the critical scale are approximately

equal to the values computed at the point scale, i.e. θZTcrit
� θZ and σZT crit

� σZ. As a result,
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eq. [3.29] can be used to solve for the standard deviation of the slope angles, i.e.

σSTcrit
=

σZT crit

Tcrit

�
2

�����
�
�1� exp

�
��π

�
2Tcrit

θZT crit

�2
�
	
�
	

� σZ

Tcrit

�
2

����
1� exp



�π

�
2Tcrit

θZ

�2




(3.30)

where Tcrit is selected based upon expert judgement and will vary from region to region.

b) Standard deviation of slope angles at the DEM scales

The hazard level perceived by each of the DEMs is less than that at the critical scale. Therefore,

it is not required to computed the hazard level at each of DEM resolutions. However, it is useful

to compare the hazard levels perceived by each of the DEMs with the hazard level estimated at the

critical scale. Through this comparison it is possible to determine which DEMs are accurate enough

for landslide hazard analysis on specific types of terrain. For example, if a DEM of some resolution

T � T produces slope estimates within 5% of those at the critical scale in several mountainous

test regions, it could potentially be considered accurate enough for all landslide hazard analyses

in mountainous regions. This would allow future hazard assessments to proceed faster, as they

would not require two DEMs and calculations at the critical scale. Instead, a DEM of resolution

T �T would be considered adequate. However, eq. [3.29] cannot be used to calculate the standard

deviations of the slope angles at the DEM resolutions, as done for the critical scale, because the

correlation lengths of the locally averaged data, θZT
, are unknown. Thus, the standard deviation of

the slope angles, σST
, must be evaluated through a statistical analysis of the DEM datasets.

The distribution of slope angles, in each of the x and y directions, is considered normal, with

mean zero and standard deviation estimated directly from the data. If the elevation data are normally

distributed, the assumption of normality for the slope distribution is also reasonable since the slope

is the derivative of the elevation, which is a difference (see eq. [3.23]).
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3.3.5 Maximum Slope Angles

The gradient of ZT (x, y) is the vector whose components are ∂ZT

∂x and ∂ZT

∂y

�
∼

ZT =
∂ZT

∂x
i +

∂ZT

∂y
j (3.31)

where �
∼

ZT is the gradient of ZT (x, y). The vector �
∼

ZT indicates the direction of the slope, and

its length ��
∼

ZT � indicates the steepness. More specifically, the directional derivative, Du, in the

direction of a unit vector u
∼

is

DuZT = �
∼

ZT � u
∼

(3.32)

The slope DuZT is largest when u
∼

is parallel to �
∼

ZT , and the maximum slope, STm(x, y), is the

length of the gradient of ZT (x, y) (Strang, 1991), i.e. for u = �
∼

ZT/��
∼

ZT �, the maximum slope is

STm(x, y) = �
∼

ZT � u
∼

=
��
∼

ZT �
2

��
∼

ZT �
= ��

∼
ZT �

=

�
∂ZT

∂x

2

+
∂ZT

∂y

2

Therefore, by assuming that each DEM cell is taken to be a plane whose center (x, y) is at the

average elevation, ZT (x, y), the maximum slope angles can be determined from the values obtained

in each of the x and y directions

STm(x, y) =
�

S2
Tx(x, y) + S2

Ty(x, y) (3.33)

If the slope angles are normally distributed, as assumed above, then the maximum slope angles,

STm, follow a Rayleigh distribution, if the following are true:

1) The two components are independent and identically normally distributed. As mentioned

above, the assumption of normality is reasonable if the elevations are normally distributed.

The assumption of independence is more difficult to show, but has been found to be reasonable

by the author for the two cases considered in Chapter 4 (correlation between the directional

slopes has been found to be less than about 20%).
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2) The two components have common variances, Var [ST ] = Var
�
ST x

�
= Var

�
STy

�
. As will be

shown in Chapter 4, this assumption is reasonable.

3) The two components have zero means. This means that the average ground surface over the

areal domain, D �D, is assumed to be flat, so that the mean slope is zero. As will be shown

in Chapter 4, this is approximately true for both domains studied.

The mean and variance of Rayleigh distributed random variables can be estimated using the

following equations (Fenton and Griffiths, 2008)

μST m
= σST

��
1
2π

�
(3.34)

σSTm
=

�
σ2

ST

�
2 �

1
2
π

�
(3.35)

The cumulative distribution function (CDF) of the Rayleigh distribution is given by

FS(s) = P [S � s] = 1 � exp
�
�

s2

2σ2
ST

�
(3.36)

which is a function of the variance of the slope angle at a given resolution T . There will exist two

slope angles, sT 1 and sT 2 , such that the exceedence probabilities at the two resolutions, T1 and T2,

will be equal, i.e.,

1 � exp

�
�

s2
T 1

2σ2
ST 1

�
= 1 � exp

�
�

s2
T 2

2σ2
ST 2

�
(3.37)

This can be used to develop a relationship between the slope angles corresponding to a fixed

exceedence probability at different resolutions,

sT 2 =

�
σST 2

σST 1

�
� sT 1 (3.38a)

where the values of σST 1
and σST 2

have already been calculated in Section 3.3.4. Eq. [3.38] can

also be modified to compare sT 1 , or sT 2 , with sTcrit

sTcrit
=

�
σSTcrit

σST 1

�
� sT 1 =

�
σSTcrit

σST 2

�
� sT 2 (3.38b)
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Equation [3.36] can be used to determine the distribution of the maximum slope angles, P [STm = si]

(recall that the event STm = si means that the slope is within Δs/2 of si),

P [STm = si] = P
�
STm �

�
si +

Δs

2

��
� P

�
STm �

�
si �

Δs

2

��

=

�
1 � exp

�
�

�
si + Δs

2

�2

2σ2
ST

	

�

�
1 � exp

�
�

�
si �

Δs
2

�2

2σ2
ST

	


= exp

�
�

�
si �

Δs
2

�2

2σ2
ST

	
� exp

�
�

�
si + Δs

2

�2

2σ2
ST

	
(3.39)

3.4 Conditional Probability of Slope Failure

To assess the conditional probability of slope failure, P
�
F1 �STm = si

�
, the spatial and temporal

variability of the ground strength must be considered. One way of doing this is to model the ground

as a random field and then use finite element analysis, which takes into account the site-specific

soil properties and geometries, to compute the corresponding probability of failure for a given

slope angle. This can be accomplished using the 2-D stochastic slope stability analysis program,

Rslope2d, developed by G.A. Fenton and D.V. Griffiths (Griffiths and Fenton, 2004). To test for

failure, Rslope2d implements an algorithm which generates a random field, assigns property values

to each element, applies gravity loading, then monitors the stress at all Gauss points (Griffiths

and Fenton, 2004). If there is excess stress at any point, the program attempts to redistribute it

to those nearby in order to satisfy the maximum allowable stress limitations, as governed by the

Mohr-Coulomb failure criterion

τ = c + σ tan φ (3.40)

where τ is the shear stress of the soil, c the cohesion, σ the normal stress and φ the friction

angle. However, if after the maximum number of iterations, Rslope2d is not able to successfully

redistribute the stress, the slope is considered to have failed (Griffiths et al., 2009). This technique

is referred to as the random finite-element method (RFEM) because it combines elastoplastic finite-

element analysis with a random field generator, simulated via the Local Average Subdivision (LAS)

method (Fenton and Vanmarke, 1990).
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Once the ground strength parameters required for Rslope2d (friction angle, dilation angle,

cohesion, unit weight, elastic modulus and Poisson’s ratio) are acquired, the program is used to

determine the probability of slope failure for a specific slope angle, si. The likelihood of failure

increases as the slope steepens. Rslope2d is only able to calculate the failure probabilities at integer

slope ratios (e.g., si = 1
3 ,

1
2 , 1), but the remaining slope angles can be interpolated through regression

analysis. This regression equation, i.e. the conditional probability of slope failure equation, can

then evaluate the probability of slope failure for any slope angle, si.

Given the fact that the ground strength parameters will likely vary throughout the domain

under analysis, a range of soil conditions can be considered. For example, if a region is composed

primarily of quick clay and dense sand, then Rslope2d would be implemented twice, once to obtain

the failure probability for the quick clay and once to obtain the failure probability for the dense sand.

The final domain-wide failure probability would be a weighted average of these two probabilities,

the weights being the relative proportions of the two soil types. In general, for a region composed

of ns different soil types, the domain-wide slope failure probability would be given by the total

probability theorem as

P
�
F1 �STm = si

�
=

ns�

k=1

psk
rki (3.41)

where psk
is the proportion of the domain having the kth soil type and rki is Rslope2d’s estimate of

the failure probability of the kth soil type at the ith slope angle.

3.5 Landslide Hazard Assessment Model

The landslide hazard level is assessed based on the regional probability of slope failure, as

described by eq. [3.10] in Section 3.2. The hazard level is considered to be equal to the probability

of one or more slope failures over the region D � D,

pf =
smax�

si=smin

�
1 � qni

i

�
� P [STm = si] (3.42)
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where

qi = 1� P
�
F1 �STm = si

�
= 1 �

ns�
k=1

psk
rki

P [STm = si] = exp

�
�
�
si �

Δs
2

�2

2σ2
ST

�
� exp

�
�
�
si + Δs

2

�2

2σ2
ST

�
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CHAPTER 4

Application of the Landslide Hazard Assessment Model

4.1 Chamonix, France

The first case study selected by this research to illustrate an application of the methodology

proposed in Chapter 3 for regional landslide hazard analysis is located in the Alps, near Chamonix,

France. This is a mountainous region, 54 km � 58 km in size, composed of terrain ranging from

459 m to 4784 m in elevation, which has been previously mapped by two different digital elevation

models: 1) the global 30 arc-second elevation (GTOPO) model, and 2) the shuttle radar topography

mission (SRTM) model with 3 arc-second resolution. There is a significant difference in level of

detail perceived by the two models (see Figures [4.1] and [4.2]).

Figure 4.1 GTOPO coverage of Alps test region (NGI, 2010).
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Figure 4.2 SRTM coverage of Alps test region (NGI, 2010).

The DEM data used in this application was supplied by the Norwegian Geotechnical Institute (NGI,

2010).

4.1.1 Averaging Dimensions

Although the ‘standard’ dimensions for each GTOPO and SRTM cell are 1000 m� 1000 m and

90 m� 90 m respectively, the actual size of the cells varies across the globe and is dependent upon

the geographical position of the test region. The latitudinal and longitudinal coordinates of the test

region, presented in Table [4.1], can be used by eq. [3.12] to calculate the averaging dimensions,

T1 (GTOPO) and T2 (SRTM), of each DEM.

Since the test site is small, with respect to the Earth, each cell is assumed to be the same size.

The latitudinal coordinates L1 and L2, used in eq. [3.12] to solve for the averaging dimension

T , have been chosen at the border of the DEM’s central cell. The latitudinal coordinates which

correspond to the central cell are, for the GTOPO DEM: L1 = 45.87497 ◦ and L2 = 45.88329 ◦ ,

and for the SRTM DEM: L1 = 45.87913 ◦ and L2 = 45.87829 ◦ . Thus, the averaging dimensions
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for the two DEMs are as follows:

T1 = 1129.0 m (4.1a)

T2 = 112.9 m (4.1b)

Table 4.1 Digital elevation model measurement parameters for test site 1.

GTOPO SRTM

Number of columns 48 470

Number of rows 52 514

Lower left corner latitude (decimal degrees) 45.68333 45.68333

Lower left corner longitude (decimal degrees) 6.67500 6.68167

Cell size = Δlat = Δlong (decimal degrees) 0.00833 0.00083

The values of T1 and T2 are calculated again, but this time with L1 and L2 selected such that

they border: 1) the lower left corner cell, and 2) the upper right corner cell (see Table [4.2]). The

fact that these values are as far as possible from the center cell, yet extremely close in magnitude,

validates the assumption that the size of all cells throughout the domain are approximately equal.

Table 4.2 Averaging dimensions of test site 1.

Lower left corner Upper right corner

T1 1130.28 m 1127.74 m

T2 113.03 m 112.77 m

4.1.2 Elevation Data

The standard deviations of the elevations in the GTOPO and SRTM datasets are estimated,

using the histogram presented in Figure [4.3], to be: σZT1
= 678.08 m and σZT2

= 702.57 m.

As expected, the standard deviation of the low resolution model (GTOPO) is smaller than the

standard deviation of the high resolution model (SRTM). These results support the hypothesis
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made in Chapter 1, which stated that as the resolution of a DEM increases, the amount of local

averaging decreases and thus, the variance of the elevation data (and correspondingly, the derived

slope angles) increases.
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Figure 4.3 Histogram of elevation data collected by the GTOPO and SRTM DEMs for

test site 1.

The point scale correlation length and point scale standard deviation, of the elevation data,

must be calculated in order to determine the distribution of maximum slope angles throughout the

domain, a requirement for the regional landslide hazard analysis.

Point scale correlation length

The point scale correlation length of the elevation data is determined by substituting the standard

deviation values, σZT1
and σZT2

(from Figure [4.3]), into eq. [3.21], as follows

678.08
702.57 =

γZ(T1)
γZ(T2) =

�
�
�

θ2
Z

π1129.0

��
π1129.0

θZ
erf
�√

π1129.0
θZ

�
+ exp

�
−π1129.02

θ2
Z

�
� 1

�
�

θ2
Z

π112.9

��
π112.9

θZ
erf
�√

π112.9
θZ

�
+ exp

�
−π112.92

θ2
Z

�
� 1

�
�
�
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θZ = 4260 m (4.2)

This value of θZ implies that, throughout the domain, elevation points separated by more than 4260

m are negligibly correlated with one another.

Point scale standard deviation

The variance functions are evaluated using eq. [3.19] with the point scale standard deviation

of the elevation data, θZ , and the averaging domains, T1 and T2, as

γZ(T1) =
42602

π1129.02

�
π1129.0

θZ

erf
��

π1129.0
4260

�
+ exp

�
�π1129.02

42602

�
� 1

�

= 0.9648 (4.3a)

γZ(T2) =
42602

π112.92

�
π112.9

θZ

erf
��

π112.9
4260

�
+ exp

�
�π112.92

42602

�
� 1

�

= 0.9996 (4.3b)

which can be substituted into eq. [3.22] in order to estimate the point scale standard deviation

σZ = σZ1 = σZ2 =
678.08
0.9648

=
702.57
0.9996

= 702.83 m (4.4)

The standard deviation of the elevation data, at the point scale, should be higher than the locally

averaged values computed for each of the DEMs because it is unaffected by local averaging and

thus, observes the entire range of elevation points throughout the domain. As evidenced by Figure

[4.3], the standard deviation values of the locally averaged elevation data are indeed smaller than

the point scale value of σZ computed in eq. [4.4].

4.1.3 Effects of Resolution on Perceived Slope Angles

Standard deviation of slope angles at the critical scale

As previously described in Section 3.3.2, this research is concerned with landslide hazard

analysis at the critical scale. The critical scale refers to the minimum size cell that could contain

a landslide capable of inflicting a considerable amount of damage on the surroundings. The
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magnitude of the critical scale depends on the characteristics of the region being analyzed. Some

regions are more vulnerable to landslide damage than others and, in these regions, a smaller landslide

would constitute a hazardous classification than in other less vulnerable regions. Questions such

as: how strong is the infrastructure within the test region? how close is the infrastructure located

to potentially hazardous slopes?, should be considered in order to determine an appropriate critical

scale. For this case study, a critical scale of 10 m has been chosen arbitrarily.

The standard deviation of the slope angles at the critical scale, σSTcrit
, can be determined using

eq. [3.30]. For this, the values of the correlation length and standard deviation at the critical scale

averaging length must be known. As discussed in Section 3.3.4, when the point correlation length

is significantly larger than the scale under consideration, there will be little difference between the

point scale and critical scale values. This means that θZT crit
= 4260 m and σZTcrit

= 702.83 m, can

be assumed, and the resulting value of σSTcrit
is given by

σSTcrit
=

702.83
10
�

2

�����1� exp

�
�π

�
2(10)
4260

�2
��

= 0.413545 � 0.414 (4.5)

Although the averaging dimension of the critical scale was chosen arbitrarily, it should be noted

that it does not affect the resulting value of σSTcrit
by very much. The value of σSTcrit

changes only

marginally with varying values of Tcrit. For example, if Tcrit were chosen to be a smaller value,

e.g., 1 m, then σSTcrit
= 0.413553, or a larger value, e.g., 20 m, then σSTcrit

= 0.413524.

Standard deviation of slope angles at the DEM scales

Since the values of the locally averaged correlations lengths, θZT 1
and θZT 2

, are unknown, i.e.

only θZTcrit
had been approximated by the point scale correlation length, the standard deviation of

the slope angles at the DEM scales, σST 1
and σST 2

, cannot be estimated with eq. [3.29]. Instead,

the values of σST 1
and σST 2

are estimated based on a statistical analysis of the DEM datasets. The

slope angles in each of the x and y directions, computed with equations [3.23a] and [3.23b], are

plotted in Figures [4.4] to [4.7] and the standard deviations are estimated from the histograms.
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Figure 4.4 GTOPO slope angles in the x direction for test site 1.
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Figure 4.5 GTOPO slope angles in the y direction for test site 1.
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Figure 4.6 SRTM slope angles in the x direction for test site 1.
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Figure 4.7 SRTM slope angles in the y direction for test site 1.
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The mean slopes, as indicated in Figures [4.4] to [4.7], are approximately equal to zero. This

agrees with the assumption made in Section 3.3.4, which stated that the average ground surface of

the domain is approximately flat. Furthermore, the standard deviations: 1) σST 1x
and σST 1y

, and

2) σST 2x
and σST 2y

, are approximately equal, which also agrees with the assumption of common

variances made in Section 3.3.4.

The common standard deviations, estimated from the slope histograms, are as follows:

σST 1
�

�σST 1x
+ σST 1y

2

�
=

(0.1595173 + 0.1955793)
2 � 0.178 (4.6a)

σST 2
�

�σST 2x
+ σST 2y

2

�
=

(0.2649167 + 0.3580654)
2 � 0.311 (4.6b)

Since the STRM DEM has a higher resolution, it should experience less local averaging and

perceive a larger range of slope angles than the GTOPO DEM. Equations [4.6a] and [4.6b] indicate

that σST 2
> σST 1

, which agrees with the above hypothesis stating that the SRTM DEM should

perceive a higher slope variance.

4.1.4 Maximum Slope Angles

The maximum slope angle of each cell throughout the domain is evaluated using eq. [3.33] and

the values of STx and STy calculated with equations [3.23a] and [3.23b]. These maximum slope

angles follow a Rayleigh distribution if the directional slope angles follow a normal distribution.

The normal distribution is shown in Figures [4.4] to [4.7] to be a very reasonable assumption.

Equations [3.34], [3.35] and [3.39] can then be used, with the values of σST
estimated in

Section 4.1.3, to compute the mean, μSTm
, and standard deviation, σST m

, of the maximum slope

angles, at each of the three resolutions (see equations [4.7a] to [4.8c]). These values are not

required to compute the regional hazard level, however, they can be used to validate the hypothesis

posed in Chapter 1. It was originally hypothesized that both the mean and standard deviation of
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the maximum slope angles would increase with increasing resolution. The results presented in

equations [4.7a] to [4.8c] support this hypothesis.

μSTm1
= 0.178

��
1
2
π

�
= 0.223 (4.7a)

μSTm2
= 0.311

��
1
2
π

�
= 0.390 (4.7b)

μSTmcrit
= 0.414

��
1
2
π

�
= 0.519 (4.7c)

σST m1
=

�
0.1782

�
2�

1
2π

�
= 0.117 (4.8a)

σST m2
=

�
0.3112

�
2�

1
2π

�
= 0.203 (4.8b)

σST mcrit
=

�
0.4142

�
2�

1
2π

�
= 0.271 (4.8c)

Furthermore, by setting the minimum possible slope angle to tan 0 ◦ and the maximum possible

slope angle to tan 90 ◦ , with an incremental step of tan 1 ◦ , equations can be developed to define the

distribution of maximum slope angles throughout the domain, again at each of the three resolutions

(see equations [6.9a] to [4.9c] and the probability density functions (PDF) in Figure [4.8]).

P
�
STm1 = si

�
= exp

�
�

�
si �

tan 1 ◦

2

�2

0.06337

	
� exp

�
�

�
si + tan 1 ◦

2

�2

0.06337

	
(4.9a)

P
�
STm2 = si

�
= exp

�
�

�
si �

tan 1 ◦

2

�2

0.19344

	
� exp

�
�

�
si + tan 1 ◦

2

�2

0.19344

	
(4.9b)

P
�
STmcrit

= si

�
= exp

�
�

�
si �

tan 1 ◦

2

�2

0.34279

	
� exp

�
�

�
si + tan 1 ◦

2

�2

0.34279

	
(4.9c)

where si varies from tan 0 ◦ to tan 90 ◦ in steps of size tan 1 ◦ .
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Figure 4.8 GTOPO, SRTM and critical probability density functions for test site 1.

When the GTOPO DEM (i.e. the lowest resolution model considered in this application)

perceives a slope to be of some angle sT 1 , that angle has most likely been underestimated as a

result of local averaging. The angle, sT 2 , perceived by the SRTM DEM, and sT crit
, estimated at the

critical scale, are also likely underestimated, but to lesser and lesser degrees. Using eq. [3.38], the

relationships between the resolutions and perceived slope angles can be written as

sT 1 =
�

0.178
0.311

�
sT 2 =

�
0.178
0.414

�
� sTcrit

(4.10)

For example, according to eq. [3.36], at approximately 25% probability of occurrence, the GTOPO

DEM perceives the slope angle to be less than or equal to

P [S � s] = 0.25 = 1� exp
�

�s2

2(0.178)2

�
� s � 0.135 � 7.689 ◦ (4.11a)

whereas the SRTM DEM perceives the slope angle to be less than or equal to

P [S � s] = 0.25 = 1� exp
�

�s2

2(0.311)2

�
� s � 0.236 � 13.274 ◦ (4.11b)

and local averaging theory estimates that the angle, at the critical scale, is less than or equal to

P [S � s] = 0.25 = 1� exp
�

�s2

2(0.414)2

�
� s � 0.314 � 17.434 ◦ (4.11c)
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The cumulative distribution functions (CDF), at all three resolutions, are plotted against the slope

angle, si, in Figure [4.9].

Figure 4.9 GTOPO, SRTM and critical cumulative distribution functions for test site

1.

The slope angles, perceived at the three resolutions, are compared with one another at various

probabilities of occurrence, to elucidate the effects of local averaging on the perceived slope angles.

The results are presented in m/m in Table [4.3] and in degrees in Table [4.4].

Table 4.3 Comparison of slope angles (m/m) perceived, for a given probability of

occurrence, at three different resolutions.

P [S � si] GTOPO DEM (sT 1 ) SRTM DEM (sT 2 ) Critical Scale (sTcrit
)

0.10 0.081710 0.142763 0.190044

0.20 0.118912 0.207763 0.276572

0.30 0.150339 0.262671 0.349665

0.40 0.179917 0.314349 0.418458

0.50 0.209579 0.366175 0.487448

0.60 0.240964 0.421010 0.560444

0.70 0.276213 0.482596 0.642427

0.80 0.319354 0.557972 0.742767

0.90 0.381982 0.667395 0.888430

0.99 0.540204 0.943840 1.256430
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Table 4.4 Comparison of slope angles (degrees) perceived, for a given probability of

occurrence, at three different resolutions.

P [S � si] GTOPO DEM (sT 1 ) SRTM DEM (sT 2 ) Critical Scale (sTcrit
)

0.10 4.671247 8.124792 10.760403

0.20 6.781336 11.736950 15.459930

0.30 8.549754 14.717455 19.272923

0.40 10.199347 17.450475 22.707253

0.50 11.836674 20.111443 25.986815

0.60 13.547931 22.831562 29.268175

0.70 15.440818 25.761771 32.717778

0.80 17.711081 29.160299 36.603737

0.90 20.905955 33.718965 41.618846

0.99 28.378098 43.345103 51.483505

As evidenced in Table [4.4], the relationship between the slope angles, when viewed in degrees,

is not linear, as the transformation from m/m to degrees is not linear. The discrepancy amongst

steeper slopes is by far the most significant, which is due to the higher averaging effect on smaller

and steeper slopes.

4.1.5 Conditional Probability of Slope Failure

The ground strength parameters, required for Rslope 2d, vary in value from region to region.

For example, the ground strength parameters of clay are significantly different than those of gravely

sand. The region being analyzed, for landslide hazard, should be examined and the ground strength

parameters should be obtained via field and lab tests. However, since the purpose of this case study

is to illustrate how to apply the methodology outlined in Chapter 3, there was no actual field or lab

work carried out. Instead, the ground strength parameters have been assigned arbitrarily for this

illustrative example. The Alps test site is considered to be composed of approximately 20% clay

and 80% gravely sand. These two types of soils will initially be considered separately, then the

results will be combined to obtain an effective failure probability for the entire site.
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The specific parameters, used to estimate the strength of the soil, required for Rslope2d

include: friction angle, dilation angle, cohesion, unit weight, elastic modulus and Poisson’s ratio.

The distribution parameters, as well as the distribution type, are required for each of the soil

parameters. Typical values for various types of soil are presented in Tables [4.5] to [4.8]. The

values selected for this case study, based on the properties of clay and gravely sand, are identified

in Tables [4.9] and [4.10] (see Appendix A for the input format of Rslope2d).

Friction angle

Table 4.5 Typical internal friction angles φ for soils in a natural state (Liu, 2009).

Soil type φ (degrees)

Loose rounded-grained sand 27-30

Medium rounded-grained sand 30-35

Dense rounded-grained sand 35-38

Loose angular-grained sand 30-35

Medium angular-grained sand 35-40

Dense angular-grained sand 40-45

Gravel with some sand 34-48

Silts 26-35

The friction angle of clay is taken to have a bounded distribution with mean 26 ◦ and a standard

deviation of 5 ◦ . The gravely sand is taken to have a bounded distribution with mean 40 ◦ and

a standard deviation of 5 ◦ . The bounded distribution was selected because the friction angle is

constrained to be less than 90 ◦ . Therefore, it cannot be represented by a limitless distribution (e.g.,

lognormal).

Dilation angle

Dilatancy is a measure of the change in soil volume as a result of shear loading. A high angle

of soil dilation indicates a more stable slope (Manzari and Nour, 2000). Since this is a very difficult
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parameter to measure, this analysis will use a conservative assumption of zero degrees and assume

a deterministic distribution for the entire domain.

Cohesion

Soils are essentially frictional materials and over time continued shearing causes the soil

particles to approach a purely frictional state where c = 0 (Aysen, 2005). The same approximation,

of zero stress cohesion, was also made by Stark et al. (2005) in their analysis of the drained shear

strength parameters of landslides. Therefore zero cohesion is used as a deterministic parameter

throughout the entire analysis.

Unit weight

Table 4.6 Typical values of unit weight γ for soils in a natural state (Liu, 2009).

Soil type γ (KN/m3)

Loose uniform sand 14.5

Dense uniform sand 18

Loose angular-grained silty sand 16

Dense angular-grained silty sand 19

Stiff clay 17

Soft clay 11.5� 14.5

Soft organic clay 6� 8

Loess 13.5

Glacial till 21

The unit weight of clayey type soils is assumed to follow a lognormal distribution with a mean

value of 13 KN/m3 and a standard deviation of 1.5 KN/m3. The unit weight of gravely sands is

also assumed to follow a lognormal distribution but with a mean value of 18 KN/m3 and a standard

deviation of 1 KN/m3. The lognormal distribution was selected for the unit weight parameter

because it is non-negative and it is capable of modeling all possible types of soils as it has no upper

bound.
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Elastic modulus

Table 4.7 Typical values of elastic modulus Es for soils in a natural state (Geotech-

nical Info, 2007).

Soil type Es (tsf) Es (KPa)

Very soft clay 5� 50 479� 4, 788

Soft clay 50� 200 4, 788� 19, 152

Medium clay 200� 500 19, 152� 47, 880

Stiff clay, silty clay 500� 1000 47, 880� 95, 761

Sandy clay 250� 2000 23, 940� 191, 521

Clay shale 1000� 2000 95, 761� 191, 521

Loose sand 100� 250 9, 576� 23, 940

Dense sand 250� 1000 23, 940� 95, 761

Dense sand and gravel 1000� 2000 95, 761� 191, 521

Silty sand 250� 2000 23, 940� 191, 521

The elastic modulus is assigned a lognormal distribution with a mean value of 20,000 KPa and a

standard deviation of 15,000 KPa for clayey soils, and a lognormal distribution with a mean value

of 125,000 KPa and a standard deviation of 75,000 KPa for gravely sands.

Poisson’s ratio

Poisson’s ratio is assumed to be deterministic with a value of 0.3 for the entire domain.

Table 4.8 Typical values of Poisson’s ratio μ for soils in a natural state (Rowe, 2001).

Soil type μ

Saturated soil, undrained loading 0.5

Clay, drained loading 0.2� 0.4

Dense sand, drained loading 0.3� 0.4

Loose sand, drained loading 0.1� 0.3

Peat, drained loading 0� 0.1
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In summary, the ground strength parameters for Rslope2d are as follows:

Table 4.9 Ground strength parameters of clayey soils.

Ground Stength Parameters Approximations

Mean Standard Deviation Distribution Type

Friction angle (degrees) 26 5 bounded

Dilation angle mean (degrees) 0 0 deterministic

Cohesion (kN) 0 0 deterministic

Unit weight (kN/m3) 13 1.5 lognormal

Elastic modulus (kPa) 20000 15000 lognormal

Poisson’s ratio 0.3 0 deterministic

Table 4.10 Ground strength parameters of gravely sand.

Ground Stength Parameters Approximations

Mean Standard Deviation Distribution Type

Friction angle (degrees) 40.0 5.0 bounded

Dilation angle mean (degrees) 0 0 deterministic

Cohesion (kN) 0 0 deterministic

Unit weight (kN/m3) 18 1 lognormal

Elastic modulus (kPa) 125000 75000 lognormal

Poisson’s ratio 0.3 0 deterministic

In addition to the regional ground strength parameters, Rslope2d requires information con-

cerning the geometry of the slope. Although there may be many slopes under analysis, located

throughout the entire domain, and the exact properties of each are unknown, a generalization must

be made in order to implement Rslope2d. This study is primarily interested in the effect that the

slope angle has on the probability of slope failure, thus, the overall dimensions of the slope modeled

are not that important. What is important is the ratio of the slope model dimensions to the soil

property correlation length. A ‘worst’ case ratio is selected for this study (see, e.g., Griffiths and

Fenton, 2004) which assumes a correlation length equal to one-tenth of the total distance. The
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program Rslope2d will be run multiple times for each soil type, but the only variable that will be

changed with each analysis is the slope gradient. Therefore, Rslope2d’s results will illustrate how

the probability of failure of a region changes with changing slope angles, i.e. P
�
F1 �STm = si

�
.

Slope angle and dimensions

Rslope2d is only capable of calculating the probability of failure for integer slope gradients.

Therefore, for this analysis, Rslope2d will be run three times, for slope gradients of 1/1 (45 ◦ ), 2/1

(26.57 ◦ ) and 3/1 (18.43 ◦ ). Figure [4.10] illustrates the slope model dimensions selected for this

analysis.

Figure 4.10 Slope model dimensions.

In Figure [4.10], H is the slope height and Θ is the slope angle. The width, w (into the page), is

taken to be 40 units. Each unit is equal to 2.5 m � 2.5 m � 2.5 m, giving a slope volume, V , of

somewhere between 180,000 m3 and 420,000 m3, depending on the angle of the slope.

V1/1 =
�

(12)(20)(40) + (5)(32)(40) +
1
2

(12)(12)(40) + (5)(20)(40)
�

2.53 = 420, 000 m3 (4.12a)

V3/1 =
�

(4)(20)(40) + (5)(32)(40) +
1
2(4)(4)(40) + (5)(20)(40)

�
2.53 = 180, 000 m3 (4.12b)

where V1/1 represents the largest possible slope under consideration, i.e. with a gradient of 1/1, and

V3/1 represents the smallest possible slope under consideration, i.e. with a gradient of 3/1. To put

this into perspective, landslides with volumes greater than one million cubic meters occur about

every 10 years in Canada while thousands of smaller slides occur annually (Natural Resources
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Canada, 2009). So although the landslides considered in this analysis are relatively large, slides of

this magnitude are quite common.

Correlation length of soil

According to the definition provided in Section 3.3.2, a correlation length is used to describe the

degree of linear dependence between data points. The correlation length of the elevation data, θZ, as

described in Chapter 3 and evaluated in Section 4.1.2 of this chapter, refers to the linear dependence

between elevation points. However, Rslope2d is measuring the slope stability with respect to the

ground strength parameters, therefore, its correlation length, θR, does not refer to the elevation of

the region, but rather, the soil properties. The value of θR is used to estimate the maximum distance

that two soil particles can be apart from one another while still being somewhat correlated. A large

correlation length is indicative of a relatively homogenous soil mass (same properties everywhere).

Determining the correlation length is difficult in practice, so in this analysis the soil is considered to

have a correlation length of approximately one-tenth the total distance (Griffiths and Fenton, 2004),

which is a ‘worst’ case, leading to the highest probabilities of slope failure. Under the assumption

of isotropy, θR = θRx = θRy, and given that the length of the slope being evaluated by Rslope2d is

52 units, at 2.5 m/unit, the value of θ for the soil is assumed to be:

θR =
(52)(2.5)

10 = 13 m (4.13)

Conditional probability of failure

Based on the values presented in Table [4.9] and [4.10], Rslope2d calculates the conditional

probabilities of failure, P
�
F1 � STm = si

�
, shown in Table [4.11], over a range of slope angles, si:

Table 4.11 Conditional probabilities of failure.

Slope angle, si P
�
F1 � STm = si

�
c

P
�
F1 � STm = si

�
gs

1/3 0 0

1/2 0.351 0

1/1 1 1
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In Table [4.11], the subscripts c and gs refer to the clayey and gravely sand ground strength

parameters. Using regression analysis, the following conditional slope failure probability equations

are fit to the results presented in Table [4.11]:

P
�
F1 � ST = si

�
c

= �0.904 + 3.116si � 1.212s2
i � 0 (4.14a)

P
�
F1 �ST = si

�
gs

= �1.0 + 2.0si � 0 (4.14b)

With respect to the clayey soils, all slope ratios below 1/3 result in 0% probability of failure and all

slope ratios over 1/1 result in 100% probability of failure. Therefore, the conditional probability

of failure equation (eq. [4.14a]) only applies to slopes with ratios within the range of values:

(1/3, 1/1). In other words, the probability of failure is 0% (i.e. pf = 0) for all slopes with ratio

less than or equal to 1/3 and 100% (i.e. pf = 1) for all slopes with ratio greater than or equal to

1/1. Similarly, with respect to the gravely sands, all slope ratios below 1/2 result in 0% probability

of failure and all slope ratios over 1/1 result in 100% probability of failure. Thus, the conditional

probability of failure equation (eq. [4.14b]) only applies to slopes with ratios within the range

(1/2, 1/1).

4.1.6 Hazard Evaluation

The regional landslide hazard level was defined in Section 3.2 as the probability that one or

more slopes, in the region under analysis, fail. The probability that at least one slope in the Alps

test region fails can be estimated using the conditional probability of failure equations, developed

in equations [4.14a] and [4.14b], the maximum slope angle distributions, developed in equations

[4.9a] to [4.9c], and the slope failure probability model, presented in eq. [3.42]. However, since the

conditional probability of failure equations considered two types of soil, there will initially be two

separate slope failure probability estimates. These two failure estimates can be combined based on

the proportion of the domain having each type of soil (see eq. [3.41]).

pf = 0.2pf c
+ 0.8pf gs

(4.15)
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where,

pf c
=
�tan 90 ◦

si=tan 0 ◦

�
1�

�
1.904� 3.116si + 1.212s2

i

� (3.136×109m2)
T 2 P[S=si]

�
� P [STm = si]

pf gs
=
�tan 90 ◦

si=tan 0 ◦

�
1 � �2.0 � 2.0si�

(3.136×109m2)
T 2 P[S=si]

�
� P [STm = si]

P [STm = si] = exp

�
−
�
si− tan 1 ◦

2

�2

2σ2
ST

	
� exp

�
−
�
si+ tan 1 ◦

2

�2

2σ2
ST

	

The final regional hazard levels are estimated using eq. [4.15] with the values of σST
, for each distri-

bution, used in equations [4.5], [4.6a] and [4.6b]. The resulting regional slope failure probabilities

are presented in Table [4.12].

Table 4.12 Regional slope failure probabilities for test site 1.

Resolution pf c
pf gs

pf

T1 = 1129.0 m 0.166 0.009 0.040

T2 = 112.9 m 0.561 0.277 0.334

Tcrit = 10.0 m 0.721 0.484 0.531

The GTOPO DEM, which has the lowest resolution, estimates the lowest regional landslide

hazard, 4.0%. The SRTM DEM, which is significantly more detailed than the GTOPO DEM,

estimates a much higher 33.4% regional landslide hazard level. Finally, the model developed,

using local averaging theory, at the critical scale of 10 m, predicted the highest hazard level of

53.1%. Therefore, it can be concluded that the lower the resolution of a DEM, the more likely

it is to underestimate landslide hazard levels. This is a serious issue given that unrealistically

low landslide hazard evaluations could result in inadequate levels of landslide preparation, in and

around the region being analyzed, which could possibly lead to increased levels of damage in the

event of a landslide.

The results given in Table [4.12] can also be interpreted as providing the relative failure

probabilities of slopes of different sizes. For example, Table [4.12] suggests that slopes failures of
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size 1129 m will occur 4.0% of the time, while small slope failures of size 10 m will occur 53.1% of

the time. This information can be further used in a more detailed risk assessment which accounts

for the frequency vs. consequence of slides of different sizes, although this is beyond the scope of

the current study.

4.2 Southwestern Norway

The second test region considered in this thesis covers a domain of approximately 80 km �

215 km in southwestern Norway. It was selected to illustrate how the landslide hazard model is

affected by regions that include water bodies whose elevations are either not recorded or erroneously

recorded. The bodies of water are designated ‘no-data’ points in the DEM datasets and represented

by either zeroes or negative numbers. Although no-data points may also be used to describe other

abnormalities, the following assumptions have been made for this analysis:

1) all negative and zero DEM values represent no-data points;

2) all no-data points are associated with water surfaces; and

3) all slopes end at the edge of water bodies, i.e. underwater slopes are not considered in the

analysis.

The missing data presents a serious issue for landslide hazard analyses: since the water bodies are

not assigned elevation values, there is no way to know where the water surface is with respect to

the surrounding land. This analysis is carried out, due to lack of data, under the assumption that

all water bodies are at zero elevation. This assumption, however, can seriously affect the slope

distribution and thus the resulting regional probability of slope failure.

This test site in southwestern Norway has been mapped with the same two digital elevation

models as the first case study in the Alps (see Section 4.1): 1) the global 30 arc-second elevation

(GTOPO) model, and 2) the 3 arc-second shuttle radar topography mission (SRTM) model, supplied

by the Norwegian Geotechnical Institute (NGI, 2010). This test region is composed of complex

terrain that ranges from 0 m to 1683 m in elevation. As is evidenced by the terrain view in Figure
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[4.11] and the histogram in Figure [4.12], the elevation profile of this region is far from normally

distributed.

Figure 4.11 Test region in southwestern Norway (iTouchMap, 2010).
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Figure 4.12 Histogram of elevation data collected by the GTOPO and SRTM DEMs for

test site 2.
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One of the requirements for accuracy of the regional landslide hazard model presented in this

thesis is that the elevation profile be approximately normal. Therefore, this southwestern Norway

dataset is not ideal and, if used as is, will be subject to a considerable amount of error. There are two

possible alternatives for analysis of a region which encounters this type of problem: 1) divide the

region into smaller subsets, such that the elevation profiles within each are approximately normal,

or 2) zoom out and consider a larger region such that its elevation profile becomes normal.

This thesis approaches the issue of non-normality in the elevation data using the first of the

aforementioned possibilities. To begin, the test site is broken up into four equal sections, cut

horizontally, as the region appears to be composed of several long strips of consistent elevations

(see Figure [4.13]). Normal histograms (Figures [4.14] to [4.17]) are constructed for each of the

subsets to see if the elevation profiles appear adequately normal.

Figure 4.13 Subsets of test region in southwestern Norway (iTouchMap, 2010).
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Figure 4.14 Normal histogram of elevation data for subset A.
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Figure 4.15 Normal histogram of elevation data for subset B.
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Figure 4.16 Normal histogram of elevation data for subset C.
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Figure 4.17 Normal histogram of elevation data for subset D.
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It is interesting to note the differences between each of the histograms. For example, subset C

contains a large number of high elevation points and interspersed amongst the peaks, many water

bodies (see Figure [4.13]). The corresponding histogram of elevation points, shown in Figure

[4.16], shows the data supplied by both of the DEMs. The elevations perceived by the two DEMs

are vastly different. The SRTM DEM has almost twice as large a standard deviation as the GTOPO

DEM. This large discrepancy in elevation profiles between the DEM models is likely due to the

presence of water bodies, which are spread throughout the region. The sudden drops in elevation,

from land to water surface, which are exacerbated by the lack of DEM data for the water surfaces,

results in many erroneous and very steep slope estimates. These slopes are often small in spatial

extent and thus, overlooked by the lower resolution GTOPO DEM.

If the goal of this application were to classify the hazard level of the entire 80 km � 215 km

region in southwestern Norway, each subset would have to be analyzed and classified individually.

However, the goal of this case study is simply to illustrate how the landslide hazard model reacts

to a region with water bodies (i.e. ‘no-data’ points). Since each of the subsets fulfill this criterion

individually, only one needs to be analyzed here. Subset C has been selected for analysis since

it has a lot of water bodies and yet the resulting distributions are more normal than seen in the

other subsets. However, it is important to note that the elevation profile of subset C is still slightly

abnormal. Therefore, this analysis will not be as accurate as the first case study completed in

Section 4.1.

4.2.1 Averaging Dimensions

As described in Section 4.1.1, the averaging dimensions of DEMs depend on the geographical

position of the region under analysis. Thus, the averaging dimensions of the GTOPO (T1) and

SRTM (T2) DEMs in this case study will differ from the values used in the Alps, even though

the same DEM resolutions are used. The geographical position, in decimal degrees, and DEM

dimensions of the southwestern Norway test site are presented in Table [4.13].
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Table 4.13 Digital elevation model measurement parameters for test site 2.

GTOPO SRTM

Number of columns 208 2067

Number of rows 77 761

Lower left corner latitude (decimal degrees) 59.28333 59.28417

Lower left corner longitude (decimal degrees) 6.00833 6.01333

Cell size = Δlat = Δlong (decimal degrees) 0.00833 0.00083

The averaging dimensions of the two DEMs can be determined with eq. [3.12] and the latitudinal

coordinates of the central cell, which are: L1 = 60.15000 ◦ and L2 = 60.15833 ◦ for the GTOPO

DEM, and L1 = 60.14497 ◦ and L2 = 60.14580 ◦ for the SRTM DEM.

T1 = 1035.0 m (4.16a)

T2 = 103.5 m (4.16b)

The averaging dimensions are calculated again, this time using the latitudinal coordinates associated

with: 1) the lower left corner cell, and 2) the upper right corner cell, instead of the center cell. The

values of T1 and T2, calculated for a specific cell, are very similar regardless of the position of that

cell within the test region (see Table [4.14]). Therefore, the assumption made in Section 3.3.1, that

the size of the cells throughout the entire domain are approximately equal, is reasonable.

Table 4.14 Averaging dimensions of test site 2.

Lower left corner Upper right corner

T1 1040.44 m 1029.66 m

T2 104.05 m 102.97 m

4.2.2 Elevation Data

Based on the distribution shown for subset C in Figure [4.16], the locally averaged standard

deviations of the elevation data are: σZT1
= 187.6668 m and σZT2

= 309.1546 m. Table [4.15]
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displays information about the number of no-data points, identified by each of the DEMs, within

subset C of the southwestern Norway test region. Clearly, the GTOPO did not detect water bodies,

while the finer resolution SRTM detected many and assigned them erroneous elevations.

Table 4.15 No-data DEM points present in subset C of test site 2.

GTOPO DEM SRTM DEM

Total number of elevation points 4,004 393,437

Number of no-data points 0 38,996

Number of valid points 4,004 354,441

Point scale correlation length

The point scale correlation length of the elevation data is determined by solving eq. [3.21] for

θZ , as follows

187.69
309.15 =

γZ(T1)
γZ(T2) =

�
�
�

θ2
Z

π1035.0

��
π1035.0

θZ
erf
�√

π1035.0
θZ

�
+ exp

�
−π1035.02

θ2
Z

�
� 1

�
�

θ2
Z

π103.5

��
π103.5

θZ
erf
�√

π103.5
θZ

�
+ exp

�
−π103.52

θ2
Z

�
� 1

�
�
�

θZ = 840 m (4.17)

Thus, elevation points within subset C, separated by more than 840 m, are negligibly correlated

with one another.

Point scale standard deviation

Using the value of θZ computed in eq. [4.17], the variance functions, γZ(T1) and γZ(T2), can

be evaluated from eq. [3.19],

γZ(T1) =
8402

π1035.02

	
π1035.0

θZ

erf

�

π1035.0
840

�
+ exp



�π1035.02

8402

�
� 1

�

= 0.6021 (4.18a)

γZ(T2) =
8402

π103.52

	
π103.5

θZ

erf

�

π103.5
840

�
+ exp



�π103.52

8402

�
� 1

�

= 0.99921 (4.18b)
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and then substituted into eq. [3.22] to compute the point scale standard deviation

σZ = σZ1 = σZ2 =
187.69
0.6021

=
309.15
0.9921

= 311.70 m (4.19)

The point scale standard deviation is higher than both of the locally averaged values (see Figure

[4.16]). This is as expected since the point scale represents the most accurate measurements

of elevation, and thus, observes the entire range of elevation values. The DEMs undergo local

averaging and as a result, smooth out some of the rapidly changing terrain, thereby reducing the

range of perceived elevations.

4.2.3 Effects of Resolution on Perceived Slope Angles

Standard deviation of slope angles at the critical scale

If the averaging dimension of the critical scale is set to 10 m, as initially assumed in Section

4.1.3, the standard deviation of the slopes angles, as perceived at the critical scale, can be computed

using eq. [3.30] with the values of θZ and σZ determined in Section 4.2.2. As explained in more

detail in Section 4.1.3, the critical scale refers to the minimum scale at which a single cell could

contain a potentially hazardous landslide. As a result, for this research, the critical scale is the best

indicator of overall landslide hazard. Again, parameters computed at the point scale are assumed

to be approximately equal to those at the critical scale, i.e. θZTcrit
= θZ and σZT crit

= σZ , since the

point scale correlation length is much larger than the critical scale. Using this approximation (of

θZTcrit
and σZT crit

), the standard deviation of the slope angles at the critical scale can be determined

using eq. [3.30],

σSTcrit
=

311.70
10
�

2

�����1� exp

�
�π

�
2(10)
840

�2
��

= 0.929725 � 0.930 (4.20)

Standard deviation of slope angles at the DEM scales

Since the values of the locally averaged correlations lengths, θZT 1
and θZT 2

, are unknown,

eq. [3.29] cannot be used to solve for the standard deviations of the slope angles. Instead, σST 1
and
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σST 2
must be estimated through a statistical analysis of the DEM datasets. The slopes of each cell,

calculated in both the x and y directions with equations [3.23a] and [3.23b], are plotted in Figures

[4.18] to [4.21], in units m/m.

However, as shown in Figures [4.18] to [4.21], there are a few extreme values located unusually

far from the mean. This problem is exacerbated as the resolution increases because high resolution

models observe more of the extreme elevations (i.e. they smooth out fewer peaks). A transformation

to degrees scales the extremes (i.e. 70 ◦ = 2.747474 while 85 ◦ = 11.430052 and 89 ◦ = 57.289962)

and as a result, the slope profile is better represented by a normal distribution (see Figures [4.22]

to [4.25]) when evaluated in degrees.

The transformation from rise over run to degrees is achieved via

ST =
arctan(ST ) � 180 ◦

π
(4.21)

The Anderson-Darling (AD) test is a method commonly used to measure the goodness-of-fit of

a distribution to a dataset. The AD statistic essentially measures the ‘distance’ the data is away from

the null hypothesis (normal distribution); the hypothesis is rejected if the AD statistic is too large

(i.e. larger than about 0.75). Although the AD statistics shown in Figures [4.18] to [4.25] would

seem to indicate that the test has failed, the distribution fit is reasonable and can be used to estimate

probabilities with acceptable accuracy. The primary shortcoming of quantitative goodness-of-fit

tests is that they tend to reject hypotheses for large sample sizes (Fenton and Griffiths, 2008) and

in this case the sample sizes are exceptionally large (4,004 and 354,441 points), therefore the AD

statistics cannot be used to assess reasonableness-of-fit in this model. However, by comparing

the AD statistics of the histograms produced in units m/m (Figures [4.18] to [4.21]) with those

produced in degrees (Figures [4.22] to [4.25]), it is clear that it is better to estimate the standard

deviation values from the histograms plotted in degrees, as they have lower AD statistics.
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Figure 4.18 GTOPO slope angles in the x direction (m/m) for subset C.
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Figure 4.19 GTOPO slope angles in the y direction (m/m) for subset C.
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Figure 4.20 SRTM slope angles in the x direction (m/m) for subset C.
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Figure 4.21 SRTM slope angles in the y direction (m/m) for subset C.
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Figure 4.22 GTOPO slope angles in the x direction (degrees) for subset C.
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Figure 4.23 GTOPO slope angles in the y direction (degrees) for subset C.
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Figure 4.24 SRTM slope angles in the x direction (degrees) for subset C.
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Figure 4.25 SRTM slope angles in the y direction (degrees) for subset C.
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The mean value of each of the slope distributions, shown in Figures [4.18] to [4.25], is

approximately equal to zero, again validating the assumption made in Section 3.3.4, which stated

that the average ground surface of the domain is approximately flat. The standard deviations of

the slope angles, for each DEM, are estimated from the histograms as the average of the standard

deviations in the x and y directions. Once the standard deviations have been estimated from the

histograms in Figures [4.22] to [4.25], the values are converted from degrees into units of m/m. This

conversion is necessary because the standard deviations of the slopes are required to estimate the

distribution of slope angles throughout the domain, and the slope distribution equation (eq. [3.39])

is defined in terms of m/m.

σST 1
�

�σST 1x
+ σST 1y

2

�
=

(2.738137 + 4.818784)
2 = 3.77846 ◦ � 0.066 (4.22a)

σST 2
�

�σST 2x
+ σST 2y

2

�
=

(13.54627 + 7.415104)
2 = 10.48069 ◦ � 0.185 (4.22b)

As evidenced from eq. [4.20] and equations [4.22a] and [4.22b] , the standard deviation of the slope

angles is largest at the critical scale (0.930) and smallest at GTOPO scale (0.066). These results

agree with the hypothesis made in Chapter 1, which stated that high resolution models should

perceive higher slope variances than low resolution models, but they span a much wider range that

observed in the Alps test site. This is most likely due to the missing data causing a rapid increase

in apparently steep slopes as the resolution increases.

4.2.4 Maximum Slope Angles

The distribution of maximum slope angles throughout the domain follows a Rayleigh distribu-

tion if the directional slopes are normally distributed. The mean and standard deviations of these

angles are estimated using equations [3.34] and [3.35];

μSTm1
= 0.066

��
1
2π

�
= 0.083 (4.23a)

μSTm2
= 0.185

��
1
2π

�
= 0.232 (4.23b)
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μSTmcrit
= 0.930

��
1
2π

�
= 1.166 (4.23c)

σST m1
=

�
0.0662

�
2�

1
2π

�
= 0.0.043 (4.24a)

σST m2
=

�
0.1852

�
2�

1
2π

�
= 0.121 (4.24b)

σST mcrit
=

�
0.9302

�
2�

1
2π

�
= 0.609 (4.24c)

The distribution, using tan 0 ◦ as the minimum possible angle, tan 90 ◦ as the maximum possible

angles and tan 1 ◦ as the incremental step value, is modeled with eq. [3.39];

P
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�
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2
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(4.25a)
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(4.25b)
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(4.25c)

Furthermore, the PDFs, for each of the three resolutions, are plotted in Figure [4.26].

Figure 4.26 GTOPO, SRTM and critical probability density functions for subset C.
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The relationships between the slope angles, as perceived at the three differing resolutions, are

summarized below using eq. [3.38],

sT 1 =
�

0.066
0.185

�
� sT 2 =

�
0.066
0.930

�
� sTcrit

(4.26)

4.2.5 Conditional Slope Failure Probability

The same ground strength parameters are used for this analysis as were used for the first test

region (see Tables [4.9] and [4.10] in Section 4.1.5), i.e. it is assumed that this test region is

also composed of 20% clayey soils and 80% gravely sands. Thus, equations [4.14a] and [4.14b],

developed in Section 4.1.5 to describe the conditional probability of slope failure in the Alps for

each of the soil types, are also used for this case study in southwestern Norway.

P
�
F1 �ST = si

�
c

= �0.904 + 3.116si � 1.212s2
i � 0 (4.27a)

P
�
F1 �ST = si

�
gs

= �1.0 + 2.0si � 0 (4.27b)

To reiterate what was already mentioned in Section 4.1.5, the ground strength parameters used in

this analysis do not represent the actual parameters of the test site, they have been chosen arbitrarily.

The purpose of this application is simply to illustrate the steps involved in carrying out the regional

landslide hazard model developed in Chapter 3.

4.2.6 Hazard Evaluation

The regional landslide hazard level, defined as the probability that one or more slopes in the

region fail, can be evaluated using the conditional probability of failure equations ([4.27a] and

[4.27b]), the maximum slope angle distributions, developed in equations [4.25a] to [4.25c], and the

slope failure probability model, presented in eq. [3.42]. The final hazard level is estimated as,

pf = 0.2pf c
+ 0.8pf gs

(4.28)

where,
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The final hazard estimations are presented in Table [4.16].

Table 4.16 Regional slope failure probabilities for test site 2.

Resolution pf c
pf gs

pf

T1 = 1035.0 m 0.000 0.000 0.000

T2 = 103.5 m 0.188 0.024 0.056

Tcrit = 10.0 m 0.937 0.866 0.880

Subset C contains land masses up to 1681 m in elevation, which, in many areas, apparently slope

very abruptly down into water. Due to the lack of DEM data available for water surfaces, all water

surfaces are considered to have zero elevation and the slopes from land to water then appear to be

extremely steep. As a result, a lot of steep slopes, which are small in spatial extent, are measured at

the critical scale and lead to a very high estimation of slope failure probability. In contrast, the low

resolution DEM model overlooks almost all of these small slopes and predicts a negligible landslide

hazard level. In order to improve the landslide hazard analysis in regions with ‘no-data’ DEM

points, it is necessary to obtain elevation data for these regions. Typically, there are significantly

more valid points than ‘no-data’ points in regions where landslide hazard analyses are desirable,

thus, it is worthwhile to measure the ‘no-data’ regions using another method. For instance, in

subset C of this test region 38,996 of the 393,437 elevation points are designated ‘no-data’ points,

i.e. less than 10% of the entire region. If another GIS method were used to fill in these missing

measurements, the landslide hazard analysis methodology, presented in Chapter 3, would provide

much better results, as evidenced by the first case study which contained no missing data. However,

this data correction exercise is beyond the scope of the current study.
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4.2.7 Discussion of Results

Each of the test sites analyzed in this thesis were relatively large in size: 54 km � 58 km and

80 km � 215 km. Therefore, it is not surprising that the regional probabilities of slope failure

were so high (up to 53.1% in the Alps, and 88.0% in southwestern Norway). If a community or

organization wished to incorporate landslide hazard analyses into their landslide preparation and/or

mitigation strategies, it would be prudent to divide such large domains into multiple subregions.

For instance, there is as high as a 53.1% chance that at least one slope in the region examined in the

Alps will fail, but whether or not it will affect any of the surrounding communities (e.g. Chamonix)

is unknown. Perhaps only one slope within the 54 km � 58 km domain is expected to fail. Or

perhaps thousands of slopes, evenly spread throughout the entire region, are highly unstable and

thus, expected to fail. By breaking the analysis down into several smaller units, it would be much

easier to pinpoint the most susceptible regions. In general, the size of the domain depends on the

type of analysis. Community-level planning will require smaller domains than those at a national

level. This model can be implemented for any study region, provided that the elevation profile

within that region is approximately normal (if not, the methodology needs to employ a different

final maximum slope distribution, i.e. rather than Rayleigh).

76



CHAPTER 5

Landslide Vulnerability Assessment

Vulnerability assessments1 measure the physical and socioeconomic fragilities of the affected

communities in terms of degree of loss, ranked from 0 (no loss) to 1 (complete loss). The degree of

loss, or amount of damage, inflicted by a landslide is dependent upon much more than its magnitude

and impact force. Damage refers to the amount of destruction caused to the physical infrastructure

(e.g. buildings, agriculture, forests), the amount of harm to the population (e.g. injuries, deaths

and emotional issues associated with such losses) and the impact on the economy (e.g. temporary

business closures). If there are slopes which are susceptible to sliding, there may be a high risk

of landslide occurrence, but if these slopes are isolated, there may be a minimal risk of landslide

damage. The severity of the consequences resulting from a landslide are dependent upon the

region’s vulnerability level. A model, formed from a set of vulnerability indicators, is presented in

this thesis as a means of predicting regional landslide vulnerability levels.

5.1 Vulnerability Indicators

The following indicators (Stinführer et al. (2009); Roberts et al., 2009; Lahidji, 2008; Tapsell

et al., 2005; Cutter et al., 2003), separated by category, have been selected using the guidelines

presented in Figure [5.1] for the vulnerability model.

1) demographic – (a) age, (b) urban population;

2) social – (a) education level, (b) level of integration;

1 The research for this chapter was developed in equal parts by Amanda McLean and Unni Eidsvig at the
International Centre for Geohazards, as part of the SafeLand project (2010). Some of the research discussed
here appears in Work Project 2.2 of the SafeLand project (Eidsvig et al., 2010).
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3) economic – (a) rural population, (b) GDP per capita, (c) building type;

4) recovery – (a) quality of medical services, (b) insurance and disaster funds; and

5) administrative – (a) regulation control, (b) hazard evaluation, (c) early warning systems, (d)

emergency response.

Figure 5.1 Selection process for vulnerability indicators.
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Discussion of indicators

Each indicator is ranked and assigned a rank value based on the level of vulnerability the region

faces. The rank values range from 1 to 5, where 1 indicates the lowest level of vulnerability and 5

indicates the highest level of vulnerability. This range (i.e. five possible rank values) is selected

arbitrarily (it is normalized to the range 0 to 1 later).

1) a) Age: Young children (defined as under 5 years of age) and senior citizens (over 65 years

of age) are typically more vulnerable to harm in the event of a landslide, as they are less able

to protect themselves without assistance. The metric proposed for this indicator is based on a

life expectancy of 75 years and assumes a uniform age distribution. Given such a distribution,

20% of the population is expected to fall into one of these two ‘vulnerable’ age categories;

this is used as the reference point and given a rank of 1 (i.e. the lowest vulnerability since the

fraction of the population in these ‘vulnerable’ age categories is only 20%). As the percentage

of vulnerable peoples increase, so does the vulnerability ranking. (Note: societal vulnerability

indicator)

b) Urban population: It is more difficult to evacuate and care for highly dense populations in the

aftermath of a landslide and as such, these regions are considered to be more vulnerable to

physical harm. Furthermore, densely populated regions typically coincide with densely built

infrastructure, thus densely populated regions are also more vulnerable to economic losses

resulting from damage to existing infrastructure. (Note: physical vulnerability indicator)

2) a) Education level: People with high levels of formal education generally prepare themselves

better for potential disasters (e.g. landslides) than those without, especially if they have

already experienced a similar disaster in the past. Stinführer et al. (2009) completed a case

study in a post-flood region in Germany and found that after the disaster people with higher

levels of formal education had less trust in public protection measures. As a result, the people

with higher levels of education changed their own behaviour in order to protect themselves
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against future floods more so than people with less education. (Note: societal vulnerability

indicator)

b) Level of integration: In highly segregated regions, language and cultural barriers can impact

the ability of certain groups to access both pre- and post- disaster support (e.g. awareness

of preparedness strategies and disaster funding) (Cutter, 2003). (Note: societal vulnerability

indicator)

3) a) Rural population: Rural populations are highly vulnerable to damage due to their lower

average incomes and higher dependence on the surrounding natural resources (e.g., farming,

fishing) for sustenance (Cutter, 2003). A population that is highly dependent upon the land

for their primary source of income is considered more vulnerable to the economic damages

associated with a landslide. (Note: physical vulnerability indicator)

b) GDP per capita: The average level of wealth within a region is indicative of its resiliency

against the repercussions of a landslide. For example, if a wealthy community is warned

of an impending disaster, the residents are better able to take extra safety precautions (e.g.

temporary relocation) than residents of poorer regions. (Note: societal vulnerability indicator)

c) Building type: The materials used for buildings is indicative of how much impact they can

withstand from a landslide without sustaining irreparable damage. The ranking system for

this indicator refers to houses as having strong, medium or weak resistance. Strong resistance

refers to thick brick, stone wall, and/or reinforced concrete constructions. Medium resistance

refers to mixed concrete-timber and/or thin brick-wall constructions while weak resistance

refers to simple timber and very light constructions (Heinimann, 1999). (Note: physical

vulnerability indicator)

4) a) Quality of medical services: This indicator is categorized by the number of hospital beds per

1,000 people. Country-wide statistics provided by the World Bank’s development indicators

(2010) was used as the metric for this ranking system. However, the data may have to be
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acquired independently if the region being analyzed is on a local, rather than national, scale.

(Note: societal vulnerability indicator)

b) Insurance and disaster funds: Pre-existing funds set up to deal with damages following a

landslide event significantly increases a community’s level of resilience as it allows them to

rebuild and move past the disaster in a much shorter time period; the more extensive the

funding, the higher the level of resilience. (Note: societal vulnerability indicator)

5) a) Regulation control: This indicator takes into account the quality of infrastructure in the

region. If there is a significant amount of control over construction guidelines, the community

is more likely to consider the impacts of probable disasters in their designs. Therefore,

buildings in landslide prone regions would be constructed in a manner which ensures maximal

resistance to the expected impact forces. (Note: societal vulnerability indicator)

b) Hazard evaluation: If a region is aware of the likelihood of landslide occurrence they can

(and are more likely to) prepare themselves for such an event. Moreover, they can adapt their

mitigation and preparedness strategies to best suit their specific needs based on the results

of a regional hazard assessment, e.g., by following the methodology presented in Chapter 3.

(Note: societal vulnerability indicator)

c) Early warning systems: If a population is warned of an impending landslide, they can take the

necessary safety precautions to protect themselves as best as possible from harm. However, it

is important to ensure that the warnings are accurate and effectively delivered; if the warnings

are not followed by the disaster, people will soon start to ignore them. Also, if the warnings

are sent to risk managers, but do not reach the public, fewer benefits will be derived. (Note:

societal vulnerability indicator)

d) Emergency response: Emergency response teams properly equipped to respond to landslide

events can significantly reduce the amount of damage inflicted on a population by providing

emergency treatment to injured persons, clean-up of potentially harmful debris and efficient
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handling of damaged infrastructure. For instance, a landslide could potentially damage a

sewerage system or water treatment plant, and if not seen to shortly thereafter, could lead to

serious water contamination issues within the region. (Note: societal vulnerability indicator)

Damages associated with landslides span a wide timeframe; some have obvious impacts that

are apparent immediately after the event (e.g. damaged infrastructure) while others have delayed

impacts (e.g. business closures or increased levels of homelessness). The direct losses are best

measured with physical vulnerability indicators, while indirect losses are better measured with

societal indicators.

The physical indicators (i.e. building type, urban populations and rural population) provide

direct measures of damage levels. For example, ‘low’ resistance buildings are much more likely

to suffer significant amounts of damage than those of ‘high’ resistance, and the type and extent of

damage expected depends on the populations present (i.e. urban or rural). Similarly, it is more

likely that people and infrastructure will be damaged if a landslide occurs in a densely populated

urban region, as they are present in higher numbers, but it is more likely that farms and agricultural

products will be damaged if a landslide occurs in a rural region.

The remaining indicators listed above are considered societal, or socioeconomic, and they are

used to measure the coping capacity of a region. The ability of a community to absorb significant

damages associated with a landslide event and recover quickly indicates a high level of resilience,

and thus, a low level of vulnerability. For example, a population with a low GDP per capita will

have a difficult time restarting businesses that were closed due to damages. As a result, poorer

populations are more likely to continue to lose money as a result of prolongued foreclosure than

wealthier populations.

Indicator ranking metric

The ranking metric used for each of the vulnerability indicators is shown in Table [5.1].
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Table 5.1 Vulnerability indicators.

1. Demographic indicators

Classification of indicator vulnerability Rank (Vi)

a. Age

< 20% population is either under 5 or over 65 years of age 1

[20, 30)% are either under 5 or over 65 years of age 2

[30, 40)% are either under 5 or over 65 years of age 3

[40, 50)% are either under 5 or over 65 years of age 4

� 50% are either under 5 or over 65 years of age 5

b. Urban population

Population density is < 25 people/km2 1

Population density is [25, 50) people/km2 2

Population density is [50, 100) people/km2 3

Population density is [100, 200) people/km2 4

Population density is � 200 people/km2 5

2. Social indicators

Classification of indicator vulnerability Rank (Vi)

a. Education level

� 30% of the eligible population (over 18 years of age) have (or are in

the process of obtaining) a post-secondary education 1

[20, 30)% have a post-secondary education 2

[10, 20)% have a post-secondary education 3

[5, 20)% have a post-secondary education 4

< 5% have a post-secondary education 5
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b. Level of integration

< 5% of the population is not familiar with the majority language

and culture 1

[5, 10)% are not familiar with the majority language and culture 2

[10, 15)% are not familiar with the majority language and culture 3

[15, 25)% are not familiar with the majority language and culture 4

� 25% are not familiar with the majority language and culture 5

3. Economic indicators

Classification of indicator vulnerability Rank (Vi)

a. Rural population

< 10% population is dependent on the land for primary source of income 1

[10, 25)% depend on the land for primary source of income 2

[25, 50)% depend on the land for primary source of income 3

[50, 75)% depend on the land for primary source of income 4

� 75% depend on the land for primary source of income 5

b. GDP per capita

The GDP per capita is � 50 thousand USD 1

The GDP per capita is [30, 50) thousand USD 2

The GDP per capita is [20, 30) thousand USD 3

The GDP per capita is [10, 20) thousand USD 4

The GDP per capita is < 10 thousand USD 5
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c. Building type (Heinimann, 1999)

Themajorityof the buildings are of strong resistance and there arenone

of weak resistance 1

Themajorityof the buildings are of strong resistance, and there are some

of weak resistance 2

The majority of the buildings are ofmedium resistance 3

Themajorityof the buildings are ofweak resistance, and there are some

of strong resistance 4

Themajorityof the buildings are ofweak resistance, and there arenone

of strong resistance 5

4. Recovery indicators

Classification of indicator vulnerability Rank (Vi)

a. Quality of medical services

� 4 hospital beds per 1,000 people 1

[3, 4) hospital beds per 1,000 people 2

[2, 3) hospital beds per 1,000 people 3

[1, 2) hospital beds per 1,000 people 4

< 1 hospital beds per 1,000 people 5

b. Insurance and disaster funds (Lahidji, 2008

Extensive coverage for private and public buildings, existence of

government-sponsored landslide funds 1

Insurance coverage for the majority of private and public buildings,

limited government-funding 2

Widespread landslide insurance in development phase, but not yet

accessible to everyone 3

Incomplete support for victims of past landslide events 4

Little or no insurance provided 5
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5. Administrative indicators

Classification of indicator vulnerability Rank (Vi)

a. Regulation control (Lahidji, 2008)

Stringent guidelines (which take into account all landslide triggers)

in place for all construction and land-use activities 1

Adequate guidelines (which take into accountmost landslide triggers)

in place for all construction and land-use activities 2

Fairly effective regulations for new developments, however, potential

problems with existing constructions and land-use activities 3

Some consideration of landslide risk during construction and land-use

activities, but inadequate enforcement of regulations 4

No consideration of landslide risk in construction and land-use activities 5

b. Hazard evaluation (Lahidji, 2008)

Detailed landslide hazard assessment completed for the entire region 1

Basic landslide hazard assessment completed for the entire region 2

Detailed landslide hazard assessment ongoing; some gaps 3

Basic landslide hazard assessment ongoing; some gaps 4

No landslide hazard assessment completed or in progress 5

c. Early warning systems (Lahidji, 2008)

Advanced early warning systems used in coordination with emergency

response procedures 1

Adequate early warning system coordinated with media announcements

capable of reaching the majority of the population prior to the landslide 2

Fairly effective regulations for new developments, however, potential

Basic early warning systems available to the public 3

Basic early warning systems available to the risk managers 3

No early warning system 5
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d. Emergency response (Lahidji, 2008)

All of the necessary specialized equipment and well-trained rescue

professionals available throughout the entire region 1

All of the necessary specialized equipment and well-trained rescue

professionals available in portions of the region; some equipment and

rescue professionals available throughout the entire region 2

All of the necessary specialized equipment and well-trained rescue

professionals available in portions of the region; some areas without

access to sufficient resources 3

Some equipment and rescue professionals available in portions of the

region; some areas without access to sufficient resources 4

Fragmented organization and scattered resources; predominance of

voluntary responders 5

Indicator weighting scheme

Each of the indicators are individually weighted, on a scale of 1 to 3, based on their degree

of relevance to the assessment. A score of 3 indicates the highest level of relevance to the

vulnerability assessment. The total vulnerability score is computed as the sum of the weighted

indicators (i.e. the indicator rank, from the above tables, times the weighting value) divided by the

sum of the weights. For this model the weights have been assigned based on educated judgement,

i.e. extensive literature review and feedback from SafeLand contributors, both within and outside

of the Norwegian Geotechnical Institute and the International Centre for Geohazards.

The indicators deemed most influential include: (3c) building type, (5a) regulation control

and (5b) hazard evaluation, and so they have each been assigned the highest weight of 3. The

indicators: (1a) age, (3a) rural population, (3b) GDP per capita, (4b) insurance and disaster funds,

(5c) early warning systems and (5d) emergency response were considered moderately influential

and assigned weights of 2. Finally the remaining indicators: (1b) urban population, (2a) education

level, (2b) level of integration and (4a) quality of medical services were regarded as least influential

and each assigned a weight of 1.
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Figure 5.2 Overview of weighted vulnerability indicators.

5.2 Landslide Vulnerability Assessment Model

The landslide vulnerability model considers the combined results of the thirteen weighted

indicators.

vt =
�n

i=1 [vi � wi]�n
i=1 wi

(5.1)
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where vt is the total vulnerability score of the region, n is the number of indicators, wi is the

weighting value and vi the vulnerability rank of each individual indicator.

However, in order to be incorporated into the risk model (along with the regional probability of

slope failure, pf ) the total vulnerability score, vt, should be normalized to lie between 0 to 1, where

0 is lowest possible score and 1 is the highest. This is achieved by dividing the total vulnerability

score by the highest possible value of vt (obtained by simply setting all ranks to 5). Thus, the final

regional landslide vulnerability score is

v =

��13

i=1
[vi·wi]

25

�
� [3(5·3)+6(5·2)+4(5·1)]

25

�

=
�13

i=1 [vi � wi]
125

(5.2)
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CHAPTER 6

Existing and Future Landslide Risk Assessment

6.1 Existing Risk Levels

The likelihood that a landslide will occur can be predicted with a hazard assessment model

(see Chapter 3), but the extent of the damage inflicted upon a region – physically, economically

and mentally – is a function of vulnerability (see Chapter 5). These factors, together with the

exposed population, define risk. The equation for risk (eq. [1.1]) presented in Chapter 1, is a

product of hazard, pf , vulnerability, v, and exposed population, np. This equation can be refined by

substituting eq. [3.42] for pf and eq. [5.2] for v. Thus, regional landslide risk, which is a measure

of the expected loss, can be determined as follows

R = pf � v � np

=

�
smax�

si=smin

��
1 � qni

i

�
�
�
P
�
STm

= si

���	�
13
i=1 [vi � wi]

125

	
� np (6.1)

where,

np = the population of the region being analyzed (i.e. the population exposed to landslide risk)

qi = 1 � P
�
F1 �S = si

�
P
�
F1 �S = si

�
= the conditional probability of failure of a slope having given angle si

ni = the number of slopes in the region having slope angle si

P [STm = si] = exp
�
−(si−Δs

2 )2

2σ2
ST

�
� exp

�
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2σ2
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vi = the vulnerability ranking of each individual vulnerability indicator

wi = the weight of each individual vulnerability indicator

Note that in eq. [6.1], the factor of 125 is as was used in Chapter 5. If the weights change, the

factor of 125 will also change.

6.2 The Effect of Population Increase on Landslide Risk Levels

In order to understand the effects of population increase on landslide risk levels, it is important

to break risk down into its components, i.e. hazard, vulnerability and exposed population. While

the effect of population increase on the exposed population risk component is straightforward

enough, i.e. the increase in np is proportional to the percentage increase in population, the effect

on hazard and vulnerability requires a more thorough investigation.

6.2.1 The Effect of Population Increase on Landslide Hazard Levels

When the population of a region increases, several consequences are obvious and take place

immediately thereafter. To begin with, an increase in population generally leads to an increase in

occupied land space. As a result, more natural landscapes are modified – regions may be deforested,

rural areas urbanized, vegetation species changed, etc. Furthermore, existing developments and

infrastucture are often expanded, more roads, railways and buildings are constructed (Nadim et al.,

2006) and there is an increased demand for food and water. These activities put significant levels

of stress on the environment and consume large quantities of natural resources. If, as is the case in

many parts of the world, natural resources are used unsustainably, they can become permanently

depleted. The environmental stresses resulting from land use change and over-exploitation of

natural resources (e.g., water) commonly influence slope geometries, soil moisture levels and the

hydrological cycle, all of which lead to increased levels of slope instability.

The degree of influence of an increased population on the landslide hazard level of a region

is addressed by analyzing its influence on the frequency of human-induced landslides. This
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relationship, between population increase and human-induced landslide frequency, is dependent

upon: 1) regional soil lithology and landslide triggers, and 2) the effect of human activity on

regional slope stability levels.

1) Regional soil lithology and landslide triggers

Using whatever databases are available for the region under analysis, historical records of past

landslides must be collected in order to identify the most common types of slope failures. These

slopes are categorized by lithology as either clay (comprises both sensitive and non-sensitive clay

slides), sand (or earth), debris (includes mud) or rock. Once collected, this data, used to categorize

past landslides by lithology, can be used to estimate the fraction of future landslides expected to be

clay, the fraction expected to be sand, and so on.

In order to estimate future landslide hazard levels, it is also important to understand why

landslides occurred in the past, i.e. what were the triggering factors? This section of the research

is concerned with the expected frequency of human-induced landslides, therefore the triggers for

past landslides should be categorized as either natural or anthropogenic (note that partly human-

induced slides are categorized as anthropogenic for this analysis). Unfortunately, many historical

landslide records do not specify landslide triggers, therefore, this step is best completed with

expert judgment. Leading natural scientists and engineers can provide reasonable estimates of the

fraction of landslides induced by human activity versus the fraction induced by natural causes,

again categorized by lithology. The results are, however, very region-specific. For instance, the

majority of quick clay slides in Norway are human-induced, whereas in Sweden, most are the result

of toe erosion caused by changing water levels. Therefore, regional experts should be consulted.

The data on past landslides, together with expert opinions, is sufficient to estimate the fraction

of past landslides, in the region under analysis, that have been partly or fully induced by human

activity, i.e.

aL = cl � ac + e � ae + d � ad + r � ar (6.2)
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where aL is the fraction of past landslides that were induced by anthropogenic activity, cl is the

fraction of all future slides that are expected to be clay (similarly e, d, and r for sand (or earth),

debris, and rock), and ac is the fraction of future clay slides that are, according to experts, expected

to be triggered by anthropogenic activity (similarly ae, ad, and ar for earth, debris, and rock).

The value of aL is important for understanding the effect of population increase on landslide

hazard levels because human activity only influences the frequency of human-induced landslides.

Therefore, the frequency of naturally-induced landslides (e.g., by earthquakes) is assumed constant

regardless of population.

2) Effect of human activity on regional slope stability levels

Increased human presence, e.g., as a result of urbanization, does not have the same effect on

landslide hazard levels in all regions. The effect of human activity on regional slope stability levels

is widely variable and dependent upon factors such as the initial population density, the level of

development and the skills and professional expertise of the incoming population. The relationship

developed in this section, which describes the change in frequency of human-induced landslides as

a result of population increase, includes multiplicative population density and development factors

(as these factors increase, the frequency of expected human-induced landslides also increases), as

well as another factor referred to as maintenance, m, which accounts for the positive influence

of human activity on slope stability levels (i.e. the types of human activity that reduce landslide

probability). The factor, m, enters into the model as part of a composite multiplicative ‘human

influence’ indicator. The human influence indicator considers the negative effects of human activity

on slope stability levels (i.e. the types of human activity that increase landslide probability) through

the inclusion of Δp (the increase in population computed as a fraction of the existing population),

as well as the positive effects of human activity on slope stability levels through the inclusion of

m � Δp. The human influence composite indicator is written as Δp � (1 � m) and it is directly

proportional to the expected increase in frequency of human-induced landslides (the equation will

be developed later in this section). Therefore, as the the value of m, which ranges from 0 to 1,
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increases, the expected frequency of human-induced landslides decreases. Each of these factors is

described in detail below.

a) Population density factor

A region can only support a finite number of people without being forced to overexploit its

natural resources. Thus, in order to develop a relationship between the expected increased in

human-induced landslide frequency (and resulting hazard level) and population increase, the initial

population density of the region must be taken into consideration. Based on a constant rate of

population growth, a region with a high initial population density will reach its maximum capacity

before a region with a lower initial population density (i.e. a low initial population density implies,

in most cases, more room for growth). In this research, a population density factor, Fpd, has

been developed (se Table [6.1]) using country-wide statistics provided by the Global Rural-Urban

Mapping Project (GRUMP) (CIESIN, 2007) as a metric.

Table 6.1 Population density factor.

Population density (per km2) Classification Fpd

>1 Very low 1.00

[1� 25) Low 1.10

[25� 50) Moderate 1.20

[50� 100) Medium 1.30

[100� 200) High 1.40

� 200 Very high 1.50

Note: The values selected for the population density factor (and all subsequent factors) have

been assigned based on educated judgement of the author and other SafeLand contributors (Nadim

et al., 2006). Thus, these factors should be calibrated by applying the model to several landslide-

prone regions that have already experienced significant levels of population growth. This issue will

be discussed further in Section 8.2.
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b) Development factor

In most cases, a high level of economic development implies that a region has the resources

required to employ professionals and ensure that proper regulations and guidelines are followed

when altering natural landscapes, extracting natural resources, etc. This economic development

indicator is incorporated into the model developed in this research using gross domestic product

(GDP) per capita, as provided by the International Monetary Fund (IMF, 2010), as a metric.

Table 6.2 Development factor.

GDP per capita (thousands of USD) Classification, with respect

to level of wealth Fd

� 50 Very high 1.00

[30� 50) High 1.05

[20� 30) Medium 1.15

[10� 20) Moderate 1.30

< 10 Low 1.50

The development factor, Fd, does not vary linearly with GDP per capita. The differences

observed, with respect to land use practices, between regions of medium and very high levels of

wealth is usually much smaller than the differences observed between regions of low and medium

levels of wealth. As a country’s GDP per capita decreases, the likelihood of it neglecting to follow

geotechnical regulations generally increases at a faster rate. Poor countries simply cannot afford to

take all necessary precautions against environmental damage and often lack professional expertise,

therefore, their land use practices tend to degrade soil significantly more than wealthier regions.

c) Maintenance factor

The type of incoming population, with respect to skills and professional expertise, significantly

influences the degree to which population increase affects regional slope stability levels. After all,

it is important to realize that not all human activity adversely affects slope stability. Once natural

landscapes have been altered, it is often necessary to safeguard against erosion, maintain drainage
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systems, etc., which requires human interference. Thus, a maintenance factor is introduced as

part of a ‘human influence’ multiplicative indicator (described earlier in this section). The ranking

system for the maintenance factor is shown in Table [6.3]

Table 6.3 Maintenance factor.

Characteristics of population m

increase in population; no specific geotechnical focus 0.10

increase in population; includes a notable increase in geotechnical researchers 0.35

increase in population; introduction of more extensive slope stability

mitigation techniques 0.50

increase in population; introduction of more extensive slope stability

mitigation techniques and new geotechnical guidelines 0.75

Relationship between landslide hazard level and population increase

Since regional landslide hazard levels measure the probability of slope failure (i.e. landsliding),

the expected change in hazard level, as a result of population increase, is dependent upon the effect

of population increase on human-induced landslide frequency, f . This change in frequency can be

estimated based on the variables introduced earlier in this section.

Δf = Fd � Fpd � aL � Δp � (1 �m) (6.3)

where aL represents the fraction of past landslides induced by humans (see eq. [6.2]), Fd, Fpd and

m are the model factors (described earlier in this section), and Δp represents the expected increase

in population, as a fraction of the existing population.

If the hazard level, pf , is broken down into its anthropogenic and natural components, such

that

pf = pf � aL + pf � (1 � aL) (6.4)

then the future hazard level, pf 2, expected for a region with an increased population, can be

evaluated, using equations [6.3] and [6.4], as

pf 2 = pf � aL(1 + Δf ) + pf � (1 � aL)
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= pf � (1 + aLΔf ) (6.5)

where pf is defined in eq. [3.42], aL is defined in eq. [6.2] and Δf is defined in eq. [6.3].

6.2.2 The Effect of Population Increase on Landslide Vulnerability Levels

The effect of population increase on vulnerability levels is much harder to predict than the

effect on landslide hazard levels, therefore, several assumptions must be made. For instance, it

is impossible to know what age the new inhabitants will be, so the most practical assumption is

that there are a wide range of ages, thus the percentage of people in the vulnerable age categories

(see Section 5.1) remains constant, as does the ‘age’ indicator ranking. Similarly, the most likely

scenario is that the education level, integration level, income, agricultural dependence and housing

constructs will vary across the board for the new arrivals. Furthermore, the remaining (recovery and

administration type) indicators rely mostly on governmental and/or institutional control and thus,

should not be overly influenced by urbanization or other common forms of population increase.

The only indicator that is definitely affected by population increase is 1b, ‘urban population’ (see

Chapter 5), which is has a weight of 1 and describes the population density of the region.

Therefore, the expected future vulnerability level, vf , based on an expected increased popula-

tion, is only a slight modification of the original vulnerability equation ([5.2]).

vf =
v1b � (1 + Δp) +

�12
i=1 [vi � wi]

3(5 � 3) + 6(5 � 2) + 3(5 � 1) + 1[5 � 1 � (1 + Δp)]

=
v1b � (1 + Δp) +

�12
i=1 [vi � wi]

120 + 5 � (1 + Δp)
(6.6)

where the indicator, 1b (urban population), is multiplied by the expected change in population,

(1 + Δp), before it is included in the summation of the twelve remaining weighted indicators.
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6.3 Future Risk Levels

Equation [6.1] evaluates regional landslide risk, R, based on the existing hazard level, vul-

nerability level and population. The expected landslide risk associated with a region at a future

point in time, Rf , when the population has increased by some fraction Δp, is computed, based on

equations [6.5] and [6.6], as

Rf = pf 2 � vf � [np � (1 + Δp)]

=
�
pf � (1 + aLΔf )

� �v1b � (1 + Δp) +
�12

i=1 [vi � wi]
120 + 5 � (1 + Δp)

� �
np � (1 + Δp)

�
(6.7)
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CHAPTER 7

Application of the Landslide Vulnerability

& Future Hazard Assessment Models

7.1 Application of the Landslide Vulnerability Model, Literature Review

As mentioned in Chapter 5, the landslide vulnerability model was developed by the author along

with U. Eidsvig at the International Centre for Geohazards (ICG) in Oslo, Norway. However, during

the author’s time at ICG, the vulnerability model was only developed theoretically. Therefore, this

section, which applies the model to two regions in Norway, is a brief summary of the work

completed by Eidsvig (2010).

The landslide vulnerability model developed in Chapter 5 has been applied to two regions in

Norway: 1) Skien, a city of approximately 50,000 people along the southern coast, and 2) Stranda,

a municipality of approximately 4,700 people in the western region of Norway. Skien is highly

susceptible to sliding because of quick clay deposits and Stranda is a special case, which has been

monitored since 2005, as it contains the Åknes rock slope, located over a fjord. If a rockslide

were to occur at Åknes, there is potential for a tsunami, which could cause a significant amount of

damage to the Stranda.

The indicators have been ranked for each of the regions, as shown in Figures [7.1] and [7.2].

The data used to evaluate the vulnerability indicators, and rank them accordingly, was obtained

from either census data, interviews with local experts and/or subjective judgment of Eidsvig (due

to budget limitations).
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Figure 7.1 Ranked vulnerability indicators for Skien, Norway.
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Figure 7.2 Ranked vulnerability indicators for Stranda, Norway.

In Figures [7.1] and [7.2], the ‘housing type’ indicator is equivalent to the ‘building type’ indicator

in the model presented in this thesis. Similarly, the ‘vulnerable groups’ indicator is equivalent to

this model’s ‘level of integration’ indicator and the ‘personal wealth’ indicator is very similar to

this model’s ‘GDP per capita’ indicator.

Using the indicator weights as defined in Section 4.1, the total vulnerability, vt, and normalized

total vulnerability, v, can be calculated for each region using equations [5.1] and [5.2]:

Skien, Norway

vt =
�n

i=1 [vi � wi]�n
i=1 wi

=
51
25 = 2.04 (7.1a)
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v =

��13

i=1
[vi·wi]

25

�
� [3(5·3)+6(5·2)+4(5·1)]

25

� =
�13

i=1 [vi � wi]
125 =

51
125 = 0.408 (7.1b)

Stranda, Norway

vt =
49
25 = 1.96 (7.2a)

v =
49

125
= 0.392 (7.2b)

The resulting levels of vulnerability to landslides are very similar in each of the regions tested. This

is as expected since the majority of both the societal and physical indicators are similar throughout

the whole of Norway. Although the smaller community of Stranda has a slightly older, more

rural and less educated population than the larger city of Skien, its vulnerability level is balanced

due to the fact that Standa is being monitored for potential tsunami-inducing rockslides. As a

result, Stranda has improved early warning systems and emergency response procedures. This type

of balance, improved administrative indicators for more hazardous regions, is typical of highly

developed regions such as Norway.

The overall landslide vulnerability scores are relatively moderate, each representing approx-

imately 40% vulnerability. Although the two regions have similar vulnerabilities, they do not

necessarily have similar risk levels. Risk is also dependent upon the landslide hazard level and

number of exposed persons. If Skien and Stranda are found to have similar regional probabilities

of slope failure, approximately the same percentage of each of their populations will be exposed to

considerable levels of landslide risk. However, once the number of exposed persons is considered,

i.e. risk, taken as the number of people exposed to potential landslide damage, Skien will have a

much higher risk level as its population is over ten times larger than that of Stranda.

On a final note, since the landslide vulnerability model evaluates the vulnerability of regions

on a relative scale, it would be prudent to test other regions outside of, and different from, Norway

(perhaps a region assumed to have a notably high level of vulnerability) to compare the final scores

assigned to each (discussed further in the ‘Model Validation‘ portion of Section 8.2).

102



7.2 Application of the Future Landslide Hazard Assessment Model

As described in Chapter 6, a noticeable increase in the population of a region affects the level

of landslide risk experienced by the communities within that region. The most important part

involved in estimating the expected change in landslide risk, as a result of population increase, is

to understand the effect of population increase on the frequency of human-induced landslides. The

population of a region does not directly affect the frequency of naturally-induced landslides and the

vulnerability level does not change significantly with increasing populations. The expected future

vulnerability level (eq. [6.6]) is calculated using the same equation as the current vulnerability level

(eq. [5.2]), except with an updated value for the ‘urban population’ vulnerability indicator.

In this section, data, obtained from the Norwegian Geotechnical Institute (NGI, 2010), for

Norway is used to estimate the expected change in landslide hazard levels in Norway if its population

were to increase by 50%, at some point in the future. This case study applies the methodology

outlined in Section 6.2.1.

Regional soil lithology and landslide triggers

According to the Geological Survey of Norway (NGU, 2008) database 380 clay and 950 earth

slides (1330 total) dating back to the 12th Century have been reported in Norway by Astor Furseth

(Nadim et al., 2010). When possible, the cause of the slides have been deduced according to the

descriptions of the events, otherwise they were labeled as ’unknown’; 603 of the 1330 slides were

categorized as ’unknown’, i.e. over 45% of the slides. Therefore, in an effort to determine the

total fraction of human-induced slides, it is preferable to consult regional experts than to use the

historical data.

As part of the SafeLand project (Nadim et al., 2010) questionaries concerning human-induced

landslides were created and sent out to leading geoscientists and geotechnical engineers across

Norway. The questionnaires defined slide-inducing human intervention as:

1) cut-and-fills along railways, highways and secondary roads;
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2) engineered slopes and embankments; and

3) large portions of natural terrain altered by human activity (e.g. forested areas removed for

new developments).

The combined and averaged results indicated that approximately 73% of the clay (including

quick clay) slides that occur in Norway are thought to be triggered by these human activities, as

well as 16% of earth slides, 11% of debris slides and 8% of rock slides (Nadim et al., 2010). Thus,

ac = 0.73, ae = 0.16, ad = 0.11, and ar = 0.08. From NGU’s data, the fraction of slides categorized

as clay can easily be computed as 380 over 1330, i.e. cl = 0.29, similarly e = 950/1330 = 0.71,

d = 0 and r = 0. Therefore, using eq. [6.2], the fraction of past landslides induced by human

activity is approximately

aL = cl � ac + e � ae + d � ad + r � ar

= 0.29(0.73) + 0.71(0.16)

= 0.33 (7.3)

Furthermore, the experts questioned estimated that a 50% increase (Δp = 05) in the exposed

Norwegian population, with no major changes in geotechnical regulations, would increase the

frequency of human-induced landslides by 18% (Δf = 0.18). Although this prediction will not be

entered into the model, the results will be compared with it.

Degree of human influence on regional slope stability levels

Norway has a population of approximately 4,635,000 spread over an area of 324,220 km2, thus

its population density is just over 14 people/km2 (Jaedicke et al., 2010) and the resulting value of

Fpd is 1.10. Its GDP per capita is approximately 79 000 USD (IMF, 2010), hence Fd = 1.00.

Relationship between landslide hazard level and population increase

If, over the next x years, the population of Norway is expected to increase by 50%, the frequency

of human-induced landslides is also expected to increase, by some value Δf . Assuming that the
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population increases uniformly, a 50% increase in the total population also implies a 50% increase

in the exposed population. If the incoming population does not include a substantial number of

geotechnical researchers, so that m = 0.10, this situation would result in the following increase in

human-induced landslide frequency:

Δf = Fd � Fpd � aL � Δp � (1 �m)

= 1.00 � 1.10 � 0.33 � 0.5 � (1 � 0.1)

= 0.16 (7.4)

However, if the incoming population does include a notable number of geotechnical researchers,

so that m = 0.35, the increase in landslide frequency would be reduced to:

Δf = 1.00 � 1.10 � 0.33 � 0.5 � (1 � 0.35)

= 0.12 (7.5)

This model estimates that the landslide frequency will increase by between 12% and 16% if the

exposed Norwegian population increases by 50%, again with no major changes in geotechnical

regulations. This corresponds very well to the Norwegian expert predictions of 18% (see prediction

made earlier in this section).

The future hazard level, pf 2, based on the expected increase in population, can be estimated

with eq. [6.5]. Assuming that the incoming population does not include a substantial number of

geotechnical researchers, the future hazard level is estimated as,

pf 2 = pf � (1 + aLΔf )

= pf (1 + 0.3253 � 0.16)

= 1.052pf (7.6)

The expected future landslide hazard level, pf 2 = 1.052pf , implies that the probability of slope

failure in Norway would increase by just over 5% if the population were to increase by 50% (but

all other conditions remained the same). This change in slope failure probability refers to all types

of slope failures, i.e. both natural and anthropogenic.
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CHAPTER 8

Summary and Conclusions

8.1 Landslide Risk Assessment

Risk, as it is most commonly defined, is a product of hazard, vulnerability and exposed pop-

ulation. This thesis addresses the issue of landslide risk assessment through the development of

three separate methodologies: 1) landslide hazard assessment using DEMs, 2) landslide vulnera-

bility assessment using an indicator based vulnerability model, and 3) assessment of the effects of

population increase on landslide risk levels. When these three methodologies are combined, they

provide a complete framework for regional landslide risk assessment.

The first model developed in this thesis, landslide hazard analysis, defines the regional hazard

level as the probability of at least one slope failure throughout the region. This probability is

estimated as a function of the distribution of maximum slope angles and the conditional probabilities

of local slope failures. The second model, landslide vulnerability analysis, measures the physical

and socioeconomic fragilities within a region using thirteen different vulnerability indicators. Each

indicator is weighted according to its degree of relevance to the model, and ranked from 1 (lowest

degree of vulnerability) to 5 (highest degree of vulnerability). The third and final model, future

landslide risk assessment, addresses the impact of population increase on landslide risk. A model is

formulated to describe how an increase in population, e.g., due to urbanization, alters the regional

frequency of human-induced landslides, and furthermore, how this increased landslide probability

affects the overall landslide risk level.

These three models have been described in detail in Chapters 3, 5 and 6 respectively, and tested

in several regions throughout Europe in Chapters 4 and 7. The accuracy of the models is discussed
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in depth in Section 8.1.1 below, and recommendations for future work, including model validation

techniques, are outlined in Section 8.2.

8.1.1 Accuracy of the Landslide Hazard Assessment Model

The distribution of maximum slope angles, as estimated using digital elevation models (DEMs),

is required in order to assess landslide hazard levels and in order to describe this distribution, the

variance of the slope angles must be estimated. Since the elevations measured by each cell, within

a DEM, are necessary for the maximum slope angle variance calculations, the accuracy of the

elevation measurements is crucial. The size of each cell of a given DEM is directly related to

the accuracy of the elevation measurement; since there is only one elevation recorded for each

cell, the larger the cell, the more local averaging required over that cell. Local averaging smooths

out variation in terrain and reduces the amount of detail observed by the DEM. As a result, less

variance is observed in low resolution elevation data, which leads to less variance observed in the

maximum slope angles (computed as the derivative of the elevation data). Typically, steep slopes

that are small in spatial extent are overlooked by low resolution DEMs as a result of local averaging.

Unfortunately, many of these small, steep slopes often present high probabilities of failure, and

if they are not considered by a DEM, the regional hazard level (i.e. regional probability of slope

failure) is underestimated. This can create serious issues for landslide preparedness planning.

For example, important precautions, such as emergency response procedures and construction

regulations, may be neglected if the landslide hazard level is considerably underestimated, which

would increase the community’s level of risk to loss in the event of a landslide.

Furthermore, the degree of local averaging experienced by a DEM is also dependent upon the

type of terrain within the domain (see eq. [3.38]), in addition to the cell size. As the amount of

variation in the elevation profile increases, the effect of local averaging becomes more pronounced.

Therefore, in a region with a fairly homogeneous elevation profile, there will be less difference

between the slope angles (and correspondingly, the hazard levels) computed by a DEM of relatively

high resolution and one of a lower resolution than in a region with a very erratic elevation profile.
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For example, consider the two case studies presented in this thesis. Case study one, located

in the Alps, computed the relationship between the slope angles perceived by the 3-arc second

resolution model (T1) versus the 30-arc second resolution model (T2) to be sT 1 =
�

0.178
0.311

�
� sT 2

� sT 2 = 1.748 � sT 1 (see eq. [4.10]). Whereas case study two, located in the southwest of Norway,

calculated sT 1 =
�

0.066
0.930

�
� sT 2 � sT 2 = 14.09 � sT1 (see eq. [4.26]). These results reveal a much larger

discrepancy between the slope angles perceived by the two DEMs in the southwest of Norway than

between the slope angles perceived by the same two DEMs in the Alps. Thus, it can be concluded

from this comparison (sT 2 = 1.748 � sT1 versus sT 2 = 14.098 � sT1) that the effects of local averaging

are more pronounced in the test region in Norway than in the Alps, which is indeed the case (under

the assumption that the water surfaces are all at zero elevation). The correlation length in the Alps

is over 4 km (4260 m), while only 840 m in Norway, which is less than than one-fifth of that of the

Alps. As defined in Section 3.3.2, the correlation length describes the degree of linear dependence

between data points, therefore, the smaller the correlation length, the more erratic the profile.

In order to reduce the inaccuracies resulting from the effects of local averaging on a DEM, the

hazard level can be estimated at a critical scale. The critical scale refers to the minimum scale at

which a landslide would be deemed hazardous, i.e. the critical cell size corresponds to the minimum

size landslide which could cause a noteworthy amount of damage to the surroundings. The regional

probability of slope failure is estimated at the critical scale using local averaging theory with data

provided by two DEMs. This landslide hazard model uses the Rayleigh distribution to model the

distribution of maximum slope angles throughout the region. Therefore, as it currently stands,

this model only provides accurate hazard estimations for regions with an approximately normally

distributed elevation profile.

In addition to error resulting from local averaging, there is a second type of error inherently

associated with DEMs: vertical measurement error. Vertical error refers to the discrepancy between

the true and observed elevations at points measured by a DEM. The vertical error directly affects the

estimation of the elevation variance, and this error is carried through, to some degree, to the slope
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variance and regional probability of slope failure. First of all, the following equation illustrates the

difference between the observed and true elevations,

Zo
T (i) = ZT (i) + εi (8.1)

where Zo
T (i) represents the elevation observed by a DEM in the ith cell, ZT (i) represents the true

average cell elevation, and εi represents the vertical error associated with the DEM measurement.

Thus, the variance of the observed DEM elevation is

Var
�
Zo

T (i)
�

= Var [ZT (i)] + Var [εi] (8.2)

The amount of vertical error associated with a DEM is dependent upon the specific DEM under

consideration. For example, the Shuttle Radar Topography Mission (SRTM) DEM, used in both

case studies presented in Chapter 4, was launched in 2000 and was the first to provide global high

quality elevation data at 1 and 3-arc second resolutions (Rabus et al., 2003). The SRTM elevation

data was acquired using synthetic aperture radar (SAR) interferometry and has a vertical accuracy

requirement of�16 m for 90% of the data across the entire mission, which covered all land masses

from 60 ◦ N to 57 ◦ South (Rabus et al., 2003). In each of Rabus et al.’s test sites (in Australia,

Scotland and Switzerland) as well as in Bhang et al.’s (2007) study of SRTM vertical accuracy in

Otter Trail, MN, the vertical accuracy requirement was met. The point on the standard normal

distribution having area above it equal to 0.05 is 1.645 (i.e. if 90% lies inside the confidence

interval, then 5% lies above it and 5% lies below it). Therefore, the standard deviation of the error

is:

σε =
16

1.645 = 9.73 m (8.3)

To illustrate the degree of influence of the vertical error on the elevation variance, the SRTM

data from the Alps case study, in Chapter 4, will be used. In this example, the variance of the

elevation, as observed by the SRTM DEM, was found to be Var [ZT (i)] = (702.57 m)2
� 493, 605

m2. The true DEM variance of the elevation data can now be calculated by substituting this value

of σε into eq. [8.2] as shown below,

Var [ZT (i)] = 702.572
� 9.732
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� 493, 510 m2 (8.4)

The maximum expected difference between the true and observed DEM variances of the elevation

data, as a percentage, is calculated as the difference between the observed and true variances,

divided by the true variance,

493, 605� 493, 510
493, 510 = 0.00019 (8.5)

The difference between the true and observed elevation variances is approximately 0.02%. While in

other regions the vertical error may be larger than 0.02%, it will still likely be much less influential

than the error resulting from local averaging. Furthermore, if the analysis of vertical error is

continued to consider the variance of the slope angles, which is the parameter that is actually

required for the regional hazard analysis, it will be found that, in most cases, the error impact is

even less than the 0.02% effect on the elevation variance. The slope angles, in the horizontal and

vertical directions, are computed with eq. [3.23] as the derivative of the elevation data. Therefore,

the true slope, ST , at point i, can be evaluated as shown in both of the equations below

ST (i) =
ZT (i� 1)� ZT (i + 1)

ΔT
(8.6a)

ST (i) =
[Zo

T (i� 1) + εi−1]� [Zo
T (i + 1) + εi+1]

ΔT
(8.6b)

Using equations [8.6a] and [8.6b], the following relationship can be developed to describe the

difference between the observed and true slopes,

Zo
T (i� 1)� Zo

T (i + 1) = [ZT (i� 1) + εi−1]� [ZT (i + 1) + εi+1] (8.7)

The vertical error measured at cells close to one another will likely be very similar in magnitude.

If the vertical errors are equal, εi−1 = εi+1, then the variances are equal

Var
�
Zo

T (i� 1)� Zo
T (i + 1)

�
= Var [ZT (i� 1)� ZT (i + 1)] (8.8)

Although the vertical error in neighbouring cells will probably not be exactly equal to one another,

they will probably be similar. In which case, the difference between the observed and true variances

will be negligible. Therefore, the landslide hazard model presented in this thesis need not consider

vertical error in its calculation.
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8.1.2 Accuracy of the Landslide Vulnerability Assessment Model

One of the hardest tasks associated with a landslide vulnerability analysis is that of data

acquisition. The methods used to acquire the data required for the model presented in Chapter

5 will vary depending on the region under analysis. Some regions keep accurate and up to date

census data, which contains a significant portion of the required information, while others may not

have any reliable data available. The size of the region is also important. It is much easier to collect

data via surveys in small villages than in large cities. Due to these large variations, there is no

consistent approach to collecting the data. Pre-existing data should obviously be reviewed first, and

then the remaining information acquired using sampling methods such as surveys, distributed to

randomly selected households and/or governmental bodies throughout the region. The percentage

of the population sampled will vary depending on the size of the region and the amount of resources

available. Thus, the overall accuracy of the landslide vulnerability model is highly dependent upon

the data acquired to rank the vulnerability indicators.

8.2 Recommendations for Future Work

While the landslide risk assessment model developed in this thesis addresses the factors that

affect risk, by considering its hazard and vulnerability components individually, this is a first

attempt. If work is continued on this model, its performance could be improved and its applications

expanded. Future work in the following areas of research are recommended:

1) Model validation:

a) Landslide hazard model (Chapter 3): If the landslide hazard model were used to create

hazard maps in a region that has been well-documented (for landslides) in the past, the

hazard maps could be compared with the historical records to see how well it predicted

highly hazardous regions. Furthermore, by performing this test in several areas, each with

different types of terrain, the accuracy could be evaluated as a function of terrain type.
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b) Landslide vulnerability model (Chapter 5): This model evaluates the total vulnerability

level of a region on a relative scale. That is to say, for example, that a regional vulnerability

score of 0.6 does not necessarily imply that 60% of the population are vulnerable to loss

from landslides, but it does imply that the population is much more vulnerable than another

region which was found to have a vulnerability score of 0.2. Therefore, by applying the

vulnerability model to multiple regions that have already experienced landslides, the results

from the model can be compared with the actual amount of loss experienced in the regions

after the landslides occured. If the results do not match very well, the ranking systems

can be adjusted as necessary. For example, it may be found that a vulnerability indicator

currently assigned a weight of 3 (i.e. of highest relevance) causes regions that were actually

quite invulnerable to loss to be given too high a vulnerability score. Thus, it may be deemed

appropriate to change this indicator weight to a lower value in this case.

b) Future landslide hazard model (Section 6.2.1): As it currently stands, this model also uses

a relative scale since the evaluation techniques (i.e. population density, development and

maintenance factors) require some calibration. The ranking systems defined for the model

factors can be improved by applying the model to regions that have, in the past, experienced

significant levels of population growth. By analyzing the region, based on its conditions

prior to population growth, with the future landslide hazard model, the predicted change in

human-induced landslide frequency can be compared with the actual change in frequency.

If there is a discrepancy in the results, the ranking systems can be modified, and the region

can be retested to see if the predicted frequency is closer to the actual outcome. Once the

necessary modifications have been made, several other regions should be tested. If the

results of these tests are all relatively accurate, the model can be used with confidence in

its predictions.

2) Magnitude of slope failure: By comparing the probability of slope failure at different reso-

lutions, it is possible to break the failure probability down by landslide size. For example,

there may be an overall 50% probability of slope failure at the critical scale, but only a 30%
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probability that the slide will be over 100 m � 100 m in size and only a 2% probability that it

will be over 1000 m � 1000 m in size. Consideration of these results would allow for a more

detailed landslide analysis that considers frequency vs. consequence of slides of different

sizes, in addition to the overall regional hazard analysis.

3) Alternative elevation datasets: The accuracy of the landslide hazard assessment model can

potentially be improved by obtaining elevation data from other types of geographic information

systems (GIS) that have higher resolutions than digital elevation models. For instance, lidar

imaging can be used to measure surface elevations with centimeter-scale resolutions. However,

it is important to note that these extremely high resolution models generally cover less surface

area than DEMs, so there are benefits and drawbacks to each type of GIS model. Depending

on the size of the region under analysis, the required level of accuracy, and the amount of

resources available, the most appropriate model can be selected for the analysis.

4) Multiple slope failures: The current landslide hazard assessment model defines the regional

hazard level as the probability that one or more slopes within the region fail. By assuming

independence between the slopes, and constant conditional probability of failure, the proba-

bility of one or more slope failures is evaluated as one minus the probability of non-failure

(binomial distribution). However, if the analysis were able to consider the probability that two

or more slopes fail, or ten or more slopes fail, etc., the model would be more useful, especially

for large regions such as those considered in the two case studies presented in Chapter 4.

5) Avalanche risk assessment: With a few modifications, the framework presented in this model

could be applied to evaluate avalanche risk levels, in addition to landslide risk levels. The

only subcomponent of the risk framework presented in this thesis that would need to be

adjusted is the hazard level. The regional hazard level computation requires the regional

conditional probability of slope failure and the distribution of maximum slope angles. The

methodology developed to evaluate the conditional failure probability would be very similar

for both avalanches and landslides. In fact, the ground strength parameters required for

Rslope2d would be easier to obtain for avalanche analyses as there is generally less variability
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in the ground strength parameters for snow and ice than for soil. While the methodology

used to estimate the regional distribution of maximum slope angles for landslides is also

applicable avalanches, an additional factor must be considered in order to maintain accuracy:

changing snow and ice levels. By analyzing long-term weather data for the region under

analysis, it is possible to predict how the distribution of maximum slope angles are expected

to change throughout the year (i.e. by determining the average monthly, weekly, and/or daily

precipitation levels).
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APPENDIX A Rslope2d Program Structure and Inputs

Table [A.1] illustrates the manner in which the ground parameters must be entered into the random

finite element method (RFEM) program, Rslope2d.

Table A.1 Stability of a 1:1 (i.e. 45 ◦ ) slope, clay strength parameters.

Echo input data to stats file? t
Report progress to standard output t
Dump debug data to stats file t
Display one random field? [realization] [which] t 1 c
Display displaced FEM mesh? [realization] t
Number of x-elements to left of embankment 20
Number of x-elements to right of embankment 20
Number of y-elements in embankment 12
Number of y-elements in foundation 5
Gradient of slope (integer) (y/x) 1
Element size, X [X Y] dimensions 2.5 2.5
Iteration convergence tolerance 0.00 01
Maximum number of iterations 500
Cohesion: mean, SD, and distribution 0. 0. deterministic
Friction angle: mean, SD, and distribution∗ 26.0 5.0 bounded 21.0 31.0 0.0 2.0
Dilation angle: mean, SD, and distribution 0. 0. deterministic
Unit weight: mean, SD, and distribution∗∗ 13.0 1.5 lognormal
Elastic modulus: mean, SD, and distribution∗∗∗ 2.0E+04 1.5E+04 lognormal
Poisson’s ratio: mean, SD, and distribution 0.3 0. deterministic
Deterministic strength reduction factors 1.0 1.1 1.2 1.3 1.4 1.5 2.0 2.5 3.0
Number of realizations 1000
Generator seed (0 for random seed) 0
Scale of fluctuation (x and y directions) 13.0 13.0
Variance function name dlavx2
Material Property Correlation Matrix Data (no input)
Show element boundaries t
Show random field as background [log?] [prop?] t t phi
Width of displaced mesh output plot in inches 4
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The only changes made for varying soil types corresponds to the starred fields shown in Table

[A.1].

Table A.2 Stability of a 1:1 (i.e. 45 ◦ ) slope, gravely sand strength parameters.

∗ Friction angle 40.0 5.0 bounded 35.0 45.0 0.0 2.0
∗∗ Unit weight 18.0 1.0 lognormal
∗∗∗ Elastic modulus 1.25E+05 7.5E+04 lognormal

The only changes made for the varying slope angles corresponds to the bolded fields shown in

Table [A.1].

Table A.3 Stability of a 2:1 (i.e. 26.57 ◦ ) slope.

Number of y-elements in embankment 6
Gradient of slope (integer) (y/x) 2

Table A.4 Stability of a 3:1 (i.e. 18.43 ◦ ) slope.

Number of y-elements in embankment 4
Gradient of slope (integer) (y/x) 3

For a full explanation of the Rslope2d parameters see Griffiths and Fenton (2004).
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